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ABSTRACT. In this paper, we show the existences of the residuated and
Galois connections for various transformations on adjoint triples. More-
over, we investigate residuated connections and Galois connections on ad-
joint triples. Using the properties of residuated connections and Galois
connections, we solve fuzzy relation equations and define various fuzzy
concepts. we give their examples.
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1. INTRODUCTION

Ward et al. [1] introduced a complete residuated lattice which is an algebraic
structure for many valued logic. It is an important mathematical tool as algebraic
structures for many valued logics (See [2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13]). However,
this structure is very restrictive. As a weak condition, Abdel-Hamid [14] introduced
the notion of adjoint triples. By using this concepts, Medina et al. [15, 16, 17]
introduced the notion of formal concepts with R € LX*Y on an adjoint triple (&,
,\y) with respect to partially ordered sets (L;, <;)ic{1,2,3}-

Sanchez [18] introduced the theory of fuzzy relation equations with various types
of composition: max-min, min-max, min-a. Fuzzy relation equations with new types
of composition (See [19] for continuous t-norm and [6, 7, 20] for residuated lattice)
is developed. Perfilieva [13, 21, 22, 23, 24] introduced the theory of fuzzy transform
and inverse fuzzy transform in complete residuated lattices which is similar to the
ones of well-known transform such as the Fourier, Laplace, Hilbert and wavelet
transforms. It is used in signal and image processing, data analysis and neural
network approaches (See [13, 24, 25]).



Ju-Mok Oh /Ann. Fuzzy Math. Inform. 28 (2024), No. 3, 287-306

In this paper, we introduced residuated and Galois connections for various trans-
formations on adjoint triples. Using the properties of residuated and Galois con-
nections, we solve fuzzy relation equations with various operations. Moreover, we
show that the families of fuzzy closure operators and fuzzy interior operators are
complete lattices. We define various fuzzy concepts in Definition 3.10 using the
residuated and Galois connections. The fuzzy concepts are complete lattices and we
give their examples.

2. PRELIMINARIES

Definition 2.1 ([14, 15, 16, 17]). Let (L1,<1), (L2,<2) and (L3, <3) be complete

lattices. We say that the mappings & : Ly x Lo — L3, \;: Ly x Lg — L; and

Ly x Ly — Lo is called an adjoint triple, if it satisfies the following conditions:
r<py\(ziff a&y <z ziff y <gx A zfor each x € L1, y € Lo, z € Ls.

Example 2.2 (| ), 16, ). Let [0, 1],, be a regular partition of [0, 1] in m pieces
with [0,1],, = {0, 2, 2, ..., =2 1}, Let ® : [0,1] x[0,1] — [0, 1] be a left continuous
t-norm and ¢ — y = \/{z € [0,1] | 2 © z < y}. We define the operator & :
0,10 % [0,1], — [0,1]4 as a&y = FEL where (2] = Aln € Z | & < n}
is the ceiling function. For this operator, the corresponding implication operators
Ne [0,1], x [0,1] — [0, 1]y, and [0, 1], x [0,1]x — [0,1], defined as

R R )
m n

where (z) = \/{n € Z | n < x} is the floor function.

Let z <y \, 2z = W Since x — 1 < (z) <z, z < <m(€:z)> < m(?inﬁz) =
y\¢2. Then x ®y < z. Since z < [z] <z + 1,
k(zoy)]  klzoy)+1

<

k k

Sincex ©y € 0,1y and z =L forpe Z, 20y = [k(”@y)] <z

Letx@yz@ﬁz. Since k(z 0 y) < [k(z0y),z0y < ziff y <z — 2.
Then

—_

TOY = <z+4+ -—.

=

(n(z = 2) (@ = 2))

r N z=
n n
Other cases are similarly proved.
Example 2.3 ([15, 16, 17]). Let & : [0,1] x [0,1] — [0, 1] be defined by x&y = x2y.
We can obtain 7, \: [0,1] x [0,1] — [0,1] sx/‘z-\/{yE[O 1| 2%y <z}, v\

z=\/{z €0,1] | 2%y < z}. Then (&, /) is an adjoint triple with

1 ifz=0 ify=20
v/E= {ﬂ A1, otherwise, y\‘z_{ [ A1, otherwise.

Lemma 2.4 ([6, 15, 16, 17]). Let X, Y be sets and L; be complete lattices. Let
(&, \y, ) be an adjoint triple with respect to (L1,<1), (L2, <2), (L3, <3). For any
T, Y, 2, Ti, Yi, wE L, we have the following properties.
(1) If z1 < o, then x1&y < z2&y.
(2) If y1 < yo, then z&yr < z&ys.
288
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(3) N\,  are order-preserving on the second argument and order-reversing on the
first argument.

(4) y <o 7 (z&y), © <1y N\ (2&y).

(5) z&(x /' 2) <3 z, (y \ 2)&y <3 z.

6) y <oy Nz z,x<i(x,72)\ 2

(7) (\/ r)&y =V, (z&y;) and 2&(\V;vi) = V,;(x&y:).

(8) z /A (Ni#i) = Ni(x N\ 2i) and (Vi) 2= N\i(@: 7 2).

9) y N\ (A zi) = Ni(y N 2i) and (V;y:) oz = Ny \2)-

Definition 2.5 ([2]). Let X be a set and (L, <) be a complete lattice.
(i) An operator C : LX — L% is called a fuzzy closure operator on X, if it satisfies
the following conditions: for all f, g € LX,
(C1) f < C(f) and C(C(f)) = C(f),
(C2) f < g implies C(f) < C(g).
(ii) An operator I : LX — LX is called a fuzzy interior operator on X, if it
satisfies the conditions: for all f, g € LX,
(1) 1() < f and I(f) = I(I(f),
(12) f < gimplies I(f) < I(g).

3. VARIOUS FUZZY TRANSFORMATIONS AND FUZZY CONCEPT LATTICES ON
ADJOINT TRIPLES

Definition 3.1 ([2, 26]). Let X and Y be two sets and (L1,<;) and (Lz, <3) be
complete lattices. Let H, Ky : L{¥ — LY and J, Ky : LY — L.

(i) (L, H, J, LY ) is called a residuated connection, if H(f) <o g iff f <; J(g) for
all fe L, ge LY.

(2) (LY, Ky, Ky, LY) is called a Galois connection, if g <o K1(f) iff f <1 Ka(g)
forall f e L, ge LY.

Definition 3.2. Let (L1,<,V,A) and (L2, <,V,A) be two complete lattices.
(i) Ly and Lo are isomorphic, if there exists a bijective function h : L1 — Lo such

that h(\,cp 2i) = Viep h(zs) and h(A;cr i) = N\;er h(2i) for each i € T, ;3 € Ly.
(ii) Ly and Ly are anti-isomorphic, if there exists a bijective function h : L1 — Lo
such that h(V;c; xi) = Niey M(wi) and h(A;c; x5) = V;ep M) for all @y, i € 1.

Definition 3.3. Let X,Y be sets and L; be complete lattices. Let (&,, ) be an
adjoint triple with respect to (L1, <1), (L2, <2), (L3, <3).

