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Abstract. In this article, we redefine fuzzy random variables using
clear examples. We construct fuzzy distribution functions while graphically
representing these fuzzy distribution functions. Then we clearly construct
a fuzzy copula linking two fuzzy random variables, their marginals and the
fuzzy joint distribution function. Finally, we construct new specific fuzzy
copulas such as the minimum fuzzy copula, the maximum fuzzy copula and
the survival fuzzy copula.
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1. Introduction

The introduction of copulas in the modeling of multivariate stochastic depen-
dence was motivated mainly by certain shortcomings of the traditional dependence
measurement tool [1] such as the linear Bravais-Pearson coefficient. Indeed, it should
be noted that this dependency tool has a few limitations in practice, the second -
order moment must be finite for this coefficient to be defined, it only integrates lin-
ear dependency (rare in finance and the environment), and a zero correlation does
not necessarily imply independence. The copula is an innovative tool for modeling
the dependency structure of several random variables. The discovery of copulas has
made it possible to understand and prevent risks in many fields, including finance,
actuarial science and agriculture. The word copula was used in a mathematical sense
by Sklar (1959) in multivariate theory. The copula existence theorem is generally
addressed to Sklar [2],

(1.1) H(x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)).
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Copulas make it possible to model dependence by means of a dependence function,
which is more practical and more appropriate, and whose applications have made it
possible to control risks in fields such as finance and agriculture.

Copulas were initially used in finance and insurance to assess portfolio risk and
asset correlation. They have gained in popularity in these fields because they enable
complex dependency structures to be modeled, independently of marginal distri-
butions, which was not possible with traditional tools based on linear correlation
coefficients. In addition to finance, copulas have found applications in the spatial
domain, and authors such as Bagré and Loyara [3] have applied copulas to the en-
vironment, notably in the field of climate change. Also in medicine, copulas have
been applied using survival copulas [2]

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v),

where Ĉ is the survival copula for the copula C.
However, classical copulas come up against certain limitations, particularly when
it comes to modeling imprecise, uncertain or incomplete data, such as that often
encountered in real-life contexts.

It is in this context that fuzzy sets are often used to deal with the imprecision
affecting certain features. Following the introduction of fuzzy set theory [4], numer-
ous attempts have been made to develop fuzzy statistical methods. Fuzzy random
variables were introduced by Kwakernaak [5] as a natural generalization of random
variables to represent relationships between the results of a random experiment and
inexact non-statistical data. The use of fuzzy sets has made it possible to extend
classical copulas by introducing fuzzy copulas. Fuzzy copulas offer a more flexible
framework for dealing with uncertainties, by making it possible to model not only
the dependence between variables, but also the imprecise nature of the data. This is
particularly useful in fields such as environmental risk modeling or the management
of complex systems, where data is often fuzzy by nature.

Some authors, such as Stylianos [6], have attempted to construct fuzzy copulas
from fuzzy random variables, but have a number of shortcomings, namely the defi-
nition of a triangular fuzzy random variable, and the failure to use H-difference or
gH-difference to guarantee existence before performing certain operations on fuzzy
numbers.

To make up for these shortcomings, we have clearly defined the fuzzy random
variables we use to construe and clearly represent fuzzy repartition functions of a
fuzzy random variable and a fuzzy joint distribution function.

The paper is organized as follows: In Section 2, we define the basic concepts
required to understand the paper. In Section 3, we present our results, i.e., the defi-
nition and representation of fuzzy distribution functions and fuzzy joint distribution
functions, the construction of new fuzzy copulas such as independent fuzzy copulas,
minimum fuzzy copulas, maximum fuzzy copulas and the survival fuzzy copula. In
Section 4, we conclude with some perspectives.

2. Preliminaries

This section briefly reviews several concepts and terminology related to copula,
fuzzy num bers, and fuzzy random variable.
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2.1. Copula.

Definition 2.1 ([2]). Let I = [0, 1]. Then a function C : I2 → I is called a bivariate
copula, if it satisfies the following properties:

(2.1) C(u, 0) = 0,

(2.2) C(0, v) = 0,

C(u, 1) = u,(2.3)

C(1, v) = v,(2.4)

(2.5) C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0,

where u1 ≤ u2 and v1 ≤ v2.

Definition 2.2 ([1]). Let (X,Y ) be a a random vector.
(i) The distribution of (X,Y ) is characterized by:

H(x, y) = P (X ≤ x, Y ≤ y) ∀(x, y) ∈ R2,

where H is called the bivariate distribution function.
(ii) The marginal distributions F of X and G of Y in (X,Y ) are defined respec-

tively as follows: for each x ∈ X and each y ∈ Y,

F (x) = P (X ≤ x) = H(x,+∞) and G(y) = P (Y ≤ y) = H(+∞, y).

The main result on copula is given by the following theorem.

Theorem 2.3 ([2]). Let H be a bivariate distribution with marginal distributions F
and G. Then H(u, v) can be written in terms of a unique function C such that

(2.6) H(u, v) = C(F (u), G(v)).

If F and G are continuous, then C is unique and otherwise, C is uniquely determined
on RanF ×RanG.

