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Abstract. This paper explores approximation spaces defined by residu-
ated multilattices equipped with an equivalence relation induced by filters.
It extends the work of J. Rachunek and D. Salounova on roughness in resid-
uated lattices. Specifically, we use equivalence classes induced by filters,
to define lower and upper approximations and, we provide several charac-
terizations of these approximations.
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1. Introduction

It is well known that certain information processing, especially inferences based
on certain information, is based on the classical logic (classical two-valued logic).
Naturally, it is necessary to establish some rational logic systems as the logical
foundation for uncertain information processing. For this reason, various kinds of
non-classical logic systems have been extensively proposed and researched. In fact,
non-classical logic has become a formal and useful tool for computer science to deal
with uncertain information and fuzzy information. Among these logical algebras,
residuated lattices are very basic and important algebraic structures because the
other logical algebras are all particular cases of residuated lattices, but in lattices
there is a restriction namely, “the existence of least upper bounds and greatest lower
bounds”. Then Benado and Hassen [1, 2] introduced an algebraic structure called
multilattice, where this restriction is relaxed by the “existence of minimal upper
bounds and maximal lower bounds”. Multilattices arise as well in other research
areas, such as fuzzy extensions of logic programming: for instance, one of the hy-
potheses of the main termination result for sorted multi-adjoint logic programs can



Dongmo et al. /Ann. Fuzzy Math. Inform. 28 (2024), No. 3, 307–318

be weakened only when the underlying set of truth-values is a multilattice. Also
in formal concept analysis, Medina et al. [3] showed that only multilattices as the
underlying set of truth degree can deal with certain kind of fuzzy data (such as
classifications of hotels with same stars) to evaluate objects, attributes and their
relationship(See [4]). Based on partially ordered commutative residuated integral
monoid, Cabrera et al. [5] provided the notion of residuated multilattice and inves-
tigated their filters and congruences. A more interesting application of residuated
multilattice in formal concept analysis can be found in which Koguep et al. [6] have
built a residuated concepts multilattice.

The concept of rough set was originally proposed by Pawlak [7] as a formal tool
for modelling and processing incomplete information. The theory of rough set is an
extension of set theory, in which a subset of a universe is described by a pair of ordi-
nary sets called the lower and upper approximations. A key notion in Pawlak rough
set model is an equivalence relation. The equivalence classes are the building blocks
for the construction of the lower and upper approximations. The lower approxima-
tion of a given set is the union of all the equivalence classes which are subsets of the
set, and the upper approximation is the union of all the equivalence classes which
have a non-empty intersection with the set. It is a natural question to ask what
happen if we substitute the universe by an algebraic structure. In this direction,
B. Davvaz et al. explored roughness in a ring [8], roughness in MV-algebras [9],
roughness in n-ary hypergroups [10] and also approximations based on fuzzy ideals
in a ring [11]. Rachunek and Salounova [12] investigated applications of rough set
theory to residuated lattice.

The aim of this paper is to extend the work of Rachunek and Salounova [12]
by studying approximation spaces in residuated multilattices based on their filters.
The contributions are the following items: Firstly, we apply the notion of filters
of a residuated multilattice for definitions of the lower and upper approximations,
then we provide relations between approximations of the multisupremum of two sets
and the multisupremum of the approximations of these sets. Secondly, we establish
some connections between approximation spaces, special filters, residuated full sub-
multilatices and homomorphisms.

The organization of this paper is the following: in Section 2 we recall basic no-
tions to make this paper self-contained. In Section 3 we define lower and upper
approximations in a residuated multilattice with respect to filters, and we provide
some properties of theses approximations.

2. Preliminaries

In this section, we recall several notions from multilattice theory and some basic
notions of rough sets in order to make our paper self contained.

