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1. Introduction

In 1980, Iséki [1] proposed the concept of BCI-algebras as a generalization of
BCK-algebras introduced by Iséki and Tanaka [2]. After then, Some researchers
introduced and studied some proper subclasses ofBCK-algebras, for example, BCC-
algebras (Dudek, [3]), BCH-algebras (Hu and Li [4]), BE-algebras (Kim and Kim
[5]) and BRK-algebras (Bandaru [6]). In particular, Dong and Ryu [7], Roudabri
and Torkzadeh [8] and Mohammed et al. [9] studied topological structures on BCK-
algebras respectively. Jun et al. [10] and Hasankhani et al. [11] applied BCI-
algebras to topology respectively. Ahn and Kwon [12], and Setudeh and Kouhestani
[13] dealt with topological properties on BCC-algebras respectively. Mehrshad and
Golzarpoor [14] studied some topological structures on BE-algebras. Jansi and
Thiruveni [15, 16] appliedBCH-algebras to topology and topological group. Mostafa
et al. [17] discussed topological properties on KU -algebras proposed by Prabpayak
and Leerawat [18]. Sivakumar et al. [19] investigated topological structures on
BRK-algebras

In 2022, Saeid et al. [20] proposed the concept of Γ-BCK-algebras and studied
some of its properties. By modifying a Γ-BCK-algebra proposed by Saeid et al.,
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Shi et al. [21] redefined a Γ-BCK-algebra introduced by Saeid et al. [20] and
investigated its various properties.

The purpose of our study is to introduce the concept of Γ-BCI-algebras as a
subclass of Γ-BCK-algebras and study its topological structures. To accomplish
our purpose, our research proceeds as follows: First, we define a Γ-BCI-algebra and
obtain its various properties. Next, we define a Γ-ideal and investigate some of its
properties. Also, we obtain some properties of the quotient Γ-BCI-algebra and the
kernel of a Γ-homomorphism respectively. Finally, we discuss some of topological
properties on Γ-BCI-algebras and quotient Γ-BCI-algebras respectively.

2. Preliminaries

We recall some definitions needed in next sections.

Definition 2.1 ([1, 2]). Let X be a nonempty set with a constant 0 and a binary
operation ∗. Consider the following axioms: for all x, y, z ∈ X,

(A1) [(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = 0,
(A2) [x ∗ (x ∗ y)] ∗ y = 0,
(A3) x ∗ x = 0,
(A4) x ∗ y = 0 and y ∗ x = 0 imply x = y,
(A5) 0 ∗ x = 0..

Then X is called a:
(i) BCI-algebra, if it satisfies axioms (A1)–(A4),
(ii) BCK-algebra, if it satisfies axioms (A1)–(A5).

In BCI-algebra or BCK-algebraX, we define a binary relation ≤ onX as follows:
for all x , y ∈ X,

x ≤ y if and only if x ∗ y = 0.

Definition 2.2 ([22]). Let X and Γ be two nonempty sets. Then X is called a
Γ-semigroup, if there is a mapping f : X×Γ×X → X, denoted by f(x, α, y) = xαy
for each (x, α, y) ∈ X × Γ×X, such that it satisfies the following condition: for all
x, y, z ∈ X and all α, β ∈ Γ,

(2.1) xα(yβz) = (xαy)βz.

Definition 2.3 ([21]). Let X be a set with a constant 0 and let Γ be a nonempty
set. Then X is called a Γ-BCK-algebra, if there is a mapping f : X × Γ×X → X,
denoted by f(x, α, y) = xαy for each (x, α, y) ∈ X × Γ×X, satisfying the following
axioms: for all x, y, z ∈ X and all α, β ∈ Γ,

(ΓA1) [(xαy)β(xαz)]β(zαy) = 0,
(ΓA2) [xα(xβy)]αy = 0,
(ΓA3) if xαy = 0 = yαx, then x = y,
(ΓA4) xαx = 0,
(ΓA5) 0αx = 0.

For a Γ-BCK-algebraX and a fixed α ∈ Γ, we define the operation ∗ : X×X → X
as follows: for all x, y ∈ X,

x ∗ y = xαy.

Then it is clear (X, ∗, 0) is a BCK-algebra and is denoted by Xα.
268
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3. Γ-BCI-algebras

Definition 3.1. Let X be a set with a constant 0 and let Γ be a nonempty set.
Then X is called a Γ-BCI-algebra, if it satisfies the axioms (ΓA1)–(ΓA4).

If Γ is a singleton set, then a Γ-BCI/BCK-algebra is a classical BCK/BCI-
algebra.

In a Γ-BCI-algebra X, we define a binary relation ≤ on X as follows (See [20]):
for all x, y ∈ X and each α ∈ Γ,

(3.1) x ≤ y if and only if xαy = 0.

In this case, ≤ is called a Γ-BCI ordering. Then from the definition of ≤, we obtain
a characterization of a Γ-BCI-algebra.

Theorem 3.2 (See Theorem 3.3, [21]). X is a Γ-BCI-algebra if and only if it
satisfies the following conditions: for all x, y, z ∈ X and all α, β ∈ Γ,

(1) (xαy)β(xαz) ≤ zαy,
(2) xα(xβy) ≤ y,
(3) if x ≤ y and y ≤ x, then x = y,
(4) x ≤ x.

Example 3.3. (1) Let Γ = {α, β, γ} and X = {0, 1, 2} be a set with the ternary
operation defined as the following table:

α 0 1 2
0 0 2 2
1 1 0 0
2 2 0 0

β 0 1 2
0 0 2 1
1 1 0 0
2 2 0 0

γ 0 1 2
0 0 1 2
1 1 0 0
2 2 0 0

Table 3.1

Then clearly, X is a Γ-BCI-algebra.
(2) Let Γ = {α, β} and let X = {0, 1, 2, 3} be a set with the ternary operation

defined as the following table:

α 0 1 2 3
0 0 0 0 3
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

β 0 1 2 3
0 0 0 0 3
1 1 0 1 3
2 2 1 0 1
3 3 2 1 0

Table 3.2

Then we can easily check that X is a Γ-BCI-algebra.

Proposition 3.4. Let X be an algebra satisfying the axioms (ΓA3), (ΓA4). If x ≤ 0
for each x ∈ X, then x = 0.

Proof. Suppose x ≤ 0 for each x ∈ X. Then clearly, xα0 = 0 for each α ∈ Γ. By the
axiom (ΓA4), 0α0. Thus xα0 = 0 = 0α0 = 0. So by the axiom (ΓA3), x = 0. □
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Proposition 3.5. Let X be a Γ-BCI-algebra and let x, y, z ∈ X.
(1) If x ≤ y, then zαy ≤ zαx for each α ∈ Γ.
(2) If x ≤ y and y ≤ z, then x ≤ z.

Proof. (1) Suppose x ≤ y and let α, β ∈ Γ. Then by Theorem 3.2(1) and the
hypothesis, we get

(zαy)β(zαx) ≤ xαy = 0.

Thus by Proposition 3.4, (zαy)β(zαx) = 0. So zαy ≤ zαx.
(2) Suppose x ≤ y, y ≤ z and let α ∈ Γ. Since y ≤ z, by (1), xαz ≤ xαy. Since

x ≤ y, xαy = 0. Then xαz ≤ 0. Thus by Proposition 3.4, xαz = 0. So x ≤ z. □

Corollary 3.6. Let X be a Γ-BCI-algebra and let x, y, z ∈ X, α ∈ Γ. If xαy ≤ z,
then xαz ≤ y.

Proof. Suppose xαy ≤ z. Then by (3.1) and Proposition 3.5(1),

xαz ≤ xβ(xαy) ≤ y for each β ∈ Γ.

Thus by Proposition 3.5(2), xαz ≤ y. □

Proposition 3.7. Let X be a Γ-BCI-algebra. If the following condition holds:

(3.2) (xαy)βz ≤ (xαz)βy for all x, y, z ∈ X and all α, β ∈ Γ,

then the axiom (ΓA2) holds.

Proof. Suppose (3.2) holds and let x, y, z ∈ X, α, β ∈ Γ. Then by Theorem 3.2
(1), Proposition 3.5(1), the hypothesis and the axiom (ΓA3),

[xα(xβy)]αy ≤ (xαy)β(xαy) = 0.

Thus by Proposition 3.4, [xα(xβy)]αy = 0. So the axiom (ΓA2) holds. □

Proposition 3.8. Let X be a Γ-BCI-algebra. Then

(3.3) (xαy)βz = (xαz)βy for all x, y, z ∈ X, α, β ∈ Γ.

Proof. Let x, y, z ∈ X and α, β ∈ Γ. Then by Theorem 3.2(2), we get

xα(xαz) ≤ z.

Thus by Theorem 3.2(2) and Proposition 3.5(1), we have

(xαy)βz ≤ (xαy)β[xα(xαz)] ≤ (xαz)βy.

