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Abstract. In this paper, we have proposed a method to solve fuzzy
nonlinear optimization problems with inequality constraints problems. It
is based on the pseudo-invex concept and Karush-Kuhn-Tucker optimality
conditions. By using the α-couple level, we have obtained the objective
functions with the interval values. In order to focus on this, we have
suggested two kinds of optimal solutions according to the partial order
defined on closed intervals. With this new approach, we have dealt with
five didactic examples. This helped us show how our method works and
compare it to other methods. Through a ranking function, we have shown
that our method is the best option to solve nonlinear optimization problems
with inequality constraints.
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1. Introduction

Mathematical programming occupies a significant position in the domain of op-
timization. It starts by modeling situations that are usually real-life problems. It
comes from many areas, such as economics, management, engineering, health, and
transportation. Unfortunately, the data collection for the modeling is difficult due
to lack of information and errors in estimation or prediction. Taking into account
these difficulties, it is necessary to use fuzzy modeling. Let us remember that the
fuzzy sets theory has been developed by Zadeh [1, 2, 3] and after results on fuzzy
optimization by Seikkala [4], Delgado et al. [5] and Lodwick et al. [6].
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In practice, the modeling of real-life problems can give a linear programming for-
mula or a nonlinear programming formula. For each type of model, many methods
have been developed to solve it. For example, for the single objective optimization
problems, we have these main works : Sama et al. [7] proposed at first the solving
of fuzzy nonlinear optimization problems by using the null set concept and then a
hybrid approach for solving fuzzy fractional linear optimization problems [8]; Saad
et al. [9] suggest a result on the solution of linear programming problems with
rough interval coefficients in a fuzzy environment; Hu et al. [10] studied the du-
ality theory in fuzzy linear programming problems with fuzzy coefficients; Dubois
et al. [11] propose a work on fuzzy sets and systems: theory and applications;
Abu et al. [12, 13, 14, 15, 16] worked on many topics such as adaptation of re-
producing kernel algorithm for solving Fredholm-voltera Integrodiffential equations,
the resolution of fuzzy M-fractional integrodifferential model and the Uncertain M-
fractional differential problems; Seikh et al. [17, 18, 19, 20, 21] proposed some
results with the using of matrix games such as matrix games in intuitionistic fuzzy
environnement, solution of interval-valued matrix games using intuitionistic fuzzy
optimisation technique and the application of the intuitionistic fuzzy mathematical
programming with exponential membership and quadratic non-membership func-
tion. As far as instances for the multiple objectives problems, the followings are the
main works for our paper : Sivakumar et al. [22] work on a Fuzzy mathematical
approach for solving multi-objective fuzzy linear fractional programming problem
with trapezoidal fuzzy numbers; Okumus et al. [23] suggested a power aggregation
operators on trapezoidal fuzzy multi-numbers and theirs applications to zero-waste
problem; Sama et al. [24] conceived some new approach to solving fuzzy multiob-
jective linear fractional optimization problems; Rommelfanger et al. [25] work on
the fuzzy linear programming with single and multiple objective functions; Wu et al.
[26] investigated on the Karush-Kuhn-Tucker optimality condition for multiobjective
programming problems with fuzzy-valued objective function; Chalco-Cano et al. [42]
work on the Karush-Kuhn-Tucker optimality conditions (briefly, KKT conditions)
for fuzzy optimization problems. They ensure optimality by including stationarity
(gradient balance), primal feasibility (compliance with constraints), dual feasibility
(non-negativity of Lagrange multipliers), and complementarity (zero-product condi-
tion between constraints and their respective multipliers).

In the literature, there are other proposed methods that use Karush-Kuhn-Tucker
optimality conditions to solve linear or nonlinear problems [28, 29, 30]. In practice,
they are designed for convex cases where the objective functions and constraints
must be differentiable [31, 32, 33, 34]. Therefore, for this work, we are investigating
cases where the functions are not necessarily differentiable, but only invex. In this
work, we propose a new method for solving fuzzy, nonlinear, single-objective opti-
mization problems. With the method, we first transform the initial problem into
the optimization of a real-interval objective function. Then we transform it into a
deterministic, bi-objective optimization problem. Furthermore, we obtain the deter-
ministic single objective optimization problem by using weighted sum aggregation.
Finally, Karush-Kuhn-Tucker optimality conditions allow us to establish optimality
conditions and reach optimal solutions to the problem. Some numerical results have
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been provided on five didactic examples, which have been compared to two other
methods. These results indicate that our method is a good alternative to solving
nonlinear optimization problems. In summary, we can say that the novelties of this
work are:

(1) a formulation based on KKT conditions, adapted to fuzzy problems;
(2) the integration of pseudoinvexity to solve non-convex problems;
(3) bounding the optimal solutions through maximization and minimization of

the bounds;
(4) the use of triangular fuzzy numbers to effectively model uncertainties.

The following is the structure of the remaining document: in Session 2, we have
proposed some preliminaries focused on the concepts of fuzzy sets, fuzzy numbers,
and fuzzy optimization; in Section 3, we have presented the main results of this
work; in Section 4, we have given our conclusion.

2. Preliminaries

2.1. Fuzzy sets and fuzzy numbers. A fuzzy subset F from K is defined by a
membership function µF that associates for all x ∈ K a real value µF (x) belonging
to [0, 1]. In this work, we will note by KC the family of bounded intervals in R, with

(2.1) KC =
{
[a, a] | a, a ∈ R

}
and a ≤ a.

Let us consider A = [a, a] and B = [b, b] two bounded intervals in R. That allows us
to define the distance between A and B as follows :

(2.2) H(A,B) = max
{
|a− b|, |a− b|

}
,

where (KC , H) is a complete metric space. Now, we can clearly define the notion of
fuzzy numbers.

Definition 2.1 ([35]). A fuzzy set Ã defined on R is called a fuzzy number, when
the following conditions are satisfied :

(i) all α-coupes of Ã are not empty for 0 ≤ α ≤ 1,

(ii) all α-coupes of Ã are bounded intervals of R,

(iii) Supp(Ã) =
{
x ∈ R : µÃ(x) > 0

}
is bounded.