2.1. Residuated Multilattice.

A complete lattice is a poset such that the set of upper (respectively lower)
bounds of every subset has a unique minimal (respectively maximal) element, that
is, a minimum (respectively maximum). In a multilattice, this property is relaxed

308



Dongmo et al. /Ann. Fuzzy Math. Inform. 28 (2024), No. 3, 307–318

in the sense that minimal elements for the set of upper bounds should exist, but the
uniqueness condition is dropped.

Let (P,≤) be a poset and X ⊆ P . We denote by U(X) (resp. L(X)) the set of
upper (resp. lower) bounds of X. A multisupremum (resp. multiinfimum) of X is
a minimal (resp. maximal) element of U(X) (resp. L(X)). The set of multisuprema
(resp. multiinfima) of X is denoted by ⊔X (resp. ⊓X). For x, y ∈ P , we simply
write U(x), L(x), x ⊔ y, x ⊓ y for U({x}), L({x}), ⊔{x, y}, ⊓{x, y}, respectively.

A multilattice is a poset (M,≤) satisfying the following conditions:, for any any
a, b ∈ M ,

(i) if x ∈ M is an upper bound of {a, b}, there exits a multisupremum m ∈ a ⊔ b
such that m ≤ x,

(ii) if x ∈ M is a lower bound of {a, b}, there exits a multiinfinimum m ∈ a ⊓ b
such that x ≤ m.
If the pair {a, b} is changed by an arbitrary subset X ⊆ M , one obtains a complete
multilattice. Figure 1 gives an example of multilattices.

⊥

a b

dc
e

⊤

a b

dc

Figure 1. On the left: (M7,≤), is a complete multilattice. and on
the right: An example of multilattice which is not complete.

A multilattice is said to be full, if a ⊓ b ̸= ∅ and a ⊔ b ̸= ∅ for all a, b ∈ M .
Now, we are going to introduce the notion of residuation.

Definition 2.1 ([13]). A partially ordered commutative residuated integral monoid
(briefly, pocrim) is a structure (A,≤,⊙,→,⊤) such that

(i) (A,⊙,⊤) is a commutative monoid with neutral element ⊤,
(ii) (A,≤) is a poset with a top element ⊤,
(iii) a⊙ b ≤ c ⇐⇒ a ≤ b → c for all a, b, c ∈ A. (adjointness condition)

The following properties hold in pocrims.

Proposition 2.2 ([5]). Let (A, ≤, ⊙, →, ⊤) be a pocrim and a, b, c ∈ A. We
have the following:

P1 a⊙ b ≤ a and a⊙ b ≤ b,
P2 a⊙ (a → b) ≤ a ≤ b → (a⊙ b) and a⊙ (a → b) ≤ b ≤ a → (a⊙ b),
P3 if a ≤ b, then a⊙ c ≤ b⊙ c, c → a ≤ c → b, and b → c ≤ a → c,
P4 a → (b → c) = b → (a → c) = (a⊙ b) → c,
P5 ⊤ → a = a and a → ⊤ = ⊤,

309



Dongmo et al. /Ann. Fuzzy Math. Inform. 28 (2024), No. 3, 307–318

P6 a ≤ b if and only if a → b = ⊤.

Definition 2.3 ([13]). For given a pocrim (A,≤,⊙,→,⊤), a non-empty subset F
of A is called a deductive system, if it satisfies the following conditions:

(i) ⊤ ∈ F ,
(ii) a → b ∈ F and a ∈ F imply b ∈ F .

On any bounded, pocrim (A,≤,⊙,→,⊥,⊤) we can define an unary operator ∗
by a∗ := a → ⊥ for any a ∈ A.

Definition 2.4 ([13]). A residuated multilattice is a pocrim, whose underlying poset
is a multilattice. If in addition, there exists a bottom element, the residuated mul-
tilattice is said to be bounded.

A bounded residuated multilattice (M,≤,→,⊙,⊥,⊤) is say to be regular, if
x∗∗ = x for all x ∈ M .

