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Abstract. This paper deals with a new type of generalized version of
fuzzy closed set, viz., fαθg-closed set, the class of which is strictly larger
than that of fuzzy α-closed set [1]. Using this concept as a basic tool,
here we introduce an idempotent operator. Afterwards, fαθg-open (resp.,
fαθg-closed) function is introduced and characterized. It is shown that
the class of fαθg-open (resp., fαθg-closed) functions is strictly larger than
that of fuzzy open [2] (resp., fuzzy closed [2]) function. In the last section
a new type of fuzzy separation axiom is introduced and some applications
of the function defined here are established.
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1. Introduction

In 1965, Zadeh [3] introduced fuzzy set. In 1968, Chang [4] introduced fuzzy
topology. Afterwards, many researchers have engaged themselves to introduce and
study several types of fuzzy open-like sets. Fuzzy regular open and fuzzy semiopen
sets are introduced by Azad [5]. Fuzzy α-open set is introduced by Shahna [1].
In [6, 7], generalized version of fuzzy closed set is introduced and studied. After
that different types of fuzzy generalized version of closed sets are investigated. In
this regard, fmg-closed set [8], fwg-closed set [8], fswg-closed set [8] and frwg-
closed set [8] have to be mentioned. In this paper, taking fuzzy α-open set as a
basic tool, we introduce and study fαθg-closed set. The mutual relationships of
fαθg-closed sets with fg-closed set, fmg-closed set, fwg-closed set, fswg-closed
set and frwg-closed set are shown here. Fuzzy open function (resp., fuzzy closed
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function) is introduced by Wong [2]. Here we introduce fαθg-open (resp., fαθg-
closed) function and characterize in several ways. We also establish the mutual re-
lationships of fαθg-open function (resp., fαθg-closed function) with fg-open (resp.,
fg-closed) function [7], fmg-open (resp., fmg-closed) function [9], fwg-open (resp.,
fwg-closed) function [10], fswg-open (resp., fswg-closed) function [11] and frwg-
open (resp., frwg-closed) function [12]. Fuzzy T2-space is introduced in [13]. Here
we introduce fαθg-T2-space which is strictly larger than fuzzy T2-space.
Recently, new types of fuzzy sets, viz., fuzzy soft set and fuzzy octahedron set are
introduced and studied. A new branch in fuzzy system is developed using these
types of fuzzy sets. In this context, we have to mention [14, 15, 16, 17, 18].

2. Preliminaries

Throughout this paper, (X, τ) or simply by X, we shall mean a fuzzy topological
space (fts, for short) in the sense of Chang [4]. A fuzzy set A is a function from a
non-empty set X into the closed interval I = [0, 1], i.e., A ∈ IX [3]. The support of
a fuzzy set A, denoted by suppA and is defined by suppA = {x ∈ X : A(x) ̸= 0}
[3]. The fuzzy set with the singleton support {x} ⊆ X and the value t (0 < t ≤ 1)
will be denoted by xt. 0X and 1X are the constant fuzzy sets taking values 0 and
1 respectively in X. The complement of a fuzzy set A in X is denoted by 1X \ A
and is defined by (1X \ A)(x) = 1 − A(x) for each x ∈ X [3]. For any two fuzzy
sets A, B in X, the intersection and the union of A and B, denoted by A∧B and
A ∨B, are defined as follows: for each x ∈ X,

(A ∧B) = A(x) ∧B(x) and (A ∨B)(x) = A(x) ∨B(x),

where A(x) ∧B(x) = min{A(x), B(x)} and A(x) ∨B(x) = max{A(x), B(x)}.
For any two fuzzy sets A, B in X, A ≤ B means A(x) ≤ B(x) for all x ∈ X [3]
while AqB means A is quasi-coincident (q-coincident, for short) with B, if there
exists x ∈ X such that A(x) +B(x) > 1 [19]. The negation of these two statements
will be denoted by A ̸≤ B and A ̸ qB respectively. For a fuzzy point xt and a fuzzy
set A, xt ∈ A means A(x) ≥ t, i.e., xt ≤ A. For a fuzzy set A, clA and intA will
stand for fuzzy closure [4] and fuzzy interior [4] of A respectively. A fuzzy set A
is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy point xt, if there
exists a fuzzy open set U in X such that xt ∈ U ≤ A [19]. If, in addition, A is fuzzy
open, then A is called a fuzzy open nbd of xt [19]. A fuzzy set A is called a fuzzy
quasi neighbourhood (fuzzy q-nbd, for short) [19] of a fuzzy point xt in an fts X, if
there is a fuzzy open set U in X such that xtqU ≤ A. If, in addition, A is fuzzy
open, then A is called a fuzzy open q-nbd [19] of xt. A fuzzy set A in X is called a
fuzzy regular open [5] (fuzzy semi open [5], fuzzy α-open [1]), if A = intclA (resp.,
A ≤ cl(intA), A ≤ intclintA). The complement of a fuzzy α-open set is said to be
fuzzy α-closed [1]. The intersection (resp., union) of all fuzzy α-closed (resp., fuzzy
α-open) sets containing (resp., contained in) a fuzzy set A is called fuzzy α-closure
[1] (resp., fuzzy α-interior [1]) of A, to be denoted by αclA (resp., αintA). The
collection of all fuzzy regular open (resp. fuzzy semiopen, fuzzy α-open) sets in an
fts X is denoted by FRO(X) (resp., FSO(X), FαO(X)) and that of fuzzy α-closed
sets is denoted by FαC(X).

