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Abstract. Dealing with uncertainty, imprecision and fuzziness, Soft set
theory is one of many mathematical tools; it is a classical generalization of
fuzzy set theory. Many researchers study the case of a universe set endowed
with an algebraic structure. This paper uses residuated multilattices as the
universe set for soft set theory. The notions of f-soft residuated multilattice,
r-soft residuated multilattice, soft filter, filteristic residuated multilattice are
defined, and several related properties are investigated.
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1. Introduction

Uncertainties occur in all areas of science and must therefore be managed rather
than avoided. Theories such as probability, fuzzy sets [1], vague sets [2] and rough
sets [3] are mathematical tools for handling uncertainties. As pointed out in [4],
the major drawback of all these theories is the lack of consideration of parameters.
That is why, soft set theory [4] was proposed by Molodtsov in 1999 to deal with
uncertainty in a parametric manner. A soft set is defined as a parameterized family
of sets which can be considered as an approximated description of an object, precisely
consisting of two parts, namely, predicate and approximate value set. Because of its
great potential, soft set theory has been rapidly developed with several applications.
In [5, 6], a theoretical study is carried out on soft sets. A survey on some of the
main developments of applications of soft sets theory in decision-making problems
is given in [4, 7, 8]. Applications of soft set theory to some algebraic structures such
as groups [9], rings [10, 11], lattices [12, 13], BCK/BCI-algebras [14], BL-algebras
[15] and to general algebras in [16].
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One of the most widely used algebraic theories is lattice theory. A lattice is a
poset where every pair of elements has a least upper bound and a greatest lower
bound. However, there are posets in which the set of upper (resp. lower) bounds of
a pair of elements has no smallest (resp. greatest) element, but minimal (resp. max-
imal) elements. Benado formalized this in [17] by extending the notion of lattice to
that of multilattice by weakening the uniqueness condition regarding upper and lower
bounds to the existence of minimal upper bounds and maximal lower bounds. Resid-
uation plays an important role in the algebraic study of logical systems; this lead to
logical algebraic structures, i.e., algebraic structures modeling logical systems. The
most widely used and important of these are residuated lattices. Focusing on the
link between the theory of multilattices and residuation, Cabrera et al. introduce
residuated multilattices [18]. Some authors have used multilattices and residuated
multilattices in the framework of fuzzy sets theory [19, 20].

In [21], we applied soft set theory to multilattices. Now, we focus on residuated
multilattices in the framework of soft sets. We defined the notions of f -soft resid-
uated multilattice, r-soft residuated multilattice, soft filter, filteristic soft residuated
multilattice and studied their related properties. The paper is organized as follows:
in Section 2, we set some preliminaries on soft sets and residuated multilattices. In
Section 3, we defined the notions of f -soft residuated multilattice and r-soft residu-
ated multilattice and study their properties related to operations on soft sets. We
focus on soft filter of an f -soft residuated multilattice in Section 4 while Section 5
deals with filteristic soft residuated multilattice. Finally, we draw some conclusions
and prospects for future work in Section 6.

2. Preliminaries

Given an initial universe set U and a set E of parameters, Molodtsov [4] defines
the notion on soft set over U as a pair (f,E) such that f is a mapping from E to the
power set P (U) of U . Thus, a soft set over a universe U is a parameterized family
of subsets of U . To define a soft set over a universe U means, for each parameter, to
point out the set of all elements of U that possess the given parameter. Of course,
this set can be empty for some parameters. For a soft set (f,E), the set of parameters
with a non-empty image subset of U is called the support of (f,E) and denoted by
supp(f,E). Then supp(f,E) = {p ∈ E : f(p) ̸= ∅}. It is often the practice to define a
soft set with a part of the set of parameters rather than the whole parameter’s set.
In what follows, we denote a soft set (f,E) with support A by fA. If the support A
is empty, then f∅ is the null soft set and will be denoted by Φ.

