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1. Introduction

After fuzzy sets was introduced in [1], Chang [2] introduced fuzzy topology
and fuzzy continuity. In [3], fuzzy regular open and fuzzy semiopen sets are intro-
duced whereas in [4] fuzzy α-open set is defined. In [5, 6], fuzzy generalized version
of closed set is introduced. Using fuzzy α-open set as a basic tool, in [7] fαθg-
closed set is introduced and studied. However, fg-continuity [6], fmg-continuity
[8], fwg-continuity [9], frwg-continuity [10], fswg-continuity [11] are introduced
and studied. In this paper taking fαθg-closed set as a basic tool, we introduce
first fαθg-continuity, the class of which is strictly larger than that of fuzzy con-
tinuity, fmg-continuity and fswg-continuity, but smaller than fwg-continuity and
frwg-continuity. Also fg-continuity and fαθg-continuity are independent concepts.
Again we introduce fαθg-irresolute function, the class of which is strictly smaller
than that of fαθg-continuity. Here we introduce fαθg-regular, fαθg-normal and
fαθg-compact spaces, the classes of which are strictly weaker than that of fuzzy
regular [12], fuzzy normal [13] and fuzzy compact [2] spaces respectively.



Anjana Bhattacharyya/Ann. Fuzzy Math. Inform. 29 (2025), No. 2, 177–190

Recently, new types of fuzzy sets, viz., fuzzy soft set and fuzzy octahedron set
are introduced and studied. A new branch in fuzzy system is developed using these
types of fuzzy sets. In this context we have to mention [14, 15, 16, 17, 18].

2. Preliminaries

Throughout this paper, by (X, τ) or simply byX we shall mean a fuzzy topological
space (fts, for short) in the sense of Chang [2]. Zadeh [1] introduced the concept
of fuzzy sets as follows: A fuzzy set A in a non-empty set X is a function from X
into the closed interval I = [0, 1], i.e., A ∈ IX . The support [1] of a fuzzy set A,
denoted by suppA and is defined by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set
with the singleton support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted
by xt. 0X and 1X are the constant fuzzy sets taking values 0 and 1, respectively
in X. The complement of a fuzzy set A in X is denoted by 1X \ A and is defined
by (1X \ A)(x) = 1 − A(x) for each x ∈ X. For any two fuzzy sets A, B in X,
A ≤ B means A(x) ≤ B(x) for all x ∈ X while AqB means A is quasi-coincident
(q-coincident, for short) with B, if there exists x ∈ X such that A(x) + B(x) > 1
[19]. The negation of these two statements will be denoted by A ̸≤ B and A ̸ qB
respectively. For a fuzzy point xt and a fuzzy set A, xt ∈ A means A(x) ≥ t, i.e.,
xt ≤ A. For a fuzzy set A, clA and intA will stand for the fuzzy closure and the
fuzzy interior [2], respectively. A fuzzy set A is called a fuzzy neighbourhood (fuzzy
nbd, for short) of a fuzzy point xα, if there exists a fuzzy open set U in X such that
xα ∈ U ≤ A [19]. If, in addition, A is fuzzy open, then A is called a fuzzy open
nbd of xα [19]. A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy q-nbd, for
short) [19] of a fuzzy point xα in a fts X, if there is a fuzzy open set U in X such
that xαqU ≤ A. If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd
[19] of xα. A fuzzy set A in X is called fuzzy regular open [3] (resp., fuzzy semiopen
[3], fuzzy α-open [4]), if A = int(clA) (resp., A ≤ cl(intA), A ≤ intclintA). The
complement of a fuzzy regular open (resp., fuzzy α-open) set is called fuzzy regular
closed [3] (resp., fuzzy α-closed [4]). The union (resp., intersection) of all fuzzy α-
open (resp., fuzzy α-closed) sets contained in (resp., containing) a fuzzy set A is
called the fuzzy α-interior [4] (resp., the fuzzy α-closure [4]) of A, to be denoted
by αintA (resp., αclA). The collection of all fuzzy open (resp., fuzzy regular open,
fuzzy semiopen, fuzzy α-open) sets in a fts (X, τ) is denoted by τ (resp., FRO(X),
FSO(X), FαO(X)). The collection of all fuzzy closed (resp., fuzzy regular closed,
fuzzy α-closed) sets in an fts X is denoted by τ c (resp., FRC(X), FαC(X)).

3. fαθg-closed Set: Some well-known properties

In [7], we have introduced and studied fαθg-closed set. Now we recall some
properties of it which will be used in this paper.

Definition 3.1 ([7]). Let (X, τ) be an fts and A ∈ IX . Then A is called an fαθg-
closed set in X, if clintA ≤ U , whenever A ≤ U ∈ FαO(X).

The complement of fαθg-closed set is called an fαθg-open set in X.
The collection of all fαθg-closed (resp., fαθg-open) sets in an fts X is denoted by
FαθGC(X) (resp., FαθGO(X)).

Remark 3.2 ([7]). Union and intersection of two fαθg-closed sets may not be so.
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Definition 3.3 ([7]). Let (X, τ) be an fts and A ∈ IX . Then the fαθg-closure
and the fαθg-interior of A, denoted by fαθgcl(A) and fαθgint(A), are defined as
follows:

fαθgcl(A) =
∧

{F : A ≤ F, F is an fαθg − closed set in X},

fαθgint(A) =
∨

{G : G ≤ A,G is an fαθg − open set in X}.