130



Anjana Bhattacharyya/Ann. Fuzzy Math. Inform. 29 (2025), No. 2, 129–142

3. fαθg-closed set: Some properties

In this section we first introduce fαθg-closed set and establish some of its prop-
erties. Then establish the mutual relationships of this newly defined set with the
sets defined in [6, 7, 8].

Definition 3.1. Let (X, τ) be an fts and A ∈ IX . Then A is called an fαθg-closed
set in X, if cl(intA) ≤ U , whenever A ≤ U ∈ FαO(X).

The complement of this set is called an fαθg-open set in X.
The collection of all fαθg-closed (resp., fαθg-open) sets in an fts X is denoted by
FαθGC(X) (resp., FαθGO(X)).

Remark 3.2. Union and intersection of two fαθg-closed sets may not be so, as it
seen from the following example.

Example 3.3. Let X = {a, b}, τ = {0X , 1X , A,B}, where A(a) = 0.5, A(b) =
0.4, B(a) = 0.3, B(b) = 0.2. Then (X, τ) is an fts. Here FαO(X) = {0X , 1X , U},
where B ≤ U ≤ A. Now consider the fuzzy sets C and D defined by C(a) =
0.6, C(b) = 0.2, D(a) = 0.3, D(b) = 0.6. Clearly C and D are fαθg-closed sets in
(X, τ). Let E = C ∧D. Then E = B ≤ B ∈ FαO(X). But cl(intE) = 1X \A ̸≤ B.
Thus E is not fαθg-closed set in X.

Again, consider two fuzzy sets S and T defined by S(a) = 0.3, S(b) = 0, T (a) =
0, T (b) = 0.2. Then clearly S, T ∈ FαθGC(X). Let U = S ∨T . Then U = B ≤ B ∈
FαO(X). But cl(intU) = 1X \A ̸≤ B. Thus U ̸∈ FαθGC(X).

Note 3.4. So we can conclude that the set of all fαθg-open sets in an fts (X, τ)
does not form a fuzzy topology.

Theorem 3.5. Let (X, τ) be an fts and A,B ∈ IX . If A ≤ B ≤ cl(intA) and A is
an fαθg-closed set in X, then B is also an fαθg-closed set in X.

Proof. Let U ∈ FαO(X) such that B ≤ U . Then by hypothesis, A ≤ B ≤ U . As A
is fαθg-closed set in X, cl(intA) ≤ U . Thus we have

cl(intA) ≤ cl(intB) ≤ cl(int(cl(intA))) ≤ cl(intA) ≤ U.

So B is an fαθg-closed set in X. □

Theorem 3.6. Let (X, τ) be an fts and A,B ∈ IX . If int(clA) ≤ B ≤ A and A is
an fαθg-open set in X, then B is also an fαθg-open set in X.

Proof. Suppose int(clA) ≤ B ≤ A and A is an fαθg-open set in X. Then we get

int(clA) ≤ B ≤ A ⇒ 1X \A ≤ 1X \B ≤ 1X \ int(clA) = cl(int(1X \A)),

where 1X \ A is an fαθg-closed set in X. Thus by Theorem 3.5, 1X \ B is an
fαθg-closed set in X. So B is an fαθg-open set in X. □

Theorem 3.7. Let (X, τ) be an fts and A ∈ IX . Then A is an fαθg-open set in
X if and only if K ≤ int(clA), whenever K ≤ A and K is a fuzzy α-closed set in
(X, τ).
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Proof. Suppose A is an fαθg-open set in X and let A(∈ IX) be an fαθg-open set
in X and K ≤ A, where K is a fuzzy α-closed set in (X, τ). Then 1X \A ≤ 1X \K,
where 1X\A is an fαθg-closed set inX and 1X\K is a fuzzy α-open set in (X, τ). By
hypothesis, cl(int(1X \A)) ≤ 1X \K. Thus 1X \ int(clA) ≤ 1X \K. So K ≤ int(clA).

Conversely, suppose K ≤ int(clA), whenever K ≤ A, K ∈ FαC(X). Then
1X \A ≤ 1X \K, where 1X \K ∈ FαO(X). By hypothesis, 1X \ int(clA) ≤ 1X \K.
Then cl(int(1X \A)) ≤ 1X \K. Thus 1X \A is an fαθg-closed set in X. So A is an
fαθg-open set in X. □

Theorem 3.8. Let (X, τ) be an fts and A,B ∈ IX . If A is an fαθg-closed set in
X and B is a fuzzy α-closed set in (X, τ) with A ̸ qB, then cl(intA) ̸ qB.

Proof. By hypothesis, A ̸ qB. Then A ≤ 1X\B ∈ FαO(X). Thus cl(intA) ≤ 1X\B.
So cl(intA) ̸ qB. □

Remark 3.9. The converse of Theorem 3.8 may not be true, in general, as it seen
from the following example.

Example 3.10. Let X = {a, b}, τ = {0X , 1X , A,B}, where A(a) = 0.5, A(b) =
0.6, B(a) = 0.4, B(b) = 0.5. Then (X, τ) is an fts. Here FαO(X) = {0X , 1X , B, U},
where U ≥ A and FαC(X) = {0X , 1X , 1X \ B, 1X \ U}, where 1X \ U ≤ 1X \ A.
Consider the fuzzy set D defined by D(a) = D(b) = 0.5. Then D ≤ A ∈ FαO(X).
But cl(intD) = 1X \ B ̸≤ A. Thus D is not an fαθg-closed set in X. Again,
D ̸ qE ∈ FαC(X), where E(a) = E(b) = 0.3. Also cl(intD) = (1X \B) ̸ qE.

Now we recall the following definitions from [6, 7, 8] for ready references.