Let us recall some basics operators on soft sets (one can refer to [6]). Let fA and
hB be two soft sets over a universe U with the set of parameters E. Then fA is
called a soft subset of hB , if A ⊆ B and f(p) ⊆ h(p) for all p ∈ A. In this case, hB

is a soft supper set of fA. fA and hB are said to be soft equal, if fA is a soft subset
and a soft supper set of hB . The intersection of fA and hB denoted by fA ∩ hB is
the soft set (t, E), where t(p) = f(p) ∩ h(p) for all p ∈ E. Clearly, if A ∩ B = ∅,
then fA ∩ hB is the null soft set. If fA ∩ hB is non-null, then its support is the set
{p ∈ A ∩ B : f(p) ∩ h(p) ̸= ∅}. The union of the soft sets fA and hB is the soft
set (t, E), where t(p) = f(p) ∪ h(p) for all p ∈ E. As shown in [5], it is possible
to restrict the parameter set of the union or extend that of the intersection of two
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soft sets and obtain a restricted union ∪r by considering the intersection of the sets
of parameters or an extended intersection ∩e by considering the union of the sets
of parameters. Clearly, the restricted union of soft sets fA and hB over a common
universe U denoted by fA ∪r hB is the soft set tA∩B such that t(p) = f(p) ∪ h(p) if
p ∈ A ∩ B and the extended intersection of fA and hB denoted by fA ∩e hB is the

soft set tA∪B such that for all p ∈ A ∪B, t(p) =


f(p) if p ∈ A \B
h(p) if p ∈ B \A
f(p) ∩ h(p) else

and the restricted union of fA and hB with A∩B ̸= ∅ is the soft set tA∩B such that
for all p ∈ A ∩B, t(p) = f(p) ∪ h(p).

Given two soft sets fA and hB over a common universe parameterized by a set
E, one can define some soft sets with the set of parameters being a subset of E×E.
The soft set“fA AND hB”, denoted by fA ∧ hB is defined by fA ∧ hB = (t, A×B),
where t(p, q) = f(p) ∩ h(q) for all (p, q) ∈ E × E. While ”fA OR hB”, denoted
by fA ∨ hB is defined by fA ∨ hB = (s,A × B), with s(p, q) = f(p) ∪ h(q), for all
(p, q) ∈ A×B.

Additional operations such as difference, restricted difference, symmetric differ-
ence and restricted symmetric difference of two soft sets can be found in [5, 21].

Now, let us give some preliminaries on residuated multilattices (See [17, 22]).
Multilattices are natural generalization of lattices. Given a partially ordered set
(poset) (P,≤), x and y two elements of P such that x ≤ y, we say that x is below
y or y is above x. A poset (P,≤) is called a multilattice, if for any finite subset
X of P , each upper bound of X is above a minimal upper bound of X and each
lower bound of X is below a maximal lower bound of X. We denote x ⊓ y (resp.
x ⊔ y) the set of minimal upper bounds (resp. maximal lower bounds) of {x, y}.
We will sometimes write x ⊓ y = a instead of x ⊓ y = {a} and x ⊔ y = b instead
of x ⊔ y = {b} when x ⊓ y or x ⊔ y is a singleton. A multilattice is said to be
full, if x ⊓ y and x ⊔ y are non-empty for all x, y. A map φ : M → N between
two multilattices is said to be a homomorphism [17] if φ(x ⊓ y) ⊆ φ(x) ⊓ φ(y) and
φ(x ⊔ y) ⊆ φ(x) ⊔ φ(y) for all x, y ∈ M . The authors in [18] showed that when
the initial multilattice is full, the notion of homomorphism can be characterized in
terms of equalities as follows: let φ : M → N be a map between multilattices such
that M is full. Then φ is a homomorphism iff φ(x⊓ y) = (φ(x)⊓φ(y))∩φ(M) and
φ(x ⊔ y) = (φ(x) ⊔ φ(y)) ∩ φ(M) for all x, y ∈ M .

A structure P := (P,≤,⊤,⊙,→), is said to be pocrim (partially ordered com-
mutative residuated integral monoid), if (P,≤,⊤) is a poset with a greatest element
⊤ and (P,⊙,⊤) is a commutative monoid such that

(2.1) x⊙ y ≤ z ⇔ x ≤ y → z for all x, y, z ∈ P.

Then the pair (⊙,→) is called the residuation. If a pocrim has a least element,
usually denoted by ⊥, it is said to be bounded. A residuated multilattice (RML
for short) is a multilattice endowed with a residuation. It combines a structure of
pocrim and a structure of multilattice. Quite simply, it is a pocrim whose underling
poset is a multilattice [18]. When the underling poset is a lattice, the pocrim is
called a residuated lattice. Clearly, a residuated lattice is an RML. When an RML
is not a residuated lattice, it is said to be pure. The authors in [23] show that every
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⊤

e

c d

a b

⊥

⊙ ⊥ a b c d e ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a ⊥ a a a a
b ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ b
c ⊥ a ⊥ a a a c
d ⊥ a ⊥ a a a d
e ⊥ a ⊥ a a a e
⊤ ⊥ a b c d e ⊤

→ ⊥ a b c d e ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
a b ⊤ b ⊤ ⊤ ⊤ ⊤
b e e ⊤ ⊤ ⊤ ⊤ ⊤
c b e b ⊤ e ⊤ ⊤
d b e b e ⊤ ⊤ ⊤
e b e b e e ⊤ ⊤
⊤ ⊥ a b c d e ⊤

Figure 1. A residuated multilattice with seven elements: RML-7.

bounded pure RML has at least seven elements. Figure 1 gives the RML with
seven elements RML-7 from [23] that we will use throughout the paper.

