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J. I. Baek, G. Şenel, S. Jafari, S. H. Han, K. Hur

Received 1 April 2024; Revised 20 May 2024; Accepted 27 May 2024

Abstract. Our purpose of the research is to investigate two aspects:
First, we introduce the concept of separation axioms in an interval-valued
soft topological space, and obtain some of its properties and give some ex-
amples. Second, we propose new separation axioms in an interval-valued
soft topological space by using interval-valued α-open sets basic topolog-
ical structures based on interval-valued soft set, and study some of their
basic properties. Furthermore, we deal with hereditary problems of each
separation axiom.
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1. Introduction

In 1999, Molodtsov [1] introduced the concept of soft sets which has rich potential
for practical applications in several domains as a tool for dealing with uncertainties.
After then, Maji et al. [2] proposed some basic operations on soft sets and studied
some of their properties (See [3, 4, 5] for the further researches). Moreover, many
researchers have applied the notion of soft sets to various fields, for example abstract
algebra (See [6, 7, 8, 9]), logical algebra (See [10, 11, 12]), decision making problems
(See [13, 14, 15]), topology (See [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]), topological
group (See [27, 28, 29, 30, 31, 32]), etc. In particular, Bayramov et al. [33] introduced
the concepts of interval-valued fuzzy soft topological spaces, interval-valued fuzzy
soft neighborhoods, interval-valued fuzzy soft continuities, etc. and studied some of
their properties.
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Topology is an important area of mathematics with many applications in the do-
mains of computer and physical science. In particular, separation axioms in topol-
ogy not only provide a systematic way to classify and study topological spaces but
also ensure that the spaces behave in predictable and desirable ways for further
mathematical exploration and application. Moreover, understanding the separation
properties of a space is often the first step in analyzing its structure and behavior in
both theoretical and applied settings. Then their necessity and importance cannot
be overstated. In 2021, Lee et al. [34] investigated interval-valued soft topological
structures as a generalization of soft topologies.

We intend to study in the following two aspects: First, we define separation
axioms in an interval-valued soft topological space by modifying separation axioms
introduced by Shabir and Naz [16]. Second, we introduce the concept of separation
axioms in an interval-valued soft topological space by modifying separation axioms
proposed by Akdag and Ozkan [35]. In order to realize our aim, this paper is
composed of six sections. In Section 2, we recall some basic concepts required in
each section. In Section 3, we introduce the notions of separation axioms in an
interval-valued soft topological space in the sense of Shabir and Naz [16], and obtain
its basic properties and give some examples. In Section 4, we deal with hereditary
properties of separation axioms discussed in Section 3. In Section 5, we propose the
concept of interval-valued soft α-open set by modifying soft α-open set introduced
by Akdag and Ozkan [36] and study some of its properties. In Section 6, we define
separation axioms in an interval-valued soft topological space in the viewpoint of
Akdag and Ozkan [35] and discuss some of their properties.

2. Preliminaries

In this section, we recall basic concepts needed in next sections. Throughout this
paper, let X, Y, Z, · · · denote non-empty universe sets, let E, E′, E′′, · · · denote
non-empty sets of parameters and let 2X denote the power set of X.

Definition 2.1 ([37, 38]). The form

[A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+}

is called an interval-valued set (briefly, IVS) or interval set in X, if A−, A+ ⊂ X
and A− ⊂ A+. In this case, A− [resp. A+] represents the set of minimum [resp.
maximum] memberships of elements of X to A. [∅,∅] [resp. [X,X]] is called the

interval-valued empty [resp. whole] set in X and will be denoted by ∅̃ [resp. X̃].
We will denote the set of all IVSs in X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for a classical subset A of X. Then we
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
if A = [A−, A+] ∈ IV S(X), then

χ
A
= [χ

A− , χ
A+ ]

is an interval-valued fuzzy set in X introduced by Zadeh [39], where χ
A
denotes the

characteristic function of A. Thus we can consider an interval-valued fuzzy set as
the generalization of an IVS.
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Definition 2.2 ([37, 38]). Let A, B ∈ IV S(X). Then
(i) we say that A contained in B, denoted by A ⊂ B, if A− ⊂ B− and A+ ⊂ B+,
(ii) we say that A equals to B, denoted by A = B, if A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted Ac, is an interval-valued set in X defined by:

Ac = [(A+)c, (A−)c],

(iv) the union of A and B, denoted by A∪B, is an interval-valued set in X defined
by:

A ∪B = [A− ∪B−, A+ ∪B+],

(v) the intersection of A and B, denoted by A∩B, is an interval-valued set in X
defined by:

A ∩B = [A− ∩B−, A+ ∩B+].

Definition 2.3 ([37]). Let a ∈ X and A ∈ IV S(X). Then the notation [{a}, {a}]
[resp. [∅, {a}]] is called an interval-valued [resp. vanishing] point in X and denoted
by a

1
[resp. a

0
]. We denote the set of all interval-valued points in X as IVP (X).

(i) We say that a1 belongs to A, denoted by a1 ∈ A, if a ∈ A−.
(ii) We say that a0 belongs to A, denoted by a0 ∈ A, if a ∈ A+.

Definition 2.4 ([37]). Let τ be a non-empty family of IVSs on X. Then τ is called
an interval-valued topology (briefly, IVT) on X, if it satisfies the following axioms:

(IVO1) ∅̃, X̃ ∈ τ ,
(IVO2) A ∩B ∈ τ for any A, B ∈ τ ,
(IVO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ .

In this case, the pair (X, τ) is called an interval-valued topological space (briefly,
IVTS) and each member of τ is called an interval-valued open set (briefly, IVOS)
in X. An IVS A is called an interval-valued closed set (briefly, IVCS) in X, if Ac ∈ τ .

It is obvious that {∅̃, X̃} is an IVT on X, and is called the interval-valued indis-
crete topology on X and denoted by τ

IV,0
. Also IV S(X) is an IVT on X, and is

called the interval-valued discrete topology on X and is denoted by τ
IV,1

. The pair
(X, τ

IV,0
) [resp. (X, τ

IV,1
)] is called the interval-valued indiscrete [resp. discrete]

space.

We denote the set of all IVTs on X as IV T (X). For an IVTS X, we denote the
set of all IVOSs [resp. IVCSs] in X as IV O(X) [resp. IV C(X)].