(i) For f € L and h € LY, define Ay : (L)X — LY and O, : (LY)X — L as
follows: foreachy €Y, z € X,

Ap() (W) = Voex (F(@)&d(2)(y)),  On(¥)(@) = Ayex (¥ (2)(y) \h(y)).
(ii) For f € Ly and h € LY, define Af : (LY)X — LY and ©" : (L)X — L
follows: foreach y €Y, =z € X,
AT (W) (y) = Voex (@) ()& f (),  O"W)(2) = Ayex (¥(2)(y) / h(y)).
(3) For f € L and g € LY, define A : (L)X — LY and ¥ : (L})X — LY as
follows: for each y € Y, z € X,

M @) (Y) = Noex(F(@) /(@) (),  Te()(@) = Ayex (9) N (@)(1))-
289
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Theorem 3.4. Let (&, \, ) be an adjoint triple with respect to (L1, <1), (L2, <2),
(L3, <3). Then the following properties hold.

(1) Ag : (LY)X — LY is a join preserving map. Then there exists a unique
meet preserving map Ja,; : LY — (LY)X such that Ia, (h)(z)(y) = f(z) / h(y).
Moreover, (L3)X, Ay, Ja,, LY ) is a residuated connection.

(2) Af 2 (L)X — LY is a join preserving map. Then there exists a unique
meet preserving map Jas : LY — (LY)X such that Jas(g)(x)(y) = f(x) \¢ 9(y)-
Moreover, (LY)X, AT, Jas, LY) is a residuated connection.

(3) O : (LY)X — L5 is a join-meet preserving map. Then there exists a unique
join-meet preserving map Ke, : L — (LY)X such that Ke, (f)(z)(y) = f(z) /
h(y) = K"(f)(z). Moreover, (LY)X,04,Ke,, L) is a Galois connection.

(4) O . (L)X — LY is a join-meet preserving map. Then there exists a unique
join-meet preserving map Kgn : LY — (LY)X such that Ken(f)(2)(y) = f(z) \y
h(y). Moreover, ((LY)X,0" Keon, L) is a Galois connection.

(5) A - (LY)X — LY is a meet preserving map. Then there exists a unique join
preserving map Has : LY — (LY)X such that Hps(g)(7)(y) = f(x)&g(y). Moreover,
(LY, Has, A (LY)X) is a residuated connection.

(6) W, : (LY)X — L is a meet preserving map. Then there exists a unique join
preserving map Hy, : LY — (LY)~ such that Hy, (z)(y) = f(x)&g(y). Moreover,
(LY, Hw,, Uy, (LY)Y) is a residuated connection.

Proof. (1) By Lemma 2.4 (7), Af(V,ep ¥i) = Vier Ap(¥:). Define Ja, : LY —
(L3)*
T, (W) (@) = \[{v(z) € LY | Ap(y)(y) <s h(y)}.

Since V¢ x (f(2)&(z)(y)) <3 h(y), we have ¥(x)(y) <2 f(x) / h(y). Then
73, NG 2 @) /7 H)

Ar(f 7 D)) = Vaex (F(@)&(f(2) = h(y))) <s
we get JTa, (h)(2)(y) =2 f(x) 7 h(y). Thus Ta, (h)(z)(y) = f(z) 7 h(y).

Since

In; (Nier hi)(@)(y)

fz )//\@ i(y)
Nier(f(2) 7 hi(y)) = Nier Ta; (hi)(2)(y),

we have Ja, (Aier hi) = Nier Ta, (hi). Moreover, for ¢ € (LY )X, h € LY,
Ar()(y) <s h(y) if Vo x(f(2)&P(2)(y)) <s h(y)
it ¥(z)(y) <2 (f(z) /7 h(y)) = Ta,(h)(2)(y).
(3) The map O, is a join-meet preserving map because
On(Vier vi)(@) = Ayey (Vier ¥i(@)(y) \ h(y))

= Nyex (Nier(¥i(@)(y) ( ))) (by Lemma 2.4 (8))
= Nier (Ayex @i(@)(y) N h(y))) = Nier (On ().

Define Ko, : L1 = (LY)X as Ko, (N)(@) = V{w(2) € L | f(z) <1 O4(¢)(@)}.
Since f() <1 Ayex ((@)(y) e hly)), we have $(2)(y) <2 f() 7 h(y). Then
Kon (/)(2)(5) <o F(x) 7 h(y).
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Nyey ((F 7 D) (@)(y) N hy)) =1 (f(2) 7 h(y))
> f(z) 7 h(y). Thus Ke, (f)()(y) = f() / h(y).

Since ©x(f ' h)(z) =
h(y) =21 f(z), Ke, (f)(z)(y)

So we have
Ko, (\/ fi)@)(w) = (\/ fi(x) = A\ fi(@) \h(y) = N\ Ko, (f)(@)()-
i€l i€l i€l el

Moreover, for ¢ € (LY)X,h € LY,
f(@) <1 0n(¥)(z) iff f(z) <1 Ayey (D(2)(y) N\ h(y)))
iff ¥(x)(y) <2 (f(z) 7 Wy)) = Ke, (f)()(y)

(5) By Lemma 2.4 (8), AY(A;cr %) = Njer A (15). Define Hpr : LY — (L)X
as

Har(9) (@) = N{W(2) € LY | g(y) <2 M () ()}

Since g(y) <o Nyex(f(x) /7 ¢(2)(y)), we have f(z)&g(y) <3 ¢(x)(y). Then
Has(9)(@)(y) =3 f(x)&g(y). Since M (f&g)(y) = Npex(f(z) /7 f(@)&g(y)) =2
9(), Har(9)(@)(y) <s f(x)&g(y). Thus we get

Hasr(Vier 90) @) () = F(@)&(Vier 9:(¥) = Vier (f(2)&gi(y)) = Vier Has (9:)(y)-

Moreover,

9(y) <2 A (¥)(y) iff g(y) <o Nsey (F(2) /(@) (1))
iff f(x)& ( ) <3 ¥(x)(y)
iff Has(9)(@)(y) <s ¥(2)(y)-
So (LY, Has, A, (LY)X) is a residuated connection.

The proofs of (2), (4) and (6) are similarly proved as (1),(3) and(5), respectively.
0

Theorem 3.5. Let (&, \, ) be an adjoint triple with respect to (L1, <1), (L2, <2),
(L3, <3). Define operators as follows:

Hi(9)(z)(y) = f(x)&gly) for all f € L,
HI(f)(x)(y) = f(x)&gly) forall g € LY,
GH9)(x)(y) = f(x) S gly) forall f €L,
Gi(9)(@)(y) = f(x) \cgly) forall f e Ly,
K (9)()(y) =gly) /~ f(z) forall fe Ly,
Ki(9)(x)(y) =g(y) \ f(z) forall fe L.
(1) Hy - LY — (LY)X is a join preserving map. Then there exists a unique meet

)
preserving map Jm, (L)X — LY such that
(

3
)= N\ (f(@) /(@) () = A (0)(y).
reX
Moreover, (LY ,Hy, Ju,, (LY )*) is a residuated connection.
(2) H9 : LY — (LY)X is a join preserving map. Then there exists a unique meet
preserving map Jgs : (LY)X — LE such that

Tus ()W) = N\ (9(y) \ (@) () = A () (y)-

zeX
291
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Moreover, (LY, H?, Juq, (LY )X) is a residuated connection.
(3) GF : LY — (L)X is a meet preserving map. Then there exists a unique join
preserving map Heas :+ (LY)X — LY such that

Har(0)(y) =\ (f@)&(2)(y) = A () (y).

zeX
Moreover, (LY)X, Has, G, LY) is a residuated connection.
(4) Gy : LY — (LY)X is a meet preserving map. Then there exists a unique join
preserving map He, : (LY ) — LY such that

Hor () () =\ @) ()& f(@)).

zeX
Moreover, (LY )X, Hg,,Gys,LY) is a residuated connection.
(5) K/ : LY — (LY)X is a join-meet preserving map. Then there exists a unique
meet preserving map Kps @ (LY)X — LY such that

Kir(@)(w) = N\ @@)(y) \« f(x)).

zeX
Moreover, (LY , KT, K, (LY)X) is a Galois connection.
(6) Ky : LY — (LY)X is a join-meet preserving map. Then there exists a unique
meet preserving map K, : (LY )* — LY such that

K, (0)w) = N\ @@)) 7 [ (@),
reX
Moreover, (LY , Ky, Kk, ,(LY)™) is a Galois connection.