Let P be an RML and X be a subset of P . X is called a full residuated submul-
tilattice (f-sub-RML), if X contains ⊤, x⊙ y, x → y, and x ⊓ y, x ⊔ y ⊆ X for all
x, y ∈ X. Similarly, X is called a restricted residuated submultilattice (r-sub-RML),
ifX contains ⊤, x⊙y, x → y and (x⊓y)∩X ̸= ∅, (x⊔y)∩X ̸= ∅ for all x, y ∈ X. For
example, {a, c, e,⊤} is an f -sub-RML and an r-sub-RML of RML-7. {a, c, d, e,⊤}
is an r-sub-RML of RML-7 which is not an f -sub-RML, since c ⊓ d = {a, b} and
b /∈ {a, c, d, e⊤}. One can remark that, as for Multilattices, an f -sub-RML of an
RML is anRML on its own. Moreover, any intersection of two f -sub-RMLs is also
an f -sub-RML, but it is not the case for r-sub-RMLs. Indeed,X = {⊥, a, b, c, e,⊤}
and Y = {⊥, a, b, d, e,⊤} are r-sub-RMLs, but X ∩ Y = {⊥, a, b, e,⊤} is not an
r-sub-RML, since a ⊔ b = {c, d} and {c, d} ∩ (X ∩ Y ) = ∅.

We end this section by recalling some useful properties that hold in a pocrim in
general and in an RML in particular. We consider a pocrim P which is an RML.
Let x, y, z ∈ P .

P1 x → x = ⊤ and ⊤ → x = x,
P2 x⊙ y ≤ x and x⊙ y ≤ y, then x ≤ y → x,
P3 x⊙ y ≤ x → y,
P4 x ≤ y ⇔ x → y = ⊤,
P5 x → y = y → x = ⊤ ⇔ x = y.

3. f-soft residuated multilattice and r-soft residuated multilattice

Throughout this section and the rest of the study, we will consider an RML
M := (M,≤,⊤,⊙,→) as our universe set and E a set of parameters. To simplify,
we will write M to denote the support or the whole residuated multilattice.

Definition 3.1. Let M be an RML and fA be a non-null soft set over M . Then
fA said to be:

(i) full soft residuated multilattice (briefly, f -soft-RML) over M , if f(p) is an
f -sub-RML of M for all p ∈ A,
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(ii) restricted soft residuated multilattice (briefly, r-soft-RML) over M , if f(p) is
an r-sub-RML of M for all p ∈ A.

Remark 3.2. Let M be an RML and x ∈ M . The following statements hold:

(1) {⊤} is an f -sub-RML of M ,
(2) {x,⊤} is an f -sub-RML of M iff x⊙ x = x.

Example 3.3. Consider RML-7 in Figure 1 and E = {p1, p2, p3}. Let fA and hB

be the soft sets over RML-7 defined by
fA = {(p1, {⊥,⊤}), (p2, {a,⊤})},
hB = {(p1, {⊥, a, b, c, e,⊤}), (p2, {⊥, b, d, e,⊤})},
tC = {(p1, {⊥,⊤}), (p2, {⊥, a,⊤})}.

Then we have f(p1) = {⊥,⊤}, f(p2) = {a,⊤}. By Remark 3.2, f(p1) and f(p2) are
f -sub-RMLs ofRML-7. Thus fA is an f -soft-RML overRML-7. However h(p1) =
{⊥, a, b, c, e,⊤} is not an f -sub-RML of RML-7, as a ⊔ b = {c, d} and we have
{c, d} ⊈ {⊥, a, b, c, e,⊤}. So hB is not an f -soft-RML over RML-7. Nevertheless,
hB is an r-soft-RML over RML-7.

tC is neither an f -soft-RML nor an r-soft-RML because t(p2) = {⊥, a,⊤} and
a →⊥= b /∈ t(p2).

Remark 3.4. Let M be an RML and fA be an f -soft-RML (resp. r-soft-RML)
over M . If ∅ ̸= B ⊆ A, then fB is an f -soft-RML (resp. r-soft-RML) over M .