Let us consider FC as the family of fuzzy intervals. Then ∀ Ã ∈ FC , we have
[Ã]α ∈ KC ∀ α ∈ [0, 1] with

(2.3) [Ã]α = [ãα, ã
α
] with ãα and ã

α ∈ R, α ∈ [0, 1].

Definition 2.2 ([36]). Let Ã and B̃ be two fuzzy intervals. The Hukuhara’s gener-

alized difference, noted by gh-difference, is a fuzzy interval C̃ such as:

(2.4) Ã⊖gH B̃ = C̃ ⇐⇒

{
(i) Ã = B̃ + C̃

(ii) B̃ = Ã+ (−1)C̃.

Remark 2.3. To compute the gH-difference between two triangular fuzzy numbers,
defined by their triplets Ã = (a1, a2, a3) and B̃ = (b1, b2, b3), several conditions must
be met to ensure that the operation is well-defined and that the result remains a
triangular fuzzy number:
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• Interval Inclusion Condition [11, 37] The triplet Ãmust ”contain” B̃ in terms
of intervals, which implies:

(2.5) a1 ≥ b1 and a3 ≥ b3.

• Formulation of the Resulting Triplets [38] The gH-difference produces a new

triplet C̃ = (c1, c2, c3), defined as:

(2.6) c1 = a1 − b1, c2 = a2 − b2, c3 = a3 − b3.

• Uniqueness of the Solution [39] The triplets Ã and B̃ must satisfy:

(2.7) a1 ≤ a2 ≤ a3 and b1 ≤ b2 ≤ b3.

• Preservation of the Triangular Structure [40] The resulting triplet C̃ must
satisfy:

(2.8) c1 ≤ c2 ≤ c3.

If Ã⊖gH B̃ = C̃ exists in terms of α-coupe, we can write

[Ã⊖gH B̃]α = [Ã]α ⊖gH [B̃]α

=
[
min

{
ãα − b̃

α
, ã

α − b̃
α}

,max
{
ãα − b̃

α
, ã

α − b̃
α}]

.
(2.9)

Let Ã and B̃ be two elements of FC . Then by defining the distance between A and
B define as:

D(A,B) = sup
α∈[0,1]

H
(
[A]α, [B]α

)
= supmax

{
|ãα − b̃

α
|, |ãα − b̃

α

|
}
,

(2.10)

we can define (FC , D) as a complete metric space.

Definition 2.4 ([41]). (Yager’s Ranking Function) Let Ã = (a1, a2, a3) be a trian-

gular fuzzy number. Yager’s ranking function, denoted by R1(Ã), is defined as the
arithmetic mean of the three parameters of the triangular fuzzy number:

(2.11) R1(Ã) =
a1 + a2 + a3

3
.

Remark 2.5. Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be two triangular fuzzy

numbers. We say that Ã ⪯ B̃ if and only if R1(Ã) ≤ R1(B̃).

2.2. Fuzzy functions. Let us consider K ⊂ Rn, F : K → FC a fuzzy function.
For all α ∈ [0, 1], we associate to F the family of functions with interval values.
That means that Fα(x) : K → FC by Fα(x) = [F (x)]α, α ∈ [0, 1] with Fα(x) =
[Fα(x), Fα(x)], where Fα(x) and Fα(x) are respectively lower bound function and
upper bound function of Fα(x) and are defined from K → R.

Definition 2.6 ([42]). Let F : K → FC be a fuzzy function, with x0 ∈ K and h
such as x0 + h ∈ K. The gH-fuzzy derivative of F in x0 is defined as follows:

(2.12) F ′(x0) = lim
h→0

F (x0 + h)⊖gH F (x0)

h
.

If F ′(x0) ∈ FC , then F is the Hukuhara’s generalized differentiable function, gH-
differentiable in x0, where ⊖gH is the gH-difference.
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Theorem 2.7 ([29]). Let F : K → FC be a fuzzy function. If F is gH-differentiable,
then the function with interval values Fα : K → FC is differentiable for all α ∈ [0, 1],
and we have:

(2.13) [F ′(x)]α = F ′
α(x).

Let F be a function defined on K ⊂ Rn i.e F (x) = F (x1, . . . , xn) ∈ FC for x =
(x1, . . . , xn). We note fuzzy interval F (x) by F (x) = [F (x), F (x)]. And ∀α ∈ [0, 1]
we have:

(2.14) Fα(x) = [Fα(x), Fα(x)] = [F (α, x), F (α, x)].

Definition 2.8 ([29]). Let F be a function defined onK ⊂ Rn and x0 =
(
x
(0)
1 , . . . , x

(0)
n

)
a fixed element of K. Let us consider the fuzzy function defined for all i by

hi(xi) = F
(
x
(0)
1 , . . . , x

(0)
i−1, x

(0)
i , x

(0)
i+1, . . . , x

(0)
n

)
. If hi is gH-differentiable in x

(0)
i ,

then F is said to be the ie gH-partial derivative in x0 and it is noted by
∂F

∂xi
(x0).

And, we have

(2.15)
∂F

∂xi
(x0) = (hi)

′(x
(0)
i ).

Definition 2.9 ([29]). Let F be a function defined on K and x0 ∈ K, where

x0 =
(
x
(0)
1 , . . . , x

(0)
n

)
. We say that F is gH-differentiable in x0, if all of the gH-

partial derivatives
∂F

∂x1
(x0), . . . ,

∂F

∂xn
(x0) exist in a neighborhood of x0 and are con-

tinuous in x0.

If F is gH-differentiable in x0, then
∂F

∂xi
(x0) is a fuzzy interval. Thus ∀ α ∈ [0, 1],

we have:

(2.16)

[
∂F

∂xi
(x0)

]α
=

∂Fα

∂xi
(x0) =

[
∂Fα

∂xi
(x0),

∂Fα

∂xi
(x0)

]
.

Proposition 2.10 ([29]). Let F : K → FC a fuzzy function. If F is gH-differentiable
in x0 ∈ K ∀ α ∈ [0, 1], then the real value function Fα+Fα : K → R is differentiable
in x0 and we have

(2.17)
∂Fα

∂xi
(x0) +

∂Fα

∂xi
(x0) =

∂(Fα + Fα)

∂xi
(x0).