Definition 3.4 ([7]). A fts (X, τ) is called an fTαθg-space, if every fαθg-closed set
in X is a fuzzy closed set in X.

Definition 3.5. [7]Let (X, τ) be a fts and xt an fuzzy point in X. A fuzzy set A is
called an fαθg-neighbourhood (fαθg-nbd, for short) of xt, if there exists a fαθg-open
set U in X such that xt ∈ U ≤ A. If, in addition, A is fαθg-open set in X, then A
is called an fαθg-open nbd of xt.

Definition 3.6 ([7]). Let (X, τ) be an fts and xt a fuzzy point in X. A fuzzy set
A is called an fαθg-quasi neighbourhood (fαθg-q-nbd, for short) of xt, if there is an
fαθg-open set U in X such that xtqU ≤ A. If, in addition, A is fαθg-open set in
X, then A is called an fαθg-open q-nbd of xt.

Definition 3.7 ([7]). An fts (X, τ) is called an fαθg-T2-space, if for any two distinct
fuzzy points xt and ys in X,

when x ̸= y, there exist fαθg-open sets U, V in X such that xtqU , ysqV and
U ̸ qV ,

when x = y and t < s (say), xt has an fαθg-open nbd U and ys has an fαθg-open
q-nbd V such that U ̸ qV .

Theorem 3.8 ([20]). An fts (X, τ) is a fuzzy T2-space if and only if for any two
distinct fuzzy points xα and yβ in X,

when x ̸= y, there exist fuzzy open sets U, V in X such that xαqU , yβqV and
U ̸ qV ,

when x = y and α < β (say), xα has a fuzzy open nbd U and yβ has a fuzzy open
q-nbd V such that U ̸ qV .

Now we recall the following definitions from [5, 6, 21] for ready references.

Definition 3.9. Let (X, τ) be an fts and A ∈ IX . Then A is called an:
(i) fg-closed set [5, 6], if clA ≤ U , whenever A ≤ U ∈ τ , the complement of an

fg-closed set is called an fg-open set,
(ii) fmg-closed set [21], if clintA ≤ U , whenever A ≤ U , U is an fg-open set in

X,
(iii) fwg-closed set [21], if clintA ≤ U , whenever A ≤ U ∈ τ ,
(iv) frwg-closed set [21], if clintA ≤ U , whenever A ≤ U ∈ FRO(X),
(v) fswg-closed set [21], if clintA ≤ U , whenever A ≤ U ∈ FSO(X).

Definition 3.10 ([22]). A function f : X → Y is called a fuzzy open function, if
f(U) is fuzzy open set in Y for every fuzzy open set U in X.

Definition 3.11. A function h : X → Y is called:
(i) a fuzzy continuous function [2], if h−1(U) is a fuzzy closed set in X for all

fuzzy closed set U in Y ,
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(ii) an fg-continuous function [6], if h−1(U) is an fg-closed set in X for all fuzzy
closed set U in Y ,

(iii) an fmg-continuous function [8], if h−1(U) is an fmg-closed set in X for all
fuzzy closed set U in Y ,

(iv) an fwg-continuous function [9], if h−1(U) is an fwg-closed set in X for all
fuzzy closed set U in Y ,

(v) an frwg-continuous function [10], if h−1(U) is an frwg-closed set in X for
all fuzzy closed set U in Y ,

(vi) an fswg-continuous function [11]. if h−1(U) is an fswg-closed set in X for
all fuzzy closed set U in Y .

4. fαθg-continuous function

In this section fαθg-continuous function is introduced and characterized, the
class of which is strictly larger than that of fuzzy continuity, fmg-continuity and
frwg-continuity, but weaker than that of fwg-continuity and fswg-continuity. Af-
terwards, we introduce fαθg-irresolute function which implies fαθg-continuous func-
tion, but independent of fuzzy continuous function. Lastly, we introduce strongly
fαθg-continuous function which implies fuzzy continuous function, fαθg-continuous
function and fαθg-irresolute function.

Definition 4.1. A function h : X → Y is said to be an fαθg-continuous function,
if h−1(V ) is an fαθg-closed (resp., fαθg-open) set in X for every fuzzy closed (resp.,
fuzzy open) set V in Y .

Theorem 4.2. Let h : (X, τ) → (Y, σ) be a function. Then the following statements
are equivalent:

(1) h is an fαθg-continuous function,
(2) for each fuzzy point xt in X and each fuzzy open nbd V of h(xt) in Y , there

exists an fαθg-open nbd U of xt in X such that h(U) ≤ V ,
(3) h(fαθgcl(A)) ≤ cl(h(A)) for all A ∈ IX ,
(4) fαθgcl(h−1(B)) ≤ h−1(clB) for all B ∈ IY .

Proof. (1) ⇒ (2) Suppose the condition (1) holds and let xt be a fuzzy point in X
and V any fuzzy open nbd of h(xt) in Y . Then h−1(V ) is an fαθg-open set in X
and xt ∈ h−1(V ). Let U = h−1(V ). Then h(U) = h(h−1(V )) ≤ V .