Knowing that the intersection of f -sub-RMLs of an RML M is also an f -
sub-RML of M , we have the following result concerning the intersection of two
f -soft-RMLs over an RML M , whose proof is straightforward.

Proposition 3.5. Let M be an RML, fA and hB be two non-null f -soft-RMLs
over M . Then fA ∩hB and fA ∧hB are f -soft-RMLs over M if they are non-null.

We have shown in Section 2 that the intersection of r-sub-RMLs of an RML
M is not always an r-sub-RML. This is also the case for the intersection of r-soft-
RMLs. Indeed, by considering the RML in Figure 1, fA = {(p1, {⊥, a, b, c, e,⊤})}
and hB = {(p1, {⊥, a, b, d, e,⊤})}, clearly, fA and hB are r-soft-RMLs over RML-7
but fA ∩ hB is not since f(p1) ∩ h(p1) = {⊥, a, b, e,⊤} is not an r-sub-RML of
RML-7. Moreover, fA ∧ hB = {(p1, p1), {⊥, a, b, e,⊤})} is not an r-soft-RML.

Proposition 3.6. Let M be an RML, fA and hB be two non-null f -soft-RMLs
(resp. r-soft-RMLs) over M . If A∩B = ∅, then fA∪hB is an f -soft-RML (resp.
r-soft-RML) over M .

Proof. We know that fA ∪ hB is the soft set (t, E), where t(p) = f(p) ∪ h(p) for all
p ∈ A ∪ B and t(p) = ∅ if p /∈ A ∪ B. Suppose that fA and hB are f -soft-RMLs
over M and A ∩ B = ∅. Then for all p ∈ A ∪ B, either t(p) = f(p) or t(p) = h(p),
as A ∪ B = (A \ B) ∪ (B \ A). As fA and hB are f -soft-RMLs over M , if p ∈ A,
then f(p) is an f -sub-RML of M and if p ∈ B, then h(p) is an f -sub-RML of M .
That is t(p) is an f -sub-RML of M for all p ∈ A∪B. This implies that fA ∪ hB is
an f -soft-RML over M as required.

The proof for r-soft-RML can be obtained similarly. □
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If A ∩ B ̸= ∅, then fA ∪ hB may not be an f -soft-RML. Let us consider, for
example fA = {(p1, {⊥,⊤})} and hB = {(p1, {a,⊤})} which are f -soft-RMLs over
RML-7. We have fA ∪ hB = {(p1, {⊥, a,⊤})} which is not an f -soft-RML because
{⊥, a,⊤} is not an f -sub-RML of RML-7, since a →⊥= b /∈ {⊥, a,⊤}. However,
fA ∪ hB can still be an f -soft-RML even if A∩B ̸= ∅, as explained in Proposition
3.7, whose proof is similar to Proposition 3.6.

Proposition 3.7. Let M be an RML, fA and hB be two non-null f -soft-RMLs
(resp. r-soft-RMLs) over M such that for all p ∈ E, f(p) ⊆ h(p) or h(p) ⊆ f(p).
Then fA ∪ hB is an f -soft-RML (resp. r-soft-RML) over M .

If fA and hB are two non-null f -soft-RMLs over an RML M , fA ∨ hB may not
be an f -soft-RML even if A ∩ B = ∅. Indeed, from the RML of Figure 1, let us
consider fA = {(p1, {⊥,⊤})} and hB = {(p2, {a,⊤})}. By Remark 3.2, fA and hB

are f -soft-RMLs over RML-7. However, fA ∨ hB = {((p1, p2), {⊥, a,⊤})} is not an
f -soft-RML. One can also observe that fA and hB are r-soft-RMLs but fA ∨ hB

is not.

Proposition 3.8. Let M be an RML, fA and hB be two non-null f -soft-RMLs
over M . Then fA ∩g hB is an f -soft-RML over M if it is non-null.

Proof. If fA ∩g hB is non-null, then fA ∩g hB is the soft set (t, E) such that for all

p ∈ A ∪B, t(p) =


f(p) if p ∈ A \B
h(p) if p ∈ B \A
f(p) ∩ h(p) else .

In each case, t(p) is an f -sub-RML of M . We conclude that fA ∩g hB is an f -soft-
RML over M . □

4. Soft filter of an f-soft residuated multilattice

The notion of filter, originated in topology, is very useful in various algebraic
structures endowed with a (partial) order. As stated above, the structure of residu-
ated multilattice is a combination of two structures, namely the structure of pocrim
and the structure of multilattice. In what follows, we will consider the notion of
filter in the structure of pocrim that we will call p-filter, the notion of filter in a
multilattice that we will call m-filter and we will call filter the one that combines
the structures of pocrim and multilattice. In this section, we extend this notion to
the framework of soft set theory.