Definition 3.11. Let (X, τ) be an fts and A ∈ IX . Then A is called an:
(i) fg-closed set [6, 7], if clA ≤ U , whenever A ≤ U ∈ τ and the complement of

fg-closed set is said to be fg-open,
(ii)fwg-closed set [8], if clintA ≤ U , whenever A ≤ U ∈ τ and the complement

of fwg-closed set is said to be fwg-open,
(iii) fmg-closed set [8], if clintA ≤ U , whenever A ≤ U , U is fg-open set in X

and the complement of fmg-closed set is said to be fmg-open,
(iv) fswg-closed set [8], if clintA ≤ U , whenever A ≤ U ∈ FSO(X) and the

complement of fswg-closed set is said to be fswg-open,
(v) frwg-closed set [8], if clintA ≤ U , whenever A ≤ U ∈ FRO(X) and the

complement of frwg-closed set is said to be frwg-open.

Note 3.12. It is clear from definitions that every fuzzy α-closed set is an fαθg-
closed. But the converse may not be true, follows from Example 3.3. Here S is
fαθg-closed, but clintclS = 1X \A ̸≤ S.

Remark 3.13. (1) fmg-closed set, fswg-closed set ⇒ fαθg-closed set ⇒ fwg-
closed set, frwg-closed set, but the reverse implications are not necessarily true,
follow from the next examples.

(2) fg-closed set and fαθg-closed are independent concepts, follow from the next
examples.

Example 3.14. An fαθg-closed set does not imply an fg-closed set.
Let X = {a, b}, τ = {0X , 1X , A}, where A(a) = 0.5, A(b) = 0.6. Then (X, τ) is
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an fts. Thus FαO(X) = {0X , 1X , U}, where A ≤ U . Consider the fuzzy set B
defined by B(a) = B(b) = 0.5. Then B ≤ A ∈ τ (also B ≤ A ∈ FαO(X)). Thus
clB = 1X ̸≤ A. So B is not an fg-closed set in X. But cl(intB) = 0X < A. Hence
B is an fαθg-closed set in X.

Example 3.15. An fg-closed set and an fwg-closed set do not imply an fαθg-
closed set.
Let X = {a, b}, τ = {0X , 1X , A,B}, where A(a) = 0.45, A(b) = 0.55, B(a) =
0.4, B(b) = 0.5. Then (X, τ) is an fts. Here FαO(X) = {0X , 1X , B, U}, where
U ≥ A. Consider the fuzzy set C defined by C(a) = C(b) = 0.5. Then C <
1X(∈ τ) only and thus clC = 1X \ B < 1X . So C is an fg-closed set in X. Also,
clintC = 1X \B < 1X . Hence C is an fwg-closed set in X. Now C < D ∈ FαO(X),
where D(a) = 0.5, D(b) = 0.55. But clintC = 1X \ B ̸≤ D. Therefore C is not an
fαθg-closed set in X.

Example 3.16. An fαθg-closed set does not imply an fswg-closed set.
Let X = {a, b}, τ = {0X , 1X , A}, where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is
an fts. Thus FαO(X) = τ and FSO(X) = {0X , 1X , U}, where A ≤ U ≤ 1X \ A.
Consider the fuzzy set B defined by B(a) = B(b) = 0.5. So B < 1X ∈ FαO(X)
only and hence B is an fαθg-closed set in X. Now B ≤ B ∈ FSO(X). But
clintB = 1X \A ̸≤ B. Therefore B is not an fswg-closed set in X.

Example 3.17. An frwg-closed set does not imply an fαθg-closed set.
Let X = {a, b}, τ = {0X , 1X , A}, where A(a) = 0.5, A(b) = 0.6. Then (X, τ) is
an fts. Thus FαO(X) = {0X , 1X , U}, where A ≤ U and FRO(X) = {0X , 1X}.
Consider the fuzzy set B defined by B(a) = B(b) = 0.6. Clearly B is an frwg-
closed set in X. Now B ≤ B ∈ FαO(X). But clintB = 1X ̸≤ B. So B is not an
fαθg-closed set in X.

Example 3.18. An fαθg-closed set does not imply an fmg-closed set.
Let X = {a, b}, τ = {0X , 1X , A}, where A(a) = 0.5, A(b) = 0.4. Then (X, τ) is
an fts. Thus FαO(X) = τ and the collection of fg-open sets in X is {0X , 1X , U},
where U ̸≥ 1X \ A. Consider the fuzzy set B defined by B(a) = B(b) = 0.5. Then
clearly B is an fαθg-closed set in X. Now B ≤ B, where B is fg-open set in X.
But clintB = 1X \A ̸≤ B. Thus B is not an fmg-closed set in X.

Definition 3.19. A fts (X, τ) is called an fTαθg-space, if every fαθg-closed set in
X is a fuzzy closed set in X.

Note 3.20. In fTαθg-space, an fαθg-closed set is fg-closed, fmg-closed, fswg-
closed. Indeed, if A is closed, then A ≤ U ⇒ clA = A ≤ U ⇒ clintA ≤ clA ≤ U .

Now we introduce a new type of generalized version of neighbourhood system in
an fts.

Definition 3.21. Let (X, τ) be an fts and xt, a fuzzy point in X. A fuzzy set A is
called an fαθg-neighbourhood (fαθg-nbd, for short) of xt, if there exists an fαθg-
open set U in X such that xt ∈ U ≤ A. If, in addition, A is fαθg-open set in X,
then A is called an fαθg-open nbd of xt.
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Definition 3.22. Let (X, τ) be an fts and xt, a fuzzy point in X. A fuzzy set A
is called an fαθg-quasi neighbourhood (fαθg-q-nbd, for short) of xt, if there is an
fαθg-open set U in X such that xtqU ≤ A. If, in addition, A is fαθg-open set in
X, then A is called an fαθg-open q-nbd of xt.