(2)⇒ (1) Suppose the condition (2) holds and let A be any fuzzy open set in Y and
xt. a fuzzy point in X such that xt ∈ h−1(A). Then h(xt) ∈ A, where A is a fuzzy
open nbd of h(xt) in Y . By (2), there exists an fαθg-open nbd U of xt inX such that
h(U) ≤ A. Thus xt ∈ U ≤ h−1(A). So xt ∈ U = fαθgint(U) ≤ fαθgint(h−1(A)).
Since xt is taken arbitrarily and h−1(A) is the union of all fuzzy points in h−1(A),
h−1(A) ≤ fαθgint(h−1(A)). Hence h−1(A) is an fαθg-open set in X. Therefore h is
an fαθg-continuous function.

(1) ⇒ (3) Suppose the condition (1) holds and let A ∈ IX . Then cl(h(A)) is a
fuzzy closed set in Y . By (1), h−1(cl(h(A))) is fαθg-closed set in X. On the other
hand, A ≤ h−1(h(A)) ≤ h−1(cl(h(A))). Thus we have

fαθgcl(A) ≤ fαθgcl(h−1(cl(h(A)))) = h−1(cl(h(A))).

So h(fαθgcl(A)) ≤ cl(h(A)).
180



Anjana Bhattacharyya/Ann. Fuzzy Math. Inform. 29 (2025), No. 2, 177–190

(3) ⇒ (1) Suppose the condition (3) holds and let V be a fuzzy closed set in Y .
Put U = h−1(V ). Then U ∈ IX . By (3), we get

h(fαθgcl(U)) ≤ cl(h(U)) = cl(h(h−1(V ))) ≤ clV = V.

Thus fαθgcl(U) ≤ h−1(V ) = U. So U is an fαθg-closed set in X. Hence h is an
fαθg-continuous function.

(3) ⇒ (4) Suppose the condition (3) holds and let B ∈ IY and A = h−1(B). Then
A ∈ IX . By (3), h(fαθgcl(A)) ≤ cl(h(A)). Thus we have

h(fαθgcl(h−1(B))) ≤ cl(h(h−1(B))) ≤ clB.

So fαθgcl(h−1(B)) ≤ h−1(clB).
(4) ⇒ (3) Suppose the condition (4) holds and let A ∈ IX . Then h(A) ∈ IY . By

(4), fαθgcl(h−1(h(A))) ≤ h−1(cl(h(A))). Thus we get

fαθgcl(A) ≤ fαθgcl(h−1(h(A))) ≤ h−1(cl(h(A))).

So h(fαθgcl(A)) ≤ cl(h(A)). □

Remark 4.3. Composition of two fαθg-continuous functions need not be so, as it
is seen from the following example.

Example 4.4. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}, τ3 = {0X , 1X , B}
where A(a) = 0.5, A(b) = 0.6, B(a) = B(b) = 0.4. Then (X, τ1), (X, τ2) and (X, τ3)
are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) →
(X, τ3). Clearly, i1 and i2 are fαθg-continuous functions. Let i3 = i2 ◦ i1. Then
i3 : (X, τ1) → (X, τ3). We claim that i3 is not an fαθg-continuous function. Now
1X \B ∈ τ c3 . Then i−1

3 (1X \B) = 1X \B ≤ 1X \B ∈ FαO(X, τ1). But clτ1intτ1(1X \
B) = 1X ̸≤ 1X \B. Thus 1X \B ̸∈ FαθGC(X, τ1). So i3 is not an fαθg-continuous
function.

Remark 4.5. It is clear from definitions that
(1) fuzzy continuity, fmg-continuity and fswg-continuity imply fαθg-continuity.

Indeed, a fuzzy open set, an fmg-open set, an fswg-open set are fαθg-open sets
[7]. But the reverse implications may not be true, in general, follow from the next
examples,

(2) fαθg-continuity implies fwg-continuity and frwg-continuity. Indeed, an
fαθg-open set is an fwg-open set, an frwg-open set [7]. But the reverse impli-
cations are not necessarily true, in general, follow from the following examples,

(3) fg-continuity and fαθg-continuity are independent concepts follow from the
next examples.

Example 4.6. fαθg-continuity ̸⇒ fuzzy continuity, fswg-continuity, fmg-continuity.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) = 0.5, A(b) =

0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Clearly, i is not a fuzzy continuous function. Now
FSO(X, τ1) = {0X , 1X , U}, where A ≤ U ≤ 1X \ A, FαO(X, τ1) = τ1 and the
collection of fg-open sets in (X, τ1) is {0X , 1X , V }, where V ̸≥ 1X \A. Now 1X \B =
B ∈ τ c2 , i

−1(B) = B < 1X ∈ FαO(X, τ1) only and then clτ1intτ1B = 1X \ A < 1X .
Thus B ∈ FαθGC(X, τ1). So i is an fαθg-continuous function.
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On the other hand, B ≤ B ∈ FSO(X, τ1) as well as B is an fg-open set in (X, τ1).
Then clτ1intτ1B = 1X \A ̸≤ B. Thus B is not fswg-closed as well as an fmg-closed
set in (X, τ1). So i is not an fswg-continuous function as well as an fmg-continuous
function.