2.2. Fuzzy set.

Fuzzy set theory was introduced by Zadeh [4] in 1965, and its initial intuition is
the need to handle categories that are not dichotomous.

Definition 2.4 ([7]). Let X be a set called the universe. Then a fuzzy set Ã of X
is defined by

(2.7) Ã = {(x, uÃ(x)), x ∈ X},

where uÃ: X → I is called the membership function of Ã.

Let α ∈ I. Then the α-level subset or α-cut of Ã, denoted Ã[α], is a subset of X
defined by:

(2.8) Ã[α] = {x ∈ X|uÃ(x) ≥ α}.
317
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Definition 2.5 ([8]). A fuzzy number is a convex and normalized fuzzy set of the
set of real numbers. The set of fuzzy numbers is denoted by F (R). To each fuzzy
set at level α, we associate a fuzzy interval denoted by:

(2.9) Ã[α] = [ÃL
α, Ã

R
α ].

Definition 2.6 ([6]). Let Ã a fuzzy number. Then the function Cr : F (R)×R → I
defined by

(2.10) Cr{Ã ≤ x} =
1

2
[sup
y≤x

uÃ(y) + 1− sup
y>x

uÃ(y)].

is called the indicator.

Definition 2.7 ([6]). The α-pessimistic value of Ã is defined by

(2.11) Ãα = inf{x ∈ Ã[0] : Cr{Ã ≤ x} ≥ α}.

To each fuzzy number Ã, we associate Ãα defined by

(2.12) Ãα =

{
ÃL

2α if α ∈ [0, 1
2 ]

ÃL
2(1−α) if α ∈ [ 12 , 1]

and

(2.13) Ã[α] = [Ãα
2
, Ã1−α

2
].

Definition 2.8 ([6, 9]). Let Ã, B̃ ∈ F(R) and Ã[α] = [ÃL
α, Ã

R
α ], B̃

[α] = [B̃L
α , B̃

R
α ].

Then
(i) (Ã⊕ B̃)[α] = [ÃL

α + B̃L
α , Ã

R
α + B̃R

α ],

(ii) (Ã⊖gH B̃)[α] = [min{ÃL
α − B̃L

α , Ã
R
α − B̃R

α }, max{ÃL
α − B̃L

α , Ã
R
α − B̃R

α }].

Definition 2.9 ([9]). Given ũ, ṽ ∈ F (R), if w̃ ∈ F (R) exists such that

(2.14) ũ⊖gH ṽ = w̃ ⇐⇒

{
ũ = ṽ + w̃

or ṽ = ũ+ (−1)w̃.

then w̃ is called the gH-difference.

Definition 2.10 ([7]). A fuzzy number m̃ is said to be of type L − R, if its mem-
bership function um̃ is written as follows

(2.15) um̃(x) =


L(m−x

α ) if x ≤ m

1 if x ∈ [m,n]

R(x−n
β ) if x ≥ n,

where α and β are positive real numbers and represent the left and right spreads of
m̃. R and L are reference functions. When L and R are linear and m = n , then m̃
is called a triangular fuzzy number, denoted by m̃ = (m,α, β)LR.

Remark 2.11. In practice, the most commonly used reference function in the lit-
erature is

L(t) = R(t) = 1− t.
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The membership function

uã(x) =

{
L
(
m−x
α

)
if x ≤ m

R
(

x−m
β

)
if x ≥ m.

By setting a1 = m−α, a2 = m and a3 = m+β, the differences α and β are explicitly
determined by:

α = a2 − a1 and β = a3 − a2.

We then obtain a very simple triangular fuzzy number of type L-L or R-R, given
by the following definition, which is easy to handle.

Definition 2.12 ([10]). A fuzzy number ã is said to be LR-triangular, if it is in
the forma ã = (a1, a2, a3), where a1, a2 and a3 are real, and has as a membership
function:

(2.16) uã(x) =


x− a1
a2 − a1

if a1 ≤ x ≤ a2

a3 − x

a3 − a2
if a2 ≤ x ≤ a3

0 otherelse.

Definition 2.13 ([10]). Let ã = (a1, a2, a3) and b̃ = (b1, b2, b3) two fuzzy triangular
numbers. We have:

(i) ã ≈ b̃ ⇐⇒ ai = bi ∀i = 1, 2, 3,

(ii) ã ⪰ b̃ ⇐⇒ ai ≥ bi ∀i = 1, 2, 3,

(iii) ã ⪯ b̃ ⇐⇒


a1 ≤ b1

a1 − a2 ≤ b1 − b2

a1 + a3 ≤ b1 + b3.

Definition 2.14 ([7]). Let m̃ = (m,α, β)LR and ñ = (n, γ, σ)LR two L-R fuzzy
triangular number. We have:

(i) m̃ ≈ ñ ⇔ m = n, α = λ, β = σ,

(ii) m̃ ⪯ ñ ⇔ m ≤ n, m− α ≤ n− γ and m+ β ≤ n+ σ.

Definition 2.15 ([8]). Let Ã and B̃ two fuzzy LR-fuzzy number. We have:

(2.17) (Ã⊗ B̃)α =


Ãα × B̃α if Ã, B̃ ⪰ 0̃

Ã1−α × B̃1−α if Ã, B̃ ⪯ 0̃

Ã1−α × B̃α if Ã ⪰ 0̃, B̃ ⪯ 0̃.