Let recall from [18] the definition and some properties on filters in residuated
multilattices.

Definition 4.1. Let M be an RML. A non-empty subset F ⊆ M is said to be a
p-filter of M , if the following conditions hold:

(i) if x, y ∈ F , then x⊙ y ∈ F ,
(ii) if x ∈ F and x ≤ y, then y ∈ F .

Note that if F is a p-filter of an RML M , then ⊤ ∈ F . Moreover, if x, x → y ∈ F ,
then y ∈ F . A subset D ⊆ M containing ⊤ and satisfying (x, x → y ∈ D) imply
y ∈ D is called a deductive system. Thus a p-filter is a deductive system. The
converse is also true.
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Definition 4.2. Let M be an RML. A non-empty set F ⊆ M is said to be an
m-filter, if the following conditions hold:

(i) for all x, y ∈ F , ∅ ̸= x ⊓ y ⊆ F ,
(ii) for all x ∈ F and y ∈ M , x ⊔ y ⊆ F ,
(iii) for all x, y ∈ M , if (x ⊔ y) ∩ F ̸= ∅, then x ⊔ y ⊆ F .

Cabrera et al. [18] have proposed a notion of filter in the RML structure which
combines pocrim and multilattice structures.

Definition 4.3. Let M be an RML. A non-empty subset F ⊆ M is said to be a
filter, if it is a deductive system and the following condition holds:

x → y ∈ F implies (x ⊔ y) → y ⊆ F and x → (x ⊓ y) ⊆ F.

It is known that a filter of an RML is an m-filter and a p-filter but the converse
is not true [18]. One can easily observe that:

Remark 4.4. Let M be an RML. The following conditions hold:

(1) {⊤} and M are filters of M ,
(2) if F is a filter of M , then F is an f -sub-RML of M .

Proposition 4.5. Let M be an RML, F and G be two filters of M . Then F ∩G
is a filter of M .

One can easily observe that if X is an f -sub-RML of an RML M, then X is an
RML on its own right. Then we introduce the notion of soft filter of an f -soft-RML
as follows:

Definition 4.6. Let hF be a non-null soft set over an RML M and fA be an f -
soft-RML over M . Then hF is called a soft filter of fA, if the following conditions
hold:

(i) F ⊆ A,
(ii) for all p ∈ F , h(p) is a filter of f(p).

Example 4.7. Let M be the RML described in Figure 2. The soft set fA over M
defined by fA = {(p1, {g, h,⊤}), (p2, {f,⊤}), (p3, {⊥,⊤})} is clearly an f -soft-RML
over M . hF = {(p1, {h,⊤}), (p2, {⊤})} is a soft filter of fA.

Using Remark 4.4, one can observe that any soft filter is an f -soft-RML over M .
Let us now give some properties of soft filters.

Proposition 4.8. Let fA be an f -soft-RML over an RML M . Let hF and tG be
two soft filters of fA. Then hF ∩ tG is a soft filter of fA if it is non-null.

Proof. Suppose hF ∩ tG is non-null. Then hF ∩ tG = uC with C = {p ∈ F ∩ G :
h(p) ∩ t(p) ̸= ∅} and u(p) = h(p) ∩ t(p) for all p ∈ C. As hF and tG are soft filters
of fA, we have F ⊆ A and G ⊆ A, that is, C ⊆ A. If p ∈ C, then p ∈ F and p ∈ G.
This implies that h(p) and t(p) are filters of f(p). By Proposition 4.5, we deduce
that u(p) = h(p)∩ t(p) is a filter of f(p). It follows that uC is a soft filter of fA. □

The union of two soft filters of an f -soft-RML is not always a soft filter. Indeed,
let us consider M as in Example 4.7 and define fA = {(p1,M)} which is an f -soft-
RML over M . The soft sets hF = {(p1, {g, h,⊤})} and tG = {(p1, {f, h,⊤})} are
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h

⊤ ⊙ ⊥ a b c d e f g h ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ a
b ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ b
c ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ c
d ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ d
e ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ e
f ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ f ⊥ f f
g ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ g g g
h ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ f g h h
⊤ ⊥ a b c d e f g h ⊤