Example 4.7. fαθg-continuity ̸⇒ fg-continuity.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) = 0.5, A(b) =

0.6, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Now FαO(X, τ1) = {0X , 1X , U}, where U ≥ A.
Now 1X \ B = B ∈ τ c2 , i

−1(B) = B ≤ A ∈ FαO(X, τ1) and clτ1intτ1B = 0X < A.
Then B ∈ FαθGC(X, τ1). Thus i is an fαθg-continuous function. But B < A ∈ τ1
and clτ1B = 1X ̸≤ A. So B is not an fg-closed set in (X, τ1). Hence i is not an
fg-continuous function.

Example 4.8. frwg-continuity ̸⇒ fαθg-continuity.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B}, where A(a) = 0.5, A(b) =

0.6, B(a) = B(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the iden-
tity function i : (X, τ1) → (X, τ2). Now FRO(X, τ1) = {0X , 1X}, FαO(X, τ1) =
{0X , 1X , U}, where U ≥ A. Now 1X \ B ∈ τ c2 , i

−1(1X \ B) = 1X \ B < 1X ∈
FRO(X, τ1) only and then clτ1intτ1(1X \ B) = 1X ≤ 1X . Thus 1X \ B is an frwg-
closed set in (X, τ1). So i is an frwg-continuous function. But 1X \ B ≤ 1X \ B ∈
FαO(X, τ1) and clτ1intτ1(1X \B) = 1X ̸≤ 1X \B. Hence 1X \B is not an fαθg-closed
set in (X, τ1). Therefore i is not an fαθg-continuous function.

Example 4.9. fwg-continuity, fg-continuity ̸⇒ fαθg-continuity.
LetX = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C}, whereA(a) = 0.45, A(b) =

0.55, B(a) = 0.4, B(b) = 0.5, C(a) = C(b) = 0.5. Then (X, τ1) and (X, τ2) are
fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now FαO(X, τ1) =
{0X , 1X , B, U}, where U ≥ A. Now C ∈ τ c2 , i−1(C) = C < 1X ∈ τ1 only and
clτ1C = 1X \B < 1X and clτ1intτ1C = 1X \B < 1X . Thus C is an fg-closed as well
as an fwg-closed set in (X, τ1). So i is an fg-continuous as well as an fwg-continuous
function.

On the other hand, C < D ∈ FαO(X, τ1), where D(a) = 0.5, D(b) = 0.55. Then
clτ1intτ1C = 1X \ B ̸≤ D. Thus C is not an fαθg-closed set in (X, τ1). So i is not
an fαθg-continuous function.

Definition 4.10. A function h : X → Y is called an fαθg-irresolute function, if
h−1(U) is an fαθg-closed set in X for every fαθg-closed set U in Y .

Theorem 4.11. A function h : X → Y is an fαθg-irresolute function if and only
if for each fuzzy point xt in X and each fαθg-open nbd V in Y of h(xt), there exists
an fαθg-open nbd U in X of xt such that h(U) ≤ V .

Proof. The proof is same as that of Theorem 4.2 (1)⇔(2). □

Definition 4.12. A function h : X → Y is called a strongly fαθg-continuous
function, if h−1(U) is a fuzzy closed set in X for all fαθg-closed set U in Y .

Theorem 4.13. A function h : X → Y is a strongly fαθg-continuous function if
and only if for each fuzzy point xt in X and each fαθg-open nbd V in Y of h(xt),
there exists a fuzzy open nbd U in X of xt such that h(U) ≤ V .
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Proof. The proof is same as that of Theorem 4.2 (1)⇔(2). □

Definition 4.14. A function h : X → Y is called a weakly fαθg-continuous function,
if h−1(U) is fαθg-closed set in X for all fuzzy regular closed set U in Y .

Theorem 4.15. A function h : X → Y is a weakly fαθg-continuous function if and
only if for each fuzzy point xt in X and each V ∈ FRO(Y ) with h(xt) ∈ V , there
exists an fαθg-open nbd U in X of xt such that h(U) ≤ V .

Proof. The proof is same as that of Theorem 4.2 (1)⇔(2). □

Remark 4.16. It is clear from definitions that
(1) as every fuzzy closed set is fαθg-closed set, so strongly fαθg-continuity implies

fuzzy continuity, fαθg-continuity and fαθg-irresoluteness and fαθg-irresoluteness
implies fαθg-continuity which implies weakly fαθg-continuity but the reverse im-
plications are not necessarily true, follow from the following examples,

(2) fuzzy continuity and fαθg-irresoluteness are independent concepts follow from
the following examples,

(3) the composition of two fαθg-irresolute (resp., strongly fαθg-continuous) func-
tions is also so. But the composition of two weakly fαθg-continuous functions may
not be so, as it is seen from the following example.

Example 4.17. Fuzzy continuity, fαθg-continuity ̸⇒ fαθg-irresoluteness, strongly
fαθg-continuity.

Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}, where A(a) = 0.5, A(b) = 0.6.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function i : (X, τ1) →
(X, τ2). Clearly, i is a fuzzy continuous function as well as an fαθg-continuous func-
tion, since every fuzzy set in (X, τ2) is fαθg-closed in (X, τ2). Now FαO(X, τ1) =
{0X , 1X , U}, where U ≥ A. Consider a fuzzy set C defined by C(a) = C(b) = 0.6.
Then C ∈ FαθGC(X, τ2). Now i−1(C) = C ≤ C ∈ FαO(X, τ1). But clτ1intτ1C =
1X ̸≤ C. Thus C ̸∈ FαθGC(X, τ1). So i is not a fαθg-irresolute function. Again,
C ̸∈ τ c1 . Hence i is not a strongly fαθg-continuous function.

