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Abstract. This study aims to examine intuitionistic fuzzy congruences
and intuitionistic fuzzy submodules on an R-module (near-ring module).
The relationship between intuitionistic fuzzy congruences and intuitionis-
tic fuzzy submodules of an R-module is also obtained. Furthermore, the
intuitionistic fuzzy quotient R-module of an R-module over an intuitionis-
tic fuzzy submodule is defined. The correspondence between intuitionistic
fuzzy congruences on an R-module and intuitionistic fuzzy congruences on
the intuitionistic fuzzy quotient R-module of an R-module over an intu-
itionistic fuzzy submodule of an R-module is also obtained.
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1. Introduction

The concept of a fuzzy set was introduced by Zadeh [1] in 1965. Since then,
there has been a tremendous interest in the subject due to its diverse applications
ranging from engineering and computer science to social behaviour studies. The
concept of fuzzy relations on a set was defined by Zadeh [1, 2]. Fuzzy relations on
group has been studied by Bhattacharya and Mukharjee [3], and those in rings and
groups by Malik and Modeson in [4]. The detailed applications of fuzzy relations
are given by Baets and Kerre in [5]. The construction of a fuzzy congruence rela-
tion generated by a fuzzy relation on a vector space was given by Khosravi et al.
in [6]. Dutta and Biswas [7] applied the concept of fuzzy congruence in the near-
ring module. As a generalization of fuzzy sets, the concept of intuitionistic fuzzy
sets was introduced by Atanassov [8] in 1983. After that time, several researchers
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] applied the notion of intuitionistic fuzzy sets to
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relations, algebra, topology, and topological structures. In particular, Bustince and
Burillo [20], and Deschrijver and Kerre [21] applied the concept of intuitionistic fuzzy
sets to relations. Also, Hur et al. [14] investigated several properties of intuitionistic
fuzzy congruences. Moreover, Hur and his colleagues [22] introduce the notion of
intuitionistic fuzzy congruences on a lattice and a semigroup, and investigate some
of their properties. Basnet in [11, 12] studied many properties of intuitionistic fuzzy
relations with respect to level cut sets. The notion of intuitionistic fuzzy congruence
on groups was introduced by Emam [23], and that of universal algebra was studied
by Cuvalcioglu and Tarsuslu (Yilmaz) in [24, 25]. Rasuli in [26, 27] studied intu-
itionistic fuzzy congruence on groups and rings under the t-norm, respectively.

Since the correspondence theorem provides a bridge between algebraic structures,
and their quotients, allowing us to study properties, factorizations, and relationships
in a more manageable way. Its applications extend beyond pure algebra and have
implications in various mathematical areas. The main objective of this paper is
to establish a connection between intuitionistic fuzzy congruences and intuitionistic
fuzzy submodules on an R-module (where R is a near-ring) and quotient R-module
over an intuitionistic fuzzy submodule of an R-module. This is achieved by establish-
ing a one-to-one correspondence between the set of intuitionistic fuzzy submodules
and the set of intuitionistic fuzzy congruences of an R-module. Lastly, we study the
intuitionistic fuzzy congruence of a quotient R-module over an intuitionistic fuzzy
submodule of an R-module and obtain a correspondence theorem. .

2. Preliminaries

We recall some definitions and results that are used in this paper. For details, see
the references quoted therein.

Definition 2.1 ([28, 29]). A near-ring R is a system with two binary operations,
addition and multiplication, such that:

(i) (R,+) is a group,
(ii) (R, ·) is a semigroup,
(iii) x(y + z) = xy + xz for all x, y, z ∈ R.

Definition 2.2 ([28]). An R-module (i.e. near-ring module)M is a system consisting
of an additive group M , a near-ring R, and a mapping (m, r) ↣ mr of M ×R into
M such that

(i) m(x+ y) = mx+my for all m ∈M and for all x, y ∈ R,
(ii) m(xy) = (mx)y for all m ∈M and for all x, y ∈ R.

Definition 2.3 ([28]). An R-homomorphism f of an R-moduleM into an R-module

M
′
is a mapping from M to M

′
such that for all m;m1, m2 ∈M and for all r ∈ R,

(i) f(m1 +m2) = f(m1) + f(m2),
(ii) f(m)r = f(mr).