→ ⊥ a b c d e f g h ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
a h ⊤ h ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
b h h ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
c h h h ⊤ h ⊤ ⊤ ⊤ ⊤ ⊤
d h h h h ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
e h h h h h ⊤ ⊤ ⊤ ⊤ ⊤
f g g g g g g ⊤ g ⊤ ⊤
g f f f f f f f ⊤ ⊤ ⊤
h e e e e e e f g ⊤ ⊤
⊤ ⊥ a b c d e f g h ⊤

Figure 2. Residuated multilattice with 10 elements

soft filters of fA but hF ∪ tG = {(p1, {f, g, h,⊤})} is not a soft filter of fA because
{f, g, h,⊤} is not a filter of M , as f ⊓ g = e /∈ {f, g, h,⊤}. However, the following
result gives a sufficient condition for the union of two soft filters of an f -soft-RML
to be a soft filter.

Proposition 4.9. Let fA be an f -soft-RML over an RML M . Let hF and tG be
two soft filters of fA. If F ∩G = ∅, then hF ∪ tG is a soft filter of fA.

Proof. We know that hF ∪ tG is the soft set (u,E), where u(p) = h(p) ∪ t(p) for
all p ∈ F ∪ G and u(p) = ∅ if p /∈ F ∪ G. As hF and tG are soft filters of fA, we
have F ⊆ A and G ⊆ A, which implies that F ∪ G ⊆ A. If p ∈ F ∪ G, then either
p ∈ F \G or p ∈ G \ F . That is, u(p) = h(p) or u(p) = t(p). In both cases, t(p) is a
filter of f(p), as hF and tG are soft filters of fA. We can conclude that hF ∪ tG is a
soft filter of fA. □

Proposition 4.10. Let fA be an f -soft-RML over an RML M . Let hF and tG
be two soft filters of fA. Then hF ∩g tG is a soft filter of fA if it is non-null.
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Proof. Suppose hF ∩g tG is non-null. Then hF ∩g tG is the soft set (u,E), where for
all p ∈ F ∪G,

u(p) =


h(p) if p ∈ F \G
t(p) if p ∈ G \ F
h(p) ∩ t(p) else.

As hF and tG are soft filters of fA, F ⊆ A and G ⊆ A. That is, F ∪ G ⊆ A.
Knowing that the intersection of two filters of an RML is also a filter (Proposition
4.5), u(p) = h(p) ∩ t(p) is a filter of f(p), if p ∈ F ∩ G. For the others two cases,
u(p) is evidently a filter of f(p), as hF and tG are soft filters of fA. It follows that
hF ∩g tG is a soft filter of fA. □

5. Filteristic soft residuated multilattice

In the previous section, we have presented the notion of soft filter, which is related
to an f -soft-RML. In this section, we present the notion of filteristic soft residuated
multilattice, which is related to the universe. We also look about the link between
homomorphisms and filters.

Definition 5.1. A non-null soft set fA over an RML M is called a filteristic soft
residuated multilattice over M , if f(p) is a filter of M for all p ∈ A.

Example 5.2. Let M be the RML of Figure 2.
fA = {(p1, {f, h,⊤}), (p2, {g, h,⊤}), (p3, {h,⊤})} is a filteristic soft residuated

multilattice over M .

Remark 5.3. A soft filter of an f -soft-RML over an RML M is not always
a filteristic soft residuated multilattice over M . Indeed, let M be the RML of
Figure 2. The soft set fA = {(p1,M \ {f, g})} is an f -soft-RML over M and
hF = {(p1, {e, h⊤})} is a soft filter of fA but it is not a filteristic soft residuated
multilattice because h(p1) = {e, h,⊤} is not a filter of M .

Proposition 5.4. Let fA and hB be two filteristic soft residuated multilattices over
an RML M . Then:

(1) fA ∩ hB is a filteristic soft residuated multilattice over M if it is non-null,
(2) if A ∩ B = ∅, then fA ∪ hB is a filteristic soft residuated multilattice over

M ,
(3) fA ∧ hB is a filteristic soft residuated multilattice over M if it is non-null,
(4) fA ∩g gB is a filteristic soft residuated multilattice over M if it is non-null.

Proof. (1) The proof is similar to Proposition 4.8.
(2) The proof is similar to Proposition 4.9.
(3) The proof follows from Proposition 4.5.
(4) The proof is similar to Proposition 4.10. □

Given an RML M , we know that {⊤} and M are filters of M . They are known
as trivial filter and whole filter. We set a trivial and whole filteristic soft residuated
multilattices to be as follows:

Definition 5.5. Let M be an RML. Then a filteristic soft residuated multilattice
fA over M is said to be:
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(i) trivial,if f(p) = {⊤} for all p ∈ A.
(ii) whole, if f(p) = M for all p ∈ A.