Definition 2.5 ([6]). Let (M,≤,→,⊙,⊥,⊤) be a bounded residuated multilattice
and X a subset of M . We say that X is a residuated full sub-multilattice, if the
following hold:

(S1) ⊤ ∈ X,
(S2) For every x, y ∈ X, x⊙ y ∈ X and x → y ∈ X,
(S3) X is a full sub-multilattice, i.e.,

∀x, y ∈ X, x ⊔ y ⊆ X and x ⊓ y ⊆ X.

From now, M := (M,≤,⊙,→,⊥,⊤) will denote a complete residuated mul-
tilattice. The operations ⊙, →, ∗ and hyperoperations ⊓,⊔ can be extended to
P(M)− {∅} as follows: for A,B ∈ P (M)− {∅},

A⊙B := {a⊙ b : a ∈ A and b ∈ B}, A → B := {a → b : a ∈ A and b ∈ B},
A ⊔B := ∪

a∈A,b∈B
a ⊔ b, A ⊓B := ∪

a∈A,b∈B
a ⊓ b,

A∗ := {a∗ : a ∈ A}.

Let R be a binary relation in M, and A,B ⊆ M , then AR̂B means that, for all
a ∈ A, there exists b ∈ B such that aRb and for all b ∈ B there exists a ∈ A such
that aRb.

A congruence in M is any equivalence relation R in M, that satisfied: if aRb,

then (a ⊙ c)R(b ⊙ c), (a → c)R(b → c), (c → a)R(c → b), (a ⊔ c)R̂(b ⊔ c), (a ⊓
c)R̂(b ⊓ c) ∀a, b, c ∈ M.

A map f : M → M ′ between two residuated multilattices is said to be a
homomorphism, if for all a, b ∈ M ,

(i) f(a ⊔ b) =
(
f(a) ⊔ f(b)

)
∩ f(M) and f(a ⊓ b) =

(
f(a) ⊓ f(b)

)
∩ f(M),

(ii) f(a⊙ b) = f(a)⊙ f(b) and f(a → b) = f(a) → f(b).
A non-empty subset F ⊆ M is said to be a filter, if it is a deductive system and

the following conditions hold:

a → b ∈ F implies (a ⊔ b) → b ⊆ F and a → (a ⊓ b) ⊆ F .

Theorem 2.6 ([13]). Let h : M → M ′ be a homomorphism between residuated
multilattices.

(1) The Kernel relation, defined as:
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aRKerhb if and only if h(a) = h(b)

is a congruence on M.
(2) Let F be a filter of M. The relation

aRF b if and only if a → b, b → a ∈ F

is a congruence relation of M.

2.2. Rough set theory.

Rough set theory, propose a mathematical approach to imperfect knowledge,
it can be defined by means of topological operations, interior and closure called
approximations. Let U be a finite set of objects and R ⊆ U × U a binary equiva-
lence relation. A pair (U,R) is called approximation space on U . For X ⊆ U ,

(i) the set of all objects which can be certainty classified as members of X with
respect to R is called the lower approximation of X and denoted by R(X), i.e.,

R(X) = {x ∈ X : [x] ⊆ X},
(ii) the set of all objects which can be only classified as possible members of X

with respect to R is called the upper approximation of a set X and denoted R(X),
i.e.,

R(X) = {x ∈ X : [x] ∩X ̸= ∅},
(iii) the set of all objects which cannot be classified either to X or to −X (the

complement of X) is called boundary region of a set X and denoted B(X), i.e.,

B(X) = R(X)−R(X)

(iv) a pair (R(X), R(X)) is called a rough set in (U,R).
(v) X is said to be definable, if R(X) = R(X).

3. Approximations in a residuated multilattice

In this section, we denote by RF a congruence relation induced by the filter F of
M. For any A ⊆ M , we denote [A]F = ∪

x∈A
[x]F , where [x]F is the equivalence class

of x with respect to the congruence RF .
We therefore define, for any subset A of M the upper and lower approximations

as follow:

RF (A) = {x ∈ M : [x]F ∩A ̸= ∅},
RF (A) = {x ∈ M : [x]F ⊆ A}.