Since x, y, z ∈ X and α, β ∈ Γ are arbitrary, we obtain the following inequality:

(xαz)βy ≤ (xαy)βz.

So by Theorem 3.2(3), (xαy)βz = (xαz)βy. □

Corollary 3.9. Let X be a Γ-BCI-algebra. Then the followings are equivalent: for
all x, y, z ∈ X and all α, β ∈ Γ,

(1) (xαy)β(xαz) ≤ zαy,
(2) (xαz)β(yαz) ≤ xαy.

Proof. The proof follows from Propositions 3.8 and 3.5(1). □
270
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Proposition 3.10. Let X be a Γ-BCI-algebra. Then the followings hold: for all
x, y, z, u ∈ X and all α, β ∈ Γ,

(1) x ≤ y implies xαz ≤ yαz,
(2) xα[xβ(xαy)] = xαy,
(3) (0αx)β(0αy) = 0β(xβy) or (0αx)β(0αy) = 0β(xαy),
(4) [(xαy)βz]α(uβz) ≤ (xαu)βy,
(5) [(xαy)βz]α[(xαu)βy] ≤ uβy,

Proof. (1) Suppose x ≤ y. Then clearly, xαy = 0. Thus by Corollary 3.9(2), we have

(xαz)β(yαz) ≤ xαy = 0.

So by Proposition 3.4, (xαz)β(yαz) = 0. Hence xαz ≤ yαz.
(2) By Theorem 3.2(1) and the axiom (ΓA2), we get

(xαy)β[xα(xβ(xαy))] ≤ [xβ(xαy)]βy = 0.

Then by Proposition 3.4, we have

(xαy)β[xα(xβ(xαy))] = 0.

Also by the axiom (ΓA2), we have

[xα(xβ(xαy))]β(xαy) = 0.

Thus by the axiom (ΓA3), xα[xβ(xαy)] = xαy.
(3) By the axiom (ΓA4) and Proposition 3.8, we have
(0αx)β(0αy) = [((xβy)α(xβy))αx]β(0αy)
= [((xβy)αx)α(xβy)]β(0αy)
= [((xβx)αy)α(xβy)]β(0αy)
= [(0αy)α(xβy)]β(0αy)
= [(0αy)α(0αy)]β(xβy)
= 0β(xβy).

Also, we have
(0αx)β(0αy) = [((xβy)α(xβy))αx]β(0αy)
= [((xαy)αx)α(xαy)]β(0αy)
= [((xαx)αy)α(xαy)]β(0αy)
= [(0αy)α(xαy)]β(0αy)
= [(0αy)α(0αy)]β(xαy)
= 0β(xαy).
(4) By Corollary 3.9(2) and Proposition 3.8, we have

[(xαy)βz]α(uβz) ≤ (xαy)βu = (xαu)βy.

Then the result holds.
(5) The proof follows from Theorem 3.2(2) and (4).

□

Lemma 3.11. Let X be an algebra satisfying the axioms (ΓA3), (ΓA4) and Propo-
sition 3.4. If Proposition 3.10(4) holds, then Propositions 3.10(5) and 3.8 hold.
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Proof. Suppose Proposition 3.10(5) holds. Then clearly, Proposition 3.10(5) holds.
For all x, y, z, u ∈ X and all α, β ∈ Γ, let u = z. Then from Proposition 3.10(5)
and the axiom (ΓA4), we have

[(xαy)βz]α[(xαz)βy] ≤ zαz = 0.

Thus by Proposition 3.4, [(xαy)βz]α[(xαz)βy] = 0. Similarly, from Proposition
3.10(5) and Proposition 3.4, we get

[(xαz)βy]α[(xαy)βz] = 0.

So by the axiom (ΓA3), (xαz)βy = (xαy)βz. Hence Proposition 3.8 hold. □

Lemma 3.12. Let X be an algebra satisfying the axioms (ΓA3), (ΓA4) and Proposi-
tion 3.4. If Proposition 3.10 (5) holds, then Propositions 3.8 and Proposition 3.10(4)
hold.

Proof. The proof is straightforward from Lemma 3.11. □

We give a characterization of Γ-BCI-algebras.

Theorem 3.13. X is a Γ-BCI-algebra if and only if it satisfies the axioms (ΓA3),
(ΓA4), Proposition 3.4 and Proposition 3.10(4) or (5).

Proof. It is obvious that the necessary conditions hold. Suppose the axioms (ΓA3),
(ΓA4) and Proposition 3.10(4) hold. For all x, y, z, u ∈ X and all α, β ∈ Γ, let
y = xαu. Then from Proposition 3.10(4) and (ΓA4), we have

[xα(xαu))βz]α(uβz) ≤ (xαu)β(xαu) = 0.

Thus by Proposition 3.4, [xα(xαu))βz]α(uβz) = 0. From Lemma 3.11 or 3.12, since
Proposition 3.8 holds, we get

[(xαz)β(xαu)]α(uβz) = 0.

So [(xαy)β(xαz)]α(zβy) = 0. Hence the axiom (ΓA1) holds.
Now for all x, y, z, u ∈ X, α, β ∈ Γ, let y = xαy, u = z = y. Then from

Proposition 3.10(4) and the axiom (ΓA4), we have

[(xβ(xαy))βy]α(yβy) ≤ (xβy)α(xβy) = 0.

Thus by Proposition 3.4, [(xβ(xαy))βy]α(yβy) = 0. Since yβy = 0, by by Proposi-
tion 3.4, we get

(xβ(xαy))βy = 0.

So the axiom (ΓA2) holds. This completes the proof. □

From Theorem 3.13 and the definition of Γ-BCK-algebra, we obtain the following.

Corollary 3.14. X is a Γ-BCK-algebra if and only if it satisfies the axioms (ΓA3),
(ΓA4), (ΓA5) and Proposition 3.10(4) or (5).

Now we give another characterization of Γ-BCI-algebra.

Theorem 3.15. X is a Γ-BCI-algebra if and only if it satisfies the axioms (ΓA1),
(ΓA3) and the following condition:

(3.4) xα0 = x for each x ∈ X and each α ∈ Γ.
272



Shi et al./Ann. Fuzzy Math. Inform. 29 (2025), No. 3, 267–290

Proof. Suppose X is a Γ-BCI-algebra. It is sufficient to show that (3.4) holds. For
all x, y, z ∈ X and all α, β ∈ Γ, let y = 0. Then by the axiom (ΓA2), we have

(3.5) [xα(xβ0)]α0 = 0.

On the other hand, let y = xβ0 and let z = x. Then from the axiom (ΓA1), we have

[(xα(xβ0))β(xαx)]β[xα(xβ0)] = 0.

Thus by the axiom (ΓA4), we get

(3.6) [(xα(xβ0))β0]β[xα(xβ0)] = 0.

From (3.5), (3.6) and the axiom (ΓA1), we have

(3.7) xα(xβ0) = 0.

Also by the axioms (ΓA2) and (ΓA4), we get

(3.8) (xα0)βx = [xα(xβx)]αx = 0.

So by (3.7), (3.8) and the axiom (ΓA3), xα0 = x. Hence (3.5) holds.
Suppose the necessary conditions hold. It is sufficient to prove that the axioms

(ΓA2) and (ΓA4) hold. Let x, y ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA1)
and (3.6), we have

[xα(xβy)]αy = [(xβ0)α(xβy)]α(yβ0) = 0.

Thus the axiom (ΓA2) holds.
Now let x ∈ X and let α, β ∈ Γ. Then by (3.6) and the axiom (ΓA1), we get

xαx = (xαx)β0 = [(xβ0)α(xβ0)]β(0α0) = 0.

Thus the axiom (ΓA4) holds. This completes the proof. □

The following is an immediate consequence of Theorems 3.2 and 3.15.

Corollary 3.16. X is a Γ-BCI-algebra if and only if there is a partial order ≤ on
X satisfying the following conditions: for all x, y, z ∈ X and all α, β ∈ Γ,

(1) (xαy)β(xαz) ≤ zαy,
(2) xα(xβy) ≤ y,
(3) xαy = 0 if and only if x ≤ y.

Definition 3.17. X is a Γ-BCI-algebra and let x ∈ X. Then x is called a positive
element of X, if 0αx = 0, i.e., x ≥ 0 for each α ∈ Γ. We will denote the set of all
positive elements of X as P (X).

Example 3.18. Let X be the Γ-BCI-algebra given in Example 3.3. Then we can
easily see that P (X) = {0, 1}.
Proposition 3.19. Let X be the Γ-BCI-algebra. Then xα[0β(0αx)] ∈ P (X) for
each x ∈ X and all α, β ∈ Γ.