Proof. (1) Since Hy(Vc;9:)(@)(y) = f(@)&(Vie;9:)(W) = Vie,(f(@)&gi(y)) =
Vier Hy(g9:)(x)(y), we define ij (L)X = LY as

T, () = \/g € LY | Hy(g) <s 0}
Since H,(g)()(y) = (2)&g(y) <s ¥(@)(y), 9(y) <o f(x) 7 $(x)(y). Then
T, )W) < N (Fl2) A (@)(y) = A () ().

zeX

Since Hy(A,ex (f(x) 7 9(2))(y) = f(@)& Apex (f(2) /¢ (2)(y) < ¢ () (),
T, (0)(y) =\ (F(2) 7 9(@)(y) = M (@) (y).

zeX

Thus T, (¥)(y) = Npex(f(x) 7 P(x)(y)) = A ($)(y). By Theorem 3.4 (5),
Ju, = A is a meet preserving map. Moreover, it holds that (L3, Hy, T, , (LY)¥)
is a residuated connection.

(3) Since G'(A;e; 90)(@)(y) = F(x) 7 (Nies 9)W) = Nies(F(2) 7 9i(y)) =
Nier G¥(9:)(x)(y), we define Hes : (L)X — LY as

Her () = N\g € LY |4 <2 G (9)}.
292
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Since ¢(x)(y) <2 f(x) / 9(y), f(2)&(x)(y) <s g(y). Then
Har(y) =\ (f(@)&(2)(y) = A () (y)-

reX

Since G7 (Ve x (f(2)&0(2)))(y) = () / Vex (F(@)&d(2)(y) = ¥ (2)(y),
Har(y) <\ (f(@)&(2)(y) = A () (y)-

reX
Thus Her(y) = Veex (f(@)&Y(2)(y) = Af(¥)(y). By Theorem 3.4 (1), Hgr =
Ay is a join preserving map. Moreover, it holds that ((LY)X, Hgs, G/, LY) is a
residuated connection.
(5) By Lemma 2.4 (8),

K (Vier90@) @) = Vier i) / f(=)
= Nier(i(W) 7 (@) = Nier K (9)(2)(y

)-
K'(g)}. Since
Then

Define Kgr : (LY)* — LY as Kgsr(v) = V{g € LY | v <»

(@) (y) <o K (9)(@)(w) = g(y) 7 f(2), 9(y) <1 ¥(z)(y) N\ f(=). we have

];(KS)(gf) Y) < Npex@(@)(y) N f(z)). Moreover, Kgs(g )( ) 2 Noex () (y)
X rom

K (Npex (@) N f@)) W) = Apex (@ (2) () e f(2) 7 f(2)
= Vaex ((0(2)(y) N f(2)) /7 [(2)) 22 D(2)(y).
(

Thus Kgs is a join-meet preserving map. So (LY, K/ Ky, (LY)¥) is a Galois
connection.

The proofs of (2), (4) and (6) are similarly proved as (1),(3) and (5), respectively.

O

Theorem 3.6. Let X, Y be sets and L; be complete lattices. Let (&, ) be
an adjoint triple with respect to (L1,<1), (L2,<2), (L3, <3). Then the following
properties hold.

(1) (L)X, A, TIa,, LY) is a residuated connection. Moreover \/,cp A (1) =

Afp(Vier i) and Niep Tay (hi) = Ta, (Niep hi) for allp; € (LY)™* and h; € LY.
(2) Ap(Ta,(h) <s b iff ¥ <o T, (Ap(v)) for all ¢ € (LY)X,h e LY,

(3) If ¢1 <o by and hy <3 hs, then Ap(y1) <s Af(h2) for all ¢1,¢s € (LY )™
(

and Ja, (h1) <2 Ia, (h2) for all hy,hg € LY,

(4) Ap(¥) = Ap(Ta,; (Af())) for all f e (LY)*. If p = 1 is a solution of
Af () = h, then Ja,(h) is a solution of Ay(1) = h such that Yo <o JTa,(h).

(5) Ta,; (Af(Ta,(h)) I, (h) for all h € LY. If h = hy is a solution of

) =
In;(h) =1, then Af( ) is a solution of Ja,(h) = such that Ay(1)) <3 h1.
(6) AfoJa, : LY — LY is a fuzzy interior operator.
(7) Ta, 0 Ay (LY)X — (LY)X is a fuzzy closure operator.
(8) Define Micrgi = Af(Aier Ia,(9:))s Vier 9i for all {gi}ier € I(LY) = {g €
LY | g=AfoJa,(9)}. Then (I(LY),1,\) is a complete lattice.
(9) Define /\ieF Vi, Uiery; = jAf(\/iEF Af(%)) for all {)i}ier C C((Lg)x) =
{p e (LYY | = /NS A¢(¢)}. Then (C((LYYX), \,L) is a complete lattice.
(10) I(LY) and C((LY)X) are isomorphic.
293
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(11) Ap(Ta,(9)) = V{h € I(LY) | h <3 g} for all g € LY and T, (Af(¥)) =
MMp € CU(L3)X) | ¢ <z p} for all ¢ € (L3)*.

Proof. (1) It follows from Theorem 3.4 (1).

(2) For ¢ € (L3)™, Ap(¥)(y) <3 Ap()(y) iff ¢(2)(y) <2 JAf(Af( ) (@) (y)-

For h € Ly, Ja, (h)(@)(y) <2 Ta, (h)(x)(y) iff Ag(Ta,(h))(y) <s h(y).

(3) Since () <2 ¢a(z) <o jAf(Af( 2))(@), Ar(¥1)(y) < Af( 2)(y). More-
over, since Ar(Ja, (h1))(y) <3 h(y) <s ha(y), Ta, (h1)(x) <2 Ia,(h2) ().

(1) By (2), Ag(0) = Ag(Ja, (As(0) for L € (LN 16 8y(vn) = by hen
Ap(Tap(Ap(tho))) = Ap(Ta, (h)) = Af(vo) = h. Moreover, 1o <o Ta, (Af(tho)) =
Ja, (h).

(5) Tt is similarly proved as (4).

(6) For each h,hy,hy € LY, Ayo Ja,(h) <3 h and (Ayo Ja,)(Af o Ta,)(h) =
Af OjAf(h). If h] Sg hg, then

(Ao da,)(h) <z (AjoTa,)(he)

(7) Tt is similarly proved as (6).