Definition 2.16 ([11]). Let f̃ : U ⊂ R2 → F (R) and (x0, y0) ∈ U . Then f̃ is said
to be:

(i) gH-differenciable with respect to x, if it exists a fuzzy number ∂f̃(x0,y0)
∂x ∈ F (R)

such that
(2.18)

∂f̃(x0, y0)

∂x
= lim

h→0−

f̃(x0 + h, y)⊖gH f̃(x0, y)

h
= lim

h→0+

f̃(x0 + h, y)⊖gH f̃(x0, y)

h
.
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(ii) gH-differenciable with respect to y, if it exists a fuzzy number ∂f̃(x0,y0)
∂y ∈ F (R)

such that
(2.19)

∂f̃(x0, y0)

∂y
= lim

h→0−

f̃(x, y0 + h)⊖gH f̃(x, y0)

h
= lim

h→0+

f̃(x, y0 + h)⊖gH f̃(x, y0)

h
.

2.3. Fuzzy random variables.

Definition 2.17 ([5]). Let (Ω,A, P ) be a probabilistic space. Then a fuzzy random
variabl is a mapping from Ω to the set of fuzzy numbers F (R).

Definition 2.18 ([12]). Let (Ω,A, P ) be a probabilistic space. Then a fuzzy random

variable of type L-R X̃ is defined as follows: for each w ∈ Ω,

(2.20) X̃(w) = (x(w), x(w), a, b),

where X and X are real random variables defined by x(w) = infX̃(w) and x(w) =

supX̃(w) respectively, and a and b are positive real numbers representing the left
and right spreads of x respectively.

Definition 2.19 ([12]). Let α ∈ I and X̃ be a fuzzy random variable of type L-R.

Then the α-cut of X̃, denoted by X̃ [α], is defined by

X̃ [α] = [x(w)− aL−1(α), x(w) + bR−1(α)].

We define the α-pessimistic value of X̃, denoted by X̃α, is defined as follows:

(2.21) X̃α =


x− aL−1(2α) if 0 ≤ α ≤ 1

2

x+ bR−1(2(1− α)) if
1

2
≤ α ≤ 1,

where a and b are positive real numbers representing the left and right spreads of
x, and L : R+ → I, R : R+ → I are left and right shap function respectively and
L(0) = R(0) = 1.
We can deduce that ([13])

(2.22) X̃ [α] = [X̃α
2
, X̃1−α

2
].

3. Results

3.1. Preminary results.

In this subsection, we restate the classical minimum and maximum copulas in a
different way.

Definition 3.1 ([1]). Let U be an open subset of Rn. Then a function f : U → R
is said to be of class C2, if it has continuous first and second partial derivatives at
every point of U , equivalently,

(i) all first-order partial derivatives ∂f
∂xi

exist and are continuous on U ,

(ii) all second-order partial derivatives ∂2f
∂xi∂xj

exist and are continuous on U .

This means that f is twice continuously differentiable on U.
320
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Example 3.2. Let U be an open subset of R2 and consider the function f : U → R
defined by: for each (x, y) ∈ U,

f(x, y) = x+ y + 1.

Then clearly, ∂f(x,y)
∂x = 1, ∂f(x,y)

∂y = 1. Thus these derivatives exist everywhere and

are continuous. On the other hand, we have

∂2f(x, y)

∂x2
= 0,

∂2f(x, y)

∂y2
= 0,

∂2f(x, y)

∂x∂y
= 0,

∂2f(x, y)

∂y∂x
= 0.

So These derivatives are also continuous everywhere. Hence f is of class C2.

A bivariate copula C is said to be 2-increasing [1], if it is of the class C2 and
∂2C
∂u∂v (u, v) ≥ 0 or satisfies the property (2.5).

Proposition 3.3. Let C : I2 → I be the function defined by

C(u, v) =
u+ v − 1 + |u+ v − 1|

2
.

Then C is a maximum bivariate copula.

Proof. Let u, v ∈ [0, 1]. Then we have

C(0, v) =
0 + v − 1 + |0 + v − 1|

2

=
v − 1 + |v − 1|

2

=
v − 1− v + 1

2
= 0.

Similarly, we show that C(u, 0) = 0. On the other hand, we get

C(u, 1) =
u+ 1− 1 + |u+ 1− 1|

2

=
u+ |u|

2

=
2u

2
= u.

Similarly, we show that C(1, v) = v. Thus properties (2.1)–(2.4) hold.

Now, we must prove that C is 2-increasing, i.e., ∂2C
∂u∂v (u, v) ≥ 0.

If u+ v ≥ 1, then |u+ v − 1| = u+ v − 1. Thus C(u, v) = u+ v − 1. So we have

∂2C

∂u∂v
(u, v) =

∂

∂u
(
∂C

∂v
(u+ v − 1)) =

∂

∂u
(1) = 0.

If u+ v ≤ 1, then |u+ v − 1| = −u− v = 1. Thus C(u, v) = 0. So we get

∂2C

∂u∂v
(u, v) =

∂2C

∂u∂v
(0) = 0.

