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ABSTRACT. In this paper, as basic tools for analyzing information sys-
tems, we introduce the two types (right, left) of interior (closure) operators,
interior (closure, extensional) systems and distance functions on a general-
ized co-residuated lattice as a noncommutative structure. We investigate
their relations and give examples.
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1. INTRODUCTION

VV ard et al. [I] introduced a complete residuated lattice which is an alge-
braic structure for many valued logic as an extension of left continuous t-norms.
Bélohlavek [2, 3, 4, 5] investigated the properties of fuzzy closure operators and

fuzzy closure systems on a complete residuated lattice. By using their concepts,
topological structures, logic, formal concept, information systems and decision rules
are investigated on complete residuated lattices [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. As a
non-commutative algebraic structure, Turunen [10] introduced a generalized resid-
uated lattice as an generalization of weak-pseudo-BL-algebras and left continuous
pseudo-t-norm [12, 13]. Ko and Kim [I4, 15] introduced the notions of right (resp.
left) closure operators and right (resp. left) closure systems on a generalized resid-
uated lattice.

Qiao and Hu. [10] introduced fuzzy rough sets based on residuated and co-
residuated lattices as an extension of right continuous t-conorms [12, 13, 10]. Em-
ploying distance spaces over fuzzy partially ordered spaces, topological structures
and formal concepts on complete co-residuated lattices were investigated [9,
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The goal of this paper, we introduce the two types (right, left) of interior (clo-
sure) operators, interior (closure, extensional) systems and distance functions on a
generalized co-residuated lattice defined in [16, 19] as a noncommutative structure.
They are basic tools for analyzing information systems.

This paper is organized as follows. In Section 2, we recall some definitions and
basic properties of the generalized co-residuated lattice.

In Section 3, we investigate the relations among two types (right, left) of interior
(closure) operators, interior (closure, extensional) systems and distance functions.

Moreover, we show that a right interior induces a right (resp. left) interior system
and right (resp. left) closure operators induces a right (resp. left) system. We study
that a right interior (resp. closure) system induces a right interior (resp. closure)
operator and a right distance function, and conversely a right interior (resp. closure)
operator induces a right distance function. We show that a right distance function
induces a right extensional system, a right interior operator and a right closure
operator. We investigate that a right interior (resp. closure) operator induces a right
distance function. Left structures, with similar results to those of right structures,
are depicted in corollaries.

2. PRELIMINARIES

As an extension of co-residuated lattices [15, 17, 18, 19, 20], we define generalized
co-residuated lattices as an non-commutative algebraic structure.

Definition 2.1 ([19]). A structure (L,V,A,®,0,0, L, T) is called a generalized
co-residuated lattice, if it satisfies the following conditions:
(GR1) (L,V, A, L, T) is lattice with the least element | and the greatest element

(GR2) Loz=c@Ll=candz® (yDz)=(xdy)®zforalz, y, z €L,
(GR3) it satisfies a co-residuation , i.e., for any z, y, z € X,

T

zhy>ziffz>zoyiffy > z0x.

A generalized co-residuated lattice is called co-residuated lattice if t Dy =y Sz
for any z, y € L.

Fora € L, A€ LX, z € X, we denote (A a), (a® A) € LY as (Ao a)(z) =
Ax)ea, (a® A)(z) =a® A(z) Vo € X and L, € L defined as

L ify=x
Lx(y)—{ T ify#x.

Put ny(z) = T Oz and ny(z) = T @z for each x € L. The condition nq(nz(x)) =
ng(ni(z)) = x for each x € L is called a double negative law.

In this paper, we assume (L,V,A,@,9,@,L,T) is a generalized co-residuated
lattice with a double negative law and if the family supremum or infumum exists,
we denote \/ and A.

Lemma 2.2 ([19]). For each x, y, z, x;, y; € L, we have the following properties.
Dyeoy) >z, (zoy)dy>z,26@0y) <yadzo(z0y) <y.
(2) Ify < z, then (z®y) < (x®2), (@) < (20x), 20y < x6z and
20x<youz for o€ {6,0}.
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Y= Ver(@i0y) foro € {,0}.
yS/\e (zi©y) foro € {6, 0}
(zo ) y.

T (Y 2).

iel’ rOy;) and (VieF ;)
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©y.

TQOz and(m@y)
TQz) 2 (y@$)®(y@2) and (z © z)

Yy@z>(z@2)0(x0y) andz Oy >

)xOoy>(202)0(yoz) andyo 2 >

Jrorx=z0x=1.

)

(yoz)>zoz.
> (x

NAPRUNCS

(z©
(xe
zoy=Liffe<yiffroy=_1.

) Vier 4i) © Vier ) < Vier(@i ©yi) and (Ajer i) © (Nier i) < Vier(@:i©
y;) for © € {©,0}.

(15) x 0y =n1(y) @ ni(x) and x @y = na(y) © na(x).

(16) n1(y ® z) = n1(2) ©y and na(y ® z) = n2(y) @ z. Moreover, nz2(x S y) =
y®na(z) and ni(z @ y) =ni(x) Dy.

1N zeol=z0l=ux.
(18) For any k =1, 2, ni(N;er i) = Vier ni(@i) and ne(Viep i) = me(N;er i)

3. VARIOUS SYSTEMS, OPERATORS AND DISTANCE FUNCTIONS

Definition 3.1. Let X be a set. A function d : X x X — L is called a right
distance function, if it satisfies the following conditions: for any z, y, z € X,

(D1) dx (z,z) = L,

(D2) if d% (z,y) = d% (y,z) = L, then x =y,

(R) dx (z,y) © dx (y, 2) = dx (z, 2).

A function dy : X x X — L is called a left distance function, if it satisfies (D1),
(D2) and
(L) d(y,2) @ di (z,y) > d (v, 2) for all z, y, 2z € X.

Remark 3.2. (1) Let d% (resp. d) be a right (resp. left) distance function on X.
Define functions dy",dy' : X x X — L as dy" (z,y) = d% (y, ), dx (z,y) = d (y, z).
Then dy" (resp. dy') is a left (resp. right) distance function on X.

(2) Define functions d%,d} : Lx L — L as d} (z,y) = x 0y, d} (z,y) = x@y. By
Lemma 2.2 (8), d (vesp. d) is a right (resp. left) distance function on L.

(3) Define functlons dLX,d v LX X LX > L as

dpx (A, B) = V,ex (A(2) © B(z)), dpx (A, B) =V,ex(A(z) © B(x)).
By Lemma 2.2 (8), d x (resp. d’ x) is a right (resp. left) distance function on LX.