Proof. Let x ∈ X and let α, β ∈ Γ. Then we have
0β[xα(0β(0αx))] = (0αx)β[0α(0β(0αx))]
[By the second part of Proposition 3.10 (3)]
= (0αx)β(0αx) [By Proposition 3.10 (2)]
= 0.

Thus xα[0β(0αx)] ∈ P (X). □
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Definition 3.20. X is a Γ-BCI-algebra and let a ∈ X. Then a is said to be:
(i) minimal, if xαa = 0 (x ∈ X) implies x = a for each α ∈ Γ,
(ii) the least element of X, if aαx = 0 for each x ∈ X and each α ∈ Γ,
(iii) maximal, if aαx = 0 (x ∈ X) implies a = x for each α ∈ Γ,
(iv) the greatest element of X, if xαa = 0 for each x ∈ X and each α ∈ Γ
We will denote the set of all minimal [resp. maximal] elements of X as Min(X)

[resp. Max(X)].

It is obvious that 0 is a minimal element of X and if there is the least element a
of X, then a = 0.

Example 3.21. (1) Let X be the Γ-BCI-algebra given in Example 3.3(1). Then
we can easily check that Min(X) = {0} and Max(X) = {2}. In particular, 0 is the
greatest element and 2 the least element of X.

(2) LetX be the Γ-BCI-algebra given in Example 3.3(2). Then clearly,Min(X) =
∅ and Max(X) = {}.

Proposition 3.22. Let X be the Γ-BCI-algebra and let a ∈ X. Then the followings
are equivalent: for all α, β ∈ Γ,

(1) a ∈ Min(X),
(2) 0α(0βa) = a,
(3) there is x ∈ X such that a = 0αx.

Proof. (1)⇒(2): Suppose a ∈ Min(X) and let α, β ∈ Γ. Then by the axiom (ΓA2),
[0α(0βa)]αa = 0. Thus by the hypothesis, 0α(0βa) = a.

(2)⇒(3): Suppose 0α(0βa) = a for any α, β ∈ Γ and let x = 0βa. Then clearly,
x ∈ X. Moreover, by the hypothesis, a = 0α(0βa) = 0αx.

(3)⇒(1): Suppose the condition (3) holds and suppose yβa = 0 for each β ∈ Γ.
Then clearly, we have

(3.10) yβ(0αx) = 0.

On the other hand, we get
aβy = (0αx)βy
= [0α(0β(0αx))]βy [By Proposition 3.10(2)]
= (0αy)β[0β(0αx)] [By Proposition 3.8]
= 0β[yβ(0αx)] [By Proposition 3.10(3)]
= 0β0 [By (3.10)]
= 0.

Thus aβy = 0 = yβa. So by the axiom (ΓA3), y = a. Hence a ∈ MIn(X). □

Definition 3.23. Let X be a Γ-BCI-algebra and let S be a nonempty subset of X.
Then S is called a Γ-subalgebra of X, if S itself is a Γ-BCI-algebra.

It is obvious that X and {0} are Γ-subalebras of X. In this case, X and {0} will
be called the trivial Γ-subalgebras of X. A nonempty subset S is called a proper
Γ-subalgebra of X, if S is a Γ-subalgebra of X and S ⫋ X. It is clear that {0} is a
proper Γ-subalgebra of X.

From the above definition, we obtain easily the following.
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Theorem 3.24. Let X be a Γ-BCI-algebra and let S be a nonempty subset of X.
Then S is a Γ-subalgebra of X if and only if xαy ∈ X for all x, y ∈ S and each
α ∈ Γ.

Proposition 3.25. Let X be a Γ-BCI-algebra. Then P (X) and Min(X) are Γ-
subalgebra of X.

Proof. It is clear that 0α0 = 0 for each α ∈ Γ. Then P (X) ̸= ∅. Let x, y ∈ P (X)
and let α, β ∈ Γ. Then 0αx = 0 = 0αy. Thus by Proposition 3.10(3), we have

0α(xαy) = (0βx)α(0βy) = 0α0 = 0

or

0β(xαy) = (0αx)β(0αy) = 0β0 = 0.

So xαy ∈ P (X). Hence P (X) is a Γ-subalgebra of X. □

4. Γ-i deals of Γ-BCI-algebras

Definition 4.1. Let X be a Γ-BCI-algebra and let I be a nonempty subset of X.
Then I is called a Γ-ideal of X, if it satisfies the following conditions: for all x, y ∈ X
and α ∈ Γ,

(i) 0 ∈ I,
(ii) if xαy ∈ I and y ∈ I, then x ∈ I, equivalently, if x ≤ y and y ∈ I, then x ∈ I.
We will denote the set of all Γ-ideals of X by ΓI(X).

Example 4.2. (1) Let X be the Γ-BCI-algebra given in Example 3.3(1). Then we
can easily check that {0, 1}, {0, 2} /∈ ΓI(X).

(2) Let X be the Γ-BCI-algebra given in Example 3.3(2). The we can see that

{0, 1}, {0, 2}, {0, 3} ∈ ΓI(X).

From Definition 4.1, we obtain easily the following characterization of Γ-ideals.

Theorem 4.3. Let X be a Γ-BCI-algebra and let I be a nonempty subset of X.
Then I ∈ ΓI(X) if and only if it satisfies the condition (i) and the following condi-
tion:

(4.1) if xαy ≤ z and y, z ∈ I, then x ∈ I for all x, y, z ∈ X and each α ∈ Γ.

Lemma 4.4. Let X be a Γ-BCI-algebra. If I ∈ ΓI(X), then

I =
⋃

x, y∈I

A(x, y),

where A(x, y) = {z ∈ X : (zαx)βy = 0 for all x, y ∈ X and all α, β ∈ Γ}.

Proof. Suppose I is a Γ-ideal of X and let z ∈ I. Then clearly, for all α, β ∈ Γ,

(zα0)βz = zαz)β0 = 0β0 = 0.

Since 0 ∈ I, z ∈ A(0, z). Thus we have

I ⊂
⋃
z∈I

A(0, z) ⊂
⋃

x, y∈I

A(x, y).
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Now let z ∈
⋃

x, y∈I A(x, y). Then there are a, b ∈ I such that z ∈ A(a, b). Thus

(zαa)βb = 0. Since I ∈ ΓI(X), by Theorem 4.3, z ∈ I. So
⋃

x, y∈I A(x, y) ⊂ I.

Hence I =
⋃

x, y∈I A(x, y). □

Corollary 4.5. Let X be a Γ-BCI-algebra. If I ∈ ΓI(X), then

I =
⋃
x∈I

A(0, x).

Proof. From Lemma 4.4, it is clear that
⋃

x∈I A(0, x) ⊂
⋃

x, y∈I A(x, y) = I. Let

x ∈ I and let α, β ∈ Γ. Then (xα0)βx = 0. Thus x ∈ A(0, x). So I ⊂
⋃

x∈I A(0, x).
Hence I =

⋃
x∈I A(0, x). □

Lemma 4.6. Let I be a subset of a Γ-BCI-algebra X such that 0 ∈ I. If I =⋃
x, y∈I A(x, y), then I ∈ ΓI(X).

Proof. Suppose I =
⋃

x, y∈I A(x, y) and xαy, y ∈ I for any x, y ∈ X and each α ∈ Γ.

Then by the axiom the axiom (ΓA2), [xβ(xαy)]βy = 0. Thus x ∈ A(xαy, y) ⊂ I.
So I ∈ ΓI(X). □

From Lemmas 4.4 and 4.6, we have a characterization of Γ-ideals.

Theorem 4.7. Let I be a subset of a Γ-BCI-algebra X such that 0 ∈ I. Then
I ∈ ΓI(X) if and only if I =

⋃
x, y∈I A(x, y).

Definition 4.8. Let X be a Γ-BCI-algebra X and let I ∈ ΓI(X). Then I is called
a closed Γ-ideal of X, if x ∈ I implies 0αx ∈ I for each α ∈ Γ.

We will denote the set of all closed Γ-ideals of X by ΓIc(X).

Example 4.9. Let X be the Γ-BCI-algebra given in Example 3.3(2). The we can
see that {0, 1}, {0, 2}, {0, 3} ∈ ΓIc(X).

Proposition 4.10. Every closed Γ-ideal of a Γ-BCI-algebra X is a Γ-subalgebra of
X.

Proof. The proof follows from Definitions 3.23 and 4.8, and Proposition 3.10(3). □

The following is a characterization of closed Γ-ideals.

Theorem 4.11. Let X be a Γ-BCI-algebra and let I be a subset of X. Then
I ∈ ΓIc(X) if and only if it satisfies the following conditions: for all x, y, z ∈ X
and each α ∈ Γ,

(1) 0 ∈ I,
(2) if xαz, yαz, z ∈ I, then xαy ∈ I.

Proof. Suppose I ∈ ΓIc(X) and xαz, yαz, z ∈ I for all x, y, z ∈ X and each
α ∈ Γ. Then clearly, 0 ∈ I and x, y ∈ I. Thus by Proposition 4.10, xαy ∈ I.