Definition 2.5 ([1, 17]). An FA is called a soft set over X, if FA : A → 2X is a
mapping such that FA(e) = ∅ for each e /∈ A, where A ∈ 2E .

In other words, a soft set over X is a parametrized family of subsets of X. For
each e ∈ A, FA(e) may be considered as the set of e-approximate elements of the
soft set FA. It is clear that a soft set is not a set. We will denote the set of all soft
sets over X as SS(X) while SS(X)E will denote the set of all soft sets over with
respect to a fixed set E of parameters.

It has been well-known [1] that every Zadeh’s fuzzy set A may be considered as
the soft set F[0,1].
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Definition 2.6 ([2, 17]). Let FA, FB ∈ SS(X) and A, B ∈ 2E . Then we say that:
(i) FA is a soft subset of FB , denoted by FA⊂̃FB , if A ⊂ B and FA(e) ⊂ FB(e)

for each e ∈ A,
(ii) FA is a soft super set of FB , denoted by FA⊃̃FB , if FB⊂̃FA,
(iii) FA and FB are soft equal, if FA⊂̃FB and FA⊃̃FB .

Definition 2.7 ([2, 3]). Let FA ∈ SS(X). Then FA is called:
(i) a null soft set or a relative null soft set (with respect to A), denoted by ∅A, if

FA(e) = ∅ for each e ∈ A,
(ii) an absolute soft set or a relative whole soft set (with respect to A), denoted

by XA, if FA(e) = X for each e ∈ A.
We will denote the null [resp. absolute] soft set in SSE(X) by XE [resp. ∅E ].

Definition 2.8 ([16]). Let τ be a collection of members of SSE(X). Then τ is called
a soft topology on X, if it satisfies the following conditions:

(i) ∅E , XE ∈ τ ,
(ii) A ∩B ∈ τ for any A,B ∈ τ,
(iii)

⋃
j∈J Aj ∈ τ for each (Aj)j∈J ⊂ τ , where J denotes an index set.

Each member of τ is called a soft open set in X and the complement of each member
of τ is called a closed soft set in X. The triple (X, τ,E) is called a soft topological
space over X.

Definition 2.9 ([34]). Let A ∈ 2E . Then an FA = [F−
A , F+

A ] is called an interval-
valued soft set (briefly, IVSS) over X, if FA : A → IV S(X) is a mapping such that
FA(e) = ∅̃ for each e /∈ A, i.e., F−

A , F+
A ∈ SS(X) such that F−

A (e) ⊂ F+
A (e) for

each e ∈ A.
In other words, an IVSS over X is a parametrized family of IVSs of X. For

each e ∈ A, FA(e) = [F−
A (e), F+

A (e)] may be considered as an interval-valued set of
e-approximate elements of the IVSS FA. We denote the set of all IVSSs over X as
IV SS(X).

It is obvious that if FA ∈ SS(X), then [FA, FA] ∈ IV SS(X). Now we can see
that an IVSS is the generalization of a soft set. Moreover, if FA ∈ IV SS(X), then
clearly, χ

FA
is an interval-valued fuzzy soft set (briefly, IVFSS) over X introduced

by Yang et al. [40]. Thus an IVSS is the special case of an IVFSS.

Definition 2.10 ([34]). Let A ∈ 2E and FA ∈ IV SS(X). FA is called:
(i) a relative null interval-valued soft set (with respect to A), denoted by ∅̃A, if

FA(e) = ∅̃ for each e ∈ A,

(ii) a relative whole interval-valued soft set (with respect to A), denoted by X̃A,

if FA(e) = X̃ for each e ∈ A.
We denote the set of all IVSSs over X with respect to the fixed parameter set A

as IV SSA(X).

Now we will denote the members of IV SSE(X) by A, B, C, · · · . In fact,
A, B, C : E → IV S(X). In particular, the interval-valued soft empty [resp. whole]

set over X with respect to E, denoted by ∅̃E [resp. X̃E ], is the IVS in X defined

by ∅̃E(e) = ∅̃ [resp. X̃E(e) = X̃] for each e ∈ E.

Definition 2.11 ([34]). Let A, B ∈ IV SSE(X). We say that
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(i) A is an interval-valued soft subset of B, denoted by A ⊂ B, if A(e) ⊂ B(e)
for each e ∈ E,

(ii) A and B are interval-valued soft equal, denoted by A = B, if A ⊂ B and
B ⊂ A,

(iii) the interval-valued soft complement of A, denoted by Ac, is the mapping
Ac : E → IV S(X) defined as: for each e ∈ E,

Ac(e) = (A(e))c.

3. Interval-valued soft separation axioms

In this section, we introduce the concepts of separation axioms in interval-valued
soft topological spaces, for example, IVSTj(i)-space for j = 0, 1, 2, 3, 4 and i = 1, 2.
And we study some of their properties and some relationships among them. Also,
we give some examples.

Definition 3.1. Let A ∈ IV SSE(X) and x ∈ X.
(i) x

1
said to belong or totally belong to A, denoted by x

1
∈ A, if x ∈ A−(e) for

each e ∈ E.
(ii) x

0
said to belong or totally belong to A, denoted by x

0
∈ A, if x ∈ A+(e) for

each e ∈ E.

Note that for any x ∈ X, x1 /∈ A [resp. x0 /∈ A], if x /∈ A−(e) [resp. x /∈ A+(e)]
for some e ∈ E. It is obvious that if x1 ∈ A, then x0 ∈ A. But the converse is not
true in general (See Example 3.2).

Example 3.2. Let X = {a, b, c, x, y, z} be a universe set and E = {e, f, g} a set of
parameters. Consider the IVSS A defined by:

A(e) = [{a, b}, {a, b, c}], A(f) = [{a}, {a, c, z}], A(g) = [{a, c, x}, {a, c, x}].
Then it can be easily checked that a

1
, a

0
∈ A, c

0
∈ A but b

1
, c

1
, x

1
, y

1
, z

1
/∈ A

and b
0
, x

0
y
0
, z

0
/∈ A.