Example 4.18. fαθg-irresoluteness ̸⇒ fuzzy continuity, strongly fαθg-continuity.
LetX = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A}, where A(a) = A(b) = 0.4. Then

(X, τ1) and (X, τ2) are fts’s. Consider the identity function i : (X, τ1) → (X, τ2).
Clearly, i is not a fuzzy continuous function. Since every fuzzy set in (X, τ1) is an
fαθg-closed set in (X, τ1), i is clearly an fαθg-irresolute function. Here 1X \A being
a fuzzy closed set in (X, τ2) is an fαθg-closed set in (X, τ2). Now i−1(1X \ A) =
1X \A ̸∈ τ c1 . Thus i is not a strongly fαθg-continuous function.

Example 4.19. Weakly fαθg-continuity ̸⇒ fαθg-continuity.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B}, where A(a) = 0.5, A(b) =

0.4, B(a) = 0.5, B(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Since FRC(X, τ2) = {0X , 1X}, i is a weakly fαθg-
continuous function. Now 1X \ B ∈ τ c2 , i−1(1X \ B) = 1X \ B ≤ A ∈ FαO(X, τ1).
But clτ1intτ1(1X \B) = 1X \A ̸≤ A. Thus 1X \B is not an fαθg-closed set in (X, τ2).
So i is not an fαθg-continuous function.

Example 4.20. LetX = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}, τ3 = {0X , 1X , B},
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.4. Then (X, τ1), (X, τ2) and
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(X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2) and i2 :
(X, τ2) → (X, τ3). Clearly, i1 and i2 are weakly fαθg-continuous functions. Let
i3 = i2 ◦ i1. Then 1X \ B ∈ τ c3 , i−1

3 (1X \ B) = 1X \ B ≤ A ∈ FαO(X, τ1). But
clτ1intτ1(1X \B) = 1X ̸≤ A. Thus 1X \B is not an fαθg-closed set in (X, τ1). So i3
is not a weakly fαθg-continuous function.

Theorem 4.21. If h1 : X → Y is a strongly fαθg-continuous function and h2 :
Y → Z is an fαθg-continuous function, then h2 ◦ h1 : X → Z is a fuzzy continuous
function.

Proof. Obvious. □

Note 4.22. Let h : X → Y be an fαθg-continuous function from a fTαθg-space
X onto a fts Y . Then h is fuzzy continuous, fg-continuous, fmg-continuous, fwg-
continuous, frwg-continuous and fswg-continuous.

5. fαθg-regular, fαθg-normal and fαθg-compact spaces

In this section, two new types of separation axioms are introduced and studied.
Also a new type of compactness is introduced. Finally the mutual relationships of
these spaces with the spaces defined in [2, 12, 13, 23, 24] are established.

Definition 5.1. An fts (X, τ) is said to be an fαθg-regular space, if for any fuzzy
point xt in X and each fαθg-closed set F in X with xt ̸∈ F , there exist U, V ∈ τ
such that xt ∈ U,F ≤ V and U ̸ qV .

Theorem 5.2. In an fts (X, τ), the following statements are equivalent:
(1) X is fαθg-regular,
(2) for each fuzzy point xt in X and any fαθg-open q-nbd U of xt, there exists

V ∈ τ such that xt ∈ V and clV ≤ U ,
(3) for each fuzzy point xt in X and each fαθg-closed set A of X with xt ̸∈ A,

there exists U ∈ τ with xt ∈ U such that clU ̸ qA.

Proof. (1)⇒ (2) Suppose the condition (1) holds and let xt be a fuzzy point inX and
U any fαθg-open q-nbd of xt. Then xtqU. Thus U(x)+t > 1. So xt ̸∈ 1X \U which is
an fαθg-closed set in X. By (1), there exist V, W ∈ τ such that xt ∈ V, 1X \U ≤ W
and V ̸ qW . Hence V ≤ 1X \W. Therefore clV ≤ cl(1X \W ) = 1X \W ≤ U .

(2) ⇒ (3) Suppose the condition (2) holds and let xt be a fuzzy point in X and
A an fαθg-closed set in X with xt ̸∈ A. Then A(x) < t. Thus xtq(1X \ A) which
being an fαθg-open set in X is an fαθg-open q-nbd of xt. So by (2), there exists
V ∈ τ such that xt ∈ V and clV ≤ 1X \A. Hence clV ̸ qA.

(3) ⇒ (1) Suppose the condition (3) holds and let xt be a fuzzy point in X and
F be any fαθg-closed set in X with xt ̸∈ F . Then by (3), there exists U ∈ τ such
that xt ∈ U and clU ̸ qF . Thus F ≤ 1X \ clU (=V , say). So V ∈ τ and V ̸ qU as
U ̸ q(1X \ clU). Hence X is an fαθg-regular space. □

Definition 5.3. An fts (X, τ) is called an fαθg-normal space, if for each pair of
fαθg-closed sets A,B inX with A ̸ qB, there exist U, V ∈ τ such that A ≤ U,B ≤ V
and U ̸ qV .
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Theorem 5.4. An fts (X, τ) is an fαθg-normal space if and only if for every fαθg-
closed set F and fαθg-open set G in X with F ≤ G, there exists H ∈ τ such that
F ≤ H ≤ clH ≤ G.