Since RF is an equivalence relation, from [7], we have the following proposition.

Proposition 3.1. For every approximation space (M,RF ) and for every subsets
A, B ⊆ M , we have the following:

(1) RF (A) ⊆ A ⊆ RF (A),

(2) RF (∅) = RF (∅) and RF (M) = RF (M),

(3) RF (A ∪B) = RF (A) ∪RF (B) and RF (A ∪B) ⊇ RF (A) ∪RF (B),

(4) RF (A ∩B) = RF (A) ∩RF (B) and RF (A ∩B) ⊆ RF (A) ∩RF (B),

(5) A ⊆ B ⇒ RF (A) ⊆ RF (B) and RF (A) ⊆ RF (B),

(6) RF (RF (A)) = RF (RF (A)) = RF (A),

(7) RF (RF (A)) = RF (RF (A)) = RF (A).
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The following Corollary is a consequence of the fifth item of the previous propo-
sition.

Corollary 3.2. Let A and B be two non-empty subsets of M . Since for each x ∈
A ∩B, we have x = x ⊓ x and x = x ⊔ x. Then

A ∩B ⊆ A ⊓B and A ∩B ⊆ A ⊔B,

we have the following:

(1) RF (A ∩B) ⊆ RF (A ⊓B) and RF (A ∩B) ⊆ RF (A ⊔B),
(2) RF (A ∩B) ⊆ RF (A ⊓B) and RF (A ∩B) ⊆ RF (A ⊔B).

In particular, if A and B are filters, we obtain

RF (A ∩B) = RF (A ⊔B) and RF (A ∩B) = RF (A ⊔B).

Proposition 3.3. Let A, B be two non-empty subsets of M and F be a filter of
M. Then

(1) RF (A) ∩RF (B) ⊆ RF (A ⊔B),
(2) RF (A) ∩RF (B) ⊆ RF (A ⊔B).

In particular, if A and B are filters of M, we obtain equalities.

Proof. (1) Let x ∈ RF (A)∩RF (B). Then we have [x]F ∩A ̸= ∅ and [x]F ∩B ̸= ∅.
Thus there exist a1 ∈ [x]F ∩A and b1 ∈ [x]F ∩B. Since M is complete, there exists
t ∈ a1 ⊔ b1. So we obtain

t ∈ A ⊔B and t ∈ [x]F ⊔ [x]F = [x ⊔ x]F = [x]F .

Hence [x]F ∩ (A ⊔B) ̸= ∅. Therefore RF (A) ∩RF (B) ⊆ RF (A ⊔B).
(2) Let x ∈ RF (A)∩RF (B). Then we obtain [x]F ⊆ A and [x]F ⊆ B. If t ∈ [x]F ,

then t ∈ A and t ∈ B. Thus [x]F ⊆ A ⊔ B, since t = t ⊔ t. So RF (A) ∩ RF (B) ⊆
RF (A ⊔B).

Now, suppose A and B are filters. Then A ∩B = A ⊔B. Thus we have

RF (A ⊔B) = RF (A ∩B) ⊆ RF (A) ∩RF (B)

and
RF (A ⊔B) = RF (A ∩B) = RF (A) ∩RF (B).

So we obtain equality for the two items. □

We obtain the following corollary.

Corollary 3.4. Let A,B be two non empty subsets of M and F be a filter of M .
Suppose that RF is a complete congruence. Then

(1) RF (A) ⊔RF (B) ⊆ RF (A ⊔B),
(2) RF (A) ⊔RF (B) ⊆ RF (A ⊔B).

In particular, if A and B are filters of M , we obtain equalities.