Definition 2.11 ([29]). Let F : K → FC be a fuzzy function. The gradient of F in

x0 noted by ∇̃F (x0) is defined by:

(2.18) ∇̃F (x0) =

(( ∂F

∂x1
(x0)

)
, . . . ,

( ∂F

∂xn
(x0)

))
,

where
∂F

∂xj
(x0) is the je gH-partial derivative of F in x0.

Definition 2.12 ([43, 44]). (Pseudoinvexity)

(2.19) ∇F (x)T (y − x) ≥ 0 =⇒ F (y) ≥ F (x)
195
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for all x, y ∈ X̃ , where ∇F (x) denotes the gradient of F at x.

Remark 2.13. • Relation with Convexity: every convex function is pseu-
doinvex, but not all pseudoinvex functions are convex. Pseudoinvexity is a
generalization of convexity [44].

• Optimality Properties: for a pseudoinvex function F , any stationary point
x∗ (where ∇F (x∗) = 0) is a global minimum of F over K . This property
eliminates the distinction between local and global optima for pseudoinvex
functions [45].

• Addition: if F and G are pseudoinvex functions defined on the same domain

X̃ , their sum F +G is also pseudoinvex [46].
• Composition with Strictly Monotone Functions: if F is pseudoinvex and G
is a strictly increasing function, then the composition G ◦ F is pseudoinvex
[47, 48].

• Sufficient Condition for Twice Differentiable Functions: for a twice-differentiable
function F , a sufficient condition for pseudoinvexity is: ∇2F (x) is positive

semi-definite in the direction (y − x) ∀x, y ∈ X̃ [38].

3. Main results

3.1. Novel method. Let us consider a fuzzy single objective optimization problem
with the following formulation:

(3.1) (FO)


minF (x)

s.t

gj(x) ≤ 0, j = 1, · · · , p and x ∈ K ⊂ Rn,

where F and gj are fuzzy functions. The feasible set of the problem (FO) is given

by X̃ = {x ∈ K, gj(x) ≤ 0, j = 1, · · · , p}.
We say that (FO) is a fuzzy Pseudoinvex II problem, if F is a gH-differentiable

function, gj are gH-differentiable functions on K and for all x, x∗ ∈ X̃ , there exists
η(x∗, x) ∈ Rn such that:

F (x) ⪯ F (x∗) ⇒ ∇̃F (x∗) · η(x∗, x) ⪯ 0,

−∇gj(x
∗) · η(x∗, x) ≤ 0 for j ∈ I(x∗),

(3.2)

where I(x∗) is the set of active constraints. If

F (x) ≺ F (x∗) ⇒ ∇̃F (x∗) · η(x∗, x) ≺ 0,

−∇gj(x
∗) · η(x∗, x) ≤ 0 for j ∈ I(x∗),

(3.3)

then we say that (FO) is a fuzzy Pseudoinvex I problem.
To solve this problem using our method, four steps are necessary.
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STEP 1: By using the α-coupe concept, we can rewrite the problem as follows:

(3.4) (Pα)


min[Fα(x), Fα(x)]

s.t

[gjα(x), gjα(x)] ≤ 0 ∀ j = 1, · · · , p
x ≥ 0,

where α ∈ [0, 1].

Theorem 3.1. Let x∗ be the optimal solution of the problem (Pα), then x∗

is also the optimal solution of the problem (FO).

Proof. Let x∗ be the optimal solution of the problem (Pα). Let us assume
that x∗ is not the optimal solution to the problem (FO). It means that
there exists another point y ∈ K such that F (y) ≤ F (x∗). Then ∀α ∈
[0, 1], Fα(y) ≤ Fα(x

∗). Otherwise, we have [Fα(y), Fα(y)] ≤ [Fα(x), Fα(x)].
That is equivalent to {

Fα(y) ≤ Fα(x
∗)

Fα(y) ≤ Fα(x
∗).

That is wrong, according to our assertion. Thus x∗ is an optimal solution
to the problem (FO). □

STEP 2: By using the arithmetic operations on fuzzy intervals, we can rewrite
the problem as follows:

(3.5)



maxFα(x)

minFα(x)

s.t

[gjα(x), gjα(x)] ≤ 0 ∀ j = 1, · · · , p
x ≥ 0.

That can be rewritten into the following form:

(3.6) (PαM)



min(−Fα(x))

minFα(x)

s.t

[gjα(x), gjα(x)] ≤ 0 ∀ j = 1, · · · , p
x ≥ 0.

The feasible set of the problem (PαM) is given by:

X̃ = {x ∈ K : gjα ≤ 0, j = 1, · · · , p}.

Theorem 3.2. Let x∗ be a Pareto optimal solution of the problem (PαM),
then x∗ is also the global optimal solution of the problem (Pα).
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Proof. Suppose, for the sake of contradiction, that x∗ is a Pareto optimal
solution of the problem (PαM), but it is not a global solution of the problem

(Pα). This means that there exists a point y ∈ X̃ such that:

(3.7) [Fα(y), Fα(y)] < [Fα(x
∗), Fα(x

∗)],

which means that simultaneously:

(3.8) −Fα(y) ≤ −Fα(x
∗) and Fα(y) ≤ Fα(x

∗),

with at least one of the inequalities being strict.
This means that y strictly dominates x∗ on both objectives, that is,

(3.9) −Fα(y) < −Fα(x
∗) and Fα(y) < Fα(x

∗).

Then y simultaneously improves both objectives compared to x∗. However,

by the definition of Pareto optimality in (PαM), no feasible point y ∈ X̃ can
simultaneously improve both objectives −Fα(x) and Fα(x) compared to x∗.
This assumption leads to a contradiction with the fact that x∗ is a Pareto
optimal solution of (PαM). In conclusion, the assumption that x∗ is not a
global solution of the problem (Pα), while being a Pareto optimal solution of
the problem (PαM), leads to a contradiction. Thus if x∗ is a Pareto optimal
solution of (PαM), then it is also a global solution of the problem (Pα). So
the result holds. □

STEP 3: At this step, the weighted sum is used to transform the problem into
a single objective optimization problem.

(3.10) (PαO)


min[λ(Fα(x) + Fα(x))− Fα(x)]

s.t

gj(x) ≤ 0 ∀j = 1, · · · , p
x ≥ 0; 0 < λ < 1.

Theorem 3.3. Let x∗ be the global optimal solution of the problem (PαO),
then x∗ is also the Pareto optimal solution of the problem (PαM).