Conversely, suppose the necessary conditions hold and xαy, y ∈ I for any x, y ∈
X and each α ∈ Γ. It is obvious that 0α0, yα0, 0 ∈ I. Then by (2), 0αy ∈ I. Also,
by (2), x = xα0 ∈ I. Thus I ∈ I(X). Now let x ∈ X and let α ∈ Γ. Then clearly,
0α0, xα0, 0 ∈ I. Thus by (2), 0αx ∈ I. So I ∈ ΓIc(X). □
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Proposition 4.12. Let I be a Γ-ideal of a Γ-BCI-algebra X. Then the subset I0Γ
of X defined by

I0Γ = {x ∈ X : 0αx ∈ I for each α ∈ Γ}

is the greatest closed Γ-ideal of X such that I0Γ ⊂ I.

Proof. By the definition of I0Γ, it is clear that 0 ∈ I0Γ. Suppose xαy, y ∈ I0Γ for all
x, y ∈ X and each α ∈ Γ. Then by the definition of I0Γ and Proposition 3.10(3), we
have: for each β ∈ Γ,

0αy, (0αx)β(0αy) = 0β(xαy) ∈ I.

Since I ∈ ΓI(X), 0αx ∈ I. Thus x ∈ I0Γ. So I0Γ ∈ ΓI(X).
Now let x ∈ I0Γ. Then by the definition of I0Γ and the axiom (ΓA2), we get: for

any α, β ∈ Γ,

0αx ∈ I, [0β(0αx)]βx = 0.

Thus 0β(0αx) ∈ I. So 0αx ∈ I0Γ. Hence I0Γ ∈ ΓIc(X) .
Finally let J ∈ ΓIc(X) such that J ⊂ I and let x ∈ J, α ∈ Γ. Then 0αx ∈ J.

Since J ⊂ I, 0αx ∈ I. Thus x ∈ I0Γ. So J ⊂ I0Γ. So I0Γ is the greatest closed Γ-ideal
of X contained in I. □

Now we discuss some properties of commutative Γ-ideals of a Γ-BCI-algebra.

Definition 4.13. Let X be a Γ-BCI-algebra and let I be a nonempty subset of X.
Then I is called a commutative Γ-ideal of X, if it satisfies the following conditions:
for all x, y, z,∈ X and all α, β ∈ Γ,

(i) 0 ∈ I,
(ii) if (xαy)βz, z ∈ I, then xα[(yβ(yαx))β(0α(0β(xαy)))] ∈ I.
We will denote the set of all commutative Γ-ideals and the set of all commutative

closed Γ-ideals of X by ΓCI(X) and ΓCIc(X) respectively.

Proposition 4.14. Every commutative Γ-ideal is a Γ-ideal.

Proof. Let X be a Γ-BCI-algebra and let I ∈ ΓCI(X). Suppose xαy, y ∈ I for all
x, y ∈ X and each α ∈ γ. Then by the axiom (ΓA4), (xβ0)αy ∈ I and y ∈ I. Thus
by the condition (ii), we have

xα[(0β(0αx))β(0α(0β(xα0)))] ∈ I.

By Theorem 3.15 and Proposition 3.10(2), x = xα[(0β(0αx))β(0α(0β(xα0)))]. So
x ∈ I. Hence I ∈ ΓI(X). □

The converse of Proposition 4.14 does not hold in general (See Example 4.15).

Example 4.15. Let Γ = {α, β} and let X = {0, 1, 2, 3, 4} be a set with the ternary
operation defined as the following table:
Then we can easily check that X is a Γ-BCI-algebra and {0, 1} ∈ ΓIc(X) but
{0, 1} ̸∈ ΓCI(X).

We give a characterization of Γ-ideals.
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α 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

β 0 1 2 3 4
0 0 1 2 3 4
1 1 0 3 0 0
2 2 3 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

Table 4.1

Theorem 4.16. Let I be a Γ-ideal of a Γ-BCI-algebra X. Then I ∈ ΓCI(X) is
commutative if and only if it satisfies the following condition: for all x, y ∈ X and
all α, β ∈ Γ,

(4.2) if xαy ∈ I, then xα[(yβ(yαx))β(0α(0β(xαy)))] ∈ I.

Proof. The proof is straightforward from Definition 4.13. □

The following is another characterization of commutative Γ-ideals.

Theorem 4.17. Let I be a closed Γ-ideal of a Γ-BCI-algebra X. Then I ∈ ΓCI(X)
if and only if it satisfies the following condition: for all x, y ∈ X andall α, β ∈ Γ,

(4.3) if xαy ∈ I, then xα[yβ(yαx)] ∈ I.

Proof. Suppose I ∈ ΓCI(X) and xαy ∈ I for all x, y ∈ X and each α ∈ Γ. Since I
is closed, 0β(xαy) ∈ I for each β ∈ Γ. Since I ∈ ΓCI(X), by (4.2), we get

xα[(yβ(yαx))β(0α(0β(xαy)))] ∈ I.

On the other hand, we have
[xα(yβ(yαx))]β[xα((yβ(yαx))β(0α(0β(xαy))))]
= [xα(yβ(yαx))]β[xα(0α(0β(xαy))))]β(yβ(yαx)) [By Proposition 3.8]
≤ (0β(xαy)))α(yβ(yαx))β(yβ(yαx)) [By Theorem 3.2(1)]
= (0α(0β(xαy))))β0 [By the axiom (ΓA4)]
= 0α(0β(xαy)). [By Theorem 3.15]
= 0β(xαy) ∈ I.

Then by Theorem 4.3, xα(yβ(yαx)) ∈ I. Thus the condition (4.3) holds.
Conversely, suppose the condition (4.3) holds and let xαy ∈ I for all x, y ∈ X

and each α ∈ Γ. Then clearly, xα(yβ(yαx)) ∈ I for each β ∈ Γ. From Definition 4.1,
it is obvious that 0α(0β(xαy)) ∈ I. On the other hand, we have

[(xα(yβ(yαx)))β(0α(0β(xαy)))]β[xα(yβ(yαx))]
= [(xα(yβ(yαx)))β(xα(yβ(yαx)))]β(0α(0β(xαy)))
≤ [(yβ(yαx))β(yβ(yαx))]β(0α(0β(xαy)))
≤ 0α(0β(xαy)) ∈ I.

Thus by Theorem 4.3, (xα(yβ(yαx)))β(0α(0β(xαy))) ∈ I. So by Theorem 4.16,
I ∈ ΓCI(X). □

Proposition 4.18. Let I, J be two Γ-ideals of a Γ-BCI-algebra X such that I ⊂ J .
If J ∈ ΓIc(X) and I ∈ ΓCI(X), then J ∈ ΓCI(X).

Proof. Suppose xαy ∈ J for all x, y ∈ X and each α ∈ Γ and let u = xαy. Since
J ∈ ΓIc(X), 0βu ∈ J for each β ∈ Γ. Then by Proposition 3.8 and the axiom (ΓA4),

278



Shi et al./Ann. Fuzzy Math. Inform. 29 (2025), No. 3, 267–290

(xαu)βy = 0 ∈ I. Since I ∈ ΓCI(X), by Theorem 4.16, we have

(xαu)β[yα(yβ(xαu))] = (xαy)β[(yα(yβ(xαu)))β(0α(0β((xαu)βy)))] ∈ I.

Since I ⊂ J , by Proposition 3.8, we get

(xαu)β[yα(yβ(xαu))] = [xα(yα(yβ(xαu)))]βu ∈ J.

Since u ∈ J , xα[yα(yβ(xαu))] ∈ J. On the other hand, we have
[xα(yα(yβx))]β[xα(yα(yβ(xαu)))]
≤ [yα(yβ(xαu))]α[yα(yβx)] [By Corollary 3.9(1)]
≤ (yβx)α(yβ(xαu))]
≤ (xαu)αx
= (xαx)αu [By Proposition 3.8]
= 0αu ∈ J . [By the axiom (ΓA4)]

Thus by Theorem 4.3, xα(yα(yβx)) ∈ J. So by Theorem 4.17, J ∈ ΓCI(X). □

Definition 4.19. A Γ-BCI-algebra X is said to be commutative, if it satisfies the
following condition: for all x, y ∈ X and all α, β ∈ Γ,

(4.4) if x ≤ y, then x = yα(yβx).

We have a similar result to Theorem 3.18 in [21].

Theorem 4.20. A Γ-BCI-algebra X is commutative if and only if it satisfies the
following condition: for all x, y ∈ X and all α, β ∈ Γ,

(4.5) xα(xβy) = yα[yβ(xα(xβy))].

Theorem 4.21. Let X be A Γ-BCI-algebra. The the followings are equivalent:
(1) X is commutative,
(2) every closed Γ-ideal of X is commutative,
(3) {0} ∈ ΓCI(X).