Proof. (1) Let x ∈ RF (A) ⊔ RF (B). We have x ∈ a ⊔ b with a ∈ RF (A) and
b ∈ RF (B). Then [a]F ∩ A ̸= ∅ and [b]F ∩ B ̸= ∅, i.e., there exist a1 ∈ [a]F ∩ A

and b1 ∈ [b]F ∩ B. It is clear that a1RFa and b1RF b. Thus a1 ⊔ bR̂Fa ⊔ b and

a1 ⊔ b1R̂Fa1 ⊔ b So a1 ⊔ b1R̂Fa⊔ b. Since x ∈ a⊔ b, there exists t ∈ a1 ⊔ b1 such that
tRFx. Hence t ∈ [x]F ∩ (A ⊔B). Therefore RF (A) ⊔RF (B) ⊆ RF (A ⊔B).
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(2) Let x ∈ RF (A)⊔RF (B). We have x ∈ a⊔ b with a ∈ RF (A) and b ∈ RF (B).
Then x ∈ a ⊔ b implies [x]F ⊆ [a ⊔ b]F = [a]F ⊔ [b]F . Thus for t ∈ [x]F , we
obtain t ∈ a1 ⊔ b1 with a1 ∈ [a]F ⊆ A and b1 ∈ [b]F ⊆ B, i.e., [x]F ⊆ A ⊔ B. So
RF (A) ⊔RF (B) ⊆ RF (A ⊔B).

Now, suppose A and B are filters. Then we have

RF (A ⊔B) = RF (A) ∩RF (B) ⊆ RF (A) ⊔RF (B)

and

RF (A ⊔B) = RF (A) ∩RF (B) ⊆ RF (A) ⊔RF (B).

Thus the equalities hold. □

Proposition 3.5. Let us consider F and G two filters of M such that F ⊆ G. Then
for every non-empty subsets A ⊆ M , we have the following:

(1) RG(A) ⊆ RF (A),

(2) RF (A) ⊆ RG(A).

Proof. (1) Let x ∈ RG(A). Our goal is to show that [x]F ⊆ A. For y ∈ [x]F , we
have x → y, y → x ∈ F ⊆ G. Then y ∈ [x]G. Since [x]G ⊆ A, we have y ∈ A. Thus
we get the result.

(2) Let x ∈ RF (A). Let us show that [x]G ∩ A ̸= ∅. Since [x]F ∩ A ̸= ∅,
there exits z ∈ [x]F and z ∈ A. Then x → z, z → x ∈ F ⊆ G and z ∈ A. Thus
[x]G ∩A ̸= ∅. □

The following Corollary can be easily derived from the previously proposition.

Corollary 3.6. Let F and G be two filters of M and a non-empty subset A ⊆ M .
We have:

(1) RF (A) ∩RG(A) ⊆ RF∩G(A),

(2) RF∩G(A) ⊆ RF (A) ∩RG(A).

Now we will show that, for a set A to be definable with respect to a filter F , it
suffices RF (A) = A or RF (A) = A.

Proposition 3.7. Let A be a non-empty subset of M . Then

RF (A) = A ⇐⇒ RF (A) = A.

Proof. Suppose RF (A) = A and let x ∈ RF (A). Then we have [x]F ∩A ̸= ∅. Thus
there is a ∈ [x]F ∩ A. Since RF (A) = A, we obtain [x]F = [a]F ⊆ A. So x ∈ A.

Hence RF (A) = A.
Conversely, suppose RF (A) = A and let x ∈ A. Then we have [x]F ∩A ̸= ∅. Let

a ∈ [x]F . since [a]F = [x]F , we obtain [a]F ∩ A ̸= ∅, i.e., a ∈ RF (A) = A. Then
A ⊆ RF (A). Thus RF (A) = A. □

Corollary 3.8. A non-empty set A is definable, with respect to the filter F if and
only if RF (A) = A or RF (A) = A.

Remark 3.9. Let F be a filter of M , and x ∈ M . We can observe that: for all
b ∈ F ;

[x]F = [b⊙ x]F .
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Proposition 3.10. Let F be a filter of M and G be a residuated full sub-multilattice
of M . Then RF (G) is a residuated full sub-multilattice of M .