Proof. As the problem (PαO) is the weighted sum sub-problem with strictly
positive weights of the problem (PαM). Then by using the Theorem 4.6 of
the Chankong works [27], we have obtained that if x∗ is is the global optimal
solution of (PαO), then it is also Pareto optimal solution of (PαM) α ∈
[0, 1]. □

STEP 4: The problem (PαO) is solved by using KKT conditions. According
to the waited solutions to the problems, we have organized the optimal-
ity conditions into two groups: non-dominated solutions and weakly non-
dominated solutions.

Here are the optimality conditions for obtaining non-dominated solutions.

Theorem 3.4. Let us assume that the constraint functions gj , j = 1, · · · , p
are convex and differentiable on K. In addition, we assume that the fuzzy
function F : K → FC est gH-differentiable and the function λ1Fα(x) +
λ2(−Fα(x)) is convex on K ∀ α ∈ [0, 1] and λ1 + λ2 = 1. If there exists a
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real positive numbers µj(α) with j = 1, · · · , p, such as KKT conditions are
verified:

(i) ∇
(
λ1Fα(x) + λ2(−Fα(x))

)
(x∗) +

∑p
j=1 µj(α)∇gj(x

∗) = 0 for all α ∈
[0, 1] and λ1 + λ2 = 1,

(ii) µj(α)gj(x
∗) = 0 for all j = 1, · · · , p,

then x∗ is the non-dominated solution to the problem (FO).

Proof. From the Proposition 2.10, if the function F is gH-differentiable, then

λ1Fα(x) + λ2(−Fα(x)) is differentiable on X̃ and α ∈ [0, 1]. The conditions
(i) and (ii) involve that x∗ is a point of Karush-Kunh-Tucker for the sub-
problem (PαO) ∀α ∈ [0, 1], obtained by using weighted sum function. If gj
are convex function on K, j = 1, . . . , p and λ1Fα(x) + λ2(−Fα(x)) is convex
on K, then x∗ is a Pareto optimal solution for all α ∈ [0, 1]. As (PαO)
is the sub-problem of (Pα) and the weights are strictly positive, by using
the Chankong’s theorem, we obtain x∗ is a Pareto optimal solution of (Pα)
for all α ∈ [0, 1]. From the Lemma 1 in [29], we can deduce that x∗ is a
non-dominated solution of (FO). □

Corollary 3.5. Let us assume that the constraint functions gj , j = 1, · · · , p
are convex and differentiable on K. In addition, we assume that the fuzzy
function F : K → FC is gH-differentiable and convex on K. If there exists a
real positive numbers µj(α) with j = 1, · · · , p, such as KKT conditions are
verified:

(i) ∇
(
λ1Fα(x) + λ2(−Fα(x))

)
(x∗) +

∑p
j=1 µj(α)∇gj(x

∗) = 0 for all α ∈
[0, 1] and λ1 + λ2 = 1,

(ii) µj(α)gj(x
∗) = 0 for all j = 1, · · · , p,

then x∗ is the non-dominated solution to the problem (FO).

Proof. According to the convexity of the function F , we have the convexity
of λ1Fα and also of (−λ1Fα) for all α ∈ [0, 1]. There remains the proof of
Theorem 3.4. □

Theorem 3.6. Let (FO) be the pseudoinvex optimization problem from II
on K. Let us suppose that ∀α ∈ [0, 1] and λ1 + λ2 = 1. If there exists a real
positive numbers µj(α), j = 1, · · · , p such as KKT conditions are verified:

(i) ∇
(
λ1Fα(x) + λ2(−Fα(x))

)
(x∗) +

∑p
j=1 µj(α)∇gj(x

∗) = 0 for all α ∈
[0, 1] and λ1 + λ2 = 1,

(ii) µj(α)gj(x
∗) = 0 for each j = 1, · · · , p,

then x∗ is the non-dominated solution of the problem (FO).

Proof. For proving the Theorem 3.6, we will proceed by reasoning by ab-
surdity. Let us assume that x∗ is not a weakly non-dominated solution.

Then there exists a x̂ ∈ X̃ such as F (x̂) ⪯ F (x∗). If (FO) is a fuzzy Pseu-
doinvex function defined from II to K, then there exists η(x̂, x∗) such as

∇̃F (x∗).η(x̂, x∗) ⪯ 0 and for all α ∈ [0, 1], we have:
(3.11) ([

∂(−λ2Fα)

∂x1
(x∗),

∂(λ1Fα)

∂x1
(x∗)

]
, . . . ,

[
∂(−λ2Fα)

∂xn
(x∗),

∂(λ1Fα)

∂xn
(x∗)

])
.η(x̂, x∗) ⪯ 0.
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By multiplying each interval by η(x̂, x∗), we obtain

(3.12)

[
∂(−λ2Fα)

∂x1
(x∗),

∂(λ1Fα)

∂x1
(x∗)

]
.η1(x̂, x

∗) + · · ·

+

[
∂(−λ2Fα)

∂xn
(x∗),

∂(λ1Fα)

∂xn
(x∗)

]
.ηn(x̂, x

∗) ⪯ 0.

Thus there exists α∗ ∈ [0, 1] such as:

min

{
∂(−λ2Fα)

∂x1
(x∗).η1(x̂, x

∗),
∂(λ1Fα)

∂x1
(x∗).η1(x̂, x

∗)

}
+ · · ·

+min

{
∂(−λ2Fα)

∂xn
(x∗).ηn(x̂, x

∗),
∂(λ1Fα)

∂xn
(x∗).ηn(x̂, x

∗)

}
≤ 0,

(3.13)

where

max

{
∂(−λ2Fα)

∂x1
(x∗).η1(x̂, x

∗),
∂(λ1Fα)

∂x1
(x∗).η1(x̂, x

∗)

}
+ · · ·

+max

{
∂(−λ2Fα)

∂xn
(x∗).ηn(x̂, x

∗),
∂(λ1Fα)

∂xn
(x∗).ηn(x̂, x

∗)

}
≤ 0

(3.14)

with strict inequality. By applying the Proposition 2.10, the function λ2Fα+

λ1Fα is differentiable in x∗ and we have:

(3.15)
∂
(
− λ2Fα∗ + λ1Fα∗

)
∂x1

(x∗).η1(x̂, x
∗) + · · ·

+
∂
(
− λ2Fα∗ + λ1Fα∗

)
∂xn

(x∗).ηn(x̂, x
∗) ≤ 0

and consequently,

(3.16) ∇
(
− λ2Fα∗ + λ1Fα∗

)
(x∗)T .η(x̂, x∗) ≤ 0 ∀α ∈ [0, 1].