A non-empty subset N of an R-module M that forms with the restrictions of the
operations on M (addition and scalar multiplication) to N itself an R-module is

called a submodule of M . The kernel of an R-module homomorphism f :M →M
′
,
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denoted by kerf is defined as:

kerf = {x ∈M : f(x) = 0
′
}.

It may be noted that kerf is a submodule of M .
The submodules of anR-moduleM are defined to be the kernels ofR-homomorphisms.

Proposition 2.4 ([28]). An additive normal subgroup N of an R-module M is a
submodule if and only if (m+ b)r −mr ∈ N for each m ∈M, b ∈ N and r ∈ R.

Definition 2.5 ([14]). A relation ρ on an R-module M is called a congruence on
M , if it is an equivalence relation on M such that (a, b) ∈ ρ and (c, d) ∈ ρ imply
that (a+ c, b+ d) ∈ ρ and (ar, br) ∈ ρ for all a, b, c, d in M and for all r in R.

Definition 2.6 ([8, 9, 10]). An intuitionistic fuzzy set (IFS) A in X can be rep-
resented as an object of the form A = {⟨x, µA(x), νA(x)⟩ : x ∈ X}, where the
functions µA : X → [0, 1] and νA : X → [0, 1] denote the degree of membership
(namely µA(x)) and the degree of non-membership (namely νA(x)) of each element
x ∈ X to A respectively and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

The intutionistic fuzzy whole [resp. empty] set in X, denoted by 1 [resp. 0], is an
IFS in X defined as follows: for each x ∈ X,

1(x) = (1, 0) [resp. 0(x) = (0, 1)].

The set of all IFSs of X will be written as IFS(X).

Remark 2.7 ([10, 12]). (1) When µA(x) + νA(x) = 1 ∀x ∈ X, A is a fuzzy set.
(2) If p, q ∈ [0, 1] such that p + q ≤ 1, then A ∈ IFS(X) defined by µA(x) = p

and νA(x) = q for all x ∈ X, is called a constant IFS of X.

If A, B ∈ IFS(X), then A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥
νB(x) ∀x ∈ X. For any subset Y of X, the intuitionistic fuzzy characteristic function
(IFCF) χY is an intuitionistic fuzzy set of X, defined as χY (x) = (1, 0) ∀x ∈ Y and
χY (x) = (0, 1) ∀x ∈ X\Y . Let α, β ∈ [0, 1] with α+ β ≤ 1. Then the crisp set

A(α,β) = {x ∈ X : µA(x) ≥ α and νA(x) ≤ β}

is called the (α, β)-level subset of A (See[12]).

Definition 2.8 ([13]). A nonempty IFS of an additive group G is called an intu-
itionistic fuzzy normal subgroup of G, if for all x, y in G,

(i) µA(x+ y) ≥ min{µA(x), µA(y)}, νA(x+ y) ≤ max{νA(x), νA(y)},
(ii) µA(−x) = µA(x), νA(−x) = νA(x),
(iii) µA(y + x− y) = µA(x), νA(y + x− y) = νA(x).

Definition 2.9 ([13]). Let A be an intuitionistic fuzzy normal subgroup of an ad-
ditive group G and x ∈ G. Then the IFS x+A in G defined by

µ(x+A)(y) = µA(y − x) and ν(x+A)(y) = νA(y − x) for all y in G

is called the intuitionistic fuzzy coset of A with respect to x.
263
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3. Intuitionistic fuzzy submodule (IFSM)

Definition 3.1. Let A be a non-empty IFS of an R-module M . Then A is said to
be an intuitionistic fuzzy submodule (IFSM) of M , if for all x, y ∈M, r ∈ R,

(i) A is an IF normal subgroup of M ,
(ii) µA((x+ y)r − xr) ≥ µA(y) and νA((x+ y)r − xr) ≤ νA(y).

Example 3.2. Consider the additive group (M = {0, 1, 2, 3},+4) and the near-ring
R = (M2×2,+, .) of 2×2 matrices over the real numbers under the usual operation of
addition and multiplication of matrices. Let . :M×R→M be the mapping defined
as mX = m+m+m+ ......+m(|X| times), where |X| denotes the determinant of
matrix X ∈ R. Then M is an R-module.
Define the IFS A on M as follows:

µA(x) =

{
1, if x = 0, 2

0.6, if x = 1, 3
; νA(x) =

{
0, if x = 0, 2

0.3, if x = 1, 3.

Then it is a routine matter to check that the conditions (i) and (ii) of Definition 3.1
hold. Thus A is an IFSM of an R-module M .