Proof. SupposeX is an fαθg-normal space and let F be an fαθg-closed set and G an
fαθg-open set in X with F ≤ G. Then F ̸ q(1X \G), where 1X \G is an fαθg-closed
set in X. By the hypothesis, there exist H,T ∈ τ such that F ≤ H, 1X \G ≤ T and
H ̸ qT . Thus H ≤ 1X \ T ≤ G. So F ≤ H ≤ clH ≤ cl(1X \ T ) = 1X \ T ≤ G.

Conversely, suppose the necessary condition holds and let A, B be two fαθg-
closed sets in X with A ̸ qB. Then A ≤ 1X \ B. By the hypothesis, there exists
H ∈ τ such that A ≤ H ≤ clH ≤ 1X \ B. Thus A ≤ H,B ≤ 1X \ clH (=V , say).
So V ∈ τ . Hence B ≤ V . Also as H ̸ q(1X \ clH), H ̸ qV . Therefore X is an
fαθg-normal space. □

Let us now recall the following definitions from [2, 25] for ready references.

Definition 5.5. Let (X, τ) be an fts and A ∈ IX . A collection U of fuzzy sets in
X is called a fuzzy cover of A, if

⋃
U ≥ A [25]. If each member of U is fuzzy open

(resp., fuzzy regular open, fαθg-open) in X, then U is called a fuzzy open [25] (resp.,
fuzzy regular open [3], fαθg-open) cover of A. If, in particular, A = 1X , we get the
definition of fuzzy cover of X as

⋃
U = 1X [2].

Definition 5.6. Let (X, τ) be an fts and A ∈ IX . Then a fuzzy cover U of A (resp.,
of X) is said to have a finite subcover U0, if U0 is a finite subcollection of U such
that

⋃
U0 ≥ A [25]. If, in particular, A = 1X , we get

⋃
U0 = 1X [2].

Definition 5.7. Let (X, τ) be a fts and A ∈ IX . Then A is called a fuzzy compact
[2] (resp., fuzzy almost compact [23], fuzzy nearly compact [20]) set, if every fuzzy
open (resp., fuzzy open, fuzzy regular open) cover U of A has a finite subcollection

U0 such that
⋃
U0 ≥ A (resp.,

⋃
U∈U0

clU ≥ A,
⋃

U0 ≥ A). If, in particular, A = 1X ,

we get the definition of fuzzy compact [2] (resp., fuzzy almost compact [23], fuzzy

nearly compact [24]) space as
⋃

U0 = 1X (resp.,
⋃

U∈U0

clU = 1X ,
⋃

U0 = 1X).

Let us now introduce the following concept.

Definition 5.8. Let (X, τ) be an fts and A ∈ IX . Then A is said to be fαθg-
compact, if every fuzzy cover U of A by fαθg-open sets of X has a finite subcover.
If, in particular, A = 1X , we get the definition of fαθg-compact space X.

Theorem 5.9. Every fαθg-closed set in an fαθg-compact space X is fαθg-compact.

Proof. Let A(∈ IX) be an fαθg-closed set in an fαθg-compact space X. Let U
be a fuzzy cover of A by fαθg-open sets of X. Then V = U

⋃
(1X \ A) is a fuzzy

cover of X by fαθg-open sets of X. As X is an fαθg-compact space, V has a finite
subcollection V0 which also covers X. If V0 contains 1X \ A, we omit it and get a
finite subcover of A. Thus A is a fαθg-compact set. □

Next we recall the following two definitions from [12, 13] for ready references.
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Definition 5.10 ([12]). An fts (X, τ) is called a fuzzy regular spac,e if for each fuzzy
point xt in X and each fuzzy closed set F in X with xt ̸∈ F , there exist U, V ∈ τ
such that xt ∈ U , F ≤ V and U ̸ qV .

Definition 5.11 ([13]). An fts (X, τ) is called a fuzzy normal space, if for each
pair of fuzzy closed sets A,B of X with A ̸ qB, there exist U, V ∈ τ such that
A ≤ U,B ≤ V and U ̸ qV .

Remark 5.12. It is clear from above discussion that
(1) an fαθg-regular (resp., fαθg-normal, fαθg-compact) space is a fuzzy regular

(resp., fuzzy normal, fuzzy compact) space, but the converses are not true, in general,
follow from the following example,

(2) in an fTαθg-space, fuzzy regularity (resp., fuzzy normality, fuzzy compactness)

implies fαθg-regularity (resp., fαθg-normality, fαθg-compactness).