From the assumption of the Pseudo-invexity of the problem (FO), we have:

(3.17) ∇gj(x
∗).η(x̂, x∗) ≤ 0 ∀j ∈ I(x∗).

By applying the Motzkin’s alternatif theorem, there does not exist a 0 <
ϵ0 ∈ R and 0 < ϵj ∈ R, j ∈ I(x∗) such as:

(3.18) ϵ0(α)∇
(
− λ2Fα∗ + λ1Fα∗

)
(x∗) +

∑
j∈I(x∗)

ϵj(α).∇gj(x
∗) = 0 ∀α ∈ [0, 1],

reciprocally, there does not exist parameters µj(α
∗) ∈ R, j ∈ I(x∗) such as:

(3.19) ∇
(
− λ2Fα + λ1Fα

)
(x∗) +

∑
j∈I(x∗)

µj(α
∗).∇gj(x

∗) = 0,

where µj(α
∗) = ϵj/ϵ0.

If I(x∗) is the set of active constraints of the problem, then we have
gj(x

∗) < 0, j /∈ I(x∗). That is why, if j /∈ I(x∗), then the condition (ii)
involves that µj(α) = 0 for all α ∈ [0, 1]. Thus from Equation 3.19, there
does not exist some parameters 0 ≤ µj(α

∗) ∈ R such as the conditions (i)
and (ii) are satisfied, which is a contradiction. So the result holds. □

200



Traore et al. /Ann. Fuzzy Math. Inform. 29 (2025), No. 2, 191–213

Here are the optimality conditions for obtaining a weakly non-dominated
solution.

Theorem 3.7. Let us assume that the constraint functions gj , j = 1, · · · , p
are convex and differentiable on K. In addition, let us assume that the
fuzzy function F : K → FC is gH-differentiable and the function λ1Fα(x) +
λ2(−Fα(x)) is convex on K ∀ α∗ ∈ [0, 1] and λ1+λ2 = 1. If there exist some
positive real numbers µj , j = 1, · · · , p such as KKT conditions are verified:

(i) ∇
(
λ1Fα∗(x)+λ2(−Fα∗(x))

)
(x∗)+

∑p
j=1 µj(α)∇gj(x

∗) = 0 for all α ∈
[0, 1] and λ1 + λ2 = 1,

(ii) µj(α
∗)gj(x

∗) = 0, for each j = 1, · · · , p;,
then x∗ is a weakly non-dominated solution of the problem (FO).

Proof. From Proposition 2.10, if F is a gH-differentiable function, then
λ1Fα∗(x) + λ2(−Fα∗(x)) is differentiable on χ and α∗ ∈ [0, 1]. The con-
ditions (i) and (ii) involve that x∗ is a Karush-Kuhn-Tucker’s point for the
weighted sum problem (PαO) α∗ ∈ [0, 1]. If gj , j = 1, · · · , p are convex

on K and λ1Fα∗(x) + λ2(−Fα∗(x)) is convex on K, then x∗ is an optimal
solution for all α ∈ [0, 1]. As (Pα∗O) is a sub-problem of (Pα∗) with positive
strict weights, by using the Theorem 4.6 from [27], we can deduce that x∗ is
a Pareto optimal solution of (Pα∗) for all α∗ ∈ [0, 1]. From Lemma 2, taken
in [29], x∗ is a weakly non-dominated solution of (FO). □

Theorem 3.8. Let (FO) be a pseudoinvex problem defined from I to K. In
addition, let us assume that ∀α ∈ [0, 1] and λ1 + λ2 = 1, there exist some
positive real numbers µj , j = 1, . . . , p such as KKT conditions are verified:
for α∗ ∈ [0, 1],

(i) ∇
(
λ1Fα∗(x)+λ2(−Fα∗(x))

)
(x∗)+

∑p
j=1 µj(α)∇gj(x

∗) = 0 for all α ∈
[0, 1] and λ1 + λ2 = 1;

(ii) µjgj(x
∗) = 0 for all j = 1, · · · , p,

then x∗ is a non-dominated solution of the problem (FO).

Proof. We will proceed with absurd reasoning to prove the Theorem 3.8. Let
us assume that x∗ is not a weakly non-dominated solution. Then there exists

a x̂ ∈ X̃ such as F (x̂) ≺ F (x∗). If (FO) is a fuzzy Pseudoinvex function

defined from I to K, then there exists η(x∗, x) such as ∇̃F (x∗).η(x̂, x∗) ≺ 0
and for all α ∈ [0, 1], we have:

(3.20) ([
∂(−λ2Fα)

∂x1
(x∗),

∂(λ1Fα)

∂x1
(x∗)

]
, . . . ,

[
∂(−λ2Fα)

∂xn
(x∗),

∂(λ1Fα)

∂xn
(x∗)

])
.η(x̂, x∗) ≺ 0.

Thus by multiplying each interval by η(x̂, x∗), we obtain

(3.21)

[
∂(−λ2Fα∗)

∂x1
(x∗),

∂(λ1Fα∗)

∂x1
(x∗)

]
.η1(x̂, x

∗) + · · ·

+

[
∂(−λ2Fα∗)

∂xn
(x∗),

∂(λ1Fα∗)

∂xn
(x∗)

]
.ηn(x̂, x

∗) ≺ 0.
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So there exists α ∈ [0, 1] such as:

min

{
∂(−λ2Fα)

∂x1
(x∗).η1(x̂, x

∗),
∂(λ1Fα)

∂x1
(x∗).η1(x̂, x

∗)

}
+ · · ·

+min

{
∂(−λ2Fα)

∂xn
(x∗).ηn(x̂, x

∗),
∂(λ1Fα)

∂xn
(x∗).ηn, (x̂, x

∗)

}
< 0

(3.22)

where

max

{
∂(−λ2Fα)

∂x1
(x∗).η1(x̂, x

∗),
∂(λ1Fα)

∂x1
(x∗).η1(x̂, x

∗)

}
+ · · ·

+max

{
∂(−λ2Fα)

∂xn
(x∗).ηn(x̂, x

∗),
∂(λ1Fα)

∂xn
(x∗).ηn(x̂, x

∗)

}
< 0

(3.23)

with strict inequality. By applying Proposition 2.10, the function λ2Fα +

λ1Fα is differentiable in x∗ and we have:

∂
(
− λ2Fα + λ1Fα

)
∂x1

(x∗).η1(x̂, x
∗) + · · ·

+
∂
(
− λ2Fα + λ1Fα

)
∂xn

(x∗).ηn(x̂, x
∗) < 0

and consequently,

(3.24) ∇
(
− λ2Fα + λ1Fα

)
(x∗)T .η(x̂, x∗) ≤ 0 ∀α ∈ [0, 1].