Proof. (1)⇒(2): Suppose X is commutative and let I ∈ ΓIc(X). For all x, y ∈ X
and each α ∈ Γ, suppose xαy ∈ I. Then clearly, 0β(xαy) ∈ I for each β ∈ Γ. On the
other hand, we get

[xα(yβ(yαx))]β(xαy)
= [xα(xαy)]β[yβ(yαx)] [By Proposition 3.8]
= [yα(yα(xα(xαy)))]β[yβ(yαx)] [By Theorem 4.20]
= [yα(yβ(yαx))]β[yα(xα(xαy))] [By Proposition 3.8]
= (yαx)β[yα(xα(xαy))] [By Proposition 3.10(2)]
≤ [xα(xαy)]αx [By Corollary 3.9 (1)]
= 0α(xαy) ∈ I.

Thus by Theorem 4.3, xα(yβ(yαx)) ∈ I. So I ∈ ΓCI(X).
(2)⇒(3): The proof is straightforward.
(3)⇒(1): Suppose {0} ∈ ΓCI(X) and suppose x ≤ y for all x, y ∈ X. Then

clearly, xβy = 0 ∈ {0}. for each β ∈ Γ. Since {0} ∈ ΓCIc(X), by Theorem 4.17, we
have

xβ[yα(yβx)] ∈ {0}, i.e., xβ[yα(yβx)] = 0, i.e., x ≤ yα(yβx) for all α, β ∈ Γ.

Since X is a Γ-BCI-algebra, by Theorem 3.2(2), we get

yα(yβx) ≤ x for all α, β ∈ Γ.
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Thus by Theorem 3.2(3), x = yα(yβx). So X is commutative. This completes the
proof. □

Lemma 4.22 (See Proposition 4.1, [23]). Let X be A Γ-BCI-algebra and let I ∈
ΓI(X). Let ∼ be the relation on X define as follows: for all x, y ∈ X,

x ∼ y if and only if xαy, yαx ∈ I for each α ∈ Γ.

Then ∼ is a congruence relation on X, i.e., it satisfies the following conditions: for
any x, y, z ∈ X and each α ∈ Γ,

(1) x ∼ x, i.e., ∼ is reflexive,
(2) if x ∼ y, then y ∼ x, i.e., ∼ is symmetric,
(3) if x ∼ y and y ∼ z, then ∼ z, i.e., ∼ is transitive,
(4) if x ∼ u and y ∼ v, then xαy ∼ uαv.

Proof. The proof is similar to Proposition 4.1 in [23]. □

For a congruence relation ∼ on a Γ-BCI-algebra X and each x ∈ X, a subset
I[x] of X defined by

I[x] = {y ∈ X : x ∼ y}
is called the congruence class in X determined by x with respect to ∼. The set of
all congruence classes in X is denoted by X/I. It is obvious that if I ∈ ΓIc(X), then
I[0] = I but if I /∈ ΓIc(X), then I[0] ̸= I.

Example 4.23. Let X be the Γ-BCI-algebra and let I = {0, 1} be the closed
Γ-ideal of X given in Example 4.15. Then by the calculation, we have

I[0] = I = I[1], I[2] = {2}, I[3] = {3}, I[4] = {4}.
Thus X/I = {I, I[2], I[3], I[4]}.

We obtain a similar consequence of Proposition 4.2 in [23].

Lemma 4.24. Let X be a Γ-BCI-algebra, I ∈ ΓIc(X) and let ∼ be a congruence
relation on X. We define a mapping f : X/I ×Γ×X/I → X/I as follows: for each
(I[x], α, I[y]) ∈ X/I × Γ×X/I,

f(I[x], α, I[y]) = I[x]αI[y] = I[xαy].

Then X/I is a Γ-BCI-algebra. In this case,X/I is called the quotient Γ-BCI-algebra
of X by I.

We define a partial ordering ≤ on X/I as follows: for any x, y ∈ X and each
α ∈ Γ,

I[x] ≤ I[y] if and only if I[x]αI[y] = I[0] = I.

Then we have a similar consequence of Theorem 3.2.

Proposition 4.25. Let X be a Γ-BCI-algebra and let X/I be the quotient Γ-BCI-
algebra of X by I ∈ Ic(X). Then the followings hold: for all x, y, z ∈ X and all
α, β ∈ Γ,

(1) (I[x]αI[y])β(I[x]αI[z]) ≤ I[z]αI[y],
(2) I[x]α(I[x]βI[y]) ≤ I[y],
(3) if I[x]leqI[y] and I[y] ≤ I[x], then I[x] = I[y],
(4) I[x] ≤ I[x].
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Theorem 4.26. Let X be a Γ-BCI-algebra and let I ∈ ΓIc(X). Then I ∈ ΓCI(X)
if and only if X/I is a commutative Γ-BCI-algebra.

Proof. Suppose I ∈ ΓCIc(X). It is clear that I[0] = I and {I[0]} is the zero Γ-ideal
of X/I. Suppose I[x]αI[y] ∈ {I[0]}, I[x]αI[y] = I[0] for all x, y ∈ X and each α ∈ Γ.
Then xαy ∈ I. Thus by Theorem 4.17, xα[yβ(yαx)] ∈ I. So we have

I[x]α[I[y]β(I[y]αI[x])] = I[xα[yβ(yαx)]] = I = I[0] ∈ {I[0]}.
Hence {I[0]} ∈ ΓCI(X/I). Therefore by Theorem 4.21, X/I is commutative.

Conversely, suppose X/I is a commutative Γ-BCI-algebra. Then by Theorem
4.21, {I[0]} ∈ ΓCI(X/I). Suppose xαy ∈ I for all x, y ∈ X and each α ∈ Γ. Then
we have

I[x]αI[y] = I[xαy] = I − I[0] ∈ {I[0]}.
Thus I[xα[yβ(yαx)]] = I[x]α[I[y]β(I[y]αI[x])] ∈ {I[0]}. So xα[yβ(yαx)] ∈ I. Hence
I ∈ ΓCI(X). □

Definition 4.27. Let X and Y be Γ-BCI-algebras. Then a mapping f : X → Y is
called a Γ-homomorphism, if f(xαy) = f(x)αf(y) for all x, y ∈ X and each α ∈ Γ.
In this case, the subset ker(f) (called the kernel of f) of X and the subset Im(f)
(called the image of f) of Y are defined as follows respectively:

ker(f) = {x ∈ X : f(x) = 0}, Im(f) = {f(x) ∈ Y : x ∈ X}.

We have easily similar consequences of some properties given in [20].

Proposition 4.28. Let X and Y be Γ-BCI-algebras and let f : X → Y be a
Γ-homomorphism. Then

(1) Im(f) is a Γ-subalgebra of Y (See Theorem 3.18, [20]),
(2) ker(f) is a Γ-subalgebra of X (See Lemma 3.19, [20]).

Proposition 4.29 (See Lemma 3.20, [20]). Let X and Y be Γ-BCI-algebras and
let f : X → Y be a Γ-homomorphism.

(1) f(0) = 0.
(2) If xαy = 0 for all x, y ∈ X and each α ∈ Γ, then f(x)αf(y) = 0.

Theorem 4.30 (See Theorem 3.21, [20]). Let X and Y be Γ-BCI-algebras and let
f : X → Y be a Γ-homomorphism. Then f is injective if and only if ker(f) = {0}.

Proposition 4.31 (See Theorem 4.10, [20]). Let X and Y be Γ-BCI-algebras and
let f : X → Y be a Γ-homomorphism. Then ker(f) ∈ ΓIc(X).

Proof. Since f is a a Γ-homomorphism, f(0) = f(0α0) = f(0)αf(0) = 0 for each
α ∈ Γ. Then 0 ∈ ker(f). Now suppose xαy, y ∈ ker(f) for all x, y ∈ X and each
α ∈ Γ. Then we have

0 = f(xαy) = f(xαy) = f(x)αf(y) = f(x)α0 = f(x).

Thus x ∈ ker(f). So ker(f) ∈ ΓI(X). Finally, let x ∈ ker(f). Then f(x) = 0. On
the other hand, we get

f(0αx) = f(0)αf(x) = 0α0 = 0 for each α ∈ Γ.

Thus 0αx ∈ ker(f) for each α ∈ Γ. So ker(f) ∈ ΓIc(X). □
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Theorem 4.32. Let X and Y be Γ-BCI-algebras and let f : X → Y be a Γ-
epimorphism. Then ker(f) ∈ ΓCI(X) if and only if Y is a commutative Γ-BCI-
algebra.