Definition 3.3. An operator I" : LX — LX is called a right interior operator on
X, if it satisfies the following conditions: for any A, B € LX,

(M) I"(A) < A and I"(A) < I"(B) for A < B,

(12) I"(I"(4)) = I"(A),

(IR) I"(A® a) > I"(A) @ a for each o € L.
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An operator I' : LX — LX is called a left interior operator on X, if it satisfies
the conditions (I1), (12) and
(IL) I"(A© a) > I'(A) © a for each a € L, A € L.

Definition 3.4. An operator C" : LX — L¥ is called a right closure operator on X
if it satisfies the following conditions: for any A, B € LX,

(C1) C™(A) > Aand C"(A) < C"(B) for A< B,

(C2) C7(C"(A)) = C"(4),

(CR) a®C"(A) > C"(a@ A) for each o € L.

An operator C' : LX — LX is called a left closure operator on X if it satisfies the
conditions (C1), (C2) and for any A, B € L,
(CL) CHA) @ a > CHAD a).

Definition 3.5. (i) A family G” is called a right closure system on X, if (a® A;) €
G", Njer Ai € G for all A; € G" and a € L.

(i) A family G' is called a I-closure system on X, if (A; ® &), \;crr Ai € G for
all A, € G' and o € L.

(iii) A family H" is called a r-interior systemon X, if (A; @ o) € H",\/
all A; € H" and o € L.

(iv) A family H' is called a l-interior system on X, if (A; © a) € H',\/
all A; € H and o € L.

(v) A family K" is called a right extensional system on X, if K" is both a right
interior system and a right closure system.

(vi) A family K' is called a left extensional system on X, if K' is both a left
interior system and a left closure system.

Theorem 3.6. (1) Let I" : LX — LX be a right interior operator on X. Then
Hj, ={A| A=1"(A)} is a right interior system on X.

(2) Let I' : L — L™ be a left interior operator on X. Then H., = {A| A =
CU(A)} is a left interior system on X .

(3) Let C" : LX — L be a right closure operator on X. Then GV, = {A| A =
C"(A)} is a right closure system on X.

(4) Let C' : L — LX be a left closure operator on X. Then GL, = {A]| A =
CYA)} is a left closure system on X.

Proof. (1) Let A € H}.. By (IR) and (I1), since Ao a>I"(Aoa) > I"(A)0oa =
Aoaforeachac L, AcLX, I"(Aoa)=A0a,ie, ADac HY,.

For all Az € H;T, \/iEF IT(AZ) S IT(VieF Az) S \/iEF Ai = \/iEF IT(A1) Then
Vier 4i € H,. Thus Hj, is a right interior system on X.

(2) It is similarly proved as (1).

(3) Let B € G¢. By (CR) and (C1), since a®B=a & C"(B) < C"(a® B) <
a®C"(B), a® B € G

For all A; € GGr, Njer Ai = Nier C7(Ai) < C"(Njer Ai) < Njer C7(A;). Then
Nier Ai € G Thus G, is a right closure system on X.

(4) Tt is similarly proved as (3). O

ser Ai for

jer Ai for

Theorem 3.7. Let H” be a right interior system on X. Then the following proper-
ties hold.
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I;IT(A) = \/CeHT(C © dzx (C,A)) = vier{Ai | Ai <A, A; € HT}
17, is a right interior operator on X.

)
)
) H;;” = H" where HIT;}T ={AelX|A=1}.(A)}.
)

(5) If I" is a right interior operator on X, then Iy = I" and ey, (z,y) =
I"(Le)(y) for any z, y € X.
Proof. (1) Let I(A) = \/{A; € H" | A; < A}. Since djx(A;,A) ® A > A; iff
A > A odix(AiA)y A >V, cpr(Ai ©dpx(Ai, A)) € H" for A; € H". Then
I7.(A) < I(A). Since I(A) € H", by Lemma 2.2 (13) and (17), we have
Ig-(A) > I(A) odi x (I(A),A) =I(A) @ Lx = I(A).
(2) (I1) By the definition of I, it can be proved easily.
(I2) For each A € LX, we have
Ie(A) = Vier{Ai | Ai < A, A; € H}
< Vier{4i | Ai = I (Ai) < I (A),A; € H"}
< Vier{Bi | Bi <I-(A),B; € H"}
= I} (I5-(A)).
By (1), I (A) = I (I (A))-
(IR) For each A € LX, o € L, we have
IITJT(A)@Q :\/,LGF{A1|A1SA7AZEHT}®04
< \/iEF{Ai®a | Ai®OZSA®Oz,AIL'®Oé€ Hr}
<VieriBi | Bi<Aoa,B; € H"}
=15 (A0a).

(3) Hf, =H" where Hj, ={A€L¥|A=1I}(A)}

If Ae H", then A =TI}, (A). Thus A € Hi, -

If Ae Hj, ,then A =Ty, (A) € H". Thus Ae H".

(4) It is easily proved from ey, (z,y) @ €y (y,2) = Vacu-(Aly) © A(x)) @
Vacn (A(2) 2 AW)) = Ve (Aly) 0 A(2)) & (A(2) @ A)) 2 Ve (A2) 0
A(z)) = e (y, 2).

(5) For any A, B € LY, since d7 « (C, A) > d7 « (I"(C),I"(A)), Iy, =17 from:

IIT:I}T (A) = \/iEF{Ai ‘ A; < A,Az S HTT}
< Vierfdi [ Ai =17(A;) < I"(A), A; € H] }
<I7(4),
Iy (A)(@) = Veerx (Clx) 0 dyx (C, 4))
> A (I7(A) (@) © dx (I7(A), A)) = I7(4) (2).
For any x, y € X, we get
ey, (#,9) = Vaeny, (Aly) © A(z))
= \/AeH}‘T (A(y) © dzx (A7 J—x))
— 13 (L)) = (L) ().
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O

Corollary 3.8. Let H' be a left interior system on X. For each A € LX. Then the
following properties hold.

(1) Il (A) = VceHz(C@dle(CvA)) = \/ieF{Ai | A <A A € Hl}~

(2) I i is a left interior operator on X.
(3) H,, =H!, whereH},l:{AELX|A:I§LI,(A)}.
H
(4) Deﬁne e (@,y) = Ve (Aly) © Az)). Then e isa left distance function.
5) If I' is a left interior operator on X, then IL,, = I' and e (@) = IN L) (y)
H

for any x, y € X.

Theorem 3.9. Let G" be a right closure system on X. Then the following properties
hold.

(1) C&r(A) = Npear(dix (A, B)® B) = N{B € G" | A< B}.

(2) CG, is a right closure operator on X.

(3) = G" where G, = {Ae LX | A=CL.(A)}.

( ) Deﬁne eqr(2,y) = Vacar(Aly) @ A(x)). Then egr is a right distance func-

(5) If C" is a right closure operator on X, then ngr =C".