From the assumption that the problem (FO) is Pseudoinvex, we have:

(3.25) ∇gj(x
∗).η(x̂, x∗) ≤ 0 ∀j ∈ I(x∗).

By applying Motzkin’s alternative theorem, there does not exist a 0 < ϵ0 ∈ R
and 0 < ϵj ∈ R, j ∈ I(x∗) such as:

(3.26) ϵ0(α)∇
(
− λ2Fα + λ1Fα

)
(x∗) +

∑
j∈I(x∗)

ϵj(α).∇gj(x
∗) = 0 ∀α ∈ [0, 1],

reciprocally, there does not exist some parameters µj(α) ∈ R, j ∈ I(x∗)
such as:

(3.27) ∇
(
− λ2Fα + λ1Fα

)
(x∗) +

∑
j∈I(x∗)

µj(α).∇gj(x
∗) = 0,

where µj(α) = ϵj(α)/ϵ0(α).
If I(x∗) is the set of active constraints, then we have gj(x

∗) < 0, j /∈ I(x∗).
That is why, if j /∈ I(x∗), then the condition (ii) involves that µj(α) =
0 ∀α ∈ [0, 1]. From Equation 3.27, there does not exist some parameters
0 ≤ µj(α) ∈ R such as the conditions (i) and (ii) are satisfied and that is a
contradiction. Thus the result holds. □

We can summarize the process of the method by using the following pseudo-code.

(1) Using α-coupe to transform the fuzzy objective function into the real interval
objective function.
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(2) Using fuzzy arithmetic operations to transform the minimization of an in-
terval function into a minimization of two deterministic functions.

(3) Using the weighted sum function to transform the bi-objective function into
a single deterministic function.

(4) Using Karush-Kuhn-Tucker to reach the global optimal solution of the prob-
lem.

3.2. Numerical experiences. We have dealt with two didactic examples to high-
light the steps of our method and prove its numerical performance.

3.2.1. Problem 1. [29] Let us consider the following problem

(3.28)


min 3̃x1 + 2̃x2

2

s.t

(x1 − 2)2 + x2
2 ≤ 4

x1, x2 ≥ 0,

where 3̃ = (2, 3, 5) and 2̃ = (1, 2, 4) are fuzzy triangular numbers.

Let us set F (x1, x2) = 3̃x1 + 2̃x2
2 and g1(x1, x2) = (x1 − 2)2 + x2

2 − 4.
For all α ∈ [0, 1], we have
(3.29)[
F (x1, x2)

]α
=

{[
(2 + α)x1 + (1 + α)x2

2, (5− 2α)x1 + (4− 2α)x2
2

]
, if x1 ≥ 0, x2 ∈ R[

(5− 2α)x1 + (1 + α)x2
2, (2 + α)x1 + (4− 2α)x2

2

]
, if x1 < 0, x2 ∈ R.

As x1 and x2 > 0 are positive, the α-coupes of F are given by:

(3.30)
[
F (x1, x2)

]α
=
[
(2 + α)x1 + (1 + α)x2

2, (5− 2α)x1 + (4− 2α)x2
2

]
∀α ∈ [0, 1]

Let us set Fα(x1, x2) = (2+α)x1+(1+α)x22 and Fα(x1, x2) = (5−2α)x1+(4−2α)x2
2.

By replacing Fα(x1, x2) and Fα(x1, x2) in Equation 3.10, we obtain problem 3.31.
A Pareto optimal solution to this problem is also an optimal solution to the initial
problem.

(3.31)


min

[
λ
(
(7− α)x1 + (5− α)x2

2

)
− (2 + α)x1 − (1 + α)x2

2

]
s.t

(x1 − 2)2 + x2
2 − 4 ≤ 0.

(*) Let us verify the first KKT condition

∇
[
λ
(
(7−α)x1 +(5−α)x2

2

)
− (2+α)x1 − (1+α)x2

2

]
=

[
λ(7− α)− (2 + α)

2λ(5− α)x2 − 2(1− α)x2

]

∇
[
g(x1, x2)

]
=

[
2(x1 − 2)

2x2

]
.

If x∗ = (0, 0) satisfies the first KKT condition, then we have:

λ(7− α)− (2 + α)− 4µ = 0 ⇒ λ =
4µ+ α+ 2

7− α
.
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From the hypotheses of the theorem 3.8, for all α ∈ [0, 1] λ ∈ [0, 1] and µ ≥ 0,
we get:

0 ≤ λ ≤ 1 ⇒ 0 ≤ 4µ+ α+ 2

7− α
≤ 1

⇒ 0 ≤ 4µ+ α+ 2 ≤ 7− α

⇒ −α− 2

4
≤ µ ≤ 5− 2α

4
.

Thus for all α ∈ [0, 1], −α−2
4 < 0, we have 0 ≤ µ ≤ 5−2α

4 . By bounding
5−2α

4 , we get:

0 ≤ α ≤ 1 ⇒ 3

4
≤ 5− 2α

4
≤ 5

4
⇒ 0 ≤ 4µ+ α+ 2 ≤ 7− α.

So 0 ≤ µ ≤ 3
4 < 1 < 5

4 . For µ = 1, we have λ = 6+α
7−α . In particular, for

α = 1, we get λ > 1, but λ ∈ [0, 1]. Hence µ ∈ [0, 3
4 ]. We can conclude that

the solution x∗ = (0, 0) satisfies the first KKT condition for λ = 4µ+α−2
7−α ,

with α ∈ [0, 1] and µ ∈ [0, 3
4 ].