Proof. (S1) ⊤ ∈ RF (G) by the definition.
(S2) For x, y ∈ RF (G), we have [x]F ∩G ̸= ∅ and [y]F ∩G ̸= ∅. Then there is

x1 ∈ [x]F ∩G and y1 ∈ [y]F ∩G. Thus we have

x1 ⊙ y1 ∈ [x⊙ y]F ∩G and x1 → y1 ∈ [x → y]F ∩G.

So x⊙ y, x → y ∈ RF (G).
(S3) For x, y ∈ RF (G), according to Theorem 3.3 in [14], we have

x ⊔ y, x ⊓ y ⊆ RF (G).

□

As we can see in the following example, the lower approximation of a residuated
full sub-multilattice of M is not always a residuated full sub-multilattice.

Example 3.11. Let M = {ai, bj , 0 ≤ i ≤ 3 and 0 ≤ j ≤ 6} be the multilattice
described in the following figure and the following residuation operators:

a0

a2a1

a3

b0

b1 b2

b4b3

b5

b6

Figure 2. Multilattice.

Let us consider A = {ai, 0 ≤ i ≤ 3}, B = {bj , 0 ≤ j ≤ 6} and C = {bj , 2 ≤ j ≤ 5},
the operators ⊙ and → defined as follow:

x⊙y =


x ∧ y, if x, y ∈ A
b0, if (x ∈ {b0, b1} and y ∈ B − {b6}) or (y ∈ {b0, b1} and x ∈ B − {b6})
x, if y = b6 or (x ∈ A and y ∈ B − {b6})
y, if x = b6 or (y ∈ A and x ∈ B − {b6})
b2, otherwise

and
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x → y =



b6, if x, y ∈ x ≤ y
y, if x = b6 or (x = a3 and y ∈ {a0, a1, a2}) or (x ∈ B − {b6} and y ∈ A)
a1, if x = a2 and y ∈ {a0, a1}
a2, if x = a1 and y ∈ {a0, a2}
b1, if x ∈ C and y ∈ {b0, b1}
b5, otherwise.

It is straightforward to observe that we have a residuated multilattice.
The subset B is a filter and D = A ∪ {b6} is a residuated full sub-multilattice, but
b1 ∈ [b6]B and b1 ̸∈ D. Then [b6]B ̸⊆ D. Thus RB(D) is not a residuated full
sub-multilattice.

Proposition 3.12. Let F and G be two filters of M . If F ⊆ G, then we have

(1) for all x ∈ M , x ∈ G ⇐⇒ [x]F ⊆ G,
(2) moreover, RF (G) = G = RF (G).

Proof. (1) Suppose x ∈ G and let y ∈ [x]F . Then y → x, x → y ∈ F ⊆ G. Since
x ∈ G, we have y ∈ G. Thus [x]F ⊆ G. The reciprocity is straightforward.

(2) Let x ∈ G. Then by (1), we have [x]F ⊆ G, i.e., RF (G) = G. On the other

hand, for x ∈ RF (G), we have [x]F ∩ G ̸= ∅. Thus, there is y ∈ [x]F ∩ G. So
x → y, y → x ∈ F ⊆ G. Since y ∈ G, we have x ∈ G. Hence RF (G) = G.

□

Proposition 3.13. Let F and G be two filters of M such that G ⊆ F . Then RF (G)
is a filter of M .

Proof. (i) ⊤ ∈ RF (G), since ⊤ ∈ [⊤]F ∩G. Let a, b ∈ M such that a → b ∈ RF (G)
and a ∈ RF (G). We show that b ∈ RF (G), i.e., [b]F ∩G ̸= ∅. It is obvious that There
exist a1 ∈ [a]F and b1 ∈ [b]F such that a1 → b1 ∈ [a → b]F ∩ G and a2 ∈ [a]F ∩ G.
since a1, a2 ∈ [a]F we have a1RFa2. Then a1 → a2, a2 → a1 ∈ F . Thus a1 ∈ F .
Since a1 → b1 ∈ G ⊆ F , we also have b1 ∈ F . Since b1 ∈ [b]F , we have b ∈ F . So
⊤ → b and b → ⊤ are elements of F . Hence ⊤ ∈ [b]F ∩G.