Note 3.23. (1) It is clear from definitions that every fαθg-open set is an fαθg-open
nbd of each of its points. But every fαθg-nbd of xt may not be an fαθg-open set
containing xt follows from the following example.

(2) Also every fuzzy open nbd (resp., fuzzy open q-nbd) of a fuzzy point xt is an
fαθg-open nbd (resp., fαθg-open q-nbd) of xt. But the converses are not necessarily
true, in general, as it is seen from the following example.

Example 3.24. Consider Example 3.10 and the fuzzy point a0.4 and the fuzzy set
D. Here D is not fαθg-closed as well as fαθg-open set in X. Also a0.4 ∈ D. Now
consider the fuzzy set E defined by E(a) = 0.6, E(b) = 0.5. Then E ≤ U ∈ FαO(X),
where U(a) = U(b) = 0.6. Now clintE = 1X \B ≤ U. Thus E is an fαθg-closed set
in X and so 1X \ E is an fαθg-open set in X containing a0.4. Now 1X \ E ≤ D.
Hence D is an fαθg-nbd of a0.4 but not an fαθg-open nbd of a0.4.

Again consider the fuzzy point b0.6. Then b0.6q(1X \ E) ≤ D. Thus D is an
fαθg-q-nbd of b0.6, but not an fαθg-open q-nbd of b0.6.

Example 3.25. Let X = {a, b}, τ = {0X , 1X , A}, where A(a) = 0.4, A(b) = 0.5.
Then (X, τ) is an fts. Here FαO(X) = τ . Consider the fuzzy point a0.45 and the
fuzzy set B defined by B(a) = B(b) = 0.5. Then clearly B is an fαθg-closed set
as well as an fαθg-open set in X containing a0.45. Thus B is an fαθg-open nbd of
a0.45. But as there is no fuzzy open set in X containing a0.45 contained in B, B is
not a fuzzy open nbd of a0.45.

Next consider the fuzzy point a0.6. Then a0.6qB. Thus B is an fαθg-open q-nbd
of a0.6. But there does not exist any fuzzy open set in X q-coincident with a0.6
contained in B. So B is not a fuzzy open q-nbd of a0.6.

4. fαθg-open function and fαθg-closed function

In this section, we first introduce and study a new type of generalized version of
fuzzy closure-like operator which is seen to be an idempotent operator. Then using
this operator as a basic tool, two types of functions are introduced and characterized.

Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fαθg-closure and fαθg-
interior of A, denoted by fαθgcl(A) and fαθgint(A), are defined as follows:

fαθgcl(A) =
∧
{F : A ≤ F, F is fαθg-closed set in X},

fαθgint(A) =
∨
{G : G ≤ A,G is fαθg-open set in X}.

Remark 4.2. It is clear from definition that for any A ∈ IX , A ≤ fαθgcl(A) ≤ clA.
If A is an fαθg-closed set in an fts X, then A = fαθgcl(A). Similarly, intA ≤
fαθgint(A) ≤ A. If A is an fαθg-open set in an fts X, then A = fαθgint(A). It
follows from Remark 3.2 that fαθgcl(A) (resp., fαθgint(A)) may not be an fαθg-
closed (resp., fαθg-open) set in an fts X.

Theorem 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy point xt in X,
xt ∈ fαθgcl(A) if and only if every fαθg-open q-nbd U of xt, UqA.
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Proof. Let xt ∈ fαθgcl(A) for any fuzzy set A in an fts X and F be any fαθg-open
q-nbd of xt. Then xtqF. Thus xt ̸∈ 1X \ F which is fαθg-closed set in X. By
Definition 4.1, A ̸≤ 1X \ F. So there exists y ∈ X such that A(y) > 1− F (y). Hence
AqF .

Conversely, let for every fαθg-open q-nbd F of xt, FqA. If possible, let xt ̸∈
fαθgcl(A). Then by Definition 4.1, there exists an fαθg-closed set U in X with
A ≤ U , xt ̸∈ U . Thus xtq(1X \ U) which being an fαθg-open set in X is an fαθg-
open q-nbd of xt. By assumption, (1X \ U)qA. So (1X \A)qA which is absurd. □

Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the following statements
are true:

(1) fαθgcl(0X) = 0X ,
(2) fαθgcl(1X) = 1X ,
(3) A ≤ B ⇒ fαθgcl(A) ≤ fαθgcl(B),
(4) fαθgcl(A ∨B) = fαθgcl(A) ∨ fαθgcl(B),
(5)fαθgcl(A ∧ B) ≤ fαθgcl(A) ∧ fαθgcl(B), equality does not hold, in general,

follows from Example 3.3,
(6) fαθgcl(fαθgcl(A)) = fαθgcl(A).

Proof. The proofs of (1), (2) and (3) are obvious.
(4) From (3), fαθgcl(A) ∨ fαθgcl(B) ≤ fαθgcl(A ∨B).
To prove the converse, let xt ∈ fαθgcl(A ∨ B). Then by Theorem 4.3, for any

fαθg-open set U in X with xtqU , Uq(A ∨ B). Thus there exists y ∈ X such that
U(y) +max{A(y), B(y)} > 1. So we have the implications:

either U(y) +A(y) > 1 or U(y) +B(y) > 1
⇒ either UqA or UqB
⇒ either xt ∈ fαθgcl(A) or xt ∈ fαθgcl(B)
⇒ xt ∈ fαθgcl(A) ∨ fαθgcl(B).