(**) Let us verify the second KKT condition:

µg(0, 0) = 0

since g(0, 0) = 0. Then the second condition (ii) is satisfied for all µ ∈ [0, 3
4 ].

From (*) and (**), we can conclude that x∗ = (0, 0) satisfies KKT conditions

for λ =
4µ+ α− 2

7− α
, with α ∈ [0, 1] and µ ∈ [0, 3

4 ].

The following table gives our obtained solutions for Problem 1 and the value of the
ranking function of each solution.

Table 1. Numerical solutions for Problem 1

α 0 0.2 0.8
λ 0 0.3 0.8
x (3; 2.64) (4.82; 0.0002) (0.1 ∗ 10−7; 0.14 ∗ 10−3)

F (x) (12.9696; 22.9392; 42.8784) (9.64; 14.46; 24.1) (0; 0; 0)
R1[F (x)] 26.2624 16.066 0

The solution x = (0; 0) has the best value ranking function. So it is the opti-
mal solution of the problem. The solution is the same as obtained in the work of
Chalco-Cano et al. [29].
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Figure 1. The objective function for each α and λ ∈ [0, 1], x1, x2 ∈ X̃

3.2.2. Problem 2. [31] Let us consider the following problem

(3.32)


min

{
F (x, y) = ãx2 + b̃y2

}
s.t

h̃(x, y) = c̃(x− 2)2 + d̃(y − 2)2 ≤ k̃,

x, y ≥ 0,

where ã = (0, 2, 4), b̃ = (0, 2, 4), c̃ = (0, 2, 4), d̃ = (0, 2, 4) and k̃ = (0, 2, 4) are fuzzy
triangular numbers.

By using the α-coupes, we obtain the following formulation of the problem:

(3.33)


min

[
2αx2 + 2αy2; (4− 2α)x2 + (4− 2α)y2

]
s.t

(x− 2)2 + (y − 2)2 − 1 ≤ 0

x, y > 0.

Let us set Fα(x, y) = 2αx2 + 2αy2, Fα(x, y) = (4 − 2α)x2 + (4 − 2α)y2 and

g(x, y) = (x− 2)2 + (y − 2)2 − 1 ∀α ∈ [0, 1].
By using the weighted sum function, we transform the problem into the form

below:

(3.34)


min

[
λ(4x2 + 4y2)− 2αx2 − 2αy2

]
s.t

(x− 2)2 + (y − 2)2 − 1 ≤ 0

x, y > 0.

(*) Let’s verify the first KKT condition:

∇
[
λ(4x2 + 4y2)− 2α)x2 − 2α)y2

]
=

[
8λx− 4αx
8λy − 4αy,

]

∇
[
g(x, y)

]
=

[
2(x− 2)
2(y − 2)

]
.
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We have x∗ = (1.2696; 1.2696). Let 1.2696 = β If x∗ = (β, β) satisfies KKT
condition (i), then we have:

8λx− 4αβ + 2µ(β − 2) = 0 ⇒ λ =
4αβ + 2µ(2− β)

8β
⇒ λ =

α

2
+ µ

( 1

2β
− 1

4

)
.

From the assumptions of the Theorem 3.8, for α ∈ [0, 1], λ ∈ [0, 1] and µ ≥ 0,
we get:

0 ≤ λ ≤ 1 ⇒ 0 ≤ α

2
+ µ

( 1

2β
− 1

4

)
≤ 1

⇒ −4αβ

2− β
≤ µ ≤ 2β(2− α)

2− β
.

Thus for all α ∈ [0, 1], µ ≥ 0, we have −4αβ
2−β < 0. So 0 ≤ µ ≤ 2β(2−α)

2−β . By

bounding 2β(2−α)
2−β , we get:

0 ≤ α ≤ 1 ⇒ 1 ≤ 2− α ≤ 2

⇒ 2β

2− β
≤ 2β(2− α)

2− β
≤ 4β

2− β
.

Hence 0 ≤ µ ≤ 2β
2−β < 4β

2−β . We can finally conclude that µ ∈ [0, 2β
2−β ]. We

can conclude that the solution x∗ = (β, β) satisfies the first KKT condition

for λ = α
2 + µ

(
1
2β − 1

4

)
, with α ∈ [0, 1] and µ ∈ [0, 2β

2−β ].

(**) Let’s verify the second KKT condition:

µg(β, β) = 0.

g(β, β) = 0, because the pointx∗ is located on the circle with center (2, 2) and radius 1.
Then KKT condition (ii) is satisfied for all µ ∈ [0, 3

4 ]. From (*) and
(**), we can conclude that x∗ = (β, β) satisfies KKT conditions for λ =
α
2 + µ

(
1
2β − 1

4

)
, with α ∈ [0, 1] and µ ∈ [0, 2β

2−β ].

Table 2. Numerical solutions for Problem 2

α 0 0.3 0.9
λ 0 0.1 0.9

(x, y) (1.45; 1.45) (2.71; 2.71) (1.2928; 1.2928)
F (x, y) (0; 8.41; 16.82) (0; 29.376; 58.752) (0; 6.685; 13.370)

R1[F (x, y)] 8.41 29.376 6.685

The solution x = (1.2928; 1.2928) gives the best ranking value. This is the same as
the solution obtained in the works of Panigrahini, Panda et al. However, this method
allows obtaining sufficient solutions depending on the chosen preference threshold.
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Figure 2. Solutions xopt and yopt for each α and λ ∈ [0, 1]

3.2.3. Problem 3. [50] Let us consider the following problem

(3.35)



min
[
ũ1(x

2
1) + ũ2 arctanx2

]
s.t

1− x1 ≤ 0,

− arctanx2 ≤ 0,

x1 arctanx2 = 0,

where ũ1 = (1, 2, 3) and ũ2 = (2, 5, 6).
This problem is equivalent to the following deterministic mono-objective problem:

(3.36)



min
[
λ[4x2

1 + (8 + 2α) arctanx2]− (1 + α)x2
1 − (2 + 3α) arctanx2

]
s.t

1− x1 ≤ 0,

− arctanx2 ≤ 0;

x1 arctanx2 ≤ 0,

−x1 arctanx2 ≤ 0,

where α, λ ∈ [0, 1]. KKT system is as follows:

(3.37)



8λx1 − 2(1 + α)x1 − µ1 + µ3 arctan(x2)− µ4 arctan(x2) = 0,

λ(8 + 2α) 1
1+x2

2
− (2 + 3α) 1

1+x2
2
− µ2

1
1+x2

2
+ µ3x1

1
1+x2

2
− µ4x1

1
1+x2

2
= 0,

µ1(1− x1) = 0,

µ2(− arctan(x2)) = 0,

µ3(x1 arctan(x2)) = 0,

µ4(−x1 arctan(x2)) = 0.
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Figure 3. Solutions x∗
1 and x∗

2 for each α and λ ∈ [0, 1]

For α = 0.4 and λ = 0.35, we have x0 = (1, 0), which satisfies KKT conditions for
µ1 > 0 and µ2 = µ3 = µ4 = 0.