In general, a homomorphism between residuated multilattices is a homomorphism
of multilattice which preserves the multiplication (⊙) and the implication (→). In
what follows, we investigate the interaction between filters and homomorphisms.

According to the fact that an RML is always full (as multilattice), we have the
following definition:

Definition 5.6 ([18]). Let M and N be two RMLs. A map φ : M → N is said to
be an homomorphism, if the following conditions hold: for all x, y ∈ M ,

(i) φ(x ⊓ y) = (φ(x) ⊓ φ(y)) ∩ φ(M) and φ(x ⊔ y) = (φ(x) ⊔ φ(y)) ∩ φ(M),
(ii) φ(x⊙ y) = φ(x)⊙ φ(y) and φ(x → y) = φ(x) → φ(y).

One can easily observe that φ(⊤) = ⊤ for all homomorphism φ between residuated
multilattices.

Proposition 5.7. [18]Let φ : M → N be an homomorphism between residuated
multilattices. Then:

(1) φ−1(⊤) is a filter of M ,
(2) if F is a filter of N , then φ−1(F ) is a filter of M .

Proposition 5.8. Let φ : M → N be an homomorphism between residuated multi-
lattices. If F is a filter of M and φ bijective, then φ(F ) is a filter of N .

Proof. Suppose F is a filter of M . Note that as φ is surjective, we deduce from
Definition 5.6 that φ(x ⊓ y) = φ(x) ⊓ φ(y) and φ(x ⊔ y) = φ(x) ⊔ φ(y) for all
x, y ∈ M . Moreover, if x ≤ y, then φ(x) = φ(x ⊓ y) = φ(x) ⊓ φ(y), which implies
that φ(x) ≤ φ(y). Then φ is an isotone function. Thus φ−1 is an isotone function.

(i) Let z, t ∈ φ(F ). Then there exist x, y ∈ F such that z = φ(x) and t = φ(y).
Thus we have z⊙t = φ(x)⊙φ(y) = φ(x⊙y). As F is a filter of M , x⊙y ∈ F .
That is, z ⊙ t = φ(x⊙ y) ∈ φ(F ).

(ii) Let z ∈ φ(F ) and t ∈ N such that z ≤ t. Then there exist x ∈ F such that
φ(x) = z and by the surjectivity of φ, an element y ∈ M such that φ(y) = t.
We have to show that t ∈ φ(F ). As φ−1 is isotone, we have from z ≤ t that
φ−1(z) ≤ φ−1(t). Thus φ−1(φ(x)) ≤ φ−1(φ(y)), i.e., x ≤ y. As F is a filter
of M and x ∈ F , we deduce that y ∈ F , which implies that t = φ(y) ∈ φ(F ).

(iii) Let z, t ∈ N such that z → t ∈ φ(F ). We will show that (z ⊔ t) → t ⊆ φ(F )
and z → (z ⊓ t) ⊆ φ(F ). As φ is surjective, there exist x, y ∈ M such that
z = φ(x) and t = φ(y). From z → t ∈ φ(F ), we have φ(x) → φ(y) ∈ φ(F ),
i.e., φ(x → y) ∈ φ(F ), which implies by the bijectivity of φ that x → y ∈ F .
Now, we have (z ⊔ t) → t = (φ(x) ⊔ φ(y)) → φ(y) = φ((x ⊔ y) → y). As
x → y ∈ F , we have (x ⊔ y) → y ⊆ F , which implies that (z ⊔ t) → t =
φ((x ⊔ y) → y) ⊆ φ(F ). Similarly, we obtain z → (z ⊓ t) ⊆ φ(F ).

□

Let fA be a soft set over an RML M and φ : M → N be a map between RMLs.
Let us consider the mapping φ̃ : P (M) → P (N) such that φ̃(X) = φ(X) (the direct
image), for all X ∈ P (M). We can see that (φ̃ ◦ f,E) is a soft set over N . If p ∈ A,
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then f(p) ̸= ∅, i.e., φ(f(p)) ̸= ∅. If rather f(p) = ∅ (p /∈ A), then φ(f(p)) = ∅.
Thus f and (φ̃ ◦ f,E) have the same support A; we will denoted (φ̃ ◦ f,E) by φfA
in the sequel.

Proposition 5.9. Let M and N be two RMLs and φ : M → N be a surjective
homomorphism. If fA is an f -soft-RML over M , then φfA is an f -soft-RML over
N .