(6) Define HL, = {n1(A) | A € G"}. Then HL, is al interior system. Moreover,
define HY,, = {n2(B) | B € G'}. Then H[, is a right interior system. Moreover,
for any x, y € X,

¢, (©.9) = Vpent, (By) © B(@) =V acar (m(A)(y) ©n1(4)(2))

=n1(Cgr(n2(Ls)) (),
e (520) =V penr, (B) 2 B@) = Vaca (n2(4) () @ na(4) (@)
= na(Cl (1 (L)) (9)).
(7) For each A € LX, ny(Cln(A)) = Iﬁiér(nl(A)) Moreover, A € GTET iff
’I”Ll(A) S H}l ,

Lr
Proof. (1) Put C1(A) = \;cr{Ai | A< Ay, A; € GT}. Since A < A\peor (d 5 (A, C)®
C) and Apcqr(dix(A,C) & C) € G", Ci(A) < Cgr(A). Since Cl(A) e G,
Cir(A) <djpx (A, C1(A) @ C1(A) = Cl(A). Then we get

Cér(A) = N\{Ai | A< Ai A €GTY
ier
(2) (C1) By the definition of Cf., it easily proved.
(C2) For each A € LX, we have
Cer(A) = Nier{di | A< A A €GTY

> Nier{4i | CGr(A) < A; = Cgr (Ai), Ai € G}
> NieriBi | C&r(A) < B;, By € G}
= Ol (Che (4).

By (C1), O (4) = Cor(Cor ).
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(RI) Since z® Nier ¥i < Nier(@ @ i) and A\ cr(z @ yi) © Nijer ¥i < Vier((z &
vi) ©vyi) < x it N\jcp(@ @ i) <@ \jeryi, we have 2 & A yi = Nier (@ @ 95).-
For each A € LX, o € L, we have
a®d OET(A) =a®d /\iEF{Ai | A< AzyAz S Gr}
>Ner{la@®@AiladA<ad A ,ad A €G}
Z /\iel"{Bi | o D A S Bz,Bl S GT}
=Clr(a® A).
Since Cfr(A) € G, Clr(A) = CLr (CLr (A)) from:

CLe (e (4)) < df  (Cl (A), T (A)) & T (A) = Cl (A).
Then Cf,. is a right closure operator on X.
(3), (4) The proofs are similar to Theorem 3.7 (3) and (4), respectively.
(5) For any A, B € LY, since d} x (A, B) > d} «(C"(A),C"(B)),
Cor, (A) = Nier{Ai [ A < Ai, A € G}
> Niertdi | CT(A) < C7(A;) = Aiy Ai € G }
> C7(A).
Cor, (B)(2) = Asegr, (dpx (B, A) @ A(z))
< dpx(B,C"(B)) & C"(B)(x) = C"(B)(x).
(6) If A = ny(na(A)) € HL,, then na(A) € G" and k @ na(A) € G". Thus
nl(k@ng(A)) A@kGHG
If A; = ni(n2(A;)) € HL,. for each i € T, then ny(A;) € G™ and /\zGF na(A;) €
G". Thus ni(A;er n2(Ai)) = ni(na(V,er 4i)) = Vier 4i € Hlro So HE, is a left
interior system. Similarly, H, is a right interior system.
Moreover, for any x, y € X, by Lemma 2.2,
€, (©:9) = Vpeny, (B(y) © B(2)) =V acar (m1(A)(y) © n1(4)(2))
= Ve (m(A)(y) © di x (n1(A4), La))
=11 (Aacr(dpx (n2(Ls), 4) ® A(y)))
= n1(Cgr (n2(La))(v)),
ey, (@) = Vpenr, (By) @ B(x)) =V 46 (n2(A)(y) @ na(A)(2))
= Vaea (n2(A)(y) @ dpx (n2(4), L))
n2(V geqi (Ay) @ dpx (ni(Ls), A)))
= n2(Cu (n1(La)) (y))-
(7) For each A € LX,

m(CE(4) =1 Apear dzxm B)® B) = Ve (m(B) & dyx(4,B))

~Vgear (m(B) & dyx (mi(B),m(A))

=Veen, (Codyx (c n(4)))
=14, (m(A).

r

Moreover, A € Gg,_, iff ni1(A) = n1Cg, (A) = Iﬁ‘ﬂcr (n1(A)) iff n1(A) € HY, .
H

D
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Corollary 3.10. Let G' be a left closure system on X. Then the following properties
hold.

1 Cé;z( ) = Apec(B@dyx(A,B)) = N{B€G'| A< B}.

2 G, is a left closure operator on X.

3 C = G where G, —{AELX | A=CLi(A)}.

(1)
(2) C
3) G
(4) If Cl is a left closure opemtor on X, then C’ZGL = ct.
(5)
(6)
(7)

C
5) Define el (z,y) =\ g (A(y) © A(z)). Then €L, is a left distance function.
6) If C' is a left closure operator on X, then C’lGL =C

cl

7) For each A € L*, ny(CL.(4)) = I%Tl(nl(A)) Moreover, A € Glcl iff
G Gl
?’Ll(A) S le

Corollary 3.11. Let K" be a right extensional system on X. Then the following
properties hold.

(1) Ik is a right interior operator on X such that Ip.(A) = \oep-(C @
dLX (C, A)) = \/iGF{Ai | A; < A,Al S KT}

(2) Ck- is a right closure operator on X such that Cy, (A) = Npegr(dyx (A, B)®
B)=AN{Be K" | A< B}

(3) For I" e {I",C"}, Ki. = K", where K, = {AeLX |A=1}.(A)}.

Corollary 3.12. Let K'! be a left extensional system on X. Then the following
properties hold.

(1) 1L, is a left interior operator on X such that It (A) = \/ e (COdL < (C, A)) =
\/iGF{Ai | A; < A,Al S Kl}

(2) Cl. is a left closure operator on X such that Cl. (A) = \pe i (Bed, < (A, B)) =
NB e K'| A< B}.

(3) For I' € {I',C"}, K}id =K', where K}id ={AeLX|A=1,,(4)}.

Theorem 3.13. Let d be a right distance function on X and Kj. = {Ae ¥
A(z) @ d% (z,y) > A(y)} be a family on X. Then the following properties hold.
(1) Kgg( 1s a Tight extensional system on X.

(2) K = {V,ex(Al@) 0 dx(—2) | A€ LY} = {A\,ex(Ala) @ dy (v, —) [ A €

LX}.
(}3) Ly (A)=VAB €Ki | B <A} =/\,ex(Aly) @ dk(y, —))-
(4) Cfa (A) = NB e Kj | A< B} =V, ex(Aly) ©dx(=,v))-
(5) Deﬁne eKr)} (x,y) = \/AeK;;( (A(y)@A(z)) for each x,y € X with e}(;& =dY.
6) Let K™ be a right extensional system on X. Define ey, (v,y) =\ 4o - (A(y) @

A(x)). Then €y is a right distance function with K" = K¢, Iier, (A) = Ik (4)
ond Cl (4) = Cr(4).