Proposition 3.3. Let K be a non-empty subset of an R-module M . Then the IF
characteristic function χK is an IFSM of M if and only if K is a submodule of M .

The proposition can be directly verified.

Proposition 3.4. Let A be an IFSM of an R-module M . Then the (α, β)-level set
A(α,β) = {x ∈M : µA(x) ≥ α, νA(x) ≤ β} is a submodule of M

Proof. The proof is omitted. □

Definition 3.5. Let A be an IFSM of an R-moduleM . Then the submodule A(α,β)

is called the (α, β)-level submodule of M .

Proposition 3.6. For a non-empty IFS A of an R-module M , the following asser-
tion are equivalent:

(1) A is an IFSM of M ,
(2) the (α, β)-level set A(α,β) are submodules of M

Proof. Since the proof is a simple matter of verification, we omit it. □

Proposition 3.7. Let A is an IFNSG of an additive group G. Then x+A = y+A
if and only if µA(y − x) = µA(0), νA(y − x) = νA(0) for all x, y ∈ G.

Proof. The proof is straightforward. □

Theorem 3.8. Let A be an IFSM of an R-module M . Then the set M/A of all IF
cosets of A is an R-module w.r.t. the operation defined by
(x+A) + (y +A) = (x+ y) +A and (x+A)r = (xr +A) for all x, y ∈M, r ∈ R.

If f :M →M/A is a surjective mapping defined by f(x) = x+A for all x ∈M ,
then f is an R-homomorphism with Kerf = {x ∈ M : µA(x) = µA(0), νA(x) =
νA(0)}.
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Proof. We shall first show that the given operations are well-defined.
Let x, y, u, v ∈M be such that x+A = u+A and y+A = v+A. Then µA(x−u) =
µA(0), νA(x− u) = νA(0) and µA(y − v) = µA(0), νA(y − v) = νA(0).
On the other hand, we have

µA(x+ y − v − u) = µA(−u+ x+ y − v)
≥ min{µA(−u+ x), µA(y − v)}
= µA(0)
≥ µA(x+ y − v − u).

Thus µA(x+y−v−u) = µA(0). Similarly, we can show that νA(x+y−v−u) = νA(0).
So x + y + A = u + v + A, i.e., (x + A) + (y + A) = (u + A) + (v + A). Hence the
first operation is well-defined.

Let x, y be two elements of M such that x + A = y + A. Let r ∈ R. Then
µA(x− y) = µA(0), νA(x− y) = νA(0). Thus we get

µA(xr − yr) = µA((y − y + x)r − yr) ≥ µA(y − x) = µA(x− y) = µA(0).

Again µA(0) = µA((0 + xr− yr)0R − 00R) ≥ µA(xr− yr). So µA(xr− yr) = µA(0).
Similarly, we can show that νA(xr−yr) = νA(0). Hence xr+A = yr+A. Therefore
the second operation is well-defined.

Now let f be the mapping from M to M/A defined by f(x) = x+ A for all x in
M . Then we have

f(x+ y) = x+ y +A = (x+A) + (y +A) = f(x) + f(y).

Also, we get

f(xr) = xr +A = (x+A)r = f(x)r for x, y ∈M and r ∈ R.

Obviously f is surjective. Thus f is an R-epimorphism.
Lastly, x ∈ Kerf ⇔ f(x) = 0+A⇔ x+A = 0+A⇔ µA(x) = µA(0), νA(x) = νA(0).
So Kerf = {x ∈M : µA(x) = µA(0), νA(x) = νA(0)}. □

Definition 3.9. The R-module M/A is called the quotient R-module of M over its
intuitionistic fuzzy submodule A.

4. Intuitionistic fuzzy congruence

Definition 4.1 ([11, 14]). Let M be an R-module. A nonempty intuitionistic fuzzy
relation (IFR) ρ on M [i.e., a mapping ρ : M ×M → [0, 1] × [0, 1] ] is called an
intuitionistic fuzzy equivalence relation (IFER), if for all x, y ∈M ,

(i) µρ(x, x) = 1, νρ(x, x) = 0 (IF reflective),
(ii) µρ(x, y) = µρ(y, x) and νρ(x, x) = νρ(y, x) (IF symmetric),
(iii) µρ(x, y) ≥ supz∈M{µρ(x, z), µρ(z, y)} and νρ(x, y) ≤ infz∈M{νρ(x, z), νρ(z, y)}

(IF transitive).