Proof. By Proposition 4.31, ker(f) ∈ ΓIc(X). Then by Theorem 4.26, ker(f) ∈
ΓCI(X) if and only if X/ker(f) is a commutative Γ-BCI-algebra. Since f is surjec-
tive, it is obvious that X/ker(f) is isomorphic to Y . Thus the result holds. □

Remark 4.33. Let X be a Γ-BCI-algebra and let I ∈ ΓIc(X). We define the
mapping π : X → X/I as follows:

π(x) = I[x] for each x ∈ X.

Then we can easily check that π is a surjective homomorphism. In this case, π is
called the natural homomorphism.

Proposition 4.34. Let X be a Γ-BCI-algebra and let π : X → X/I be the natural
homomorphism, where I ∈ ΓIc(X). If J ∈ ΓIc(X/I), then π−1(J) ∈ ΓIc(X) such
that I ⊂ π−1(J).

Proof. The proof is straightforward. □

5. Topological structures on Γ-BCI-algebras

We recall some terms and notations related to a general topology (See [24, 25]).
For a subset A of a topological space (X, τ), we denote the closure and the interior
of A as clτ (A), cl(A) or A and intτ (A), int(A) or A◦. A subfamily B of τ is called

a base for τ , if for each U ∈ τ either U = ∅ or there is B′ ⊂ B such that U =
⋃
B′

.
A subset A of X is called a neighborhood of x ∈ X, if there is U ∈ τ such that
x ∈ U ⊂ A. We denote the set of all neighborhoods of x as Nτ (x) or N(x) and N(x)
is called the neighborhood filter of x ∈ X. A subfamily N (x) of N(x) is called a
fundamental system of neighborhoods of x, if for each U ∈ N(x) there is V ∈ N (x)
such that V ⊂ U. In fact, N (x) is a filter base of N(x). In particular, it is well-known
([24]) that Nτ (x) satisfies the following properties:

(N1) x ∈ U for each U ∈ Nτ (x),
(N2) if U ∈ Nτ (x) and U ⊂ V ⊂ X, then V ∈ Nτ (x),
(N3) if U1, U2 ∈ Nτ (x), then U1 ∩ U2 ∈ Nτ (x),
(N4) if V ∈ Nτ (x), there is W ∈ Nτ (x) such that V ∈ Nτ (x) for each y ∈ W.
Furthermore, it is well-known (Proposition 1.1.2, [24]) that for each x ∈ X if B(x)

be a set of subsets of X satisfying the properties (N1)–(N4), then a unique topology
on X such that B(x) = Nτ (x). In fact,

τ = {V ⊂ X : ∀x ∈ V, ∃U ∈ B(x) such that U ⊂ V }.

Definition 5.1 (See Theorem 3.3, [10]). Let X be a BCI-algebra and let τ be a
topology on X. Then X is called a topological BCI-algebra (briefly, TBCI-algebra),
if ∗ : (X × X, τ × τ) → (X, τ) is continuous, i.e., for all x, y ∈ X and each
W ∈ N(x ∗ y), there are U ∈ N(x) and V ∈ N(y) such that U ∗ V ⊂ W, where
U ∗ V = {x ∗ y ∈ X : x ∈ U, y ∈ V }.
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Definition 5.2. Let X be a Γ-BCI-algebra and let τ be a topology on X. Then
X is called a topological Γ-BCI-algebra (briefly, TΓ-BCI-algebra), if the mapping
f : (X, τ)×Γ× (X, τ) → (X, τ) is continuous at each (x, α, y) ∈ X ×Γ×X, i.e., for
each α ∈ Γ, all x, y ∈ X and each W ∈ N(xαy), there are U ∈ N(x) and V ∈ N(y)
such that UαV ⊂ W , where UαV ⊂ W = {xαy : x ∈ U, y ∈ V }.

It is obvious that if X is a TΓ-BCI-algebra, then Xα is a TBCI-algebra for each
α ∈ Γ.

Example 5.3. Let X = {0, 1, 2, 3, 4}, let Γ = {α, β} and let X = {0, 1, 2, 3, 4} be
the Γ-BCI-algebra having the the ternary operation defined as the following table:

α 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 2 4
3 3 3 3 0 4
4 4 4 4 4 0

β 0 1 2 3 4
0 0 1 0 0 4
1 1 0 2 1 4
2 2 2 0 3 4
3 3 1 3 0 4
4 4 4 4 4 0

Table 5.1

Consider the topology τ on X given by:

τ = {∅, {4}, {0, 1, 2, 3}, X}.
Then we can easily check that (X, τ) is a TΓ-BCI-algebra. Moreover, Xα and Xβ

are TBCI-algebras.

Proposition 5.4. Let X be a TΓ-BCI-algebra. If {0} is open in X, then X is
discrete.

Proof. Suppose {0} is open in X and let x ∈ X. Then clearly, xαx = 0 ∈ {0}. for
each α ∈ Γ. Thus by the hypothesis, there are U, V ∈ N(x) such that UαV ⊂ {0},
i.e., UαV = {0}. Let W = U ∩ V . Then WαW ⊂ UαV , i.e., WαW = {0}. Since
U, V ∈ N(x), x ∈ U ∩ V . Thus x ∈ W . So W = {x} and W is open in X. Hence
X is discrete. □

The following is an immediate consequence of Proposition 5.4.

Corollary 5.5 (See Proposition 3.5, [10]). Let X be a TΓ-BCI-algebra. If {0} is
open in X, then each Xα is discrete.

Theorem 5.6. Let X be a TΓ-BCI-algebra. Then {0} is closed in X if and only
if X is Hausdorff.

Proof. Suppose {0} is closed in X, let x, y ∈ X such that x ̸= y. and let α ∈ Γ.
Then xαy ̸= 0 or yαx ̸= 0, say xαy ̸= 0 for each α ∈ Γ. Since {0} is closed in X
and xαy ̸= 0, {0}c is open in X and xαy ∈ {0}c. Thus {0}c ∈ N(xαy). Since X is
a TΓ-BCI-algebra, by Definition 5.2, there are U ∈ N(x) and V ∈ N(y) such that
UαV ⊂ {0}c. So U ∩ V = ∅. Hence X is Hausdorff.

Conversely, suppose X is Haousdorff and let x ∈ {0}c. Then x ̸= 0. By the
hypothesis, there are U ∈ N(x) and V ∈ N(0) such that U ∩ V = ∅. Thus 0 ̸∈ U.
So U ⊂ {0}c. Hence {0}c is open in X. Therefore {0} is closed in X. □
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The following is an immediate consequence of Theorem 5.6.

Corollary 5.7 (See Proposition 3.6, [10]). Let X be a TΓ-BCI-algebra. Then {0}
is closed in X if and only if each Xα is Hausdorff.

Proposition 5.8. Let X be a TΓ-BCI-algebra and let A be open in X. If A is
Γ-subalgebra of X, then A is a TΓ-BCI-algebra.

Proof. Let τ be the topology on X and let τ
A
be the subspace topology on A with

respect to τ . Let x, y ∈ A. Since A is a Γ-subalgebra of X, xαy ∈ A for each α ∈ Γ.
Let WA ∈ Nτ

A
(xαy), where Nτ

A
(xαy) denotes the neighborhood of xαy in the

subspace (A, τ
A
of (X, τ). Then there is W ∈ N(xαy) such that WA = A∩W. Since

X is a TΓ-BCI-algebra, there are U ∈ N(x) and V ∈ N(y) such that UαV ⊂ W.
Thus UA = A ∩ U ∈ Nτ

A
(x) and VA = A ∩ V ∈ Nτ

A
(x). It is clear that

UAαVA = (A ∩ U)α(A ∩ V ) ⊂ W and UAαVA ⊂ A.

So UAαVA ⊂ A ∩W = WA. Hence A is a TΓ-BCI-algebra. □

We have an immediate consequence of Proposition 5.8.

Corollary 5.9. Let X be a TΓ-BCI-algebra and let A be open in Xα for each α ∈ Γ.
If A is subalgebra of Xα, then A is a TBCI-algebra.

Proposition 5.10. Let X be a TΓ-BCI-algebra and let I be open in X. If I is a
Γ-ideal of X, then I is closed in X.

Proof. Let x ∈ Ic and let α ∈ Γ. Since xαx = 0 ∈ I and I is open, I ∈ N(0).
Since X is a TΓ-BCI-algebra, there is U ∈ N(x) such that UαU ⊂ I. Assume that
U ̸⊂ Ic. Then there is y ∈ X such that y ∈ U ∩ I. It is obvious that zαy ∈ UαU ⊂ I
for each z ∈ U. Since I is a Γ-ideal of X and y ∈ I, z ∈ I. Thus U ⊂ I. This is a
contradiction. So U ⊂ Ic, i.e., Ic is open in X. Hence I is closed in X. □

We obtain an immediate consequence of Proposition 5.10.

Corollary 5.11 (See Proposition 3.8, [10]). Let X be a TΓ-BCI-algebra and let I
be open in Xα for each α ∈ Γ. If I is an ideal of Xα, then I is closed in Xα.