(7) Let H” be a right interior system on X. Then K[, = {\ cx(A(z)©
ehyr(— ) | Ae LYY = {Aex(A@) ® elfyr(z,—) | A € LX} is the smallest right
ea:tensional system on X containing H". Moreover, €., = €fyr.

etr
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(8) Let G" be a right closure system on X. Then K[, = {\/,cx(A(z)©
pa
etr(—a) | A€ L¥} = {A,ex(A(@) ® el (z,—) | A € L*} is the smallest right

extensional system on X containing G". Moreover, €pr = €gr.
egr
Proof. (1) For each A € Ky and o€ L, (Aoa), (adA) € K from: (a®(A(z)2

)

a)) @ d (z,y) > Alx) ® di () > Aly) iff (A(x) © ) © dx (z,) > (Ay) © a) iff
(@A) © dy (¢,9) > 0 ® Aly).

(2) Put H = {V,ox (A(@) © &5 (—,2) | A € LX), G = {A,cx(Alx) & di (2, ) |
Ae LXY}. Let \/, ¢ (A(z) ©dx(—,x) € H. Then

(A(z) © dx (2, 7)) © dx (2,y) ® dx (y, ) = (A(x) © dx (2, 7)) ® dx (2, 7) = A().
Thus Ve x (A(z) ©dx (2, 7)) @dx (2,y) 2 Ve x (Alz) 0dx (v, 7). So Voex (Alz)S
d%(—,z) € K . Hence H C K,

Let A € KdTX. Then A(x )6]9 dr Y(zy) = A(y). Thus A(z) > V, cx(Aly) ©
dy(z,y)) = A(z). So A=V, cx(Aly) ©dx(—,y)) € H. Hence Kg. C H.

Let A\ cx(A(z) @ d%(z,—) € G. Then

Neex (A(@) ® dx (2,y)) ® dx (4, 2) = Npex (Alx) & dx (2, 2)).

Thus A, ¢ x (A(z) & dy (2, —) € Kg, . So G C Kg, .

Let A € Kg. . Then Noex (A(z) ® di(z,y)) = A(y). Thus A = A\, (A(z) @
dx(z,—-)) € G. So Kgr C G.

(3) By Corollary 3.11 (1), I (A) = V{B € Kj, | B < A}. Since /\ ¢ x(A(z)®

dx(x, =) € Kg, and A ex(A f)@drx( =) <A Npex (Ale) @ di (2, -)) <
I;(;r (A). Since IKQT (A) < A and I;(;r (A) € K., by (2),

Ly () = Nyex Uiy, (D)) © dxc(y, =) < Ayex (Aly) @ dic (y, —))-

Then I, (4) = Ayex (Aly) & di (y, —))-

(4) By Corollary 3.11 (2), Ckr, (4) = N{B € Kj. | A < B}. Since (A(y) ©
05 (2,)) © B (2, 2) & dy (29) = Aly), V,ex (Ay) © & (=, p))) € K . Since A <
Vyex (A) © dx (=), Cl;, (A) < Vyex (A) © di (=, y)). Since A < T, (4)
and Cg, (A) € K, by (2),

Clcy, (A) = Vyex (Cley, (D) © % (=) 2 Vyex (Al) © di ().

Then Cg, (4) = Vyex (A(y) & dx(—.9)).
(5) For all z, y € X,

x(V.ex(A(z) ©d%(y,2) OV e x (Alw) © dx (z,w)))
(z,2) ©d(y,2)) (put A= dx(z,—))

(z,w) © dx (z,w)))

(x,2)6 drxgg z)) = d%(z,y).
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By Lemma 2.2 (11) and (14),

e;(g;( (x,y) = VAELX vzeX(A(Z) @d&(ypz
A

( )
< Vaerx(Vaex(A(z) © dx (v, 2))
< V.ex(dx(z,2) © dx (y, 2)) = dx (

(6) Let A € K". Then we get
Ay e \/ (By) @ B(z)) > Ax) @ (A(y) @ A)) > Aly).

BeKr

Vuex (A(w) © dx (z, w)))

(A(z) © dy (z,2)))
x,Y).

@
%

Thus A € K, .
Let A€ K[, . Then we have

N\ (A@) @ e (z,9)) > Aly)

rzeX

and

N (A(@) @ efer (z,y)) < A(y)  efer (y,y) = Ay).

reX
@ exr (@, ) = Noex (Al@) ® Vpegr (B(=) @ B(x))). Since

Thus A = A,cx(A(z)
Vper-(B(=) @ B(z)) € K", A€ K". So K" = K, . Moreover,
)

lo(4) = Vier{Ai | A S A A € K7} = I, (4),
Chr(A) = Nierddi | A< 41, As € K7} = Cly. (A).

X
(7) It is obvious that Kg. == {B € L* | B(z) ® e%.(z,y) > B(y)} is a right
extensional system such that H" C K¢. . By (2), we get

r o o X\ X
Kl = {\/X 2) S ey (—x) | Be LX)} = {/\X z) @ ey, (x,—) | Be LX}.
fAS EAS

Let K" be a right extensional system such that H" C K". For each Ay (B(z)®
ey (v, =) € Ko e (@, =) = Ve (A=) © A(2)) € K7 and B(x) © ey (2, —) €
K". Then /\wEX( (v)@elyr(z,—) € K". Thus Ki  C K" So K{ is the smallest
right extensional system such that H" C K". Hence by (5), €fr = €.

EHT‘

(8) It is similarly proved as in that of (7). O

Corollary 3.14. Let d% be a left distance function on X and K, = {A € L* |

dx(z,y) ® A(z) > A(y)} be a family on X. Then the following pmpertzes hold.
(1) K.\ is a left extensional system.
X

(2) Kl = {(Voex(A) @ di(—2) | A€ LX) = {A,ex(dy (e, ) @A) | A €
XY,
(3) Iy (A)=V{B €KYy | B <A} = \,ex(dy(w,-) @ Ax).

(4) Cf;(; (A) =A\{BeK, |A<B}=V,x(Aly) odx(-y)).
(5) Deﬁ;{ze elKll (z,y) = \/AeKLl (A(y)©A(x)) for each x,y € X with elKll =d.

ke X b,
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(6) Let K' be a left extensional system on X. Define €k, (z,y) =\ 4c 1 (A(y)
A(z)). Then €k, is a left distance function with K' = K!, . Moreover, I\, (A)
Kl b,
Il (A) and Cé{ll (A) = CL,(A).
dx
(7) Let H' be a left interior system on X. Then K!; = {\/ cx(A(x)2el, (=, ) |
H

A e L*} = {N\ex(eh(@,—) & A(z)) | A € LN} is the smallest left extensional
system on X containing H'.
(8) Let (X,G") be a left closure system. Then Kilcl ={V,ex(A(@) @ el (=, z) |

A€ L*Y = {N\ex(ebi(z,—) ® A(z)) | A € L*} is the smallest left extensional
system on X containing G.