So fαθgcl(A ∨B) ≤ fαθgcl(A) ∨ fαθgcl(B). Hence we get

fαθgcl(A ∨B) = fαθgcl(A) ∨ fαθgcl(B).

(5) The proof follows from (3).
(6) As A ≤ fαθgcl(A) for any A ∈ IX , by (3), fαθgcl(A) ≤ fαθgcl(fαθgcl(A)).
Conversely, let xt ∈ fαθgcl(fαθgcl(A)) = fαθgcl(B), where B = fαθgcl(A). Let

U be any fαθg-open set in X with xtqU . Then UqB implies that there exists y ∈ X
such that U(y) + B(y) > 1. Let B(y) = s. Then ysqU and ys ∈ B = fαθgcl(A).
Thus UqA implies that xt ∈ fαθgcl(A). So fαθgcl(fαθgcl(A)) ≤ fαθgcl(A). Hence
fαθgcl(fαθgcl(A)) = fαθgcl(A). □

Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following statements
hold:

(1) fαθgcl(1X \A) = 1X \ fαθgint(A),
(2) fαθgint(1X \A) = 1X \ fαθgcl(A).

Proof. (1) Let xt ∈ fαθgcl(1X \ A) for a fuzzy set A in an fts (X, τ). Assume that
xt ̸∈ 1X \ fαθgint(A). Then we have the following implications:

1− (fαθgint(A))(x) < t
⇒ [fαθgint(A)](x) + t > 1
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⇒ fαθgint(A)qxt

⇒ there exists at least one fαθg-open set F ≤ A with xtqF .
Thus xtqA. As xt ∈ fαθgcl(1X \ A), F q(1X \ A). So Aq(1X \ A), which is absurd.
Hence we get

(4.1) fαθgcl(1X \A) ≤ 1X \ fαθgint(A).

Conversely, let xt ∈ 1X \ fαθgint(A). Then 1 − [(fαθgint(A)](x) ≥ t. Thus
xt ̸ q(fαθgint(A)). So we have

(4.2) xt ̸ qF for every fαθg − open set F contained in A.

Let U be any fαθg-closed set in X such that 1X \ A ≤ U . Then 1X \ U ≤ A. Now
1X \ U is fαθg-open set in X contained in A. By (4.2), xt ̸ q(1X \ U) implies that
xt ∈ U. Thus xt ∈ fαθgcl(1X \A). So we have

(4.3) 1X \ fαθgint(A) ≤ fαθgcl(1X \A).

Hence by (4.1) and (4.3), (1) holds.
(2) Putting 1X \A for A in (1). Then we get fαθgcl(A) = 1X \ fαθgint(1X \A).

Thus fαθgint(1X \A) = 1X \ fαθgcl(A). □

Let us now introduce a new type of generalized version of fuzzy open-like function.

Definition 4.6. A function h : X → Y is called an fαθg-open function, if h(U) is
fαθg-open set in Y for every fuzzy open set U in X.

Theorem 4.7. For a bijective function h : X → Y , the following statements are
equivalent:

(1) h is fαθg-open,
(2) h(intA) ≤ fαθgint(h(A)) for all A ∈ IX ,
(3) for each fuzzy point xt in X and each fuzzy open set U in X containing xt,

there exists an fαθg-open set V in Y containing h(xt) such that V ≤ h(U).

Proof. (1) ⇒ (2) Let A ∈ IX . Then intA is a fuzzy open set in X. By (1), h(intA)
is an fαθg-open set in Y . Since h(intA) ≤ h(A) and fαθgint(h(A)) is the union of
all fαθg-open sets contained in h(A), we have h(intA) ≤ fαθgint(h(A)).

(2) ⇒ (1) Let U be any fuzzy open set in X. Then by (2), we have

h(U) = h(intU) ≤ fαθgint(h(U)).

Thus h(U) is an fαθg-open set in Y . So h is an fαθg-open function.
(2) ⇒ (3) Let xt be a fuzzy point in X and U a fuzzy open set in X such that

xt ∈ U . Then by (2), h(xt) ∈ h(U) = h(intU) ≤ fαθgint(h(U)). Thus h(U) is an
fαθg-open set in Y . Let V = h(U). Then h(xt) ∈ V and V ≤ h(U).

(3) ⇒ (1) Let U be any fuzzy open set in X and yt any fuzzy point in h(U),
i.e., yt ∈ h(U). Since h is bijective, there exists unique x ∈ X such that h(x) = y.
Then [h(U)](y) ≥ t ⇒ U(h−1(y)) ≥ t ⇒ U(x) ≥ t ⇒ xt ∈ U . By (3), there exists
an fαθg-open set V in Y such that h(xt) ∈ V and V ≤ h(U). Thus h(xt) ∈ V =
fαθgint(V ) ≤ fαθgint(h(U)). Since yt is taken arbitrarily and h(U) is the union of
all fuzzy points in h(U), h(U) ≤ fαθgint(h(U)). So h(U) is an fαθg-open set in Y.
Hence h is an fαθg-open function. □
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Theorem 4.8. If h : X → Y is an fαθg-open, injective function, then the following
statements are true:

(1) for each fuzzy point xt in X and each fuzzy open q-nbd U of xt in X, there
exists an fαθg-open q-nbd V of h(xt) in Y such that V ≤ h(U),

(2) h−1(fαθgcl(B)) ≤ cl(h−1(B)) for all B ∈ IY .

Proof. (1) Let xt be a fuzzy point in X and U any fuzzy open q-nbd of xt in X.
Then xtqU = intU. Thus by Theorem 4.7 (1)⇒(2), h(xt)qh(intU) ≤ fαθgint(h(U)).
So there exists at least one fαθg-open q-nbd V of h(xt) in Y with V ≤ h(U).