Hence C is 2-increasing. Therefore C is a maximum bivariate copula. □
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Proposition 3.4. Let C : I2 → I be the function defined by

C(u, v) =
u+ v − |u− v|

2
.

Then C is a minimum bivariate copula.

Proof. Let u, v ∈ I. Then we have

C(0, v) =
0 + v − |0− v|

2

=
v − |v|

2

=
v − v

2
= 0,

C(u, 1) =
u+ 1− |u− 1|

2

=
u+ 1 + u− 1

2

=
2u

2
= u.

Similarly, we get C(u, 0) = 0 and C(1, v) = v. Thus properties (2.1)–(2.4) hold.
Furthermore, the function C is of the class C∞, i.e., that all partial derivatives of

all orders of C are continuous. So we have ∂2C
∂u∂v (u, v) ≥ 0. Hence C is 2-increasing.

Therefore C is a minimum bivariate copula. □

The representation of the maximum and the minimum copula is given by Figure
1.

Figure 1. Minimum copula on the left and maximum copula on
the right

3.2. Fuzzy cumulative distribution functions.
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3.2.1. Cumulative distribution function of a fuzzy random variable.

This section extend a concept of cumulative joint distribution function to the fuzzy
random variable and their represenation.

Definition 3.5. Let X̃ be a fuzzy random variable and X̃α its α pessimistic value.
We define the cumulative distribution function (CDF) of the fuzzy random variable

X̃, denoted by F̃ or F̃X̃ , as

(3.1) F̃ (x) = F̃X̃(x) = P (X̃α ≤ x).

The α-cut of the cumulative distribution function F̃X̃ of X̃ can be defined as

(3.2) (F̃X̃)[α](x) = [P (X̃α
2
≤ x), P (X̃1−α

2
≤ x)].

Example 3.6. Let X be a real random variable following a normal distribution
N (0, 1), and X̃ a fuzzy normal random variable. Here we simulated 1,000 values
following the standard normal distribution, and by taking m = −3, 23, n = 3.58 and
α = β = 2 and L(t) = R(t) = 1− t, we have:

L(
m− x

α
) = 1− −3.23− x

2

=
5.23 + x

2
,

and

R(
x− n

β
) = 1− x− 3.58

2

=
5.58− x

2
.

Based on (2.15), we deduce the membership function of X̃ defined by uX̃(x) is the

membership function of X̃ defined by

(3.3) uX̃(x) =


x+ 5.23

2
if x ≤ −3.23

1 if − 3.23 ≤ x ≤ 3.58
5.58− x

2
if x ≥ 3.58.

The α-pessimistic of X̃ is given by:

(3.4) X̃α =

{
4α− 5.23 if 0 ≤ α ≤ 1

2

4α+ 1.58 if 1
2 ≤ α ≤ 1.

By solving
x+ 5.23

2
= α and using the equation 2.21, L−1(2α) = −4α + 5.23 and

a = 1

Similarly, by solving
5.58− x

2
= α, R−1(2(1− α)) = −4α− 1.58 and b = 1

Then we have

X̃ ; N (4α− 5.23, 1) if 0 ≤ α ≤ 1

2
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and

X̃ ; N (4α+ 1.58, 1) if
1

2
≤ α ≤ 1,

where X̃ ; N (4α−5.23, 1) means that X̃ follows the normal distribution of param-
eters 4α− 5.23 and 1.

For 0 ≤ α ≤ 1
2 ,

F̃X̃(x) = P (X̃α ≤ x)

= P (x− aL−1(2α) ≤ x)

= P (x− 4α+ 5.23 ≤ x)

= P (x ≤ x+ 4α− 5.23)

= Φ(x+ 4α− 5.23),

where Φ is the cumulative distribution function of the normal random variable.
For 1

2 ≤ α ≤ 1,

F̃X̃(x) = P (X̃α ≤ x)

= P (x+ bR−1(2(1− α)) ≤ x)

= P (x+ 4α+ 1.58 ≤ x)

= P (x ≤ x− 4α− 1.58).

= Φ(x− 4α− 1.58).

We discretize α with a step of 0.1. The graphical representation of the cumulative
distribution function Φ of X̃ is given by Figure 2.

Figure 2. Fuzzy normal distribution function with α discretized
in steps of 0.1

If α is discretized with a step of 0.01, the graphical representation is given by
Figure 3.
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Figure 3. Fuzzy normal distribution function with α sampled at
increments of 0.01

Example 3.7. Let X be a real random variable following a uniform distribution on
the interval [1, 4] and X̃ a fuzzy uniform random variable. uX̃(x) is the membership

function of X̃ defined by

L(
m− x

α
) = 1− 1− x

2

=
1 + x

2

and

R(
x− n

β
) = 1− x− 4

2

=
6− x

2
.

We deduce the membership function of X̃ defined by

(3.5) uX̃(x) =



x+ 1

2
if x ≤ 1

1 if 1 ≤ x ≤ 4
6− x

2
if x ≥ 4

0 otherwise.

The α-pessimiste of X̃ is given by

(3.6) X̃α =

{
4α− 1 if 0 ≤ α ≤ 1

2 ,

4α+ 2 if 1
2 ≤ α ≤ 1.