I O

Theorem 3.15. Let I" be a right interior operator on X. Then the following
properties hold.

(1) Define i, (x,y) =\ gcrx U"(A)(y) @ I"(A)(z)). Then e}, is a right distance
function with I, (A) > I"(A).

I

(2) Define dy.(x,y) = I"(Ly)(y) for all x, y € X. Then dj. is a right distance
function with dj, = €y, = € and IIT(;?P (A) > I"(A). Moreover, if I"(N\,;c; Ai) =
Nier I7(Ai) and I"(a® A) = a® I"(A) for all A, A; € L* o € L, then Iir, (A) =

Tr
I"(A) for each A € L.

(3) Define CL, (A) = ni(I"(na(A))) for each A € LX. Then C!. is a left closure
operator such that dlC, (z,y) =I"(Ly)(z) =d}-(y,x) for any x, y € X.
=

Proof. (1) Since I" = I}y, from Theorem 3.7 (5),

er(@,y) = VaerxI"(A)y) @ I"(A)(2)) = V pepy, (Bly) @ B(x)) = ey (2,y).
By Theorem 3.7 (4), e}, is a right distance function on X. By Theorem 3.13 (3),
Lier, (D) = Naex(A@) @ e (2,9)) - 2 Npex (IN(A)(2) & (IM(A)(y) @ I"(A)(2))
> I"(A)(y)-
(2) Since A = /\yGX(A(y) ®Ly), I"(Le) = /\yex(lr(iz)(y) ® Ly). For any
z, y, z € X,
dpr (2, 2) = I"(Le)(2) = I"(I"(La))(2) = T"(Ayex I"(La)(y) ® Ly)(2)
< Ayex I"(La)(y) & 17(Ly)(2)
= Ayex(d§r(x7 y) D d}oT (y’ Z))

Since I" = Iy, ~from Theorem 3.7 (5),

dpe(,y) = 1"(Le)(y) = Ty, (La)(y) = Veenr, (Cly) © dpx (C, L))
~ Ve, (C) @ C@)) = ey (2,3)
= Vacx(I"(A) () @ I"(A)(2)) = e (2, y).
Since a @ I"(A) > I"(a @ A),
Iy (W) = Noex (Al@) @ d7-(2,9)) = Npex (Al2) & I"(La)(y))
2 I"(Asex (Alz) Ggéw))(y) = 1"(A)(y).



Ju-Mok Oh /Ann. Fuzzy Math. Inform. 29 (2025), No. 1, 85-106

Assume that I"(A;cp Ai) = Njer I7(Ag) and I"(a @ A) = a @ I"(A) for all A;, A€
LY. Since A= A\ cx(A(z) ® L),

Ty (W) = Npex (A@) & 7. (5,9) = Ayex () & I'(L)(0))
= I"(Ayex (Al®) & L))(y) = I"(A)(y)-

(3) The operator C%, is a left closure operator from:

Ci-(A) =n1(I"(n2(A))) = ni(n2(A)) = A,
Ci-(Ch(4)) = Ch(ni(I"(n2(A)))) = na(I"(I"(n2(A)))) = na(I"(n2(A)))
= Cl.(4),

Cr-(A®a) =nm(I"(n2(A® @) =ni(I"(n2(4) @ a))

Moreover, for any x, y € X,

dlcir(x7y) =n
n

d

Theorem 3.16. Let C" be a right closure operator on X. Then the following prop-
erties hold.

(1) Define egr(x,y) = V acpx (CT(A)(y) @ C"(A)(x)). Then e is a right dis-
tance function on X with C”" _(A4)<CT(A).

<
(2) Define diw(x,2) = nl(CT(nz(J_ N (z )) for all x,y € X. Then d¢. is a right
distance function on X with di.(z,y) = i (y,x) for any x, y € X, where
He. = {m(A) | A€ Gp.}. ’

(3) Define 1L, (A) = n1(C"(n2(A))) for each A € LX. Then IS, is a left interior
operator with dlll (z,y) = dg (y,x) = elHl (xyy) = elll (z,y) for any x, y € X.

cr Gl cr

(4) Oy, (A) < ma(Ier (n2(A))).

Moreovec;”, if C"(Ver Ai) = Vier C7(Ai) and C"(A @ a) = C"(A) @ a for all
A;, Ae LX, then C}}grr (A) = n1(IL. (n2(A))) for each A € LX.

(5) Letdy"(z,y) = dCX(y,x) foreachr € {r,l},x,y € X. Then B € Ko iff na(B) €
L. Similarly, B € Ké,X iff n1(B) € Kg}_(l

X

Proof. (1) Since C" = Cgz,, from Theorem 3.9 (5),

eor(®,9) = Vacrx (CT(A)(y) © C"(A)())
= Vpear, (By) @ B(x)(2)) = egy,, (2,9)-
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By Theorem 3.9 (4), eg. is a right distance function on X. Moreover,

Oy, (D) = Vaex(A@) & e (v.2))
<V, ex (C7(A)(@) & (CT(A)(2) © CT(A)(»)))
< C7(A)).

(2) Since A = A\, cx(Le © A(x)), n2(A) =V, cx (n2(Lz) @ A(z)). Then we get

=A="\/ (na(Ls) @2mi(A)(x)).

zeX

Thus C"(n2(Ls)) =V, ex (n2(Ly) @n1(CT(n
operator on X and a® (B@ «a) > B, C"(B)
Thus C"(A) @ a < C"(A© a). It follows

CT(na(L:))(x) = C7(CT(na(L2)))(2) ZCT(V@,GX( 2(Ly) @11 (C7(n2(L2))) (1)) (@)
Z Vyex (C(na(L :

2)))(y)). Since C™ is a right closure

(L
2<C’ (a®d(Boa) <adC"(Boa).