Definition 3.3 ([34]). Let τ be a family of IVSSs over X with respect to E. Then
τ is called an interval-valued soft topology (briefly, IVST) on X with respect to E, if
it satisfies the following axioms:

[IVSO1] ∅̃E , X̃E ∈ τ ,
[IVSO2] A ∩B ∈ τ for any A, B ∈ τ ,
[IVSO3]

⋃
j∈J Aj ∈ τ for each (Aj)j∈J ⊂ τ .

The triple (X, τ,E) is called an interval-valued soft topological space (briefly, IVSTS).
Every member of τ is called an interval-valued soft open set (briefly, IVSOS) and
the complement of an IVSOS is called an interval-valued soft closed set (briefly,
IVSCS) in X. The set of all IVSOSs [resp. IVSCSs] in X is denoted by IV SO(X)

[resp. IV SC(X)]. It is obvious that {∅̃E , X̃E}, IV SSE(X) ∈ IV STE(X), where
IV STE(X) denotes the set of all IVSTs on X with respect to E. In this case,

{∅̃E , X̃E} [resp. IV SSE(X)] is called an interval-valued soft indiscrete [resp. discrete]
topology on X and is denoted by τ̃

0
[resp. τ̃

1
]. We will denote the set of all IVSTSs

over X with respect to E as IV STSE(X) and denote the set of all IVSCSs in an
IVSTS (X, τ,E) by τ c. In fact,

τ c = {A ∈ IV SSE(X) : Ac ∈ τ}.
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It is obvious that if τ ∈ IV STE(X), then χ
τ
= {χ

U
: U ∈ τ} is an interval-valued

fuzzy soft topology (briefly, IVFST) on X defined by Ali et al. [41]. Thus an IVFST
is the generalization of an IVST.

From Remark 4.3 in [34], we can consider (X, τ−, τ+) as a soft bi-topological
space in the sense of Kelly [42] for each τ ∈ IV STE(X), where

τ− = {U− ∈ IV S(X) : U ∈ τ}, τ+ = {U+ ∈ IV S(X) : U ∈ τ}.

Result 3.4 (Proposition 4.5, [34]). Let (X, τ,E) be an IVSTS and for each e ∈ E,
let

τe = {U(e) ∈ IV S(X) : U ∈ τ}.
Then τe is an interval-valued topology (briefly, IVT) on X introduced by Kim et al.
[37]. In this case, τe will be called a parametric interval-valued topology and (X, τe)
will be called a parametric interval-valued topological space.

Furthermore, we obtain two classical topologies on X for each IVSTS (X, τ,E)
and each e ∈ E given as follows (See Remark 4.6 (1), [34]):

τ−e = {A(e)− ∈ 2X : A(e) ∈ τe} and τ+e = {A(e)+ ∈ 2X : A(e) ∈ τe}.
In this case, τ−e and τ+e will be called parametric topologies on X.

Definition 3.5. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft T0(i)-space (briefly, IVST0(i)-space), if for any x, y ∈ X

with x ̸= y, there is U, V ∈ τ such that either x1 ∈ U, y1 /∈ U or y1 ∈ V, x1 /∈ V,
(ii) interval-valued soft T0(ii)-space (briefly, IVST0(ii)-space), if for any x, y ∈ X

with x ̸= y, there is U, V ∈ τ such that either x
0
∈ U, y

0
/∈ U or y

0
∈ V, x

0
/∈ V,

(iii) interval-valued soft T1(i)-space (briefly, IVST1(i)-space), if for any x, y ∈ X
with x ̸= y, there are U, V ∈ τ such that x

1
∈ U, y

1
/∈ U and y

1
∈ V, x

1
/∈ V,

(iv) interval-valued soft T1(ii)-space (briefly, IVST1(ii)-space), if for any x, y ∈ X
with x ̸= y, there are U, V ∈ τ such that x0 ∈ U, y0 /∈ U and y0 ∈ V, x0 /∈ V.

Remark 3.6. (1) Every IVST1(i) [resp. IVST1(ii)]-space is an IVST0(i) [resp.
IVST0(ii)]-space. The converse is not true in general (See Example 3.7)

(2) Every IVST0(i) [resp. IVST1(i)]-space is an IVST0(ii) [resp. IVST1(ii)]-space.
The converse is not true in general (See Example 3.7)

Example 3.7. Let X = {a, b, c} be a universe set and E = {e, f} a set of parame-
ters.

(1) Consider IVST τ1 on X given by:

τ1 = {∅̃E ,A,B,C,D,E,F,G, X̃E},
where A(e) = A(f) = [∅, {c}], B(e) = B(f) = {∅, {b, c}],

C(e) = C(f) = {{a}, {a, c}], D(e) = D(f) = [{c}, {b, c}],
E(e) = E(f) = [{a, b}, X], F(e) = F(f) = [{a, c}, X],
G(e) = G(f) = [{a}, X].

Then clearly, (X, τ1, E) is an IVST0(i)-space. On the other hand, for a ̸= b ∈ X, we
cannot find U ∈ τ1 such that a

1
∈ U, b

1
/∈ U. Thus X is not an IVST1(i)-space.

(2) Consider IVST τ2 on X given by:

τ2 = {∅̃E ,A,B,C,D,E,F,G,H, I,J, X̃E},
200
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where A(e) = A(f) = [∅, {a}, B(e) = B(f) = {∅, {b}], C(e) = C(f) = {∅, {c}],
D(e) = D(f) = [{a}], {a, c}], E(e) = E(f) = [{b}, {a, b}],
F(e) = F(f) = [{c}, {b, c}], G(e) = G(f) = [{a, b}, X],
H(e) = H(f) = [{a, c}, X], I(e) = I(f) = [{b, c}, X],
J = (e) = J(f) = [∅, {b, c}].

Then we can easily check that (X, τ2, E) is an IVST1(i)-space and also an IVST1(ii)-
space

(3) Consider IVST τ3 on X given by:

τ3 = {∅̃E ,A,B,C,D,E,F,G,H, X̃E},

where A(e) = A(f) = [∅, {a}], B(e) = B(f) = {{a}, {a}],
C(e) = C(f) = {{b}, {b}], D(e) = D(f) = [{c}, {a, c}],
E(e) = E(f) = [{a, b}, {a, b}], F(e) = F(f) = [{a, c}, {a, c}],
G(e) = G(f) = [{b, c}, X], H(e) = H(f) = [{b}, {a, b}].