Proposition 5.12. Let X be a TΓ-BCI-algebra and let I be a Γ-ideal of X. If
0 ∈ int(I), then I is open in X.

Proof. Let x ∈ I and let α ∈ Γ. Since 0 ∈ int(I) and xαx = 0 ∈ I, there is
W ∈ N(0) = N(xαx) such that W ⊂ I. Since X is a TΓ-BCI-algebra, by Definition
5.2, there are U, V ∈ N(x) such that UαV ⊂ W ⊂ I. It is clear that yαx ∈ UαV ⊂ I
for each y ∈ U. Since I is a Γ-ideal of X and x ∈ I, y ∈ I. Then y ∈ I. Thus U ⊂ I.
So I is open in X. □

In Proposition 5.12, when 0 ̸= x ∈ int(I), I need not open in X (See Example
3.12, [23]).

Proposition 5.13. Let X be a TΓ-BCI-algebra. Then
⋂

N(0) = {0} and thus⋂
N (0) = {0}.

Proof. The proof is similar to Proposition 3.13 in [23]. □
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Proposition 5.14. Let (X, τ) be a TΓ-BCI-algebra and let B1, B2 be the families
of subsets of X given by:

B1 = {xαU : x ∈ X, α ∈ Γ, U ∈ N (0)}, B2 = {Uαx : x ∈ X, α ∈ Γ, U ∈ N (0)},

where xαU = {xαu : u ∈ U} and Uαx = {uαx : u ∈ U}. Then B1 and B2 are bases
for τ .

Proof. The proof is similar to Proposition 3.14 in [23]. □

To give a filter base on X generating a topology on a Γ-BCI-algebra, let us define
a subset U(a) of X generated by each a ∈ X and each U ∈ P (X) as follows:

U(a) = {x ∈ X : xαa ∈ U, aαx ∈ U, α ∈ Γ}.

It is obvious that U(a) ⊂ V (a) for U, V ∈ P (X) such that U ⊂ V .

Proposition 5.15. Let X be a Γ-BCI-algebra. Suppose B is a filter base on X
satisfying the following condition: for any a, b ∈ U ∈ B, each x ∈ X and any
α, β ∈ Γ,

(1) 0αa ∈ U,
(2) (xαa)βb = 0 implies x ∈ U.

Then there is a unique topology τ on X such that B = Nτ (0) and (X, τ) is a TΓ-
BCI-algebra.

Proof. Let τ = {O ∈ P (X) : for each a ∈ O there is B ∈ B such that B(a) ⊂ O}.
Claim 1: τ is a topology on X. The proof is same as Claim 1 of Proposition 3.15

in [21].
Claim 2: B = Nτ (0). Let a ∈ B ∈ B and let α ∈ Γ. Then by (1), 0αa ∈ B. Thus

by Proposition 3.10(2) and the axiom (ΓA4), (0αa)β(0αa) = 0. So by (2), 0 ∈ B.
Let x ∈ B(a). Then xαa, aαx ∈ B and thus there is u ∈ U such that xαa = u.

By the the axiom (ΓA4), (xαa)βu = 0 for each β ∈ Γ. By (2), x ∈ B. So B(a) ⊂ B.
By Claim 1, B ∈ τ. Since 0 ∈ B, B ∈ Nτ (0). Hence B ⊂ Nτ (0). Now let V ∈ Nτ (0).
Then there is B ∈ B such that B(0) ⊂ V . It is clear that 0αa, aα0 ∈ B for each
a ∈ B and each α ∈ Γ. Thus a ∈ B(0) and 0 ∈ B ⊂ B(0) ⊂ V. So B = Nτ (0).

Claim 3: B(a) ∈ τ for each a ∈ X and each B ∈ B. Let x ∈ B(a). Then
xαa, aαx ∈ B for each α ∈ Γ. Note that there are B1, B2 ∈ B such that B1(xαa) ⊂
B and B2(aαx) ⊂ B. Since B is a filter base on X, there is U ∈ B such that
U ∈ B1 ∩B2. Thus we have

U(xαa) ⊂ B1(xαa) ⊂ B and U(aαx) ⊂ B2(aαx) ⊂ B.

Let y ∈ B(x). Then xαy, yαx ∈ B. By Corollary 3.9(2), we have

(xαa)β(yαa) ≤ xαy, (yαa)β(xαy) ≤ yαx for all α, β ∈ Γ, i.e.,

[(xαa)β(yαa)]β(xαy) = 0, [(yαa)β(xαy)]β(yαx) = 0.

By (2), (xαa)β(yαa), (yαa)β(xαy) ∈ U. Thus yαa ∈ U(xαa) ⊂ B1(xαa) ⊂ B. So
yαa ∈ B. Similarly, we can show that aαy ∈ B. Hence y ∈ B(a), i.e., U(x) ⊂ B(a).
Therefore B(a) ∈ τ.

Claim 4: A mapping f : (X, τ) × Γ × (X, τ) → (X, τ) is continuous at each
(x, α, y) ∈ X × Γ × X. Let x, y ∈ X and let xαy ∈ W ∈ τ for each α ∈ Γ. Then
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there is V ∈ B such that V (xαy) ⊂ W. Let a ∈ V (x) and let b ∈ V (y). Then we
have

[(xαy)β(aαb)]β(xαa) = [(xαy)β(xαa)]β(aαb) [By Proposition 3.8]
≤ (aαy)β(aαb) [By Theorem 3.2(1)]
≤ bαy. [By Theorem 3.2(1)]

Thus ([(xαy)β(aαb)]β(aαb))β(bαy) = 0. By (2), (xαy)β(aαb) ∈ V. From Proposition
3.8 and the axiom (ΓA4), we have: for all u, v ∈ V and any α, β ∈ Γ,

[(uαv)βu]α(0βb) = 0.

So by (1) and (2), we get

(5.1) uαv ∈ V for any u, v ∈ V each α ∈ Γ.

Since (xαy)β(aαb), xαa ∈ V , by (5.1), we have

[(xαy)β(aαb)]β(xαa), (xαa)β[(xαy)β(aαb)] ∈ V.

Thus (xαy)β(aαb) ∈ V (xαa). By (2), V (xαa) ⊂ V . So (xαy)β(aαb) ∈ V. Hence
aαb ∈ V (xαy), i.e., V (x)αV (y) ⊂ V (xαy) ⊂ W. Therefore by Claim 3, f is continu-
ous. The proof of uniqueness for τ is easy. This completes the proof. □

Corollary 5.16. Let X be a Γ-BCI-algebra. Then (X, τ
ΓIc(X)

) is a TΓ-BCI-
algebra.

Proof. We can easily prove that ΓIc(X) is a filter base in X. By Definition 4.8, it is
obvious that 0αa ∈ I for each a ∈ I ∈ ΓIc(X) and each α ∈ Γ. Then the condition
1 of Proposition 5.15 holds. Suppose (xαa)βb = 0 for all a, b ∈ I ∈ ΓIc(X), all
α, β ∈ Γ and each x ∈ X. Then xαa ≤ b and b ∈ I. Thus by Definition 4.1, x ∈ I.
So the condition 2 of Proposition 5.15 holds. Hence by Proposition 5.15, there is a
unique topology τ

ΓIc(X)
on X. Therefore (X, τ

ΓIc(X)
) is a TΓ-BCI-algebra. □

Example 5.17. LetX = {0, 1, 2, 3} be the Γ-BCI-algebra given in Example 5.3 and
let B = {{0, 1}, {0, 1, 2}, {0, 1, 3}}. Then we can easily check that B is a filter base
on X satisfying the conditions (1) and (2) of Proposition 5.15. Thus the topology
τB on X generated by B is given as follows:

τB = {∅, {0, 1}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, X}.
So (X, τB) is a TΓ-BCI-algebra.

Unless otherwise specified, B denotes a filter base on a Γ-BCI-algebraX satisfying
the conditions 1 and 2 of Proposition 5.15.

Lemma 5.18 (See Lemma 3.17, [23]; Lemma 3.14, [10]). Let (X, τB) be a TΓ-BCI-
algebra. Then for each B ∈ B,

(1) B(a) ∈ Nτ (a) for each a ∈ X,
(2) B(A) =

⋃
a∈A B(a) ∈ Nτ (A) ∈ τB such that A ⊂ B(A) for each A ∈ P (X).

Proof. The proof is obvious. □

Proposition 5.19 (See Proposition 3.18, [23]; Theorem 3.15, [10]). If (X, τB) is a
TΓ-BCI-algebra, then A =

⋂
B∈B B(A) for each A ⊂ X.

Proof. The proof is similar to Proposition 3.18 in [23]. □
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Corollary 5.20 (See Corollary 3.19, [23]; Corollary 3.16, [10]). Let (X, τB) be a
TΓ-BCI-algebra. Then every B ∈ B is closed in X, i.e., B is a collection of clopen
subsets of X.