So we have

dgr (x,2) = m(C7(n2(L2)) (7)) < nl(\/yex(c’"(nz(i ) (z )®n1(0’“(nz
= C

m/—\

AF
N
=
=
—
<
=
=
=

A (r.y) = gy (2.9) = mi(Cly, (na(L)))(@)

cr

(3) As a similar method in Theorem 3.13 (3), I, is a left interior operator on X.
Moreover, for any =, y € X,

dy (,y) = 15r(Le)(y) = m(C (n2(La))(y) = der (y, @),

e (#.9) =Vpegy, (m(D)(y) ©m(D)())

- n(C7(B))(y) ©n1(C7(B))(x))
I¢r (n1(B))(y) © It (n1(B))(x))
)lc (A)(y) © It (A)(x))

97
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(4) For each A € LX | y € X,
Ch, ()
T

A(z) © der (y, )

A(z) ©n1(C(n2(Ls))(v)))
A() o IL (L))
1160 (L) (y) @ na2(A)(z))
1(IE (Ly B na(A)(2))(y)
1(1 vex (Lo ®na2(A)(2))(y))
1(I6r (n2(A)) ().
)

Assume that C”"(\/ZeF i) = Vier C"(A;) and C"(A @ a) = C"(A) @ « for all
A;, A€ LX. Since IL. (A) = n1(C"(ng(A))) for each A € LX, we have

(
16 (Nier Ai) - = na(CT(n2(Ajer Ai))) = 11 (C7(Vep n2(41)))
= nl(vier C"(na2(Ay))) = /\ el n1(C"(n2(4;))) = /\ieF Ilcr (As),

IL(ADa) =m(C (na(A®a)) = mi(C" (na(4)) © )
= 1 (C"(na(A)) @ a = I, (A) @ a

Te

Vaex(
Viex(
Vaex(
Ve
Vae

A I
m
S5

QN

-
~(

n
n

Then

. (A W) =Veex n1 (I (La) (y) @ na(A)(x))

= Vaex Mo (Lo ®n2(A)(2))(y))
= n1(Igr (N pex (Le ®n2(A)(2))(y))
= n1(I¢r (n2(A))(y)-

(5) By Lemma 2.2, B € K, iff nq(B(z)) @ d% (z,y) < n2(B(y)) iff d" (y,z) &
na(B(y)) = n2(B(x)) iff n2(B) € K,

Other case is similarly proved. O

Corollary 3.17. Let I' be a left interior operator on X. Then the following prop-
erties hold.

(1) Define €\, (x,y) = \ sepx (I'(A)(y) © I'(A)(x)). Then e\, is a left distance
function with I K, (A) > IY(A).

I

(2) Define d-,(z,y) = I'(L,)(y) for all xz, y € X. Then d\, is a left distance

function with dll = eiql =el and Ié(il (A) > I'(A). Moreover if I"(Nier Ai) =
I
Nier I'(A;) and I'(A® a) = I'(A) G o, for all A, A; € L¥ ,a € L, then Ié(fll (A) =
1l

I'(A) for each A € L.

(3) Define C7,(A) = na(I'(n1(A))) for each A € L*. Then C%, is a left closure

operator such that dg. (z,y) =I'(Ly)(z) = d\\ (y,x) for any z, y € X.
I

Corollary 3.18. Let C! be a left closure operator on X. Then the following prop-
erties hold.
(1) Define el (z,y) =\ gerx (CH(A)(y) © C'(A)(x)). Then €., is a left distance
function on X with Cé{l (A) < CYA).
1

ecl

98
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(2) Define d(x,y) = n2(C(ni(Ly))(x)) for all z, y € X. Then d., is a
left distance function on X with dlcl (z,y) = e’l’qgl (y,x) for each x,y € X, where

cl

H&CZ ={na(A) | A€ GL.}.
(3) Define I7,(A) = n2(C'(ny(A))) for each A € L*. Then I, is a right interior
operator with di. (z,y) =dL,(y,x) = €pyr  (z,y) =€} (x,y), for any x, y € X.
cl GLCL ct
(4 )Cl (4) < na(Igi(na(A4)).
Moreover if C'(Vier Ai) = Vier CH(As) and C'(A & a) = CHA) & o for all
A, Ae L®, then Ct (A) = na(I7(n1(A)) for each A € L™,

cl

Example 3.19. Let K = {(z,y) € R* | > 0} be a set and we define an operator
@: K x K — K as follows: for any (21,y1), (z2,y2) € K,

(1,y1) ® (22, y2) = (2122, 222y1 + Y2 — 222).

Then (K, ®) is a group with e = (%, 1), (z,y)"! = (490, 2 +1).
We define the order < on K as follows: for (z1,y1), (z2,42) € K,

(x1,91) < (x2,92) © a1 <2 OF T1 = To, Y1 < Yo
Let L C K = {(z,y) € R? | > 0} be a set. The structure
(L, VA, ®,0,0,(3,1),(1,0))

is a generalized co-residuated lattice with a double negative law where 1 = (%, 1)
is the least element and T = (1,0) is the greatest element from the following state-
ments:

(1,91) © (T2,92) = (22172, 272y1 + Y2 — 212) A (1,0),
(r1,91) © (z2,92) = ((z1,91) @ (372,212) Hv(3,1)
= ((x17y1) (o FL +1) vV (5,1)
= (14 58 v (3 ),
(z1,91) @ (x2,2) = (($2,y2) Yo (z1,11)) vV (%, )
= (g + (1 —y2)) V(3. 1)
Then (xlayl) &) ($2792) 2 (37373/3) iff (331791) 2 ( )

@)(332’312) iff (z2,y2) >

» Y3
(z3,y3) @ (22,y2). Furthermore, we have (x,y) = na(n1(z,y)) = ni(na2(x,y)) from:

1

1

x

nl(z,y) :(130)@(xay):(ﬁa 7%)7

Tlg(l‘,y) :(130)®(l‘ay):(l%a, ( 7y))a
nz(n1($,y)) :(130)®($717%) (xay)a
mi(na(z,y)) = (1,0)6 (5,3 (1 —y)) = (z,y)

Let A={(2,y) |y € R} C L be given. Then \/ A and A A do not exist. Thus L is
not complete.
Let A =((2,2),(2,-1),(3,5)) € L* on X = {a,b,c}. Define functions d’y, d', :
X x X — L as dy(x,y) = A(y) @ A(z), dYy(x,y) = A(y) © A(z). Then d’, (resp.
99
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d'y) is a right (resp. left) distance function such that

) 1574) ( - )
(lul) (§7_%) (lvl)
ds(a.y) (<§n &J)(;D)
(%7_2) (%7_3) (571)

(1) Hy = {A® a | a € L} is a right interior system because (A @ a) @ 8 =
Ao (a®p) and \,cp(A0 ;) = AO \,cp i from Lemma 2.2. Since A(y) © A(x) >
(A(y) @ a) © (A(x) @ a),

¢y (2:9) = Vpen, (Bly) @ B(x)) = Aly) © A(z) = dj (z,y)
= VDeH (D(y) @ dy x (D, La))
= I (L2)(0) = dy,, (2.y) [By Theorem 315 (2],
Iy (@Y) = Voerx T (O)y )®IHT (©) ()
= eHT (z,y) = eH’” (z,y) (by H;;I,. = H}).
H' A
Define 15, : LY — LX as I3 (D)(y) = Npex(D(x) & dy(z,y)). Since I, (D ©
a)(Y) = Neex (D(@)0a)@dy (2,9)) = N\,ex (D(2)@dy(2,y)) 0a = I, (D)(y)0a
from Lemma 2.2 (5), 1§, is aright interior operator with /5, (Nier Ai) = Nier Ig (4;)
and Igz(a@A) = a@lgz(A) for all A;, A€ L¥X. For any =, y € X,

dpy, (@y) =T (La)(y) = di(@,y),

€ip, (0:0) = Vaerx Ly (A) () @ 17, (A)(2))
> V.ex Ui, (i Wy) © 13 (L2)(x))
= V.ex (@4(z,9) @ dy (=, ))= dy(z,y),

e (7,y) :VDGLX(/\ (D() d4(2,9)) © N.ex (D(2) @ djy (2, 7))
< Vperx(V.ex(D(z ) dy (2, ))®(D( ) & dj(z, 1))
< V.ex(da(z, 0o dy(z,2)) = dj(,y).