Then we have

X̃ ; U(1 + 4α− 1, 4 + 4α− 1) if 0 ≤ α ≤ 1

2
and

X̃ ; U(1 + 4α+ 2, 4 + 4α+ 2) if
1

2
≤ α ≤ 1,

where X̃ ; U(1+4α+2, 4+4α+2) means that X̃ follows the uniform distribution
on the interval [1 + 4α+ 2, 4 + 4α+ 2].
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For 0 ≤ α ≤ 1
2 ,

F̃X̃(x) = P (X̃α ≤ x) = P (x− aL−1(2α) ≤ x)

= P (4α ≤ x ≤ 4α+ 3)

= Φ(4α+ 3)− Φ(4α),

where Φ is the cumulative distribution function of the uniform random variable.
For 1

2 ≤ α ≤ 1,

F̃X̃(x) = P (X̃α ≤ x) = P (x+ bR−1(2(1− α)) ≤ x)

= P (4α+ 3 ≤ x ≤ 4α+ 6)

= Φ(4α+ 6)− Φ(4α+ 3).

We discretize α with a step size of 0.1 and the graphical representation of the
cumulative distribution function Φ of X̃ is given by Figure 4.

Figure 4. Fuzzy uniform cumulative distribution function with α
with alpha discretized in steps of 0.1

If we discretize α with a step size of 0.01, we have Figure 5.

Figure 5. Fuzzy uniform distribution function with α sampled at
increments of 0.01
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3.2.2. Two-variables fuzzy joint distribution function.

Definition 3.8. Let X̃ and Ỹ be two fuzzy random variables and let α ∈ I. Let
X̃α and Ỹα be the α-pessimistic values of the respective fuzzy random variables X̃
and Ỹ . Then we have

(3.7) H̃(x, y) = H̃X̃,Ỹ (x, y) = P (X̃α ≤ x, Ỹα ≤ y).

For 0 ≤ α ≤ 1
2 , we have

H̃(x, y) = H̃X̃α,Ỹα
(x, y)

= P (X̃α
2
≤ x, Ỹα

2
≤ y).

For 1
2 ≤ α ≤ 1, we have

H̃(x, y) = H̃X̃α,Ỹα
(x, y)

= P (X̃1−α
2
≤ x, Ỹ1−α

2
≤ y).

Thus We can define the α-cut of the fuzzy distribution function H̃, denoted H̃ [α] by

(3.8) H̃ [α] = [HX̃α
2
,Ỹα

2

, HX̃1−α
2
,Ỹ1−α

2

].

Example 3.9. Let X and Y two random variables with a joint distribution

(3.9) H(x, y) =
(x+ 1)(1− e−y)

(x− 1)e−y + 2
, (x, y) ∈ [−1, 1]× [0,+∞],

where X follows a uniform distribution on [−1, 1] and Y follows an exponential
distribution with parameter 1. Let X be a real random variable following a uniform
distribution on the interval [−1, 1] and uX̃ be the membership function of X̃ defined
by

(3.10) uX̃(x) =



x+ 3

2
if − 3 ≤ x ≤ −1

1 if − 1 ≤ x ≤ 1
3− x

2
if 1 ≤ x ≤ 3

0 otherwise.

The α-pessimistic is

(3.11) X̃α =

{
4α− 3 if 0 ≤ α ≤ 1

2

4α− 1 if 1
2 ≤ α ≤ 1.

Then we have

X̃ ; U(−1 + 4α− 3, 1 + 4α− 1) if 0 ≤ α ≤ 1

2
and

X̃ ; U(1 + 4α+ 2, 4 + 4α+ 2) if
1

2
≤ α ≤ 1.
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The membership function of Ỹ is given by

(3.12) uỸ (x) =


x− 1 if 1 ≤ x ≤ 2

3− x if 2 ≤ x ≤ 3

0 otherwise.

The α-pessimistic value of Ỹ is given by

(3.13) Ỹα =

{
2α+ 1 if 0 ≤ α ≤ 1

2

2α+ 1 if 1
2 ≤ α ≤ 1.

For 0 ≤ α ≤ 1
2 ,

H̃(x, y) = H̃X̃α,Ỹα
(x, y)

= P (X̃α
2
≤ x, Ỹα

2
≤ y)

= HX̃α
2
,Ỹα

2

(x, y)

= P (x− 2α+ 3 ≤ x, y − α− 1 ≤ y)

= P (x ≤ x+ 2α− 3, y ≤ y + α+ 1)

=
(x+ 2α− 2)(1− e−y−α−1)

(x+ 2α− 4)e−y−α−1 + 2
.

For 1
2 ≤ α ≤ 1,

H̃(x, y) = H̃X̃α,Ỹα
(x, y)

= P (X̃1−α
2
≤ x, Ỹ1−α

2
≤ y)

= HX̃1−α
2
,Ỹ1−α

2

(x, y)

=
(x+ 2α− 2)(1− e−y−α+3)

(x+ 2α− 4)e−y−α+3 + 2
.

3.3. Main results.

In this subsection, we construct fuzzy copulas.