Proof. The proof is similar to Corollary 3.19 in [23]. □

Proposition 5.21. Let (X, τB) be a TΓ-BCI-algebra. If A is a compact subset of
X and U ∈ τB such that A ⊂ U , then there is B ∈ B such that A ⊂ B(A) ⊂ U.

Proof. Suppose A is a compact subset of X and U ∈ τB such that A ⊂ U and
let a ∈ A. Then there is Ba ∈ B such that Ba(a) ⊂ U. It is clear that A ⊂⋃

a∈A Ba(a). Since A is a compact subset of X, there are a1, a2, · · · , an ∈ A such

that A ⊂
⋃n

i=1 Bai(ai). Let B =
⋂n

i=1 Bai and a ∈ A. It is obvious that there is
i ∈ {1, 2, · · · , n} such that a ∈ Bai

(ai). Then aαai, aiαa ∈ Bai
for each α ∈ Γ. Now

let x ∈ B(a) and let α, β ∈ Γ. Then by Corollary 3.9(2), we have

(aαai)β(xαai) ≤ aαx, i.e., [(aαai)β(xαai)]β(aαx) = 0.

Since a, x ∈ B, by the condition (2) of Proposition 5.15, (aαai)β(xαai) ∈ B.
Similarly, (xαai)β(aαai) ∈ B. Thus we get

xαai ∈ B(aαai) ⊂ Bai(aαai) ⊂ Bai(Bai) ⊂ Bai .

Similarly, aiαx ∈ Bai
. Thus y ∈ Bai

⊂ U. So B(a) ⊂ U for each a ∈ A, i.e.,
B(A) ⊂ U. Since B is a filter base on X, there is V ∈ B such that V ⊂

⋂n
i=1 Bai

= B.
Hence V (a) ⊂ B(a) ⊂ U for each a ∈ A. Therefore V (A) ⊂ B(A) ⊂ U . This
completes the proof. □

Proposition 5.22. Let (X, τB) be a TΓ-BCI-algebra, let A be a compact subset
of X and let F is closed in X. If A ∩ F = ∅, then there is B ∈ B such that
B(A) ∩B(F ) = ∅.

Proof. Suppose A∩F = ∅. Then clearly, F c ∈ τB and A ⊂ F c. Thus by Proposition
5.21, there is B ∈ B such that A ⊂ B(A) ⊂ F c. Assume that B(A) ∩ B(F ) ̸= ∅.
Then there are x ∈ X, a ∈ A and f ∈ F such that x ∈ B(a) and y ∈ B(f). By
Theorem 3.2(1), we have: for any α, β ∈ Γ,

(aαx)β(aαf) ≤ fαx ∈ B, (aαf)β(aαx) ≤ aαf ∈ B.

Thus aαf ∈ B(aαx) ⊂ B(B) ⊂ B, i.e., aαf ∈ B. Similarly, fαx ∈ B. So f ∈ B(a).
This contradicts to B(A) ⊂ F c. Hence B(A) ∩B(F ) = ∅. □

Now we discuss topological properties on quotient Γ-BCI-algebras. To do this,
we denote subsets of X/I as Ȧ, Ḃ, Ċ, etc. and ∅̇ = ∅, Ẋ = X/I. All the proofs
of propositions, lemmas and corollaries listed below are almost same as these corre-
sponding to [23] respectively, so they are omitted.

Proposition 5.23 (See Proposition 4.13, [23]). Let (X, τ) be a TΓ-BCK-algebra,
I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. We define a
collection τπ of subsets of X/I as follows:

τπ = {Ȧ ∈ P (X/I) : π−1(Ȧ) ∈ τ},
where Ȧ = {I[a] : a ∈ A} for some A ⊂ X. Then

(1) τπ is a topology on X/I,
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(2) π : (X, τ) → (X/I, τπ) is continuous, open and closed,
(3) τπ is the finest topology on X/I with respect to which π is continuous,
(4) (X/I, τπ) is a TΓ-BCI-algebra.
In this case, τπ is called the quotient topology on X/I induced by π and (X/I, τπ)

is called a quotient TΓ-BCI-algebra and π is called a quotient mapping.

Proposition 5.24 (See Proposition 4.14, [23]). Let (X, τ) be a TΓ-BCI-algebra,
I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. If {I} is open in
(X/I, τπ), then X/I is discrete.

The following is an immediate consequence of Propositions 5.23 and 5.24.

Corollary 5.25 (See Corollary 4.15, [23]). Let (X, τ) be a TΓ-BCI-algebra, I ∈
ΓIc(X) and let π : X → X/I be the natural homomorphism. If {0} is open in X,
then X/I is discrete.

Proposition 5.26 (See Proposition 4.16, [23]). Let (X, τ) be a TΓ-BCI-algebra,
I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. If (X/I, τπ) is a
T1-space, then {0} is closed in X.

Theorem 5.27 (See Theorem 4.17, [23]). Let (X, τ) be a TΓ-BCI-algebra, I ∈
ΓIc(X) and let π : X → X/I be the natural homomorphism. Then {I} is closed in
(X/I, τπ) if and only if X/I is Hausdorff.

The following is an immediate consequence of Proposition 5.23 and Theorem 5.27.

Corollary 5.28 (See Corollary 4.18, [23]). Let (X, τ) be a TΓ-BCI-algebra, I ∈
ΓIc(X) and let π : X → X/I be the natural homomorphism. Then {0} is closed in
X if and only if X/I is Hausdorff.

Proposition 5.29 (See Proposition 4.19, [23]). Let (X, τ) be a TΓ-BCI-algebra,

I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. If Ȧ is a Γ-ideal

of X/I and I ∈ intτπ (Ȧ), then Ȧ is open in X/I.

Lemma 5.30 (See Lemma 4.20, [23]). Let X be a Γ-BCI-algebra, I ∈ ΓIc(X) and
let π : X → X/I be the natural homomorphism. If A is a Γ-ideal of X, then π(A)
is a Γ-ideal of X/I.

The following is an immediate consequence of Propositions 5.23, 5.29 and Lemma
5.30.

Corollary 5.31 (See Corollary 4.21, [23]). Let (X, τ) be a TΓ-BCK-algebra, I ∈
ΓIc(X) and let π : X → X/I be the natural homomorphism. If A is an ideal of X
and I ∈ intτ (π(A)), then π(A) is open in X/I.

Proposition 5.32 (See Proposition 4.22, [23]). Let (X, τ) be a TΓ-BCI-algebra,

I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. If Ȧ is a Γ-ideal

of X/I and is open in X/I, then Ȧ is closed in X/I.

The following is an immediate consequence of Propositions 5.23 and 5.32.

Corollary 5.33 (See Corollary 4.23, [23]). Let (X, τ) be a TΓ-BCI-algebra, I ∈
ΓIc(X) and let π : X → X/I be the natural homomorphism. If A is a Γ-ideal of X
and is open in X, then π(A) is closed in X/I.
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Proposition 5.34 (See Proposition 4.24, [23]). Let (X, τ) be a TΓ-BCI-algebra,
I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. If (X/I, τπ) is

Hausdorff, then
⋂

U̇∈Nτπ (I) U̇ = {I}. Moreover,
⋂

U̇∈Nτπ (I) U̇ = {I}.

Lemma 5.35 (See Lemma 4.25, [23]). Let (X, τ) be a TΓ-BCI-algebra, I ∈ ΓIc(X)
and let π : X → X/I be the natural homomorphism. Then π(Nτ (0) = Nτπ (I).

Lemma 5.36 (See Lemma 4.26, [23]). Let (X, τ) be a TΓ-BCI-algebra, I ∈ ΓIc(X)
and let π : X → X/I be the natural homomorphism. Then If X is Hausdorff, then
(X/I, τπ) is Hausdorff.

The following is an immediate consequence of Propositions 5.23, 5.34 and Lemmas
5.35, 5.36.

Proposition 5.37 (See Proposition 4.27, [23]). Let (X, τ) be a TΓ-BCI-algebra,
I ∈ ΓIc(X) and let π : X → X/I be the natural homomorphism. If X is Hausdorff,

then
⋂

U̇∈Nτπ (I) U̇ = {I}.

6. Conclusions

We obtained various properties of Γ-BCI-algebras. Also, we dealt with some
properties of Γ-ideals, quotient Γ-BCI-algebras and the kernel of a Γ-BCI-homomorphism.
Moreover, we studied some of topological properties on Γ-BCI-algebras and quotient
Γ-BCI-algebras.

In the future, we will define various types of logical Γ-algebras and discuss their
properties, and apply them to topology.

Acknowledgements. This paper was supported by Wonkwang University
in 2025. We are very grateful to the reviewers for their careful reading and their
meaningful suggestions.

References
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