(2) Let xt be any fuzzy point in X such that xt ̸∈ cl(h−1(B)) for any B ∈ IY .
Then there exists a fuzzy open q-nbd U of xt in X such that U ̸ qh−1(B). Now

(4.4) h(xt)qh(U),

where h(U) is an fαθg-open set in Y . Now h−1(B) ≤ 1X \U which is a fuzzy closed
set in X. Since h is injective, B ≤ h(1X \ U) ≤ 1Y \ h(U). Thus B ̸ qh(U). Let
V = 1Y \ h(U). Then B ≤ V which is an fαθg-closed set in Y . We claim that
h(xt) ̸∈ V . Assume that h(xt) ∈ V = 1Y \ h(U). Then 1 − [h(U)](h(x)) ≥ t. Thus
h(U) ̸ qh(xt), contradicting (4.4). So h(xt) ̸∈ V ⇒ h(xt) ̸∈ fαθgcl(B) ⇒ xt ̸∈
h−1(fαθgcl(B)) ⇒ h−1(fαθgcl(B)) ≤ cl(h−1(B)). □

Theorem 4.9. An injective function h : X → Y is fαθg-open if and only if for each
B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F , there exists an fαθg-closed
set V in Y such that B ≤ V and h−1(V ) ≤ F .

Proof. Suppose h : X → Y is fαθg-open and injective, and let B ∈ IY and F , a
fuzzy closed set in X with h−1(B) ≤ F . Then 1X \ h−1(B) ≥ 1X \F , where 1X \F
is a fuzzy open set in X. Since h is injective, h(1X \F ) ≤ h(1X \ h−1(B)) ≤ 1Y \B,
where h(1X \ F ) is an fαθg-open set in Y . Let V = 1Y \ h(1X \ F ). Then V is
an fαθg-closed set in Y such that B ≤ V . Thus h−1(V ) = h−1(1Y \ h(1X \ F )) =
1X \ h−1(h(1X \ F )) ≤ F .

Conversely, suppose the necessary condition holds and let F be a fuzzy open set
in X. Then 1X \ F is a fuzzy closed set in X. We have to show that h(F ) is an
fαθg-open set in Y . As h is injective, h−1(1Y \ h(F )) ≤ 1X \ F . Then by the
hypothesis, there exists an fαθg-closed set V in Y such that

(4.5) 1Y \ h(F ) ≤ V

and h−1(V ) ≤ 1X \ F . As h is injective, F ≤ 1X \ h−1(V ) implies that

(4.6) h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V.

Thus by (4.5) and (4.6), h(F ) = 1Y \ V which is an fαθg-open set in Y . So h is an
fαθg-open function. □

Definition 4.10. A function h : X → Y is called an fαθg-closed function, if h(A)
is an fαθg-closed set in Y for each fuzzy closed set A in X.

Theorem 4.11. A function h : X → Y is an fαθg-closed function if and only if
fαθgcl(h(A)) ≤ h(clA) for all A ∈ IX .
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Proof. Suppose h is an fαθg-closed function and let A ∈ IX . Then h(cl(A)) is an
fαθg-closed set in Y . Since h(A) ≤ h(clA) and fαθgcl(h(A)) is the intersection of
all fαθg-closed sets in Y containing h(A), fαθgcl(h(A)) ≤ h(clA).

Conversely, suppose the necessary condition holds and let for any A ∈ IX ,
fαθgcl(h(A)) ≤ h(clA). Let U be any fuzzy closed set in X. Then h(U) = h(clU) ≥
fαθgcl(h(U)). Thus h(U) is an fαθg-closed set in Y. So h is an fαθg-closed func-
tion. □

Theorem 4.12. If h : X → Y is an fαθg-closed bijective function, then the follow-
ing statements hold:

(1) for each fuzzy point xt in X and each fuzzy closed set U in X with xt ̸ qU ,
there exists an fαθg-closed set V in Y with h(xt) ̸ qV such that V ≥ h(U),

(2) h−1(fαθgint(B)) ≥ int(h−1(B)), for all B ∈ IY .

Proof. (1) Let xt be a fuzzy point in X and U any fuzzy closed set in X with
xt ̸ qU = clU. Then by Theorem 4.11, h(xt) ̸ qh(clU) ≥ fαθgcl(h(U)). Thus
h(xt) ̸ qV for some fαθg-closed set V in Y with V ≥ h(U).

(2) Let B ∈ IY and xt be any fuzzy point in X such that xt ∈ int(h−1(B)). Then
there exists a fuzzy open set U in X with U ≤ h−1(B) such that xt ∈ U . Thus
1X \ U ≥ 1X \ h−1(B). So h(1X \ U) ≥ h(1X \ h−1(B)), where h(1X \ U) is an
fαθg-closed set in Y . Let V = 1Y \ h(1X \ U). Then V is an fαθg-open set in Y .
As h is bijective, V = 1Y \ h(1X \ U) ≤ 1Y \ h(1X \ h−1(B)) ≤ 1Y \ (1Y \ B) = B.
Now U(x) ≥ t ⇒ xt ̸ q(1X \ U) ⇒ h(xt) ̸ qh(1X \ U) ⇒ h(xt) ≤ 1Y \ h(1X \ U) =
V ⇒ h(xt) ∈ V = fαθgint(V ) ≤ fαθgint(B) ⇒ xt ∈ h−1(fαθgint(B)). Since xt is
taken arbitrarily, int(h−1(B)) ≤ h−1(fαθgint(B)) for all B ∈ IY . □

Note 4.13. Composition of two fαθg-closed (resp., fαθg-open) functions need not
be so, as it seen from the following example.