Then d}. = e;& =dY.

Iy (B) =Vae fA©a e Hy|Aoa < B}
= \/DeHr (D o d; x (D, B))

(2 —2)x
8),(2,3),(4,1)),

il,(
I (B) = A,ex(BU) & (d),)
—((3,3),(2.3),(2.3)
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For each C' € LX | since I%,.(C) € HY,

L (I (O)(2) - = Nyex (T (C)(y) © d4(y, 7))

> Nyex (U (C)(y) ® (I (C)(2) © T (C)(y))
L, T (O))(@) - = Ayex g (O)(y) © da(y, 7))

< Iy (O) (@) © diy (2, z) = I (C)(2)

Thus I}, (C) = I} (If{ () < ITA(C’) for each C € LX. For each C € L, y € X,

Cr A(D)( ) =mni(lg (n2(D)))(y)
=n1(Agex (n2(D)(x) ® dy (x,9)))
= Vaex (m(dy(z,y)) © na(D)(2))
= V,ex (D(@) @ ni(ni(dy(z,y))))
For nl(A) = (% _%)7 (%a %)a (1 _4))a
ni(ni(di(z,y))) =ni(ni(A(y) @ A(z)))

n1(n1(A(y)) & A(z)) = ni(A(z)) © na(A(y))
= df“(A) (y,z) [By Lemma 2.2 (16)],

(%71) (%i_%) %71)
mm(da) =1 (1) (51 (51)
( 1 (%7_13) (571)

So Cl (D)(y) = Vaex (D@) @, 1) (1,)).

(2) Hy = {Ac a | a € L} is a left interior system because \/,c;(4 & a;) =
AS Njcraiand (Aca)© f=A0 (8P a) from Lemma 2.2. Since A(y) © A(z) >
(Ay) e a) & (Alz) © a),

622(%21) = Vpen, (Bly) © B(z)) = Aly) © A(z) = d4 (=, y),
= Vpen (D(y) © dix (D, Ls))
= Il ( 2)(Y) = dl (:E y) [By Corollary 3.17 (2)],

el[l . (r,y) = VCELX (Illq (c )( )9111511 (C)(x))

Hy
= e (@,y) = ey (2,9).
I

L
Hy

Define Ifil : LY — LY as Iﬁle(D)(y) = Naex(da(z,y) © D(x)). Since IflilA (D&

)W) = Avex (ds(2,0)& (D) ©a)) > A,y (ds(z,9)& D) Sa = Iy (D)(y)Sa

from Lemma 2.2 (5), I', is a left interior operator with I}, (A;ep Ai) = Ajer Iy (As)
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and IclllA(A@o‘) :IQQ(A)@Q for all A;, Ae LX, acL.

b (o) =14 (L)) = da@.n),
i ))& Iy (4)())

elﬂl (z,y) = \/AeLX (Iél (A
da

> V.ex Iy (L:)(y) © Iy (L:)(2))

_VZGX(dA(Z y) ©d4(z,2)) = dy(z,y),
elffiz (7,y) VDeLX (/\zeX(dA(Z 3/) ® D(z)) © /\zEX(dA(Z z) @ D(2)))
< VDeLX(\/zeX(dA(Z y) ® D(2)) © (d4(z,x) ® D(2)))
<V.ex(da(2,9) © dy(2,2)) = dy(, )
Hence dlll = elﬂl = dl
For B = ((,1), (2.3), (2. 1)),
IL.(B) =V, {AcaecH |Aca < B}

- VDeHl (D@dlLX(D B)) A@ (* —%)X
= ((&.1),(2,3),(3,1)),
I (B) = Ayex((dy), © B(y) = ((2.3).(2.3).2

For each D € L, since It (D
I (I (D))

win
w
=
—

~—

e H,,

(s (y,2) & I (D)(y))
(

X (I%l(D)(x) © Iﬁ{l (D)(y) ® IéIL(D)(y))
D)(x),

U, 2) & I (D)(y))
(y & Iy (D)(w) = Iy (D)().

, (D) for each D € L*. By Corollary 3.17 (3),

A

Cr (D)) =mna(ly (M(D)(Y) = na(Asex (da(@y) ®ni(D)(2)))
= Ve ( 2(dy(,9)) © 1 (D)) = Ve x (D(@) © na(na(dy (2, 1))
For na(4) = ((3.-3),(3,5). (1, -8)
na(d,

)

37

alz,y))) = mna(na(A(y) © A(z))) = na(A(z) @ na(A(y)))
= na(A(x)) @ n2(A(Y)) = d7,, 1)y, 2),

(%71) ( a_%) (%71)

ma(ma(d) = ) G G ]
(ga_254) 2

Thus €7, (D)(Y) = Vaex (D(2) © 7, (4) (4, 2)).

(3) GQ\A: {a ® A | a € L} is aright closure system.
Since A(y) 0 A(x) > (a ® A(y)) © (a & A(z)),

g, (2,y) = Vpear, (Bly) © B(x)) = Aly) © A(z) = djy (z, y)-
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Define Cg, LY — LX as Car, (D)(y) = V,ex(D(@)ody(y,x)). Let D, a € L¥.
Since
Cir (@@ D)(y) =V,ex((@® D(x)) ©djy(y, x))

Vaex (@@ (D) © d}(3,2)) < a ® Ch. (D)(y),

C’gg is a right closure operator with

Veex ((D(z) © @) © dj (y, 7))
Vaeex(D(x) © djy(y, x)) © a = Gy (D)(y) © o,

IA

03 (D@ a)(y)

Ccrlg (Vier Di) ()

\/ X(Vie[ Di(z) © d(y,x))

Viet(Vaex(Di(x) © dy (y,2))) = Ve Car (Di) ().
For B = ((5,1),(3,3), (3, 1)),

Cg:‘(B) = Nacrla®@ Ac Gy |B<a€BA}—/\CeG (dix(B,C)®C)
= (1, -3)x A= (55— %) (1,0),(51)),

Ca,(B)  =V,ex(B(z) o dy(— ) = ((%,1),(%,1),(%%))7

Cn (B)  # Ch (B).