(8) By (5), since Ap(Ta; (Af(Nier Ta;(9:))) = Af(Nier Ta,(9i), Miergi =
Af(/\zEF Ja(9:) € I(LY).

Let g <3 g; for all g, g; € I(LY). Then Ja,(9) <2 Ja,(gi) for all i. Thus
In(9) <2 Nier Ta,(9i)- Sog = Ap(Ta,(9) <3 Ap(ANTa,(9:) <z Ap(Ta,(9:) =
gi- Hence Micrgs = Ap(N\;er Ja,(g:)) is an infimum of for all g;.

(9) By (6), since Ta (Af(Ta;(Vier A7 (i) = Ta;(Vier Ap (i), Uierti =
In;(Vier Ar(¥i)) € C((LY)X).

Let vp; <5 ¢ for each ¢;, i € T', 1 € C(Ls). Then Ay(1);) <3 As(¢) for each i €
I Thus Viep Af(vi) <s Af(¥) implies Ta, (Vier Af(¥i)) <2 Ta,(Ap(4)) = ¢
Moreover, Ia, (Ver Af (i) Z2 Ta (Ap(¢i)) = i SoUiertyi = Ia; (Vier Ar(vi))

is a supremum of for all ¥;, i € I
(10) Define Ja, : I(LY) — C((L3)¥) as Ja,(9)(x) = Nyex(Wy(z) 7 9(y)). If
91 =85 (Ta;(91) = 92 = Af(Ta,(g2)) € I(LY ), then

TIns(91) = Tn; (A (Tas (1) = Ta, (A (Tas(92)) = Ta,(91)-

Thus Ja, is well defined. If Ja,(91) = Ja;(92), then g1 = Ap(Ta;(91)) =
Af(Ta,(g92)) = g2. Thus Ja, is injective. For ¢ € C((LY)X), v = Ta,(Af(1)).
So Ja, is surjective. Hence Jx, is bijective.

On the other hand, since Ja, o Ay is a fuzzy closure operator,

/\iEF jAf (gl) <2 jAf(Af(/\ieF jAf(gi)))v
jAf(Af(/\ieF jAf(gi))) <2 /\iEF jAf (Af(jAf(gi») = /\ieF jAf(gi)~

Then jAf (Af(/\ieF jAf (gl))) = /\ieF ‘-7Af (92) € I(L?S;/)' Thus
In;Vier 91) = Iy (Vier Ay(Ta,(9:))) = Uier Ia, (9i),
Ias(Miergi) = I, (Af(Aier Ta,(9)))) = Nier Ta,;(9)-
So I(LY) and C(Ls\) are isomorphic.
(11) Pus p = V{h € I(LY) | h <5 g}. By (10), p € I(L¥). Since p <5 g,

p=Ar(Ta, () <3 As(Tar,(9))
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Since Ay (Ta, (Af(Ta;(9)) = A(Ta,(9)), Ap(Ta,(9)) € I(LY). Then by (7),

Af(Tas(9)) <39, Dp(Ta,(9) <s p. Thus Ap(Ta,(9)) = V{h € I(L3) | h <5 g}
Other case is similarly proved. O

Remark 3.7. Let (&, /) be an adjoint triple with respect to (L1, <1), (L2, <2),
(L3, <3). Then the residuated connections in Theorems 3.4 and 3.5 hold the similar
properties in Theorem 3.6.

Theorem 3.8. Let X,Y be sets and L; be complete lattices. Let (&, \, /) be
an adjoint triple with respect to (L1,<1), (La,<3), (L3, <3). Then the following
properties hold.

(1) (LY)™, 0", Ken, L") is a Galois connection and \;cp O"(¢;) = O"(\/, cr i)
and Nser Kon (f1) = Keon (Vier fi) for all s € (LY)X and f; € LY.

(2) £ <2 0"(Kon (£)) iff <1 Ken (0" (1)) for all v € (L)X and f € LY .

(3) If 1 <1 4g for all Y1, ¢ € (LY)X then ©" (1h2)(y) <2 ©"(¢1)(y)-

(4) If f1 <2 f2 fOT‘ all f17 f2 S L then ’C@h (fg) Sl K@h (fl)

(5) O () = B"(Kgr (0" (v))) for all v € (LY)X. If o = 9y is a solution of

Or () = fi, thenz/J Keon(f1) is a solution of (1) = f1 such that ¥y <1 Ken(f1)-
(6) Kon(©"(Keonr(g))) = IC@h( ) for all g € LY. If f = fi is a solution of
Keon(g) = 1, then f = O"(xy) is a solution of Keon(f) = 11 such that fi <o
©"(¢1).

(7) Kon 0 ©" : (L)X — (LY)X and ©" o Kgr : LY — LY are fuzzy closure
operators.
(8) Define Ubopthy = Kon(Aser € (1)) for all {i}ier € K((LY)¥) = {9 €

(L)X | Koh(@h( ) = w} Then (K ((LY)X), \,U*) is a complete lattice.

(9) Define Utrgi = ©"(Nier Kon(g:)) for all {gitier € H(LY) = {g € L} |

0" Keon(g)) = g} Then (H(LY), \,U") is a complete lattice.

(10) K((LY)X) and H(LY) are anti-isomorphic.

(11) ’Ceh(@h( N = Np € K(L))) | f <1 p} for all f e (L})Y and
©"(Ken(9)) = Nl € H(LY) | g <2 ¢} for allg € L.

Proof. (1) It follows from Theorem 3.4 (4).

(2) It follows from Kgn (f) <1 Kon (f) iff f <o OF(Kgn(f)) and " (1) <5 ©" (1))
i 15 <, Kon (08 (1)),

(3) Since ¢1 <1 92 <1 Kon (0" (¢h2)), ©"(12) <2 ©"(¢h1).

(4) Since f1 <5 fo <2 ©"(Kon(f2)), Ker(f2) <1 Kon(f1).

(5) By (2), ©"(v)) = ©"(Kgn(0"(¥)))) for all v € (LY)X. If ©"(¢p;) = f, then
6" (Ken (0" (1)) = O (Kon(f)) = O () = f. Moreover 11 < Ken (04(1)) =
Ko (/).

(6) It is similarly proved as (5).

(7) For any ¢, 11, g € Ly, 1 <o O"oKgn (1) and (8" 0 Kgn)o (0" o Ken(¥)) =
O" o Kgn (). If by <3 1, then Kgn (¥2) <1 Keon (1h1). Moreover (0" o Kgn) (1) <o
(©" o Kgn)(1)2). Thus ©" o Kgn : LY — LY is a fuzzy closure operator. Similarly,
Keon 0 ©" is a fuzzy closure operator.

(8) By (6), since Kon(0"(Ken(Aicr ©"(1:)) = Kon(Aier ©" (1)), Uierthi =
Kon(Aier ©"(¢3)) € K(LY). -
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Let ¢; < o for all ¥, ¥; € K((LY)¥). Then ©"(y)) <o ©"(¢);) for all i. Thus
") <2 A\, ©"(1hi). So 1 = Ken(©"()) 21 Ken(AO"(¥:)) 21 Ken(0"(¢)) =
¥;. Hence UF_ih; = Kegn (A\;cp ©"(¢)) is a supremum of for all v; € K((L})¥).

(9) It is similarly proved as in (8).