Example 5.13. Let X = {a}, τ = {0X , 1X}. Then (X, τ) is a fts. Clearly, (X, τ) is
a fuzzy regular space, a fuzzy normal space and a fuzzy compact space. Here every
fuzzy set is an fαθg-open set as well as an fαθg-closed set in (X, τ). Consider the
fuzzy point a0.4 and the fuzzy set A defined by A(a) = 0.1. Then a0.4 ̸∈ A which is
an fαθg-closed set inX. But there does not exist U, V ∈ τ such that a0.4 ∈ U,A ≤ V
and U ̸ qV . Thus (X, τ) is not an fαθg-regular space. Similarly, considering two
fuzzy sets A, B defined by A(a) = 0.2, B(a) = 0.1. Then A and B are fαθg-closed
sets in X with A ̸ qB. But there does not exist U, V ∈ τ such that A ≤ U, B ≤ V
and U ̸ qV . So (X, τ) is not an fαθg-normal space. Again let U = {Un(a) : n ∈ N},
where Un(a) = n

n+1 for all n ∈ N of X. Then U is an fαθg-open covering of X

which has no finite subcovering. Hence (X, τ) is not an fαθg-compact space.

6. applications

In this section, several applications of the functions defined in this paper are
discussed.

Theorem 6.1. If a bijective function h : X → Y is an fαθg-continuous, fuzzy open
function from an fαθg-regular space X onto a fts Y , then Y is a fuzzy regular space.

Proof. Let yt be a fuzzy point in Y and F , a fuzzy closed set in Y with yt ̸∈ F . As
h is bijective, there exists unique x ∈ X such that h(x) = y. Then h(xt) ̸∈ F. Thus
xt ̸∈ h−1(F ), where h−1(F ) is an fαθg-closed set in X (as h is an fαθg-continuous
function). As X is an fαθg-regular space, there exist fuzzy open sets U, V in X
such that xt ∈ U, h−1(F ) ≤ V and U ̸ qV . So h(xt) ∈ h(U), F = h(h−1(F )) (as h
is bijective) ≤ h(V ) and h(U) ̸ qh(V ), where h(U) and h(V ) are fuzzy open sets in
Y . (Indeed, h(U)qh(V ) ⇒ there exists z ∈ Y such that [h(U)](z)+ [h(V )](z) > 1 ⇒
U(h−1(z)) + V (h−1(z)) > 1 as h is bijective ⇒ UqV , a contradiction). Hence Y is
a fuzzy regular space. □

In a similar manner, we can state the following theorems easily the proofs of
which are same as that of Theorem 6.1.

Theorem 6.2. If a bijective function h : X → Y is an fαθg-continuous, fuzzy open
function from an fαθg-normal space X onto an fts Y , then Y is a fuzzy normal
space.
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Theorem 6.3. If a bijective function h : X → Y is an fαθg-continuous, fuzzy open
function from a fuzzy regular (resp., fuzzy normal), an fTαθg-space X onto an fts
Y , then Y is fuzzy regular (resp., fuzzy normal) space.

Theorem 6.4. If a bijective function h : X → Y is an fαθg-irresolute, fuzzy open
function from an fαθg-regular (resp., fαθg-normal) space X onto an fts Y , then Y
is an fαθg-regular (resp., fαθg-normal) space.

Theorem 6.5. If a bijective function h : X → Y is an fαθg-irresolute, fuzzy open
function from an fαθg-regular (resp., fαθg-normal) space X onto an fts Y , then Y
is a fuzzy regular (resp., fuzzy normal) space.

Theorem 6.6. If a bijective function h : X → Y is an fαθg-irresolute, fuzzy open
function from a fuzzy regular (resp., fuzzy normal), an fTαθg-space X onto an fts
Y , then Y is a fuzzy regular (resp., fuzzy normal) space.

Theorem 6.7. If a bijective function h : X → Y is a strongly fαθg-continuous,
fuzzy open function from a fuzzy regular (resp., fuzzy normal) space X onto an fts
Y , then Y is an fαθg-regular (resp., fαθg-normal) space.

Theorem 6.8. If a bijective function h : X → Y is a strongly fαθg-continuous,
fuzzy open function from a fuzzy regular (resp., fuzzy normal) space X onto an fts
Y , then Y is a fuzzy regular (resp., fuzzy normal) space.

Theorem 6.9. Let h : X → Y be an fαθg-continuous function from X onto an fts
Y and A(∈ IX) an fαθg-compact set in X. Then h(A) is a fuzzy compact (resp.,
fuzzy almost compact, fuzzy nearly compact) set in Y .

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of h(A) by fuzzy open (resp., fuzzy

open, fuzzy regular open) sets of Y . Then h(A) ≤
⋃
α∈Λ

Uα. Thus A ≤ h−1(
⋃
α∈Λ

Uα) =⋃
α∈Λ

h−1(Uα). So V = {h−1(Uα) : α ∈ Λ} is a fuzzy cover of A by fαθg-open

sets of X, as h is an fαθg-continuous function. As A is an fαθg-compact set in

X, there exists a finite subcollection Λ0 of Λ such that A ≤
⋃

α∈Λ0

h−1(Uα). Hence

h(A) ≤ h(
⋃

α∈Λ0

h−1(Uα)) ≤
⋃

α∈Λ0

Uα. Therefore h(A) is fuzzy compact (resp., fuzzy

almost compact, fuzzy nearly compact) set in Y . □

Since fuzzy open set is fαθg-open, we can state the following theorems easily the
proofs of which are same as that of Theorem 6.9.

Theorem 6.10. Let h : X → Y be an fαθg-continuous function from an fαθg-
compact space X onto an fts Y . Then Y is a fuzzy compact (resp., fuzzy almost
compact, fuzzy nearly compact) space.