Observe that (X, τ3, E) is an IVST0(ii)-space but there are not U, U ∈ τ3 such
that a

0
∈ U, b

0
/∈ U and b

0
∈ V, a

0
/∈ V for a ̸= b ∈ X. Then X is not an

IVST1(ii)-space.
(4) Consider IVST τ4 on X given by:

τ4 = {∅̃E ,A,B,C,D,E,F,G, X̃E},

where A(e) = A(f) = [∅, {a}], B(e) = B(f) = {∅, {b}],
C(e) = C(f) = {∅, {c}], D(e) = D(f) = [∅, {a, b}],
E(e) = E(f) = [∅, {a, c}], F(e) = F(f) = [∅, {b, c}],
G(e) = G(f)[∅, X].

Observe that (X, τ,E) is an IVST1(ii)-space but there are not U, U ∈ τ4 such that
a1 ∈ U, b1 /∈ U and b1 ∈ V, a1 /∈ V for a ̸= b ∈ X. Then X is not an IVST1(i)-space.

Remark 3.8. (1) If (X, τ,E) is an IVST0(i) [resp. IVST1(i)]-space, then (X, τ−, E)
and (X, τ+, E) are soft T0 [resp. T1]-spaces in the sense of Shabir and Naz [16].

(2) If (X, τ,E) is an IVST0(ii) [resp. IVST1(ii)]-space, then (X, τ+, E) is a soft
T0 [resp. T1]-space in the sense of Shabir and Naz [16].

Definition 3.9. Let X be a set, E be a set of parameters and x ∈ X. An IVSS x1

[resp. x0 ] is defined by x1(e) = x
1
[resp. x0(e) = x

0
] for each e ∈ E.

Proposition 3.10. Let (X, τ,E) be an IVSTS.
(1) If x1 is an IVSCS in X for each x ∈ X, then X is an IVST1(i)-space.
(2) If x0 is an IVSCS in X for each x ∈ X, then X is an IVST1(ii)-space.

Proof. (1) Suppose x1 is an IVSCS in X for each x ∈ X and let x ̸= y ∈ X. Then
clearly, x1

c = [X \ {x}, X \ {x}] ∈ τ and y1
c = [X \ {y}, X \ {y}] ∈ τ . Moreover,

x1 /∈ x1
c, y1 ∈ x1

c and y1 /∈ y1
c, x1 ∈ y1

c. Thus X is IVST1(i)-space.
(2) The poof is similar to (1). □

Remark 3.11. The converses of Proposition 3.10 (1), (2) are not true in general
(See Example 3.12).

Example 3.12. Let X = {x, y} and E = {e, f}.
201
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(1) Consider the collection τ1 of IVSSs over X given by:

τ1 = {∅̃E ,A,B,C, X̃E},

where A(e) = X̃, A(f) = [{y}, {y}], B(e) = [{x}, {x}], B(f) = X̃,
C(e) = [{x}, {x}], C(f) = [{y}, {y}].

Then clearly, (X, τ1, E) is an IVSTS on X. Moreover, A, B ∈ τ such that y
1
∈ A,

x1 /∈ A and x1 ∈ B, y1 /∈ B. Thus (X, τ1, E) is an IVST1(i)-space.
On the other hand, since

x1(e) = x1(f) = x1 = [{x}, {x}]

and

y1(e) = y1(f) = y
1
= [{y}, {y}],

we have

x1

c(e) = x1

c(f) = y1 = [{y}, {y}]
and

y1

c(e) = y1

c(f) = x
1
= [{x}, {x}].

So x1
c, y1

c /∈ τ1. Hence the converse of Proposition 3.10 (1) does not hold.
(2) Consider the collection τ2 of IVSSs over X given by:

τ2 = {∅̃E ,A,B,C,D, X̃E},

where A(e) = [∅, X], A(f) = [∅, {y}], B(e) = [∅, {x}], B(f) = [∅, X],
C(e) = [∅, {x}], C(f) = [∅, {y}], D(e) = D(f) = [∅, X].

Then clearly, (X, τ2, E) is an IVSTS on X. Moreover, A, B ∈ τ such that y
0
∈ A,

x0 /∈ A and x0 ∈ B, y0 /∈ B. Thus (X, τ2, E) is an IVST1(ii)-space.
On the other hand, since

x0(e) = x0(f) = x0 = [∅, {x}]

and

y0(e) = y0(f) = y
0
= [∅, {y}],

we have

x1

c(e) = x1

c(f) = [{y}, X]

and

y1

c(e) = y1

c(f) = [{x}, X].

It follows that x0
c, y0

c /∈ τ2. This means that the converse of Proposition 3.10 (2)
does not hold.

Proposition 3.13. Let (X, τ,E) be an IVSTS and x ̸= y ∈ X.
(1) If there are U, V ∈ τ such that x

1
∈ U, y

1
∈ Uc or y

1
∈ V, x

1
∈ Vc,

then (X, τ,E) is an IVST0(i)-space and for each e ∈ E, (X, τ
e
) is an interval-valued

T0(i)-space in the sense of Lee et al. [43].
(2) If there are U, V ∈ τ such that x0 ∈ U, y0 ∈ Uc or y0 ∈ V, x0 ∈ Vc,

then (X, τ,E) is an IVST0(ii)-space and for each e ∈ E, (X, τe) is an interval-valued
T0(ii)-space in the sense of Lee et al. [43].
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Proof. (1) Suppose there are U, V ∈ τ such that x
1
∈ U, y

1
∈ Uc or y

1
∈ V,

x1 ∈ Vc. If y1 ∈ Uc, then y ∈ (U−(e))c. Thus y /∈ U−(e) for each e ∈ E. So
y1 /∈ U. Similarly, we can see that if x1 ∈ Vc, then x1 /∈ V. Hence (X, τ,E) is an
IVST0(i)-space.

Now let e ∈ E. Then clearly, by Result 3.4, τ
e
is an IVT on X. Since x

1
∈ U

and y
1
∈ Uc or y

1
∈ V and x

1
∈ Vc, x

1
∈ U(e) and y

1
/∈ U(e) or y

1
∈ V(e) and

x
1
/∈ V(e). Thus (X, τ

e
) is an interval-valued T0(ii)-space.

(2) The proof is analogous to (1). □

The following is an immediate consequence of Proposition 3.13 and Proposition
13 in [16].