Example 4.14. LetX = {a, b}, τ1 = {0X , 1X , C}, τ2 = {0X , 1X}, τ3 = {0X , 1X , A,B}
where A(a) = 0.45, A(b) = 0.55, B(a) = 0.4, B(b) = 0.5, C(a) = C(b) = 0.5. Then
(X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) →
(X, τ2) and i2 : (X, τ2) → (X, τ3). Clearly i1 and i2 are fαθg-closed functions. Let
i3 = i2 ◦ i1 : (X, τ1) → (X, τ3). We claim that i3 is not an fαθg-closed function.
Now C ∈ τ c1 , i3(C) = C < D ∈ FαO(X, τ3), where D(a) = 0.5, D(b) = 0.55. But
clτ3intτ3C = 1X \ B ̸≤ D. Then C is not an fαθg-closed set in (X, τ3). Thus i3 is
not an fαθg-closed function. Similarly, we can show that the composition of two
fαθg-open functions may not be so.

Now we recall some definitions from [2, 7, 9, 10, 11, 12] for ready references.

Definition 4.15. Let h : (X, τ1) → (Y, τ2) be a function. Then h is called:
(i) a fuzzy closed (resp., fuzzy open) function [2], if h(U) is a fuzzy closed (resp.,

fuzzy open) set in Y for every fuzzy closed (resp., fuzzy open) set U in X,
(ii) an fg-closed (resp., fg-open) function [7], if h(U) is an fg-closed set in Y

for every fuzzy closed (resp., fuzzy open) set U in X,
(iii) an fwg-closed (resp., fwg-open) function [10], if h(U) is an fwg-closed

(resp., fwg-open) set in Y for every fuzzy closed (resp., fuzzy open) set U in X,
(iv) an fmg-closed (resp., fmg-open) function [9], if h(U) is an fmg-closed

(resp.,fmg-open) set in Y for every fuzzy closed (resp., fuzzy open) set U in X,
138



Anjana Bhattacharyya/Ann. Fuzzy Math. Inform. 29 (2025), No. 2, 129–142

(v) an fswg-closed (resp., fswg-open) function [11], if h(U) is an fswg-closed
(resp., fswg-open) set in Y for every fuzzy closed (resp., fuzzy open) set U in X,

(vi) an frwg-closed (resp., frwg-open) function [12], if h(U) is an frwg-closed
(resp., frwg-open) set in Y for every fuzzy closed (resp., fuzzy open) set U in X.

Remark 4.16. It is clear from definitions that
(1) fuzzy closed (resp., fuzzy open), fmg-closed (resp., fmg-open), fswg-closed

(resp., fswg-open) functions are an fαθg-closed (resp., fαθg-open) function, but
the converse is not true (See Example 4.17),

(2) an fαθg-closed (resp., fαθg-open) function is fwg-closed (resp., fwg-open)
and frwg-closed (resp., frwg-open) functions, but the converses are not true (See
Example 4.18),

(3) an fg-closed (resp., fg-open) function and an fαθg-closed (resp., fαθg-open)
function are independent concepts (See Examples 4.19, 4.20 and 4.21).

Example 4.17. An fαθg-closed function does not imply a fuzzy closed function
and an fg-closed function.

Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A}, where A(a) = 0.5, A(b) =
0.6, B(a) = 0.5 = B(b). Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Clearly, B ∈ τ c1 , i(B) = B ≤ A ∈ FαO(X, τ2).
Then clτ2intτ2B = 0X < A. Thus B is an fαθg-closed set in (X, τ2). So i is an
fαθg-closed function. But as B ̸∈ τ c2 , i is not a fuzzy closed function. On the other
hand, B ≤ A ∈ τ2 but clτ2B = 1X ̸≤ A. Then B is not an fg-closed set in (X, τ2).
Thus i is not an fg-closed function.

Example 4.18. An fg-closed function and an fwg-closed function do not imply an
fαθg-closed function.

LetX = {a, b}, τ1 = {0X , 1X , C}, τ2 = {0X , 1X , A,B}, whereA(a) = 0.45, A(b) =
0.55, B(a) = 0.4, B(b) = 0.5, C(a) = C(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Then clearly, i is an fg-closed
as well as an fwg-closed function. Now C ∈ τ c1 , i(C) = C ≤ D ∈ FαO(X, τ2),
where D(a) = 0.5, D(b) = 0.55. But clτ2(intτ2C) = 1X \ B ̸≤ D. Thus C is not an
fαθg-closed set in (X, τ2). So i is not an fαθg-closed function.

Example 4.19. An fαθg-closed function does not imply an fswg-closed function.
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A}, where A(a) = 0.5, A(b) =

0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). It is obvious that B ∈ τ c1 , i(B) = B < 1X(∈
FαO(X, τ2)) only and thus B is an fαθg-closed set in (X, τ2). So i is an fαθg-closed
function. On the other hand, B ≤ B ∈ FSO(X, τ2). Then clτ2intτ2B = 1X \A ̸≤ B.
Thus B is not an fswg-closed set in (X, τ2). So i is not an fswg-closed function.

Example 4.20. An frwg-closed function does not imply an fαθg-closed function.
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) = 0.5, A(b) =

0.6, B(a) = B(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Then 1X \ B ∈ τ c1 , i(1X \ B) = 1X \ B < 1X(∈
FRO(X, τ2)) only and thus 1X \ B is an frwg-closed set in (X, τ2). So i is an
frwg-closed function. On the other hand, 1X \ B ≤ 1X \ B ∈ FαO(X, τ2). But
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clτ2intτ2(1X \B) = 1X ̸≤ 1X \B. Then 1X \B is not an fαθg-closed set in (X, τ2).
Thus i is not an fαθg-closed function.