Proposition 3.10. Let X̃ and Ỹ two fuzzy random variables with respective fuzzy
distribution functions F̃ and G̃ and H̃ a fuzzy joint distribution function. Then we
have

(3.14) H̃(x, y)α = C((F̃ (x))α, (G̃(y))α))

and

(3.15) C̃(x, y)α = H((F̃−1(x))α, (G̃
−1(y))α),

where H is a joint distribution function, C a bivariate copula and C̃(x, y)α, H̃(x, y)α,

F̃ (x))α, G̃(y))α are respectvely the α-pessimistic of C, H, F, G.
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Proof.

H̃(x, y) = H̃X̃,Ỹ (x, y) = P (X̃α ≤ x, Ỹα ≤ y)

= P (F̃ (X̃α) ≤ F̃ (x), G̃(Ỹα) ≤ G̃(y))

= C((F̃ (x))α, (G̃(y))α).

C̃(x, y)α = P (F̃ (X̃α) ≤ x, G̃(Ỹα) ≤ y)

= P (X̃α ≤ F̃−1(x), Ỹα ≤ G̃−1(y))

= H(F̃−1(x)α, G̃
−1(y)α).

Then H̃ and C̃ are well-defined.
Now, we will prove that C̃ is a fuzzy copula.

C̃(0, y)α = H((F̃−1(0))α, (G̃
−1(y))α)

= H((F̃ (0))−1
α , (G̃−1(y))α)

= H(−∞, (G̃−1(y))α)

= 0̃α,

C̃(1, y)α = H((F̃−1(1))α, (G̃
−1(y))α)

= H((F̃ (1))−1
α , (G̃−1(y))α)

= H(+∞, (G̃−1(y))α)

= G((G̃−1(y))α)

= ṽα.

Similarly, C̃(x, 0)α = 0̃α and C̃(u, 1)α = ũα. Let x1, y1, x2, y2 ∈ I such that
x1 ≤ x2 and y1 ≤ y2. Then we have

C̃(x1, y1)⊕ C̃(x2, y2) = H((F̃−1(x1), G̃
−1(y1))⊕H((F̃−1(x2), G̃

−1(y2))

and

C̃(x1, y2)⊕ C̃(x2, y1) = H(F̃−1(x1), G̃
−1(y2))⊕H(F̃−1(x2), G̃

−1(y1)).

Since H is 2-increasing, we get
H(F̃−1(x1), G̃

−1(y1))⊕H(F̃−1(x2), G̃
−1(y2))

⪰ H(F̃−1(x1), G̃
−1(y2))⊕H(F̃−1(x2), G̃

−1(y1)).
Thus we have

C̃(x1, y1)⊕ C̃(x2, y2) ⪰ C̃(x1, y2)⊕ C̃(x2, y1).

So C̃ is 2-increasing. □

The α-cut of C̃ is done by

(3.16) C̃(x, y)[α] = [H(F̃−1(x)α
2
, G̃−1

α
2
(y)), H(F̃−1

1−α
2
(x), G̃−1

1−α
2
(y))].
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Bagré et al. /Ann. Fuzzy Math. Inform. 29 (2025), No. 3, 315–338

Example 3.11 ([2]). Let X and Y two random variables with a joint distribution

(3.17) H(x, y) =
(x+ 1)(1− e−y)

(x− 1)e−y + 2
, (x, y) ∈ [−1, 1]× [0,+∞],

where X follows a uniform distribution on [−1, 1] and Y follows an exponential
distribution with parameter 1. The copula associated with this distribution is the
copula

(3.18) C(u, v) =
uv

u+ v − uv
.

The α-pssimistic of X̃ and Ỹ are done by:

X̃α =

{
4α− 3 if 0 ≤ α ≤ 1

2

4α− 1 if 1
2 ≤ α ≤ 1,

Ỹα =

{
2α+ 1 if 0 ≤ α ≤ 1

2

2α+ 1 if 1
2 ≤ α ≤ 1.

For 0 ≤ α ≤ 1
2 , we have

F̃X̃α
= P (X̃α

2
≤ x)

= P (x− 2α+ 3 ≤ x)

= P (x ≤ x+ 2α− 3)

=
x+ 2α− 3 + 1

2

=
x+ 2α− 2

2
.

Then we get

(F̃−1

X̃
(u))α = 2u+2− 2α, G̃Ỹα

(y) = 1− e−y−α−1, (G̃−1

X̃
(v))α = −ln(1− v)−α− 1.

Thus we have

CL(u, v)α = C̃(u, v)α = H(F̃−1(u))α, (G̃
−1(v))α)

=
(2u+ 2− 2α+ 1)(1− e−(−ln(1−v)−α−1))

(2u+ 2− 2α− 1)e−(−ln(1−v)−α−1) + 2

=
(2u+ 3− 2α)(1− (1− v)e−α−1))

(2u+ 1− 2α)(1− v)e−α−1) + 2
.

For 1
2 ≤ α ≤ 1, similarly we have

(3.19) CR(u, v)α =
(2u+ 1− 2α)(1− (1− v)e−α−1))

(2u− 1− 2α)(1− v)e−α−1) + 2
.