Corollary 3.14. Let (X, τ,E) be an IVSTS and x ̸= y ∈ X.
(1) If there are U, V ∈ τ such that x1 ∈ U, y1 ∈ Uc or y1 ∈ V, x1 ∈ Vc, then

(X, τ−
e
) and (X, τ+

e
) are T0-spaces for each e ∈ E.

(2) If there are U, V ∈ τ such that x
0
∈ U, y

0
∈ Uc or y

0
∈ V, x

0
∈ Vc, then

(X, τ+
e
) is a T0-space for each e ∈ E.

Proposition 3.15. Let (X, τ,E) be an IVSTS and x ̸= y ∈ X.
(1) If there are U, V ∈ τ such that x1 ∈ U, y1 ∈ Uc and y1 ∈ V, x1 ∈ Vc,

then (X, τ,E) is an IVST1(i)-space and for each e ∈ E, (X, τe) is an interval-valued
T1(i)-space in the sense of Lee et al. [43].

(2) If there are U, V ∈ τ such that x
0
∈ U, y

0
∈ Uc and y

0
∈ V, x

0
∈ Vc,

then (X, τ,E) is an IVST0(ii)-space and for each e ∈ E, (X, τ
e
) is an interval-valued

T1(ii)-space in the sense of Lee et al. [43].

Proof. The proofs are similar to Proposition 3.13. □

The following is an immediate consequence of Proposition 3.15 and Proposition
14 in [16].

Corollary 3.16. Let (X, τ,E) be an IVSTS and x ̸= y ∈ X.
(1) If there are U, V ∈ τ such that x1 ∈ U, y1 ∈ Uc and y1 ∈ V, x1 ∈ Vc, then

(X, τ−
e
) and (X, τ+

e
) are T1-spaces for each e ∈ E.

(2) If there are U, V ∈ τ such that x
0
∈ U, y

0
∈ Uc and y

0
∈ V, x

0
∈ Vc, then

(X, τ+
e
) is an T1-space for each e ∈ E.

Remark 3.17. (X, τ,E) is an IVST1(i) [resp. IVST1(ii)]-space but (X, τ
e
) may not

be an interval-valued T1(i) [resp. T1(ii)]-space (See Example 3.18).

Example 3.18. Let (X, τ1, E) [resp. (X, τ2, E)] be the IVST1(i) [resp. IVST1(ii)]-
space given in Example 3.12. Then we have

τ1e = {∅̃, [{x}, {x}], X̃}, τ1f = {∅̃, [{y}, {y}], X̃}

[resp. τ2e = {∅̃, [∅, X], [∅, {x}], X̃}, τ2f = {∅̃, [∅, X], [∅, {y}], X̃}].
Thus we can easily check that neither τ1e nor τ1f [resp. neither τ2e nor τ2f ] is an
interval-valued T1(i) [resp. T1(ii)].

Definition 3.19. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft T2(i)-space (briefly, IVST2(i)-space), if for any x, y ∈ X

with x ̸= y, there are U, V ∈ τ such that x
1
∈ U, y

1
∈ V and U ∩V = ∅̃E ,
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(ii) interval-valued soft T2(ii)-space (briefly, IVST2(ii)-space), if for any x, y ∈ X
with x ̸= y, there are U, V ∈ τ such that x

0
∈ U, y

0
∈ V and U ∩V = ∅̃E .

Remark 3.20. (1) Every IVST2(i) [resp. IVST2(ii)]-space is an IVST1(i) [resp.
IVST1(ii)]-space. The converse is not true in general (See Example 3.21).

(2) Every IVST2(i)-space is an IVST2(ii)-space. The converse is not true in general
(See Example 3.21).

Example 3.21. (1) Let (X, τ1, E) [resp. (X, τ2, E)] be the IVST1(i) [resp. IVST1(ii)]-
space given as Example 3.12 (1) [resp. (2)]. Then we cannot have U, V ∈ τ1 such
that x1 ∈ U, y1 /∈ U and y1 ∈ V, x1 /∈ V and U ∩V = ∅̃E [resp. U, V ∈ τ2 such
that x

0
∈ U, y

0
/∈ U and y

0
∈ V, x

0
/∈ V and U∩V = ∅̃E ]. Thus (X, τ1, E) [resp.

(X, τ2, E)] is not an IVST2(i) [resp. IVST2(ii)]-space.
(2) Let X = {x, y}, E = {e, f} and consider the IVST τ given by:

τ = {∅̃E ,A,B,C, X̃E},
where A(e) = A(f) = [∅, {x}], B(e) = B(f) = [∅, {y}], C(e) = C(f) = [∅, X].
Then observe that (X, τ,E) is an IVST2(ii)-space. On the other hand, there are not
U, V ∈ τ1 such that x1 ∈ U, y1 /∈ U and y1 ∈ V, x1 /∈ V and U ∩V = ∅̃E . Thus
X is not an IVST2(i)-space.

Remark 3.22. (1) If (X, τ,E) is an IVST2(i)-space, then (X, τ−, E) and (X, τ+, E)
are soft T2-spaces in the sense of Shabir and Naz [16].

(2) If (X, τ,E) is an IVST2(ii)-space, then (X, τ+, E) is a soft T2-space in the
sense of Shabir and Naz [16].

Proposition 3.23. Let (X, τ,E) be an IVSTS.
(1) If (X, τ,E) is an IVST2(i)-space, then for each e ∈ E, (X, τe) is an interval-

valued T2(i)-space in the sense of Lee et al. [43].
(2) (X, τ,E) is an IVST2(ii)-space, then for each e ∈ E, (X, τ

e
) is an interval-

valued T2(ii)-space in the sense of Lee et al. [43].

Proof. (1) Suppose (X, τ,E) is an IVST2(i)-space, let x ̸= y ∈ X and e ∈ E. Then
there are U, V ∈ τ such that x

1
∈ U, y

1
∈ V and U ∩V = ∅̃E . Thus x1

∈ U(e),
y1 ∈ V(e) and U(e) ∩V(e) = ∅̃. By Result 3.4, U(e), V(e) ∈ τe . So (X, τe) is an
interval-valued T2(i)-space.

(2) The proof is analogous to (1). □

The following is an immediate consequence of Proposition 3.23 and Proposition
17 in [16].