Proof. Suppose fA is an f -soft-RML over M and let p ∈ A. We have to show that
φf(p) is an f -sub-RML of N . As fA is an f -soft-RML, we have ⊤ ∈ f(p), which
implies ⊤ = φ(⊤) ∈ φf(p). Now, let z, t ∈ φf(p). Then there exists x, y ∈ f(p)
such that z = φ(x) and t = φ(y). We have to show that z ⊔ t ⊆ φ(f(p)) and
z ⊓ t ⊆ φ(f(p)). As fA is an f -soft residuated multilattice over M , f(p) is an
f -sub-RML of M , x ⊔ y ⊆ f(p) and x ⊓ y ⊆ f(p) which implies that

φ(x ⊔ y) ⊆ φ(f(p)) and φ(x ⊓ y) ⊆ φ(f(p)).

As φ is surjective, φ(x⊔ y) = φ(x)⊔φ(y) and φ(x⊓ y) = φ(x)⊓φ(y). Thus we have
φ(x)⊔φ(y) ⊆ φ(f(p)) and φ(x)⊓φ(y) ⊆ φ(f(p)) which implies that z⊔ t ⊆ φ(f(p))
and z ⊔ t ⊆ φ(f(p)) as required. It remains to show that z⊙ t, z → t ∈ φf(p). Since
f(p) is an f -sub-RML of M , x ⊙ y ∈ f(p) and x → y ∈ f(p), i.e., φ(x) ⊙ φ(y) =
φ(x⊙y) ∈ φf(p) and φ(x) → φ(y) = φ(x → y) ∈ φf(p). It follows that z⊙t ∈ φf(p)
and z → t ∈ φf(p). □

Proposition 5.10. Let φ : M → N be a bijective homomorphism of residuated
multilattices and fA be an f -soft-RML over M . If hF is a soft filter of fA, then
φhF is a soft filter of φfA.

Proof. Suppose hF is a soft filter of fA. Clearly, φfA is an f -soft-RML over N
according to Proposition 5.9. F ⊆ A stems from the fact that hF is a soft filter of
fA. It remains to show that φ(h(p)) is a filter of φ(f(p)) for all p ∈ F . In fact, if
p ∈ F , then h(p) is a filter of f(p). Since f(p) is an RML on it own, by applying
Proposition 5.8, φ(h(p)) is a filter of φ(f(p)) as required. □

Proposition 5.11. Let φ : M → N be a bijective homomorphism of residuated
multilattices. If fA is a filteristic soft residuated multilattice over M , then φfA is a
filteristic soft residuated multilattice over N .

Proof. Let φ be a bijective homomorphism and suppose fA is a filteristic soft resid-
uated multilattice. Then fA is non-null, which implies that φfA is a non-null soft
set over N . For all p ∈ A, f(p) is a filter of M , as fA is a filteristic soft residuated
multilattice. As φ is bijective, we deduce from Proposition 5.8 that φ(f(p)) is a
filter of N . It follows that φfA is a filteristic soft residuated multilattice over N . □

Proposition 5.12. Let fA be a filteristic soft residuated multilattice over an RML
M and φ : M → N be a bijective homomorphism of residuated multilattices.

(1) If f(p) = φ−1(⊤) for all p ∈ A, then φfA is a trivial filteristic soft residuated
multilattice over N .

(2) If fA is whole, then φfA is a whole filteristic soft residuated multilattice over
N .
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Proof. Let fA be a filteristic soft residuated multilattice over M and φ be a bijective
homomorphism.

(1) Suppose f(p) = φ−1(⊤) for all p ∈ A. Then φ(f(p)) = φ(φ−1(⊤)) = ⊤. Thus
φfA is a trivial filteristic soft residuated multilattice.

(2) Suppose fA is whole. Then for all p ∈ A, f(p) = M , that is φ(f(p)) = φ(M) =
N . Thus φfA is a whole filteristic soft residuated multilattice over M . □

6. Conclusion

We have used residuated multilattices as universe sets within the framework of
soft set theory, studying the notions of f-soft residuated multilattices and r-soft
residuated multilattices. We introduced some related notions such as soft filters and
filteristic soft residuated multilattices with illustrative examples. Some properties
of these concepts are proven. We plan to investigate some applications of this study
to formal concept analysis.
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congruences of multilattices, Advances in Fuzzy Sets and Systems 26 (2021) 145–174.

60



Kouankam et al. /Ann. Fuzzy Math. Inform. 29 (2025), No. 1, 49–61
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