Let ρ be an IFER on a set M and a ∈ M be any element. Then the IFS ρa
on M defined by µρa(x) = µρ(a, x) and νρa(x) = νρ(a, x) ∀x ∈ M is called the
intuitionistic fuzzy equivalence class of ρ containing a. The set {ρa : a ∈ M} is
called the intuitionistic fuzzy quotient set of M by ρ and is denoted by M/ρ.
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Definition 4.2 ([14]). An IFER ρ on an R-module M is called an intuitionistic
fuzzy congruence (IFC), if for all a, b, c, d ∈M and all r ∈ R.

(i) µρ(a+c, b+d) ≥ min{µρ(a, b), µρ(c, d)}, νρ(a+c, b+d) ≤ max{νρ(a, b), νρ(c, d)},
(ii) µρ(ar, br) ≥ µρ(a, b), νρ(ar, br) ≤ νρ(a, b).

Example 4.3. Consider M = Z4, R = ({0, 1},+2, .2). Then M is an R-module.
Now we define the IFS ρ on M ×M by

µρ((x, y)) =


1, if x = y

0.5, if (x, y) ∈ {(2, 3), (3, 2)}
0.3, otherwise,

νρ((x, y)) =


0, if x = y

0.4, if (x, y) ∈ {(2, 3), (3, 2)}
0.6, otherwise.

Then ρ is an IFER onM , but it is not an IFC, for µρ(2+2, 3+2) ⩾̸ min{µρ(2, 3), µρ(2, 2)}.

Example 4.4. Consider the R-module M as in Example 3.2, we define the IFS ρ
on M ×M as follows

µρ((x, y)) =

{
1, if x = y

0.6, if x ̸= y,
νρ((x, y)) =

{
0, if x = y

0.3, if x ̸= y.

Then it is a routine matter to verify that the conditions of Definition 4.2 hold. Thus
ρ is an IFC on M .

Theorem 4.5. Let λ be a relation on an R-module M and χλ be its intuitionistic
fuzzy characteristic function. Then λ is a congruence relation on M if and only if
χλ is an IFC on M .

Proof. The proof is omitted. □

Definition 4.6 ([11, 14]). Let ρ be an IFR on an R-moduleM . For each α, β ∈ [0, 1]
such that α+ β ≤ 1, the set

ρ(α,β) = {(a, b) ∈M ×M : µρ(a, b) ≥ α, νρ(a, b) ≤ β}
is called a (α, β)-level set of ρ.

It is shown in [11] that ρ is an IFER if and only if ρ(α,β) is an equivalence relation
on M for all α, β ∈ [0, 1] such that α+ β ≤ 1.”

Theorem 4.7. Let ρ be an IFER on an R-module M . Then ρ is an IFC on M if
and only if ρ(α,β) is a congruence on M for each (α, β) ∈ img(ρ) (Image of ρ).

Proposition 4.8. Let ρ be an IFC on an R-module M and Aρ be an IFS of M
defined by

µAρ
(a) = µρ(a, 0) and νAρ

(a) = νρ(a, 0) for all a ∈M .

Then Aρ is an IFSM of M .

Proof. Since µAρ(0) = µρ(0, 0) = 1 and νAρ(0) = νρ(0, 0) = 0.
Also, µAρ(a+ b) = µρ(a+ b, 0) ≥ min{µρ(a, 0), µρ(b, 0)} = min{µAρ(a), µAρ(b)}
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Similarly, νAρ
(a+ b) = νρ(a+ b, 0) ≤ max{νρ(a, 0), νρ(b, 0)} = max{νAρ

(a), νAρ
(b)}.

Then we have

µAρ(−a) = µρ(−a, 0) = µρ(−a+ 0,−a+ a)

≥ min{µρ(−a,−a), µρ(0, a)}
= µρ(0, a) = µρ(a, 0)

= µAρ(a).

Similarly, we can show µAρ(a) ≥ µAρ(−a). Thus µAρ(−a) = µAρ(a). In the same
way, we can show that νAρ

(−a) = νAρ
(a). Also, we have

µAρ
(a+ b− a) = µρ(a+ b− a, 0) = µρ(a+ b− a, a+ 0− a) ≥ µρ(b, 0) = µAρ

(b).