(10) Define ©" : K((LY)¥) = H(L3) as ©"(¥)(y) = A\, ex (¥(2)(y) ./ h(y))-

If 1 = Kon (0" (¢1)) = ¢2 = Ken (0" (¥2)) € K(L{), then by (5),

0" (1) = ©"(Ken (0"(¥1))) = O"(Kon (0" (¢2))) = O"(¢1).
Thus ©" is well defined. If ©"(¢);) = ©"(1)5), then 11 = Kgn (0" (11)) = Kenr (0" (12)) =
9. Thus O" is injective. For g € H(LY), g = ©"(Kgn(g)). So ©" is surjective.
Hence ©" is bijective.
Let v; € K((LY)X) for each i € I. Since ©" o Kgn is an increasing function,

0" (Ken (Nier " (®4))) <2 Nies ©"(Ken (0" (1)) = Ais O (v0)-

Since ©" o Kgn is a fuzzy closure operator, A\;c; 0" (1h;) <2 ©"(Kon(A;e; O™ (14)))-
Then A,.; ©" (i) € H(LY). Thus

O (Uje i) = @h(’C@h (Aies ©"(14))) = A er 0" (1),
zeIGhW}Z) = (/\16[ ’C@’L(@ (v:))) = CU (/\'LGI Vi)
So K((LY)X) and H(LY) are anti-isomorphic.
(11) Put r = A{p € K(L) | ¥ <1 p}. Then by (8)7 r e K((LY)X). Since 1[1 <r,
) = Ken(0"(1)) < Ken(0"(r)). Since Kon(0"(Ken(0"(¥)))) = Ken (0" (1)),
Kon(©"(1)) € K(LX) and ¥ <1 Kegn(0"(¥)), r <1 Kon(0"(1))). Thus we have
Ken(©™(1)) = Np € K(LY) | ¥ <1 p}.

Other case is similarly proved. O

el

Remark 3.9. Let (&,, ) be an adjoint triple with respect to (L1, <1), (L2, <s),
(L3, <3). Then the Galois connections in Theorems 3.4 and 3.5 hold the similar
properties in Theorem 3.8.

Definition 3.10. Let X, Y be sets and L; be complete lattices. Let (&, , ) be
an adjoint triple with respect to (L1, <1), (L2, <2), (L3, <3).
(i) Let (L)X, Ay, Ja,,LY) be a residuated connection. A family R(Ay, Ja,)
is called an ((LY)X, LY)-fuzzy concept lattice, where
R(As Ta;) ={(,9) € (LY)X < LY | As(4) = 9,Ta,(9) = ¥}
and (¢1,91) < (Y2, go2) iff 1 <5 a(or g1 <3 g2). Moreover, the pair (1, g) is called
n ((LY)X, LY)-fuzzy concept.
(i) Let (LY, Hw,, Vg4, (L3 )™) be a residuated connection. A family R(Hy,, ¥y)
is called an (LY, (LY)X)-fuzzy concept lattice, where
R(Hu, ¥y) ={(f.9) € LT x (L})* | Hu,(f) =¥, V() = f}

and (f1,%1) < (f2,v2) iff f1 <1 fa(or ¥y <3 92). Moreover, the pair (f,) is called
an (LY, (L gf) )-fuzzy concept.

(iii) Let ((LY)X 0", Ken, L) be a Galois connection. A family G(O", Kgn) is
called an ((LY)X, L¥)- fuzzy concept lattice where

G(O" Ken) ={(v,g) € (L1)¥ x LY | ©"(¢) = g,Ken(g) = v}
206
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and (¢1,01) < (2,92) iff 1 <1 o(or g2 <2 g1). Moreover, (¢,g) is called an
(L)X, LY)-fuzzy concept.

Theorem 3.11. Let X,Y be sets and L; be complete lattices. Let (&, /) be an
adjoint triple with respect to (L1,<1), (L2, <2), (L3, <s). Let ((LY)X, Ay, Ing, L 9
be a residuated connection. Then the following properties hold.

(1) For all ¢ € (LY)X and g € LY,

R(Ap, Tn,) ={(W,Ap()) € (LY)X x LY | TIa, (Af(¥)) = ¢}
={(Ia,(9),9) € (L)X x LY | Af(Ta,(9)) = g}

(2) For all (41,91), (¥2,92) € R(Af, Ta;), Y1 <2 Y2 iff g1 <3 g2
(3) For all (1/11,91), (1/12792)7 (wivgi)iGI S R(Af,jAf); deﬁne as

(V1,91) < (Y2, 92) iff 1 <2 Ya(or g1 <3 g2),

Viej(¢iagi) (l_lie[ i, \/ieI i)
(Ta;(Ar(Vier i) Vier 9i)

(jAf (Vie] gi)7 \/iel gi)v
(Nier ¥i:N9i) = (Nieg ¥is Ap(Ta; (Nier 96)))
(/\ie[ Vi Af(/\iel ¥i)).
Then R(Af, Ia;) forms a complete lattice.

(4) Define v : C((LY)X) = R(Ay, Ta,) as v(¥) = (¥, Ap(¥)). Then v is an
isomorphism and R(Ar, JIa,) = {v(¥) | ¥ € C((LY)™)}.

Proof. (1) Put B = {(v, Ap(v)) € (L3)™ x LY | Ta, (Af(4)) = ¥} Let (v,9) €
R(Af,Tn;). Then Ja (Ap(¥)) = Ta,(9) =¥, g = Ap(sh). Thus (1, As(¥)) € B.
Since Ja, (Af(¢)) = Uy (6, 8,(0) € R(Af, Tay)-

Put C = {(Ja,(9),9) € (L3)* xLY | As(Ta,(9)) = g} Let (¥, 9) € R(Af, Ta,)-
Then Ap(Ta,(9)) = Ar(¥) = g,f = Ta,(9). Thus (Ja,(9),9) € C. Since
Af(jAf(g)) (jAf( ) )6 R(AfajAf)

(2) Let 41 <2 3. By Theorem 3.6 (3), g1 = Ap(¢¥1) <3 Ay(¥p2) = go. Let
g1 <3 g2. Then 1 = JTa,(91) <2 Ta;(92) = 2.

(3) For all {(¢:,9:)}ier € R(Af,Ta,), by Theorem 3.6 (8), we have

Uic i =In;Vier A1 (i) = Ta g (As (Ve ¥4)),
Ap(Tag (Ar(Vier i) = A5(Vier i) = Vier A¢ (i) = Vier 9is
I (BsVier¥i)) = Ia;Vier F(i)) = Ta; (Vier 9i)-

Then Viel(¢i79i) € R(Afv jAf)' Since g; <3 Vig gi and Af(\/iel i) = Vie[ Af(ﬂ’i)
= \/ieI gi, from Theorem 3.6 (1), 1; = jAf (9:) <2 jAj’(ViEI gi) = JAJ’(Af(\/iGI ;).
Thus (¢4, 9:) < V,er (Wi, 9i)-

If (¥i,9:) < (¢,9) for all i € I, then \/;.; 9: <3 g and Ja,(V;c; 9i) <2 Ta,(9) =
¥. Thus Ve (¥, 9:) = (Ta;(Vier 9i): Vier 9i) < (1, 9) So Ve (¥, i) is a supre-
mum of (¢, g;) for each i € I.