SinceHé;‘:{nl( )| DeGyt={mA)oa|acL}and

(n1(A)(y) © @) < ni(A)(x) ©n1(A)(y), where ny(A) = (3,-3), , (1,-4)),
dey,, (z,y) =mCq: (n2(Ly))(x) = ni(Apegr, (d7x (n2(Ly), D) & D(x))
= Vpeer, (m(D)(z) © d x (n2(Ly), D))
= \/DeG (n1(D)(z) © dl x (n1(D), Ly))
—VDEG (n1(D)(x) ©ni(D)(y))
lHl (1,7) = na(A)(x) © n1 (A)(y)

A
= dfn(A)(?/ z) = ni(ni(dy (2, y))).
For each C' € L¥, since Cg, (C) € G,

Ch (Clyy (C))(@)

)(4) © (Car, (C) () @ C, (C) ()

AV (I VAN VAN ||
o3

Then Cg. (C) = Cg, Cgr (C) = Cy, (C) for each C € L¥. Since ny(n1(d(z,y))) =
dfh(A)(y,x) for any z, y € X,

Ite (D)(y) = m(Cy, (n2(D)))(y) = 11(V,ex (n2(D) (@) © dy (y,2)))

’ (Ve x (1 (d(y, 7)) @ D(2)) = Ayex (n1(na(diy(y, ) @ D(x))
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(4) G4 = {A®a | a € L} is a left closure system. Since A(y) & A(z) >
(Aly) ® o) © (A(z) ® @),

e, (#9) = Vpea, (B(y) © B(z)) = Ay) © A(w) = djy(,y).

Define Cl (LY — LY as O ( )W) = V,ex(D(x) @ dy(y,)). By a similar way
in (3), C’ll is a left closure operator
Since for D, aeLX
Cop (D& a)(y) =V,ex(D&a)ody(y,z))
< Vaex ((D(@) @ dy (y, 7)) © a) < Cf (D)(y) &

C’fil is a left closure operator with
A

Cyp, (DS a)(y) = V,ex(D(x) © ) @ dy(y,x))
= V,ex(D(@) @ dy(y,2)) © a = Cy (D)(y) S o,

Cot, Vier Di)(y) = Vaex(Vies Di(x) © dy (y, 7))
:\/iel(\/weX(Dl( )@di‘(y,x))) \/zel d, (Di)(y).

(3,3), (5, 1)),
(B) =Nacr{A®aeGy[B<Ada}

= Acec. (C @ d) < (B,C))

=A@ (3,-5)x = (15, —3), (1,0), (3. 1)),

Ol (B) =V, ex(B) @ dy(~y))
=((3,1), (%,1)»(3»5))

SinceH&A ={n2(D) | D € G4} = {n2(A) @ a | @ € L} and (na2(A4)(z) © a) ©
(n2(A)(y) © @) < na(A)(x) @ na(A)(y), where na(4) = (3, ~3). (2.5). (1, -8)) for
any x, y € X,

dlcl (J?, y)
al

A

—
oo

For B = ((3,1),
l
e,

n2Ci (n1(Ly))(®) = n2(Apeg, (dpx (m1(Ly), D) © D(x)))

Vpea, (n2(D)(w) @ di x (n1(Ly), D))
VDeGl (n2(D)(2) @ dpx (n2(D), Ly))
VDth (n2(D)(x) @ na(D)(y))

-, (%) = na(A)(x) @ na(A)(y)

%&(@—mm@mw»
By a similar way in (3), CL, ( ) = C(lilA (CéLA(D)) > C’fi%(D) for each D € L*X.
Since na(na(dy(z,y))) = an(A)(y, x) for any x, y € X,
e, (D)) = n2(Cy (n(D))(¥) = n2(V,ex (ni(D)(2) @ diy (v, 2)))

’ 2 (Ve x (n2(dy (y,2)) © D(x)) = Apex (D(@) & na(na(dy (v, 7))
Naex(D(z) & dZQ(A) (z,9)).
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(5) By Theorem 3.13 (7) and (8),
Ky ={\/ (B@)edi(—2)|Be LX}={ \ (B@) e d(z,~-) | Be L}

zeX reX
is the smallest right extensional system such that H) C KJ,. and G C K}, in
A A

(1) and (2). Since A(y) @ A(z) > (A(y) © @) © (A(z) @ a) and A(y) @ A(z) >
(a® A(y)) @ (a« ® A(x)) from Lemma 2.2 (9) and (10),

€er, (#,9) = Vpekr, (D(y) @ D(2)) = e, (2,y) = egy, (2, 9)
’ = dy(2.y) = Aly) © Al2).
For B = ((3,1),(3,3),(},1)),
Iir (B) =V{C e Ky | C<B} = \,ex(Blx) @ dy(z,-)) = I, (B)
T = (29,23, (2,3),
Clc, (B) = Vyex(By) ©di(—y)) = Cg (B) = ((
(6) By Corollary 3.14 (7) and (8),

Ky ={\ (B@)ody(=a)| Be LX} = { )\ (d4(,—) & Bx) | Be L*}

reX rzeX

(SN
—_
~—
—~
(S
—_
~—
—~
[
—_
~—
~

is the smallest left extensional system such that HY, ¢ K! and G, ¢ K!; in

(1) and (2). Since A(y) © A(z) > (A(y) © a) © (A(z) © o) and A(y) © A(z) >
(A(y) ® @) & (A(z) ® @) from Lemma 2.2 (9) and (11),

. @3) = Vpegr, (D) & D) = ey, (@.9)

D(
= e, (7, y) = dy(z,y) = A(y) © Ala).

For B = ((5,1),(3,3),(1,1)),
) = Naex(dy(z,—) @ B(x) =1}, (B) = ((3,3).(3,3).
Cla (B) =V,yex(Bly) © di(=,y)) = Cy (B) = ((5.1), (5, 1), (1, 1)

4. CONCLUSION

We have studied the relations among the two types (right, left) of interior (closure)
operators, interior (closure, extensional) systems and distance functions based on a
generalized co-residuated lattice as a noncommutative structure. Moreover, we have
discussed their properties.

In the future, we plan to investigate fuzzy rough sets, fuzzy automata, information
systems and decision rules by using the concepts of two types in a generalized co-
residuated lattice. In particular, algebraic structures (interior (closure) operators,
interior (closure, extensional) systems, distance functions, fuzzy rough sets) can be
used to classify big data into small groups.

Funding: This work was supported by the Research Institute of Natural Science
of Gangneung-Wonju National University.
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