(ii) It remains to show that for a, b ∈ M such that a → b ∈ RF (G), (a ⊔ b) →
b ⊆ RF (G) and a → (a ⊓ b) ⊆ RF (G). Let t ∈ (a ⊔ b) → b and let us show that
[t]F ∩ G ̸= ∅. Since a → b ∈ RF (G), there is x ∈ [a → b]F ∩ G. Then we have
x ∈ G ⊆ F. Since x ≤ t → x, and F is a filter, t → x ∈ F . On the other hand,
x ∈ F and x ∈ [a → b]F imply a → b ∈ F . Thus (a ⊔ b) → b ⊆ F . So t ∈ F . Hence
x → t ∈ F . We finally have x → t, t → x ∈ F that is x ∈ [t]F . Hence x ∈ [t]F ∩G.
By the same way, we show that a → (a ⊓ b) ⊆ RF (G).

□

The following example show that, under the same hypothesis, the lower approxi-
mation of a filter is not always a filter.

Example 3.14. Let us consider the residuated multilattice defined in Example 3.11.
B = {bi, 0 ≤ i ≤ 6} and M = {ai, bj , 0 ≤ i ≤ 3, 0 ≤ j ≤ 6} are two filters such that
B ⊆ M . But b6 ̸∈ RM (B), i.e., RM (B) is not a filter.

Theorem 3.15. If M is regular, and A is a non-empty subset of M , then the
following hold:
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(1)
(
RF (A)

)∗
= RF (A

∗),

(2)
(
RF (A)

)∗
= RF (A

∗).

Proof. (1) Let z ∈
(
RF (A)

)∗
. Then there is a ∈ RF (A) such that z = a∗. Thus

z∗ = a, i.e., z∗ ∈ RF (A). So [z∗]F ∩A ̸= ∅, i.e., there is z1 ∈ [z∗]F ∩A which means
that z1RF z

∗ and z1 ∈ A. Hence z∗1RF z and z∗1 ∈ A∗, i.e., [z]F ∩A∗ ̸= ∅. Therefore
z ∈

(
RF (A

∗)
)
.

Conversely, let z ∈ RF (A
∗). Then [z]F ∩ A∗ ̸= ∅, i.e., there is z1 ∈ [z]F ∩ A∗.

Thus there is a ∈ A such that a∗Rz, i.e., aRF z
∗. So a ∈ [z∗]F , i.e., [z

∗]F ∩ A ̸= ∅.

Hence z∗ ∈ R(A). Therefore z ∈
(
R(A)

)∗
.

(2) Let z ∈ RF (A
∗). Then [z]F ⊆ A∗. Let t ∈ [z∗]F . Then tRF z

∗ Thus t∗RF z.

So t∗ ∈ A∗, i.e., t ∈ A. Hence z∗ ∈ RF (A). Therefore z ∈
(
R(A)

)∗
. The reciprocity

is straightforward. □

Theorem 3.16. Let M and M ′ be two residuated multilattices and f : M → M ′ a
homomorphism. If A is a non-empty subset of M , then

f
(
RKerf (A)

)
= f(A)

Proof. A ⊆ RKerf (A) implies f(A) ⊆ f
(
RKerf (A)

)
.