Similarly, we can show that νAρ
(a + b − a) ≤ νAρ

(b). So Aρ is an IFNSG of an
R-module M .
Now for a, b ∈M and r ∈ R, we have

µAρ
((a+ b)r − ar) = µρ((a+ b)r − ar, 0) = µρ((a+ b)r − ar, ar − ar)

≥ min{µρ((a+ b)r, ar), µρ(−ar,−ar)} = µρ((a+ b)r, ar)

≥ µρ((a+ b), a)

≥ µρ(b, 0)

= µAρ
(b).

Similarly, we can show that νAρ
((a+ b)r − ar) ≤ νAρ

(b).
Hence Aρ is an IFSM of M . □

Example 4.9. Consider the R-module M as in Example 3.2, we define the IFS ρ
on M ×M as follows

µρ((x, y)) =

{
1, if x = y

0.6, if x ̸= y
; νρ((x, y)) =

{
0, if x = y

0.3, if x ̸= y.

Then ρ is an IFC on M (See Example 4.4). Let Aρ be an IFS of M , defined by

µAρ
(a) = µρ(a, 0) and νAρ

(a) = νρ(a, 0) for all a ∈M . Then it is a easy to check
that

µAρ
(a) =

{
1, if a = 0

0.6, if a ̸= 0,
νAρ

(a) =

{
0, if a = 0

0.3, if a ̸= 0.

Thus Aρ is an IFSM of M .

Remark 4.10. From Examples 3.2 and 4.9, one can easily check that (ρ)Aρ
̸= A.

Proposition 4.11. Let A be an IFSM of an R-module M . Let ρA be an IFR on M
defined by

µρA
(x, y) = µA(x− y) and νρA

(x, y) = νA(x− y) for all x, y ∈M .

Then ρA is an IFC on M .

Proof. Let x ∈M. Then we have

µρA
(x, x) = µA(x− x) = µA(0) = 1, νρA

(x, x) = νA(x− x) = νA(0) = 0.
267



P.K.Sharma /Ann. Fuzzy Math. Inform. 28 (2024), No. 3, 261–272

Thus ρA is IF reflexive. It is clear that ρA is IF symmetric. Now let x, y ∈M. Then
we get

µρA
(x, y) = µA(x− y) = µA(x− z + z − y)

≥ min{µA(x− z), µA(z − y)}
= min{µρA

(x, z), µρA
(z, y)} ∀z ∈M.

Thus µρA
(x, y) ≥ supz∈M min{µρA

(x, z), µρA
(z, y)}. Similarly, we can show that

νρA
(x, y) ≤ infz∈M max{νρA

(x, z), νρA
(z, y)}. So ρA is an IF equivalence relation on

M . On the other hand, we have

µρA
(x+ u, y + v) = µA(x+ u− v − y) = µA(−y + x+ u− v)

≥ min{µA(−y + x), µA(u− v)} = min{µA(x− y), µA(u− v)}
= min{µρA

(x, y), µρA
(u, v)}.

Similarly, we can show that νρA
(x+ u, y + v) ≤ max{νρA

(x, y), νρA
(u, v)}. Again

µρA
(xr, yr) = µA(xr − yr) = µA((y − y + x)r − yr)

≥ µA(−y + x) = µA(x− y)

= µρA
(x, y).

Similarly, we can show that νρA
(xr−yr) ≤ νρA

(x, y). Hence ρA is an IFC onM . □

Remark 4.12. Note ρA is called the IFC induced by A and Aρ is called the IFSM
induced by ρ.

Example 4.13. Consider R, M and IFSM A as in Example 3.2. Define the IFS ρA
on M ×M as

µρA
(x, y) = µA(x− y) and νρA

(x, y) = νA(x− y) for all x, y ∈M .

Then we have

µρA
((x, y)) =

{
1, if x− y ∈ {0, 2}
0.6, if x− y ∈ {1, 3},

νρA
((x, y)) =

{
0, if x− y ∈ {0, 2}
0.3, if x− y ∈ {1, 3}.

It is easy to check that ρA is an IFC on M induced by A.

Remark 4.14. It can be easily seen that (Aρ)A ̸= ρ.

Theorem 4.15. Let M be an R-module. Then there exists an inclusion preserving
bijection from the set IFM(M) of all IFSMs of M to the set of IFC(M) of all
IFCs.