For all {(vi, i) }ier € R(Af, Ta,), we get

/\iGI(wi> g’L)

Mie1gi = Ar(Nier Iag(9i) = Bp (T, (Nicr i)
Ini(Bs(Tn;(Nier 9)) = In,(Nier 90) = Nier In, (91) = Ner ¥is
Ar(Ta, (Neer ) = Dg(Aucr Tng(0:)) = Ag(Asey ).
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Then A,/ (¥4, 9:) € R(Af, T, ). Moreover, since \,; i < v;, we have

Af(jAf(/\ie[ gi)) < /\iel Af(jAf(gi)) = /\ie[ gi < g;.

Thus A, c; (Wi, 95) < (i, 9:) for all i € 1.
If (v, 9) < (i, 9:) foralli € I, then f <o \;c; i and g = Ap(¢) <3 Ap(N;cp ¥i)-

Thus (¥, 9) < Njcr (Wi, 90) = (Nser Vis Ap(Nicr ¥i)). So N;er (¥4, gi) is an infimum
of (1, g;) for each i € I.

(4) We easily prove that 7 is bijective. For all {t; | i € I} C C((LY)%),
Y Nicr¥i) = (Nier ¥is Ar(Nier ¥i)) = Nier (Wi Ap(¥:)) = Nier v(¥3),
Y(Uieri) = (Wieri, Ap(Uierti)) = (Uierthi, Ap(Ta, (Af(Vier ¥2))))
= (Uierti, A (Ve ¥i)) = (Uieri, Vier A (i)
= Vier (Wi, Ap(¥i)) = Vier 7).

The following corollary be similarly obtained from Theorem 3.11.

Corollary 3.12. Let X,Y be sets and L; be complete lattices. Let (&, \,, /) be an
adjoint triple with respect to (L1,<1), (L2, <2), (L3, <3). Let (L , Hw,, Vg, (L))
be a residuated connection. Then the following properties hold.
(1) For all f € LY and v € (LY)X
R(Hu,, V) ={(f. Hy,(f)) € L] x (L})¥ | ¥y(Hy,(f)) = f}
= {(T,(¢).0) € LY (L)X | Ha, (P4(¥)) =¥}
(2) For all (f1,v¢1), (f2,%2) € R(Hw,, V), f1 < fo iff 11 < to.
(3) For all (flvwl)a (f2,1/’2)7 (fi)/l;[}i)iEI € R(H\I/gv \Ijg)7 deﬁne as

(f1,91) < (fo,¥2) iff f1 < falorr <o)

and

Vie[(fi7 '(/)z)
/\ie[(fiv wl)

= (Vie[ fi: |—|i€I7/}i) = (Viel fiaH\Ifg (\I/g(\/ie] 1/%)))
= Vier fis Ho,(V i1 £1)),

= (Mierfi Nier ¥i) = (Yo(Hu, (Nicr £1)s Nic1 i)
= (\I’g (/\ie[ 1/%‘), /\ie] ¢i)~

Then R(Hw,,Vy) forms a complete lattice.

Remark 3.13. Let (&, N\, /") be an adjoint triple with respect to (L1, <1), (L2, <2),
(L3, <3). Then the residuated connections in Theorems 3.4 and 3.5 hold the similar
properties in Theorem 3.11 or Corollary 3.12.

Theorem 3.14. Let X,Y be sets and L; be complete lattices. Let (&,\, /) be an
adjoint triple with respect to (L1, <1), (L2, <2), (L3, <3). Let ((LY)X,0" Kgn,LY)
be a Galois connection. Then the followmg properties hold.

(1) For allvp € (LY)X and B € LY, a family G(©",Kgn) is an ((LY)X, LY )-fuzzy
concept lattice such that

G(O" Ken) ={(v,0"(¥)) € (L)* x L | Ken(0"(v)) =1}
={(Ken(9).9) € (LT)* x L | ©"(Ken(g)) = g}-

(2) For all (¥1,91), (¥2,92) € G(O", Kon), ¥1 <1 %2 iff g2 <2 g1.
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(3) For all (¥1,91), (V2, g2), (W5, 9:)icr € G(O", Kgn), define as
(¥1,91) < (2, 92) iff b1 <1 Y2(0r g1 <2 g2)

and

Nier(¥iy 9:)
Vier (i, 9i)

(Nier i 0" (Keon(Vicr 90)) = (Nier i ©" (Nicr ¥4))
(/\zeI Vi, ?6192))
(Ken (0" (Vicr ¥1))s Nicr 9i) = (Ken(Nicr 91)s Nicr 94)
( 1611/}17 /\161 gi)-

Then G(©", Kgn) forms a complete lattice.
(4) Define a : K((LY)X) — G(0",Kgn) as a(y) = (¢,0"(¢)). Then « is an
isomorphism and G(O" Kgn) = {a(y) | ¥ € K((LY)X)}.

Proof. (1) Put B = {(,0"(¢)) € (LY)*X x LY | Kon(©"(z))) = 9}. Let (¥, 9) €
G(©", Kon). Then Keh(Qh(¢)) = IC@h( ) ¥, 9 = ©"(). Thus (,0"(y)) € B.
Since Kon (0"(¢)) =, (¢, (¢)) € G(0", Ken).

Put C = {(Ker(9), ) ( )<Ly | @h(’C@h(g)) = g}. Let (¢, g) € G(O", Ken).
Then ©"(Kgn(g)) = ") = g,z/J = Kegr(g). Thus (Kgr(g),g) € C. Since
0" (Keon(9)) = g, (Ker(9),9) € G(O", Kon).

(2) Let i1 <y 7/12 By Theorem 3.8 (3), g2 = 0"(¢2) <3 ©"(¢1) = g1. Let
g2 <2 g1. By Theorem 3.8 (4), ¥1 = Kgr(g1) <1 Kgr(g2) = 2.

(3) For all {(vs,9:)}ier € G(O", Kon),

Gh(lc@h (@h(\/zg wz))) = @h(\/iej ¢z) = /\ie[ ICGh (Qi) = /\ie] gi,
’Ceh( (VZEI wz)) = ’C@h (/\ie] @h(¢i)) = Uierhi = K@h (/\ie[ gi)~
Then A;c;(¥i,9:) € G(O",Kgn). Moreover, 1; >1 N\,c;v; and g; = ©"(¢;) <»
O™ (Nier ¥i) = ©"(Kon(Vicr 90)- Thus (i, g:) = Nies (Vi 92)-

If (i, 9i) > (1, g) for each i € I, then A, ; v¥; >1 ¢ and @h(/\iel ;) <o OF(¢) =
g- Thus A;c; (5, 9:) = (Nies 7/’ia@h(/\z'el ¥i)) = (¥, 9). So Niey(vi, gi) s an infi-
mum of {(¢, gi) }ier-

For all {(¢s,9i)}ier € G(O", Kon),

0" (Kon (O (Vi 1)) = O"(V,cs ¥3) = Ay ©"(6) = ey 9
’C®h<®h<\/i61 %)) = ’C@h(/\iej G)h(wz)) = Uierhi = K@h (/\7,'6[ 9i)~
Then \/;c; (¥, gi) € G(O", Kon). Moreover, since \,.; i <2 g, Kon (0" (V;c; ¥i)) >
\/ie] ¢z Z ’(/JZ ThllS, \/»Lej(wzugz) 2 (1/%791) fOI' alls S I.