Proposition 3.24. Let (X, τ,E) be an IVSTS.
(1) If (X, τ,E) is an IVST2(i)-space, then (X, τ−

e
) and (X, τ+

e
) are T2-space for

each e ∈ E.
(2) (X, τ,E) is an IVST2(ii)-space, then (X, τ+

e
) is a T2-space for each e ∈ E.

Proof. (1) Suppose (X, τ,E) is an IVST2(i)-space, let x ̸= y ∈ X and let e ∈ E.
Then there are U, V ∈ τ such that x

1
∈ U, y

1
∈ V and U ∩ V = ∅̃E . Thus

Definition 3.1 and Result 3.4, x ∈ U−(e), y ∈ V −(e), U−(e) ∩ V −(e) = ∅ and
U−(e), V −(e) ∈ τ−

e
. So (X, τ−

e
) is a T2-space. Note that τ−

e
⊂ τ+

e
. Hence (X, τ+

e
)

is a T2-space.
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(2) The proof is similar to (1). □

Definition 3.25. Let (X, τ,E) be an IVSTS and A an IVSCS in X. Then (X, τ,E)
is called:

(i) an interval-valued soft regular (i)-space (briefly, IVSR(i)-space), if for each
x ∈ X and each A ∈ τ c with x

1
/∈ A, there are U, V ∈ τ such that x

1
∈ U, A ⊂ V

and U ∩V = ∅̃E ,
(ii) an interval-valued soft regular (ii)-space (briefly, IVSR(ii)-space), if for each

x ∈ X and each A ∈ τ c with x
0
/∈ A, there are U, V ∈ τ such that x

0
∈ U, A ⊂ V

and U ∩V = ∅̃E .

Definition 3.26. An IVSTS (X, τ,E) is called:
(i) an interval-valued soft T3(i)-space (briefly, IVST3(i)-space), if it is an IVSR(i)

and IVST1(i)-space,
(ii) an interval-valued soft T3(ii)-space (briefly, IVST3(ii)-space), if it is an IVSR(ii)

and IVST1(ii)-space.

Remark 3.27. (1) Every IVST3(i)-space is an IVST3(ii)-space but the converse is
not true in general (See Example 3.28).

(2) An IVST3(i) [resp. IVST3(ii)]-space may not be an IVST2(i) [resp. IVST2(ii)]-
space (See Example 3.28).

(3) If (X, τ,E) is an IVST3(i) [resp. IVST3(ii)]-space, then (X, τe) may not be an
interval-valued T3(i) [resp. T3(ii)]-space for each e ∈ E in the sense of Lee et al. [43]
Furthermore, (X, τ−

e
) and (X, τ+

e
) may not be T3-spaces (See Example 3.28).

Example 3.28. (1) Let X = {a, b, c, d}, let E = {e, f} and consider the IVST τ1
on X given by:

τ1 = {∅̃E ,A1,A2, · · · ,A15, X̃E},
where A1(e) = A1(f) = [{a, b}, {a, b, c}], A2(e) = A2(f) = [{c, d}, {a, c, d}],

A3(e) = A3(f) = [{c, d}, {a, b, d}], A4(e) = A4(f) = [{b, c}, {b, c, d}],
A5(e) = A5(f) = [∅, {a, c}], A6(e) = A6(f) = [{a}, {a, b}],
A7(e) = A7(f) = [{b}, {b, c}], A8(e) = A8(f) = [∅, {a, d}],
A9(e) = A9(f) = [{c}, {c, d}], A10(e) = A10(f) = [∅, {b, d}],
A11(e) = A11(f) = [{a, b, d}, X], A12(e) = A12(f) = [{a, b, c}, X],
A13(e) = A13(f) = [{a, c, d}, X], A14(e) = A14(f) = [{b, c, d}, X],
A15(e) = A15(f) = [{a}, {a, b}].

Observe that (X, τ1, E) is an IVST3(ii)-space but not an IVST3(i)-space.
Now consider the IVST τ2 on X given by:

τ2 = {∅̃E ,A1,A2, · · · ,A17, X̃E},
where A1(e) = A1(f) = [{a}, {a, d}], A2(e) = A2(f) = [{b}, {a, b}],

A3(e) = A3(f) = [{c}, {b, c}], A4(e) = A4(f) = [{d}, {c, d}],
A5(e) = A5(f) = [∅, {a}], A6(e) = A6(f) = [∅, {b}],
A7(e) = A7(f) = [∅, {c}], A8(e) = A8(f) = [∅, {d}],
A9(e) = A9(f) = [{a, b}, {a, b, d}], A10(e) = A10(f) = [{a, d}, {a, c, d}],
A11(e) = A11(f) = [{c, d}, {b, c, d}], A12(e) = A12(f) = [{b, c}, {a, b, c}],
A13(e) = A13(f) = [{a, c}, ], A14(e) = A14(f) = [{b, d}, X],
A15(e) = A15(f) = [∅, {a, b}], A16(e) = A16(f) = [∅, {a, c}],
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A17(e) = A17(f) = [∅, {a, d}].
Then observe that (X, τ2, E) is an IVST3(i)-space.

(2) Let X = {a, b, c}, E = {e, f} and consider the IVST τ on X given by:

τ = {∅̃E ,A1,A2, · · · ,A32, X̃E},

where A1(e) = X̃, A1(f) = ∅̃, A2(e) = [{a}, {a}], A2(f) = ∅̃,
A3(e) = [{b}, {b}], A2(f) = ∅̃, A4(e) = [{c}, {c}], A4(f) = ∅̃,
A5(e) = [{a, b}, {a, b}], A5(f) = ∅̃, A6(e) = [{a, c}, {a, c}], A6(f) = ∅̃,

A7(e) = [{b, c}, {b, c}], A7(f) = ∅̃, A8(e) = X̃, A8(f) = [{a}, {a}],
A9(e) = A9(f) = [{a}, {a}], A10(e) = [{b}, {b}], A10(f) = [{a}, {a}],
A11(e) = [{c}, {c}], A11(f) = [{a}, {a}], A12(e) = [{a, b}, {a, b}],
A12(f) = [{a}, {a}], A13(e) = [{a, c}, {a, c}], A13(f) = [{a}, {a}],
A14(e) = [{b, c}, {b, c}], A14(f) = [{a}, {a}], A15(e) = ∅̃,