Proof. We define mappings ψ : IFM(M) → IFC(M) and ϕ : IFC(M) →
IFM(M), respectively by ψ(A) = ρA and ϕ(ρ) = Aρ for A ∈ IFM(M) and
ρ ∈ IFC(M). It is obvious that

(ϕ ◦ ψ)(A) = ϕ(ψ(A)) = ϕ(ρA) = A(ρA).

Let a ∈M . Then we get

µA(ρA)
(a) = µρA

(a, 0) = µA(a−0) = µA(a), νA(ρA)
(a) = νρA

(a, 0) = νA(a−0) = νA(a).

Thus A(ρA) = A. So (ϕ ◦ ψ)(A) = A = Id(IFC(M))(A). Hence ψ is injective.
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Let A1, A2 ∈ IFM(M) be such that A1 ⊆ A2. Then for all (x, y) ∈M ×M ,

µρA2
(x, y) = µA2(x− y) ≥ µA1(x− y) = µρA1

(x, y)

and
νρA2

(x, y) = νA2
(x− y) ≤ νA1

(x− y) = νρA1
(x, y).

Thus ρA1
⊆ ρA2

. So ψ(A1) ⊆ ψ(A2). Hence ψ is inclusion preserving.
Now let ρ ∈ IFC(M). Then Aρ is an IFSM of M . Note that ρAρ

is an IFC of
M . It is clear that

(ψ ◦ ϕ)(ρ) = ψ(ϕ(ρ)) = ψ(Aρ) = ρAρ
.

Let (x, y) ∈M ×M . Then we have

µρAρ
(x, y) = µAρ

(x− y) = µρ(x− y, 0) = µρ(x, y)

and
νρAρ

(x, y) = νAρ
(x− y) = νρ(x− y, 0) = νρ(x, y).

Thus ρAρ
= ρ. So (ψ ◦ϕ)(ρ) = ψ(ϕ(ρ)) = ρ = Id(IFC(M))(ρ) for all ρ ∈ IFC(M).

Hence ϕ ◦ ψ = Id(IFC(M)) which implies that ψ is surjective. Therefore ψ is an
inclusion preserving bijection from IFM(M) to IFC(M). □

Proposition 4.16. Let ρ be an IFC on an R-module M and Aρ be an IFSM induced
by ρ. Let (α, β) ∈ Img(ρ). Then

Aρ(α,β)
= {x ∈M : x ≡ 0(ρ(α,β))}

is a submodule induced by the congruence ρ(α,β).

Proof. Let a ∈M . Then a ∈ Aρ(α,β)
⇔ µAρ

(a) ≥ α, νAρ
(a) ≤ β

⇔ µρ(a, 0) ≥ α, νρ(a, 0) ≤ β ⇔ (a, 0) ∈ ρ(α,β) ⇔ a ∈ {x ∈M : x ≡ 0(ρ(α,β))}.
Thus Aρ(α,β)

is a submodule induced by the congruence ρ(α,β). □

Proposition 4.17. Let A be an IFSM of an R-moduleM and ρA be the IFC induced
by A. Let (α, β) ∈ Img(A). Then ρA(α,β)

is the congruence on M induced by A(α,β).

Proof. Let λ be the congruence on M induced by A(α,β). Then

(x, y) ∈ λ⇔ x− y ∈ A(α,β).

Let (x, y) ∈ ρA(α,β)
. Then µρA

(x, y) ≥ α, νρA
(x, y) ≤ β. Thus we have

µA(x− y) ≥ α, νA(x− y) ≤ β ⇒ x− y ∈ A(α,β) ⇒ x− y ∈ λ.

So ρA(α,β)
⊆ λ. By reversing the above argument, we get λ ⊆ ρA(α,β)

. Hence
ρA(α,β)

= λ. □

Definition 4.18. Let M be an R-module and ρ be an IFC on M . An IFC λ on M
is said to be ρ-invariant, if for all (x, y), (u, v) ∈M ×M ,

µρ(x, y) = µρ(u, v) and νρ(x, y) = νρ(u, v) ⇒ µλ(x, y) = µλ(u, v) and
νλ(x, y) = νλ(u, v).

Lemma 4.19. Let M be an R-module and A be an IFSM of M . Let ρA be the IFC
on M induced by A. Then the IFR ρA/ρA on M/A defined by

(ρA/ρA)(x+A, y +A) = ρA(x, y)
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is an IFC on M/A.