If (¢,9) > (¢4,9:) for all i € I, then g <o A,c; 9 and ¢ = Kgn(g) >1

Keon(Nier 9i) = Keon (0" (V¢ 1i)). Thus

(¥,9) > /\ie[(wﬂgl) = (Keon (Qh(\/iel Vi), /\ie[ 9i)-

So V, e (¥, i) is a supremum of {(v;, gi) }ier-
(4) We easily prove that « is bijective. For all {¢; | i € I} C K((LY)%X),

a(/\ie[ ¢z) (/\ie] 1/)1" eh(/\iel 1/’1)) = /\ie](¢i7 @h(¢z)) = /\iel O‘(¢i)a
a(Uierty) (Uierthi, O™ (Wiert)) = (Uiertbs, ©"(Ken (0" (V;e1 ¥4))))
(Uierthi, ©"(Viep i) = (Uierti, Ny ©" (1))

Vier(®i, @h(ﬁ%‘)) = \/ieI a(ti).

299



Ju-Mok Oh /Ann. Fuzzy Math. Inform. 28 (2024), No. 3, 287-306

Remark 3.15. Let (&, \, /') be an adjoint triple with respect to (L1, <1), (L2, <2),
(L3, <3). Then the Galois connections in Theorems 3.4 and 3.5 hold the similar
properties in Theorem 3.15.

Example 3.16. Let X = {z,y,z} be a set of cars and Y = {a,b} be a set of
attributes. Let ([0, 1], ®, —,0,1) be a continuous t-norm (See [2, 14, 15, 16, 23]) as
z@y=max{0,z+y—1}, r >y =min{l —z +y, 1}.
Let [0, 1],,, be aregular partition of [0, 1] in m pieces with [0, 1],, = {0, L, 2 ... m=1 1},
Let & : [O, 1]3 X [0, 1]4 — [0, 1]2, /‘Z [0, 1]3 X [0, 1]2 — [O, 1]4,
N [0,1]4 x [0,1]2 — [0,1]3 defined as

sty = B0 5 a0 )
NPT
where [z] = A{ne Z |z <n},(x)=\V{neZ]|n <z},
Coa
0 00 0 0 O
00 0 5 3
% 0 0 % % i
103 3 11
1
S0 51 > 0p
EEEEERE
T
% % 3 1 2 3 11
3013 55 2
10 11 I
(1) For f1 = (%,3,0) € [0,1]F and ¢(z) : Y — [0,1]4 for 2 € {z,y,2} with
P(x)(a) = ¥(a, ) as
(1
=(140)

By Theorem 3.3, Ay, (v) = Ve x (f1(2)&(x)
Ins, (Ag (¥)(@)(a) = fi(x)

—
L
~—

Il
—~
DO

1
,3)- Moreover,

Ap (¥)(a)

Tan@nn=(1 1 1)

Then ¢ < Ja, (A (¥)) and Ja,, (Ay, (¥)) is the greatest solution of Ay, (1) =

(%7%) Moreover, (jAfl (Af1(¢)),Af1(¢)) € R(AfujAfl)’ however (w’Afl(w)) Q/
R(Afnjﬁfl)‘
Let hy = (3,0) be a solution of Ja, (he) = ¢ with

3 3

o=(11 1)

4 2
300
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Since
Ay (¢) = V,ex(fi(@)&o(z)(-)) = (0,0),
‘7A.f1 (Afl(jAfl( 2))) _jAfl (h2) = ¢,

Ay, (¢) is a solution of Ja, (h) = ¢ such that Ay, (¢) <3 ha.

(jAfl (h’2) Afl(jAfl (hQ)) ( ( )) e,R’(Af17¥7Afl)but (¢7h2) gR(Afl’jAfl)
because Ay, (¢) = (0,0) # ho.

For h € [0,1]3 with h(a) = 0,h(b) = 1. By Definition 3.6 (2), we get O (1)) =
/\aEX( (a)(=) N« h(a)) = (3,0,0). By Theorem 3.7 (4), we get Ko, (On(¥))(z)(a) =

O (¥)(z) /" h(a) such that

Km@mm—(§ 1)

4

i O

= N[

Slnce On(Ke, (Or(¥))) = () = (2,0,0), Ko, (Or(¢)) and 1 are solutions of
On(¥) = 0,(2 with ¢ < ’Ceh(@h(w))- Moreover, (Ko, (©n(¢¥)),On(¥)) €
Ko, (fi)(z)(a) = fi(x) / h(a) such that

Since Ke, (0n(Ko, (f1))) = Ko, (f1), we have O4(Ko, (f1)) = fLr = (%,%,0) and

(K@h,(f1)7f1) S g(ghalceh)'

> 71#2 = <(

(5,0,0)
(G)hv ’Cei )( ut 1/)7 (1/))) € g(@h7lceh)
kel = (8 3 1)
(2) Let
Y =
s = > sy =

O oW
[l Lo TN RIE
DI IGN 0w ©
O Bl

)
)

[ Lot (S Y i
[l - e WS

For f € [0,1] with f(z) = %, f(y) = 2, f(z) = 1. By Definition 3.6 (1), Ap(¢1) =
v:vGX(f( 2)&ip(=)(2)) = (1,1), Ap(v2) = (1,5), Af(vs) = (5.1) and Ap(ths) =
(h 0). By Theorem 3.7 (1), we obtain JAf(Af(w))(x)(y) f(x) /7 Ap(¥)(y) such
that
R(Af, Ia;) =
1 1 9 1 1 9 1 1 1 9
«f1 10)7<o,0>>,<(1§ [ JRCEDN i 11),<o,1>>,

( % % g )7(%70))a(< 1 % % )a(%a%))’(( 1 % % )’(;’1))3
(31 0) oy s gy gy ) e
ot = (4 1 1 )@= (1 5 ).

3 1 3 1
Tajaste) = (1 1 1) = (1 1 ¢
Then ((L3)™, Ay, Ja,;, L) is a remduated connection.
For h € [0,1)y with h(a) = 0,h(b) = L. By Definition 3.6 (i), ©x(1) =

Aocy (b1 (@)(=) e h(a) = (0, % 0). ?’gngf (2,2.0), ©u(s) = (0,0,1) and
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(@;(1114) = (0,0, 2). Since Ko, (04 (¥1))(x)(a) = On(¢1)(z) / h(a), by Theorem 3.7
1), we obtain

Ko, (On(¢2)) =

Koy (@401) = ( |

Ke,. (On(t1)) =

1
1
Ke, (On(13)) = ( i

Ll el ST
[Vl L Sy
TN
= ook =
NIV

e [SE i LN
N—"

Then we get

r(¥3)), On(11) U Op(13))
),<o L 1Y) € G(O1.Ke,).

: ) (.2,1)) € 6O Ko,

i
4
Or(11)) UKe, (Or(¥4)), On(th1) A On (1))
L) 000 g@nKe,)

Thus ((LY)X, 04, IC@h

LY) is a Galois connection.
(3) Deﬁne w( ): Y — [0,

13 for x € {x,y, 2z} with ¥(z)(a) = ¢(a,x) as

z 1

)

For f € [0,1]F with f(z) = 1, f(y) = 2, f(z) = 3. By Definition 3.3 (ii), A ()
Vieex(@(x)(—)&f(z)) = % %) By Theorem 3.4 (2), we obtain Jas(g)(z)(y)
flz) N\ g(y) such that ((LY)X, A, Jas, LY) is a residuated connection.