A15(f) = [{a}, {a}], A16(e) = X̃, A16(f) = [{b, c}, {b, c}],
A17(e) = [{a}, {a}], A17(f) = [{b, c}, {b, c}], A18(e) = [{b}, {b}],
A18(f) = [{b, c}, {b, c}], A19(e) = [{c}, {c}], A19(f) = [{b, c}, {b, c}],
A20(e) = [{a, b}, {a, b}], A20(f) = [{b, c}, {b, c}], A21(e) = [{a, c}, {a, c}],
A21(f) = [{b, c}, {b, c}], A22(e) = [{b, c}, {b, c}], A22(f) = [{b, c}, {b, c}],
A23(e) = ∅̃, A23(f) = [{b, c}, {b, c}], A24(e) = [{a}, {a}], A24(f) = X̃,

A25(e) = [{b}, {b}], A25(f) = X̃, A26(e) = [{c}, {c}], A26(f) = X̃,

A27(e) = [{a, b}, X], A27(f) = X̃, A28(e) = [{a, c}, X], A28(f) = X̃,

A29(e) = [{b, c}, X], A29(f) = X̃, A30(e) = ∅̃, A30(f) = X̃.

A31(e) = X̃, A31(f) = ∅̃, A32(e) = X̃, A32(f) = [{a}, {a}].
Then observe that (X, τ,E) is an IVST3(i)-space but not an IVST2(i)-space.

On the other hand, by Result 3.4, we have

τe = {∅̃, [{a}, {a}], [{b}, {b}], [{c}, {c}], [{a, b}, {a, b}], [{a, c}, {a, c}], [{b, c}, {b, c}], X̃}

and

τ
f
= {∅̃, [{a}, {a}], [{b, c}, {b, c}], X̃}.

Obviously, (X, τ
f
) is not an interval-valued T3(i)-space. Moreover, we have

τ−
e

= τ+
e

= {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}

and

τ−
f

= τ+
f

= {∅, {a}, {b, c}, X}.

Thus we can see that (X, τ−
f
) is not a T3-space.

Definition 3.29. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft normal space (briefly, IVSNS), If for any IVSCSs F1, F2

in X with F1 ∩ F2 = ∅̃E , there are U, V ∈ τ such that F1 ⊂ U, F2 ⊂ V and
U ∩V = ∅̃E ,

(ii) interval-valued soft T4(i)-space (briefly, IVST4(i)-space), if it is an T1(i)-space
and an IVSNS,

(iii) interval-valued soft T4(ii)-space (briefly, IVST4(ii)-space), if it is an T1(ii)-
space and an IVSNS.
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Remark 3.30. (1) An IVST4(i) [resp. IVST4(ii)]-space need not an IVST3(i) [resp.
IVST3(ii)]-space (See Example 3.31).

(2) If (X, τ,E) is an IVST4(i) [resp. IVST4(ii)]-space, then (X, τe) may not be an
interval-valued T4-space for each e ∈ E in the sense of Lee et al. [43] Furthermore,
(X, τ−

e
) and (X, τ+

e
) may not be T4-spaces (See Example 3.31).

Example 3.31. Let X = {a, b, c, d}, let E = {e, f} and consider the IVST τ on X
given by:

τ = {∅̃E ,A1,A2,A3,A4,A5,A6,A7,A8, X̃E},
where A1(e) = [{a, b, d}, {a, b, d}], A1(f) = [{a, b, c}, {a, b, c}],

A2(e) = [{a, c, d}, {a, c, d}], A2(f) = [{a, b, c}, {a, b, c}],
A3(e) = [{a, d}, {a, d}], A3(f) = [{a, b, c}, {a, b, c}],
A4(e) = [{b, c}, {b, c}], A4(f) = [{a, b, c}, {a, b, c}],
A5(e) = [{b}, {b}], A5(f) = [{a, b, c}, {a, b, c}],
A6(e) = [{c}, {c}], A6(f)) = [{a, b, c}, {a, b, c}],
A7(e) = ∅̃, A7(f) = [{a, b, c}, {a, b, c}],
A8(e) = X̃, A8(f) = [{a, b, c}, {a, b, c}].

Then we can check that (X, τ,E) is an IVST4(i)-space but not an IVST3(i)-space.
On the other hand, by Result 3.4, we have

τe = {∅̃, [{b}, {b}], [{c}, {c}], [{a, d}, {a, d}], [{b, c}, {b, c}],
[{a, c, d}, {a, c, d}], [{a, b, d}, {a, b, d}], X̃}

and
τ
f
= {∅̃, [{a, b, c}, {a, b, c}], X̃}.

Then we can easily see that (X, τe) and (X, τ
f
) are not interval-valued T4-spaces.

Furthermore, we get

τ−
e

= τ+
e

= {∅, {b}, {c}, {a, d}, {b, c}, {a, c, d}, {a, b, d}, X}
and

τ−
f

= τ+
f

= {∅, {a, b, c}, X}.
Thus we can check that (X, τ−

e
) and (X, τ−

f
) are not T4-spaces.

4. Interval-valued soft subspaces

In this section, we deal with some hereditary problems in an IVSTS. For this
reason, we introduce the notion of interval-valued soft subspaces of an IVSTS.

Definition 4.1. Let Y be a nonempty subset of X and A ∈ IV SSE(X). Then

(i) the interval valued soft set (Y,E) over X, denoted by ỸE , is defined as follows:

ỸE(e) = [Y, Y ] for each e ∈ E,

(ii) the interval-valued soft subset of A over Y , denoted by AY , is defined as
follows:

AY = ỸE ∩A, i.e., AY (e) = [Y ∩A−(e), Y ∩A+(e)] for each e ∈ E.

Example 4.2. Let X = {a, b, c, d}, Y = {a, b, c}, E = {e, f} and A be the IVSS
over X given by:

A(e) = [{a, b}, {a, b, d}], A(f) = [{a, d}, {a, c, d}].
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Then clearly, AY (e) = [{a, b}, {a, b}], AY (f) = [{a}, {a, c}].

Proposition 4.3. Let (X, τ,E) be an IVSTS and Y a nonempty subset of X. Then
τ
Y
= {AY : A ∈ τ} is an IVST on Y .