Theorem 6.11. Let h : X → Y be an fαθg-irresolute function from X onto an fts
Y and A(∈ IX) an fαθg-compact set in X. Then h(A) is an fαθg-compact (resp.,
fuzzy compact, fuzzy almost compact, fuzzy nearly compact) set in Y .
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Theorem 6.12. Let h : X → Y be an fαθg-irresolute function from an fαθg-
compact space X onto an fts Y . Then Y is an fαθg-compact (resp., fuzzy compact,
fuzzy almost compact, fuzzy nearly compac) set in Y .

Theorem 6.13. Let h : X → Y be an fαθg-continuous function from a fuzzy
compact, fTαθg-space X onto an fts Y . Then Y is a fuzzy compact (resp., fuzzy
almost compact, fuzzy nearly compact) space.

Theorem 6.14. Let h : X → Y be an fαθg-irresolute function from a fuzzy com-
pact, fTαθg-space X onto an fts Y . Then Y is an fαθg-compact (resp., fuzzy com-
pact, fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.15. Let h : X → Y be a strongly fαθg-continuous function from X
onto an fts Y and A(∈ IX) be an fαθg-compact set in X. Then h(A) is a fuzzy
compact (resp., fuzzy almost compact, fuzzy nearly compact, fαθg-compact) set in
Y .

Theorem 6.16. Let h : X → Y be a strongly fαθg-continuous function from a
fuzzy compact space X onto an fts Y . Then Y is an fαθg-compact (resp., fuzzy
compact, fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.17. Let h : X → Y be a weakly fαθg-continuous function from an fts
X onto an fts Y and A(∈ IX) be an fαθg-compact set in X. Then h(A) is a fuzzy
nearly compact set in Y .

Theorem 6.18. Let h : X → Y be a weakly fαθg-continuous function from an
fαθg-compact space X onto an fts Y . Then Y is a fuzzy nearly compact space.

Theorem 6.19. Let h : X → Y be a weakly fαθg-continuous function from an
fTαθg-space X onto an fts Y and A(∈ IX) be a fuzzy compact set in X. Then h(A)
is a fuzzy nearly compact set in Y .

Theorem 6.20. Let h : X → Y be a weakly fαθg-continuous function from a fuzzy
compact, fTαθg-space X onto an fts Y . Then Y is a fuzzy nearly compact space.

Theorem 6.21. If an injective function h : X → Y is an fαθg-continuous function
from an fts X onto a fuzzy T2-space Y , then X is an fαθg-T2-space.

Proof. Let xt and ys be two distinct fuzzy points in X. Then h(xt) (= zt, say) and
h(ys) (= ws, say) are two distinct fuzzy points in Y .

Case I. Suppose x ̸= y. Then z ̸= w. Since Y is a fuzzy T2-space, there exist fuzzy
open sets U, V in Y such that ztqU,wsqV and U ̸ qV . As h is an fαθg-continuous
function, h−1(U) and h−1(V ) are fαθg-open sets in X with xtqh

−1(U), ysqh
−1(V )

and h−1(U) ̸ qh−1(V ) [Indeed, ztqU ⇒ U(z) + t > 1 ⇒ U(h(x)) + t > 1 ⇒
[h−1(U)](x) + t > 1 ⇒ xtqh

−1(U). Again, h−1(U)qh−1(V ) ⇒ there exists p ∈ X
such that [h−1(U)](p) + [h−1(V )](p) > 1 ⇒ U(h(p)) + V (h(p)) > 1 ⇒ UqV , a
contradiction].

Case II. Suppose x = y and t < s (say). Then z = w and t < s. Since Y is a
fuzzy T2-space, there exist a fuzzy open nbd U of xt and a fuzzy open q-nbd V of
ws such that U ̸ qV . Thus U(z) ≥ t ⇒ [h−1(U)](x) ≥ t ⇒ xt ∈ h−1(U), ysqh

−1(V )
and h−1(U) ̸ qh−1(V ), where h−1(U) and h−1(V ) are fαθg-open sets in X as h is
an fαθg-continuous function. Consequently, X is an fαθg-T2-space. □
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Similarly, we can state the following theorems easily the proofs of which are similar
to that of Theorem 6.21.

Theorem 6.22. If a bijective function h : X → Y is an fαθg-irresolute function
from an fts X onto an fαθg-T2-space (resp., fuzzy T2-space) Y , then X is an fαθg-
T2-space.

Theorem 6.23. If a bijective function h : X → Y is an fαθg-continuous function
from an fTαθg-space X onto a fuzzy T2-space Y , then X is a fuzzy T2-space.

Theorem 6.24. If a bijective function h : X → Y is an fαθg-irresolute function
from an fTαθg-space X onto an fαθg-T2-space (resp., fuzzy T2-space) Y , then X is
a fuzzy T2-space.

Theorem 6.25. If a bijective function h : X → Y is a strongly fαθg-continuous
function from an fts X onto an fαθg-T2-space (resp., fuzzy T2-space) Y , then X is
a fuzzy T2-space.

7. Conclusions

Using the concept of fαθg-closed set here we introduce and study three different
types of fuzzy continuous-like functions. Several applications of these functions on
fuzzy regular, fuzzy normal, fuzzy compact and fuzzy T2-spaces are shown here

Acknowledgements. I express my sincere gratitude to the referees for their
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