C
Tar AT ) @)) = £(z) N AT (D)(g) as
o =(1 1)

(Tar (AT (1)), AT (¢)) € R(AT, Tar) but we have (v, Af (1)) € R(AS, Tar) because
¥)

=
|
7 N\
(SN N

[SUINGHIN]

TIas (A () # 9.
For h € [0,1]} with h(a) = 3, h(b) = 0. By Definition 3.3 (ii), we have ©"(¢y) =
Naex@(=)(a) 7 h(a)) = (3,1, 3). By Theorem 3.4 (4), we get Kon (0" (¥))(z)(a) =

a)
O" () (z) \ h(a) such that

1 1 1
Ken(0"(4)) = < 121 )
Slnce 0" (Keon(0"(¥))) = O () = (3, % 1), Ken(©"()) and ¢ are solutions of
©"(¥) = (3.1.3) with ¥ <1 Ken(0"(4)). Moreover, (Kgn(©"(v)),0"(¥)) €
G(©", Kon) but (,0" (1)) & G(O", Ko ).
Ken(f)(x)(a) = f(x) N h(a) such that

[@n)eMIN]

Wl =
~__

Kon (0" (1)) = ( !
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WIN =
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Since Kon (0" (Kon (f))) = Ken(f), we have ©"(Kon (f)) = (5.3, 1) > f= (3,3, 1).
Then (Kgn(f), f) € G(O", Kgn).

(4) By a similar method in Theorems 3.3 (2) and 3.4 (4), for g € [0, 1]} with g(a) =
1.9() = . define AI(1) = V,ey (U(a)(—)&g(a)) and (Tas(A(y))(2)(a)) =
(g(a) Ag( )(z)). Then ((LY)X A9, Jas, L) is a residuated connection. Let

(

Yi(z)(a) = ¥i(a,x) as
pi)ee(Fha)e-(0dd)
%1 an %O 7¢3 1 % 0 .
(¢

o=
(a)(—)&g(a)) = (0, 3

O Wl

Then A9(¢1) = V,ey
(1,1,0). Moreover, we obtain (Jas(A9(¢))(
2

N
@)= (§ 3 3 ) s = (3 1)

and (Jas (A9(¢3)) = ¥3. Thus (Tas(A9(1)), A%(1i)) € R(AI, Tas).
For all {¢;}icr € C((LY)™X) = {¢ € (LY)¥ | ¢ = Tas 0 A9(9)},

/\iel" (bw 16F¢z jAg (\/zeF Ag(¢z))

and
Tas(A9(P1)) U Tas (A9(P2)) = Tas(AI(Tas (A9 (1)) V AI(Tas (A9 (2))))
= Jns(AI(1h1) V A9 (1)),
Tas (A1) U Tas (A9(3)) = Tas(A9(P1) V A9(13)),
Tns(A9(2)) U Tas(A9(Y3)) = Tas(A9(12) V AI(¢3)).

So (C((LY)X), \,1)) is a complete lattice.
For all {fi}ier C I(LY) = {f € LY | f = A9 0 Tas(f)}, define

Mierfi = A\ Tas (1)), \/ £

el el
Then
A9(r) MAI(1hy) = AI(Taa(A(¢1)) A T (A%(12))) = A9 (1) A A9 (¢2),
A9(r) MAI(hg) = A9(hr) N AI(P3),
A9(2) MAI(hg) = A9(tha) N AI(P3).
Thus (I(LY),r,\/) is a complete lattice.

For h € [0,1]3 with h(a) = 0, h(b) = 1. By Definition 3.3 (ii), ©"(¢1) =
Naey (¥(a)(=) 7 ha)) = (3,0, 3), ©"(42) = (3,5,0) and ©"(¢3) = (0,0, 7). By
Theorem 3.4 (4), we obtain Kegn (f )( )(a) = f(z) “ h(a) such that (LY)X, 0" Kgn, LY)
is a Galois connection. Since (Kgn(©"(1;))(z)(a)) = (0" (:)(z) \« h(a)),

1 2 1
Ko@) = (§ | 1) Kern@@=(3 § 1),
Keon (0" (¢3)) = 1 1 %
Then (K:@h (@h(i/J )) Gh(d}l» € g(lc@ha ®h>'

Since
Kon(0"(1h1)) U Kon (0" (1)) = Ken(0"(Ken(0"(11))) A O"(Ken (©"(¢1))))

= Keon (0" (1h1) A OF (1)),
303
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Keon(©"(1h1)) U Ken (0" (2)), 0" (1) A O (1)2))
,0)) € G(Kgn, OM),

Ken(©"(¥3)), 0" (1) A O"(12))
> (0,0,0)) € G(Kon, OM).

O"(Ken (0"(11)) A Ken (0"(¥2))) = (1.5, 1);
)

)) A Ken(O" (¥2)), O" (1) LU O"(¢2))
) A Ken (©"(13)), 0" (1h2) LU O (13))
)

2
2
D) Gd ) € OKan 00

i
1) (50
)
1
1

/—\

(5) Define 9(c) : X — [0,1] for ¢ € {a,b} with ¢(x)(a) = ¢¥(a,x) as

o i1 1
— 2 2
“’(;10)'

£, f(y) =1, f(2) = 2. By Definition 3.3 (iii), A/ (¢)) =
, 7). By Theorem 34( ): Ha,(9)(@)(a) = f(x)&g(a)
) is a residuated connection. Then Hy , (A (¥))(x)(a) =

For f € [0,1]F with f(z)
Neex(f(x) /() (=) = (
such that (LY, Har, AY, (LY)
f(@)&A (¥)(a) as

XM‘H

W)= (g 1 ).
Since AT (Ha, (A (¥))) = A () = (3, %), Ha, (AT (¥)) and ¢ are solution of A/ (v) =
(3,7) and Ha, (AT (y)) < 9. Moreover (A (¥), "HAf(Af(z/)))) € R(Has,AV) but
(A (), 9) € R(Has, A) because Ha, (Af(w))

For h € [0,1]} with h(a) = %, h(b) = 3. By Definition 3.3 (ii ) L(w)

Naey (h(a) N ¥(a)(=)) = (3,1,0). By Theorem 3. 4(6), Ha,, ()()(a)
such that (L, Hy,, Yn, (LY)X) is a residuated connection. Then Hq;h( ( ))

H@h@h(w)):(? : 8)

2
Since Uj,(Hw, (¥1(¥))) = ¥n(¥) = (3,1,0), Hw, (¥ (¥)) and ¢ are solutions

of Up(v) = (3,1,0) and Hy, (Tr(y)) < w Moreover, (U (v), Hy, (Ph(¢))) €
R(Hw,, ¥n) but (Va(¢),v) € R(Hw,, ¥s) because H\Ph(‘l’h(w)) # 1.
For fo = (1,%,3) € L', Hu, (f2)(x)(a) = f2(x)&h(a) such that
H‘I’h(fQ): ( % g g )

and ‘I’h(Hw, (f2)) = (1,2, 2). Then (V4(Hy, (f2)), Hw, (f2)) € R(Hw,, V). More-
V(Y (Hw, (f2), Hw, (f2))
VHy, (f2), He, (Yr()) V Ha, (f2))

0

%

) c R(’H‘ph, \I/h)7
304
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(), o, (U (0) A (B (Ha, (12)), Hay (12)) = (0(0) A U (H, (f2),
o, (W(0) A 0 (o, () = (3,300 (31 8)>6R<H%,wh>.
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