Table 3. Numerical solutions for Problem 3

α 1/3 0.89 0.4
λ 1/3 0.44 0.35
x (1.23; 0) (1.33; 0) (1; 0)

F (x) (1.513; 3.03; 4.54) (1.77; 3.54; 5.31) (1; 2; 3)
R1[F (x)] 3.07 3.54 2

The solution x = (1; 0) gives the best ranking value. Then it is the optimal
solution of the problem. The solution is the same as the one obtained in the works
of Antczak.

3.2.4. Problem 4. [50] Let us consider the following problem

(3.38)


min

[
ũ1(0.002x

2 − 1000 lnx+ 7500)
]

s.t

−x ≤ 0,

x− 400 ≤ 0,

where ũ1 = (1, 2, 3).
This problem is equivalent to the following deterministic mono-objective problem:

(3.39)
min

[
λ[0.008x2 − 4000 lnx+ 30000]− (1 + α)(0.002x2 − 1000 lnx+ 7500)

]
s.t

−x ≤ 0,

x− 400 ≤ 0,
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Figure 4. Objective function for α, λ ∈ [0, 1]

and x1, x2 ∈ X̃

where α, λ ∈ [0, 1]. The KKT system is as follows:

(3.40)



λ
[
0.016x− 4000

x

]
− (1 + α)

[
0.004x− 1000

x

]
− µ1 + µ2 = 0

µ1 ≥ 0

µ2 ≥ 0

µ1(−x) = 0

µ2(x− 400) = 0.

For α = 0.2 and λ = 0.5, we have x0 = 400, which satisfies the KKT conditions for
µ1 = 0 and µ2 = 0.72.

Table 4. Numerical solutions for Problem 4

α 1/2 1/4 0.2
λ 1/3 1/2 0.5
x 400 400 400

F (x) (1828; 3657; 5485) (1828; 3657; 5485) (1828; 3657; 5485)
R1[F (x)] 3657.5 3657.5 3657.5

The solution x = 400 gives the best ranking value. Then it is the optimal solution
of the problem. The solution is the same as the one obtained in the work of Antczak.

3.2.5. Problem 5. [51] Let us consider the following problem

(3.41)


min

[
2̃ ln((x2 + |x|+ 1)e)⊖H 1̃

]
s.t

x2 − 5x ≤ 0,

where 1̃ = (0, 1, 2) and 2̃ = (1, 2, 4).
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Figure 5. Objective function for α, λ ∈ [0, 1]

and x ∈ X̃

This problem is equivalent to the following deterministic mono-objective problem:
(3.42)

min
[
λ[4 ln((x2 + |x|+ 1)e)]− (2α− 2)− 2α ln((x2 + |x|+ 1)e) + α− 2

]
s.t

x2 − 5x ≤ 0,

where α, λ ∈ [0, 1]. The KKT system is as follows:
(3.43){
λ · 8x

x2+|x|+1 − 2α · 8x
x2+|x|+1 + 2µ(x− 5) = 0, µ(x2− 5x) = 0, µ ≥ 0, x2− 5x ≤ 0.

Substitute x = 0 into each equation. The first equation becomes :
(3.44)

λ· 8 · 0
02 + |0|+ 1

−2α· 8 · 0
02 + |0|+ 1

+2µ(0−5) = 0 ⇒ 0−0−10µ = 0 ⇒ µ = 0.

The second equation becomes:

(3.45) µ(02 − 5 · 0) = 0 ⇒ 0 = 0,

which is obviously. The third equation becomes:

(3.46) µ ≥ 0 ⇒ 0 ≥ 0,

which is obviously. The fourth equation becomes:

(3.47) 02 − 5 · 0 ≤ 0 ⇒ 0 ≤ 0,

which is obviously. Then for x = 0, we get µ = 0 and the solution is valid for all
values of λ and α ∈ [0, 1]. Thus x0 = 0, satisfies KKT conditions.

Table 5. Numerical solutions for Problem 5

α 0 0 1
λ 0 1 1
x 0 1.23 1.115

F(x) (1; 2; 3) (0; 3.64; 7.28) (0; 3.42; 6.84)
R1[F (x)] 2 3.64 3.42
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3.3. Discussion.
In order to highlight the performance of our method, we have provided some theo-
retical and numerical results.

According to the proposed six (6) theorems (Theorems 3.2 through Theorem 3.8),
we have proven that our method provides an optimal solution for the fuzzy nonlinear
optimization problem with fuzzy triangular numbers.

According to Table 1, Table 2, Table 3, Table 4 and Table 5, we can confirm that
our method is the best for the two problems we dealt with.

We note that the proposed method, in addition to obtaining the same optimal
solutions as other existing methods, provides to the decision makers a wide range of
possible solutions. Furthermore, as shown by some of the graphs, by varying alpha
and beta, all possible solutions can be obtained.

4. Conclusion

In this work, we have presented a new method to solve the fuzzy nonlinear op-
timization problem with fuzzy triangular numbers. We described the main steps of
the method and suggested some theorems to show that the solutions will be optimal.
In addition, five didactic examples have been solved to show numerical performance
and strengthen the theoretical results. Based on numerical results, we can conclude
that the proposed method is a good method to solve the nonlinear fuzzy optimization
problem when it is fuzzy triangular numbers that are concerned.

In our future work, we will focus on applying our results to solving multi-objective
cases, which are many used in the modelling of many real-world problems.
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