Example 4.21. An fαθg-closed function does not imply an fmg-closed function.
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A}, where A(a) = 0.5, A(b) =

0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Then B ∈ τ c1 , i(B) = B < 1X(∈ FαO(X, τ2)) only
and thus B is fαθg-closed set in (X, τ2). So i is an fαθg-closed function. On the other
hand, B ≤ B, where B is an fg-open set in (X, τ2). But clτ2intτ2B = 1X \ A ̸≤ B.
Then B is not an fmg-closed set in (X, τ2). Thus i is not an fmg-closed function.

In a similar manner we can cite counter examples for fuzzy generalized version of
open-like functions.

Theorem 4.22. If h1 : X → Y is a fuzzy closed (resp., fuzzy open) function and
h2 : Y → Z is an fαθg-closed (resp., fαθg-open) function, then h2 ◦ h1 : X → Z is
an fαθg-closed (resp., fαθg-open) function.

Proof. Obvious. □

5. Applications of fαθg-open function

In this section we first introduce a new type of separation axiom, viz., fαθg-T2-
space and then establish some applications of fαθg-open function.

We first recall the definition and theorem from [13, 20] for ready references.

Definition 5.1 ([13]). An fts (X, τ) is called a fuzzy T2-space, if for any two distinct
fuzzy points xα and yβ ; when x ̸= y, there exist fuzzy open sets U1, U2, V1, V2 such
that xα ∈ U1, yβqV1, U1 ̸ qV1 and xαqU2, yβ ∈ V2, U2 ̸ qV2; when x = y and α < β
(say), there exist fuzzy open sets U and V in X such that xα ∈ U, yβqV and U ̸ qV .

Theorem 5.2 ([20]). An fts (X, τ) is fuzzy T2-space if and only if for any two
distinct fuzzy points xα and yβ in X; when x ̸= y, there exist fuzzy open sets U, V
in X such that xαqU , yβqV and U ̸ qV ; when x = y and α < β (say), xα has a
fuzzy open nbd U and yβ has a fuzzy open q-nbd V such that U ̸ qV .

Now we introduce the following concept.

Definition 5.3. An fts (X, τ) is called an fαθg-T2-space, if for any two distinct
fuzzy points xt and ys in X; when x ̸= y, there exist fαθg-open sets U, V in X such
that xtqU , ysqV and U ̸ qV ; when x = y and t < s (say), xt has an fαθg-open nbd
U and ys has an fαθg-open q-nbd V such that U ̸ qV .

Remark 5.4. Clearly, a fuzzy T2-space is an fαθg-T2-space, but the converse is not
necessarily true, follows from the following example.

Example 5.5. Let X = {a, b}, τ = {0X , 1X}. Then (X, τ) is an fts. Clearly, (X, τ)
is not a fuzzy T2-space. Here every fuzzy set in (X, τ) is an fαθg-open set in (X, τ).
Clearly, it is an fαθg-T2-space.

Theorem 5.6. If a bijective function h : X → Y is an fαθg-open function from a
fuzzy T2-space X onto an fts Y , then Y is an fαθg-T2-space.
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Proof. Let zt and ws be two fuzzy points in Y . Since h is bijective, there exist
unique x, y in X such that h(x) = z, h(y) = w, i.e., h(xt) = zt, h(ys) = ws.

Case I. Suppose z ̸= w. Then x ̸= y. Since X is a fuzzy T2-space, there ex-
ist fuzzy open sets U, V in X such that xtqU, ysqV and U ̸ qV . Thus h(xt)(=
zt)qh(U), h(ys)(= ws)qV and h(U) ̸ qh(V ), where h(U) and h(V ) are fαθg-open
sets in Y as h is an fαθg-open function [Indeed, h(U)qh(V ) ⇒ there exists p ∈ Y
such that [h(U)](p) + [h(V )](p) > 1 ⇒ U(h−1(p)) + V (h−1(p)) > 1 where h−1(p) ∈
X ⇒ UqV , a contradiction].
Case II. Suppose z = w and t < s (say). Then x = y and t < s. Since X is a fuzzy
T2-space, there exist a fuzzy open nbd U of xt and a fuzzy open q-nbd V of ys such
that U ̸ qV . Thus h(xt) ∈ h(U), h(ys)qh(V ) and h(U) ̸ qh(V ), where h(U), h(V ) are
fαθg-open sets in Y , i.e., h(U) is an fαθg-open nbd of zt, h(V ) is an fαθg-open
q-nbd of ws and h(U) ̸ qh(V ). Consequently, Y is fαθg-T2-space. □

In a similarly manner, we can prove the following theorem easily.

Theorem 5.7. If a bijective function h : X → Y is an fαθg-open function from a
fuzzy T2-space X onto an fTαθg-space Y , then Y is a fuzzy T2-space.

6. Conclusions

Here introducing a new type of generalized version of fuzzy closed set, we intro-
duce and discuss about new types of generalized version of fuzzy open and fuzzy
closed functions. Some applications of these functions are established here. Next
our aim is to introduce generalized version of fuzzy continuous-like functions using
fαθg-closed set as a basic tool. Also new types of generalized version of fuzzy sep-
aration axioms and compactness are to be introduced and the applications of the
generalized version of fuzzy continuous-like functions are to be discussed.

Acknowledgements. I express my sincere gratitude to the referees for their
valuable remark.
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