The graphical representaton of this copula is done by Figure 6.
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Figure 6. Fuzzy copula for α = 0.7

3.3.1. Construction of fuzzy copulas.

In this subsecton, we constuct the novel copulas

3.3.2. Fuzzy independent copula.

Let X̃ and Ỹ two independent fuzzy random variables, we have

C̃α(x, y) = H(F̃−1(x))α, (G̃
−1(y))α)

= F̃ ((̃F−1(x))α.G̃((̃G−1(y))α

= x̃α.ỹα.

The representation of α-cut of the independant fuzzy copula is Figure 7.

Figure 7. The α- cuts of fuzzy independant copulas
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3.3.3. Fuzzy minimum and maximum copulas.

Proposition 3.12. Let M̃ : I2 → I be the function defined as follows: for all
x, y, α ∈ I

(3.20) M̃(x, y)α =
1

2
(x̃α ⊕ ỹα ⊖ |x̃α ⊖ ỹα|.

Then M̃ is a fuzzy minimum copula.

Proof. Let x, y, α ∈ I. Then we have

M̃(0, y)α =
1

2
(0̃α ⊕ ỹα ⊖ |0̃α ⊖ ỹα|

=
1

2
|ỹα ⊖ ỹα|

=
1

2
(0̃α)

= 0̃α,

M̃(x, 0)α =
1

2
(x̃α ⊕ 0̃α ⊖ |x̃α ⊖ 0̃α|

=
1

2
(x̃α ⊖ x̃α)

=
1

2
(0̃α)

= 0̃α,

M̃(x, 1)α =
1

2
(x̃α ⊕ 1̃α ⊖ |x̃α ⊖ 1̃α|

=
1

2
(x̃α ⊕ 1̃α ⊕ x̃α ⊖ 1̃α)

=
1

2
(x̃α ⊕ x̃α)

= x̃α,

M̃(1, y)α =
1

2
(1̃α ⊕ x̃α ⊖ |1̃α ⊖ ỹα|

=
1

2
(1̃α ⊕ ỹα ⊖ 1̃α ⊕ ỹα)

=
1

2
(ỹα ⊕ ỹα)

= ỹα.

Furthermore, we have

(3.21) M̃(x1, y1)α ⊕ M̃(x2, y2)α ⊖ M̃(x1, y2)α ⊖ M̃(y1, x2)α ⪰ 0̃

for all x1, x2, y1, x1, y1 ∈ I such that x1 ≤ x2 and y1 ≤ y2. □
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The representation of α-cut of the minimum fuzzy copula is Figure 8.

Figure 8. Fuzzy minimum copula

Proposition 3.13. Let W̃ : I2 → I be the function defined as follows: for all
u, v, α ∈ I,

(3.22) W̃ (u, v)α =
ũα ⊕ ṽα ⊖ 1̃⊕ |ũα ⊕ ṽα ⊖ 1̃|

2
.

Then W̃ is a fuzzy maximum copula.

Proof. The proof is the same way as Proposition 3.12.
The representation of α-cut of the maximum fuzzy copula is Figure 9.

Figure 9. Fuzzy maximum copula

□

3.3.4. Fuzzy survival copula.

Fuzzy survival copulas enable modeling the dependence between fuzzy variables
related to the survival of individuals in a population while managing data
uncertainty.
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Definition 3.14. The fuzzy random variables of interest represent the lifetimes of
individuals or objects in some population. The probability of an individual living or
surviving beyond time x is given by the survival function

F̂ (x) = P [X̃α > x] = 1− F̃ (x),

where F̃ is the cumulative distribution of X̃ and α ∈ I.

Definition 3.15. Let be (X̃, Ỹ ) be a pair of fuzzy random variables with joint dis-

tribution function H̃, the joint survival function is given by

Ĥ(x, y) = P [X̃α > x, Ỹα > y].

Proposition 3.16 (Fuzzy survival copula). Let X̃ and Ỹ two fuzzy random variables

and C a copula. Let ξ̃ : I2 → I be the function defined as follows: for all , u, v, α ∈ I,

(3.23) ξ̃(u, v)α = ũα ⊕ ṽα ⊖gH 1̃α ⊕ C̃α(1⊖gH u, 1⊖gH v).

Then ξ̃ is a fuzzy maximum or minimum copula.
In this case, ξ̃ is called the survival fuzzy copula of C.

Proof. Let u, V, α ∈ I. Then we have

ξ̃(0, v)α = 0̃α ⊕ ṽα ⊖gH 1̃α ⊕ C̃(1, 1⊖gH v)α

= ṽα ⊖gH 1̃α ⊕ 1̃α ⊖gH ṽα

= 0̃α,

ξ̃(u, 0)α = ũα ⊖gH 1̃α ⊕ C̃(1⊖gH u, 1)α

= ũα ⊖gH 1̃α ⊕ 1̃α ⊖gH ũα

= 0̃α,

ξ̃(1, v)α = 1̃α ⊕ ṽα ⊖gH 1̃⊕ C̃(0, 1⊖gH v)α

= ṽα,

ξ̃(u, 1)α = ũα ⊕ 1̃α ⊖gH 1̃α ⊕ C̃(1⊖gH u, 0)α

= ũα.