Proof. Assume that x+A = u+A and y +A = v +A. Then we have

µA(x− u) = µA(0) = 1, νA(x− u) = νA(0) = 0

and
µA(y − v) = µA(0) = 1, νA(y − v) = νA(0) = 0.

Thus we get
µρA

(x, y) ≥ min{µρA
(x, u), µρA

(u, y)}
= µρA

(u, y)
≥ min{µρA

(u, v), µρA
(v, y)}

= µρA
(u, v).

Similarly, we can show µρA
(u, v) ≥ µρA

(x, y). So µρA
(x, y) = µρA

(u, v). Similarly,
we get νρA

(x, y) = νρA
(u, v). Hence ρA/ρA is meaningful.

Now the rest of the proof is a routine matter of verification. □

Theorem 4.20. Let M be an R-module and A be an IFSM of M . Let ρA be the
IFC on M induced by A. Then there exists a one-to-one correspondence between
the set IFCρA(M) of ρA-invariant IFCs of M and the set IFCρA/ρA(M/A) of
ρA/ρA-invariant IFCs on M/A.

Proof. Let λ be an ρA-invariant IFC on M . Define

(λ/ρA)(x+A, y +A) = λ(x, y) for all x, y ∈M .

Let x+A = u+A and y+A = v+A. These imply that ρA(x, y) = ρA(u, v). Since λ is
ρA-invariant, we have λ(x, y) = λ(u, v). Then the definition of λ/ρA is meaningful.
It is easy to show that λ/ρA is ρA/ρA-invariant IFC on M/A. We define a map
θ : IFCρA(M) → IFCρA/ρA(M/A) by θ(λ) = λ/ρA. Let λ1, λ2 ∈ IFCρA(M) such
that λ1(x, y) ̸= λ2(x, y). Then we have

(λ1/ρA)(x+A, y +A) = λ1(x, y) ̸= λ2(x, y) = (λ2/ρA)(x+A, y +A).

Thus θ is injective.
Let λ

′
be a ρA/ρA-invariant IFC on M/A. We define an IFR λ on M as follow:

λ(x, y) = λ
′
(x+A, y +A).

Then µλ(x, x) = µλ′ (x + A, x + A) = 1 and νλ(x, x) = νλ′ (x + A, x + A) = 0.
Similarly, we can show that λ(x, y) = λ(y, x). Also, we get

µλ(x, y) ≥ sup
z∈M

min{µλ(x, z), µλ(z, y)}

and
νλ(x, y) ≤ inf

z∈M
max{νλ(x, z), νλ(z, y)}.

Thus λ is an IFR on M . On the other hand, we get

µλ(x+ a, y + b) = µλ′ (x+ a+A, y + b+A)

= µλ′ (x+A+ a+A, y +A+ b+A)

≥ min{µλ′ (x+A, y +A), µλ′ (a+A, b+A)}
= min{µλ(x, y), µλ(a, b)}.
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Similarly, we can show that νλ(x+a, y+ b) ≤ max{νλ(x, y), νλ(a, b)}. Also, we have

µλ(xr, yr) = µλ′ (xr +A, yr +A)

= µλ′ ((x+A)r, (y +A)r)

≥ µλ′ (x+A, y +A).

Similarly, we can show that νλ(xr, yr) ≤ νλ(x, y). So λ is an IFC on M . Since
ρA(x, y) = ρA(u, v), ρA/ρA(x + A, y + A) = ρA/ρA(u + A, v + A). This implies

that λ
′
(x + A, y + A) = λ

′
(u + A, v + A). Hence λ(x, y) = λ(u, v). Therefore λ is

ρA-invariant.
Now let (x + A, y + A) ∈ M/A ×M/A. Then (λ/ρ)(x + A, y + A) = λ(x, y) =

λ
′
(x+A, y+A). Thus λ

′
= λ/ρA = θ(λ). So θ is surjective. Hence θ is bijective. □

Conclusion

In this paper, we develop and study the notions of intuitionistic fuzzy submodules,
intuitionistic fuzzy congruences of an R-module (where R is a near-ring) and quotient
R-modules over an intuitionistic fuzzy submodule of an R-module. We exhibit a
one-to-one correspondence between the set of intuitionistic fuzzy submodules and
the set of intuitionistic fuzzy congruences of an R-module. Finally, we established
an intuitionistic fuzzy congruence of the quotient R-module over an intuitionistic
fuzzy submodule of the R-module and obtained a correspondence theorem.
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