Reciprocally, let y ∈ f
(
RKerf (A)

)
. Then there exists x ∈ RKerf (A) such that

y = f(x). Since x ∈ RKerf (A), we have [x]Kerf∩A ̸= ∅. Thus there is t ∈ [x]Kerf∩A
such that f(t) = f(x) = y. So y ∈ f(A). □

Proposition 3.17. Let f : M → M ′ be a bijective homomorphism of residuated
multilattice, A be a non-empty subset of M and F ′ a filter of M′. The following
hold:

(1) f
(
Rf−1(F ′)(A)

)
= RF ′

(
f(A)

)
,

(2) f
(
Rf−1(F ′)(A)

)
= RF ′

(
f(A)

)
.

Proof. (1) Let y ∈ f
(
Rf−1(F ′)(A)

)
. Then there is x ∈ Rf−1(F ′)(A) such that

y = f(x). On the other hand, we get

x ∈ Rf−1(F ′)(A) ⇐⇒ [x]f−1(F ′) ∩A ̸= ∅
⇐⇒ there exists z ∈ [x]f−1(F ′) ∩A

⇐⇒ z → x, x → z ∈ f−1(F ′) for some z ∈ A

⇐⇒ f(z → x), f(x → z) ∈ F ′ for some z ∈ A

⇐⇒ f(z) → f(x), f(x) → f(z) ∈ F ′ for some z ∈ A

⇐⇒ f(z) ∈ [f(x)]F ′ , z ∈ A

⇐⇒ [y]F ′ ∩ f(A) ̸= ∅.

(2) Let y ∈ f
(
Rf−1(F ′)(A)

)
. Then there exits x ∈ Rf−1(F ′)(A) such that y =

f(x). Thus [x]f−1(F ′) ⊆ A. Let us show that

[y]F ′ ⊆ f(A).
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Let t ∈ [y]F ′ . Then t → y, y → t ∈ F ′. Since f is surjective, there exists a such that
t = f(a). Thus a → x, x → a ∈ f−1(F ′). So a ∈ [x]f−1(F ′) ⊆ A. Hence t ∈ f(A).

Reciprocally, let y ∈ RF ′
(
f(A)

)
. Then [y]F ′ ⊆ f(A). Thus there exists x ∈ A

such that y = f(x). Let us show that

[x]f−1(F ′) ⊆ A.

Let t ∈ [x]f−1(F ′). Then t → x, x → t ∈ f−1(F ′). Thus f(t) → f(x), f(x) → f(t) ∈
F ′. So f(t) ∈ [y]F ′ ⊆ f(A). Hence t ∈ A. □

Note 3.18. Let f : M → M ′ be a surjective homomorphism and F a filter of M ,
Rf(F ) be a binary relation of M ′ defined by:

f(x1)Rf(F )f(x2) if and only if x1RFx2; for x1, x2 ∈ M.

Remark 3.19. The relation Rf(F ) defined above, is a congruence on M ′.

From proposition 3.17 we obtain the following Corollary.

Corollary 3.20. Let f : M → M ′ be a bijective homomorphism and A be a non-
empty subset of M . Then

f(RF (A)) = Rf(F )(f(A)) and f(RF (A)) = Rf(F )(f(A)).

Corollary 3.21. Let f : M → M ′ be a homomorphism between two residuated
multilattices and F ′ a filter of M ′. If f−1(F ′) ⊆ F then, RF (f

−1(F ′)) is a filter of
M .

Proof. It is a consequence of the Proposition 3.13
□

4. Conclusion and future work

In this paper we have explored approximation spaces where, the universe is a
residuated multilattice and, the equivalence relation is a congruence induced by a
filter. We have established some connections between approximation spaces, special
filters, residuated full sub-multilatices and homomorphisms. On the other hand,
Formal Concept Analysis is a method of relation data analysis identifying inter-
esting clusters (formal concepts) in a collection of objects and their attributes. In
2023, Koguep et al. [6] have used residuated multilattices to evaluate objects and
attributes in formal concept analysis setting, and showed that the set of all concepts
forms a residuated multilattice. Then how to define the notion of filters and congru-
ences in this residuated multilattice and use the results of this paper to approximate
concepts? We will focus on these problems in future.
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