Moreover, we get

(3.24)
∂2ξ̃

∂u∂v
(u, v)α =

∂

∂u
(
∂ξ̃

∂v
(u, v)) =

∂

∂u
(1 +

∂C̃(u, v)

∂v
) = 0 +

∂2C̃(u, v)

∂u∂v
⪰ 0.

Thus ξ is 2-increasing. □

Example 3.17. Let us determine the fuzzy survival copula associated with the
independent copula.

ξ(u, v)α = ũα ⊕ ṽα ⊖gH 1̃α ⊕ C̃α(1− u, 1− v)

= ũα ⊕ ṽα ⊖gH 1̃α ⊕ (1̃α ⊖gH ũα)(1̃α ⊖gH ṽα)

= ũα ⊕ ṽα ⊖gH ũα ⊖gH ṽα ⊕ ũαũα

= ũαṽα.
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This reflects the fact that the independence of random variables is preserved, even
when considering their complementary events.

Example 3.18. Let X and Y be two random variables with a joint distribution

(3.25) H(x, y) =
(x+ 1)(1− e−y)

(x− 1)e−y + 2
, (x, y) ∈ [−1, 1]× [0,+∞],

where X follows a uniform distribution on [−1, 1] and Y follows an exponential
distribution with parameter 1. Then we have

C(u, v) = H(F−1(u), G−1(v))(3.26)

=
uv

u+ v − uv
,(3.27)

where F (u) = u+1
2 and G(v) = 1− e−v.

Now, we want to construct the fuzzy survival copula associate to this copula.

ξ(u, v)α = ũα ⊕ ṽα ⊖gH 1̃α ⊕ C̃α(1− u, 1− v)

= ũα ⊕ ṽα ⊖gH 1̃α ⊕ (1̃⊖gH u)(1̃⊖gH v)

1̃⊖gH u⊕ 1̃⊖gH v ⊖gH (1̃⊖gH u)(1̃⊖gH v)

=
ũ2
αṽα ⊖gH ṽ2αũα ⊕ 2ũαṽα

1̃⊖gH ũαṽα
.

The fuzzy survival copula associated with this fuzzy survival copula is shown on
Figure 10.

Figure 10. Fuzzy survival copula

3.3.5. Survival copula analysis. Fuzzy survival copulas model the dependence be-
tween fuzzy variables representing the survival of individuals in a population, ac-
counting for data uncertainty. Fuzzy survival copulas model the dependence between
fuzzy random variables by incorporating imprecise margins and parameters. Their
construction involves fuzzifying the margins, selecting a classical copula, and apply-
ing an appropriate transformation. Useful in epidemiology, and risk management,
they better handle data uncertainty.
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The fuzzy survival copula captures the dependence between X and Y in fuzzy
form, taking uncertainty into account through the parameter α.

Now by doing an analysis and simulation with (3.18) simulating, the simulation
generates n random points for u and v and calculates the fuzzy margins and survival
copula for each (u, v) pair. The parameter α controls the degree of uncertainty, and
a sample of 1000 points is simulated for α=0.3 and α = 0.7 The data generated
is organized in a data frame comprising the values, fuzzy margins. The results are
displayed as follows:

Figure 11. Fuzzy survival copula for α = 0.3 and α = 0.7

A scatter plot shows the points (u, v) colored according to copula value, ranging
from blue (low dependence) to red (high dependence). For u and v close to 1, the
value of the copula tends to be high (red), indicating strong dependency. Areas
where u or v are low show reduced dependencies (blue).

The statistical summary of the fuzzy copula is calculated to obtain information
on the distribution of values (minimum, maximum, mean, median). Correlations are
calculated between the fuzzy margins and the copula. This allows us to assess the
relationship between margins and the overall dependency modeled by the copula.
We have

min value of the fuzzy copula -3.23
maxvalue of the fuzzy copula 5.58

r 0.5
n 1000

Table 1. Statistical Analysis of the copula

The results allow visualization and analysis of the impact of α on the fuzzy survival
copula and its margins. A high value of αincreases uncertainty in the margins and
spreads the dependence curves in the copula. Correlation analysis helps understand
how the fuzzy margins influence the dependence between variables.
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4. Conclusion

In conclusion, the construction of fuzzy copulas offers several advantages. It
allows us to take into account the uncertain nature of the data and to express the
dependencies between variables in a more realistic way. We have clearly defined the
concepts of fuzzy random variables, fuzzy cumulative distribution functions, fuzzy
distribution functions and fuzzy copulas. In addition, we have constructed fuzzy
copulas such as the minimum fuzzy copula, the maximum fuzzy copula and the fuzzy
survival copula. This contribution provides researchers with tools to better represent
the complexity of systems due to uncertainty in various domains. Looking ahead,
we plan to build fuzzy copulas in 3 or 4 dimensions and apply them in medicine or
the environment, where data is generally fuzzy, to better study dependence between
variables and make predictions.
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[7] Abdoulaye Compaoré, Thèse de Doctorat, Contributions de la transformation Aliénor à la
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[12] Farid Aiche, Thèse de Doctorat, comparaison d’ intervalles flous pour la programmation multi-

objectifs dans l’incertain (12 Juillet 2013), Université de Toulouse.
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Applications, Université Norbert Zongo, BP 376 Koudougou, Burkina Faso

337
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