In this case, τ
Y

is called the interval-valued soft relative topology on Y and
(Y, τ

Y
, E) is called an interval-valued soft subspace (briefly, IVS-subspace) of (X, τ,E).

Each member of τ
Y

is called an IV SOS in Y and an IVSS A over Y is called an
IV SCS in Y , if [Y, Y ] \A = [Y \A+, Y \A−] ∈ τ

Y
.

Proof. The proof is straightforward. □

We can see that (Y, τ
Y
, E) is a special interval-valued soft subspace of an IVSTS

(X, τ,E) (See Proposition 4.15, [34]).

Remark 4.4. Every IVS-subspace of an interval-valued soft discrete [resp. indis-
crete] space is an interval-valued soft discrete [resp. indiscrete] space.

Lemma 4.5. Let (X, τ) be an IVTS and Y a nonempty subset of X. Then τ
[Y,Y ]

=

{[Y, Y ] ∩A : A ∈ τ} = {[Y ∩A−, [Y ∩A+] : A ∈ τ} is an IVT on Y .

In this case, τ
[Y,Y ]

is called the interval-valued relative topology on Y and ([Y, Y ], τ
[Y,Y ]

)

is called an interval-valued subspace (briefly, IV-subspace) of (X, τ).

Proof. The proof is straightforward. □

Proposition 4.6. Let (X, τ,E) be an IVSTS and Y a nonempty subset of X. Then
(Y, (τ

Y
)e) = ([Y, Y ], τ

e,[Y,Y ]
), i.e., (Y, (τ

Y
)e) is an interval-valued subspace of IVTS

(X, τe) for each e ∈ E, where τ
e,[Y,Y ]

= {[Y, Y ] ∩A(e) : A(e) ∈ τe}.

Proof. The proof follows from Proposition 4.3 and Lemma 4.5. □

Corollary 4.7 (See Proposition 11, [16]). Let (X, τ,E) be an IVSTS and Y a
nonempty subset of X. Then (Y, (τ

Y
)−e ) = (Y, (τ−

e
)
Y
) [resp. (Y, (τ

Y
)+e ) = (Y, (τ+

e
)
Y
)],

i.e., (Y, (τ
Y
)−e ) [resp. (Y, (τ

Y
)+e )] is a subspace of (X, τ−

e
) [resp. (X, τ+

e
)] for each

e ∈ E.

Proposition 4.8. Let (Y, τ
Y
, E) be an IVS-subspace of an IVSTS (X, τ,E) and A

an IVSOS in Y . If ỸE ∈ τ , then A ∈ τ.

Proof. The proof is obvious. □

Theorem 4.9. Let (Y, τ
Y
, E) be an IVS-subspace of an IVSTS (X, τ,E) and A ∈

IV SSE(X).

(1) A ∈ τ
Y

if and only if there is B ∈ τ such A = ỸE ∩B.

(2) A ∈ τ c
Y

if and only if there is B ∈ τ c such A = ỸE ∩B.

Proof. (1) The proof follows from Proposition 4.3.
(2) Suppose A ∈ τ c

Y
. Then clearly, [Y, Y ]−A = [Y −A+, Y −A−] ∈ τ

Y
. Thus by

(1), there is B ∈ τ such that [Y −A+, Y −A−] = ỸE ∩B. Now let e ∈ E. Then

[Y −A+, Y −A−](e) = ỸE ∩B(e), i.e.,
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[Y −A+(e), Y −A−(e)] = [Y ∩B−(e), Y ∩B−(e)], i.e.,

Y −A+(e) = Y ∩B−(e), Y −A−(e) = Y ∩B−(e).

Thus we have

A+(e) = Y −(Y −A+(e)) = Y −(Y ∩B−(e)) = Y ∩(Y −B−(e)) = Y ∩(X−B−(e)),

A−(e) = Y −(Y −A−(e)) = Y −(Y ∩B+(e)) = Y ∩(Y −B+(e)) = Y ∩(X−B+(e)).

So A(e) = [A−(e), A+(e) = [Y ∩ (X − B+(e)), Y ∩ (X − B−(e))] = (ỸE ∩ Bc)(e).

Hence A = ỸE ∩Bc. Since B ∈ τ , Bc ∈ τ c. Therefore the necessary condition holds.
Conversely, suppose the necessary condition holds, i.e., there is B ∈ τ c such that

A = ỸE ∩B. Then Bc = X̃E −B ∈ τ. We will show that [Y, Y ]−A = ỸE ∩Bc. Let
e ∈ E. Then we get

([Y, Y ]−A)(e) = [Y −A+(e), Y −A−(e)]
= [Y − Y ∩B−(e), Y − Y ∩B+(e)]
= [Y ∩ (Y −B+(e)), Y ∩ (Y −B−(e))]
= [Y ∩ (X −B+(e)), Y ∩ (X −B−(e)).

Thus [Y, Y ]−A = ỸE ∩ (X̃E −B) = ỸE ∩Bc. Since Bc ∈ τ, we have [Y, Y ]−A ∈ τ
Y
.

So A ∈ τ c
Y
. This completes the proof. □

Proposition 4.10. Let (X, τ,E) be an IVSTS and Y a nonempty subset of X.
(1) If X is an IVST0(i) [resp. IVST0(ii)]-space, then (Y, τ

Y
, E) is an IVST0(i)

[resp. IVST0(ii)]-space.
(2) If X is an IVST1(i) [resp. IVST1(ii)]-space, then (Y, τ

Y
, E) is an IVST1(i)

[resp. IVST1(ii)]-space.

Proof. (1) Suppose X is an IVST0(i)-space and let x ̸= y ∈ Y. Then there are
U, V ∈ τ such that either x1 ∈ U, y1 /∈ U or y1 ∈ U, x1 /∈ U, say x1 ∈ U, y1 /∈ U.

Since x ∈ Y, x
1
∈ ỸE . Since x1

∈ U, we have x
1
∈ ỸE∩U = UY . Since y1

/∈ U, there
is e ∈ E such that y /∈ U(e), i.e., y /∈ U−(e). Thus y /∈ Y ∩U−(e) = (Y ∩U−)(e). So

y
1
/∈ ỸE ∩U = UY . Since U ∈ τ, UY ∈ τ

Y
. Hence (Y, τ

Y
, E) is an IVST1(i)-space.

The proof of the second part is similar.
(2) The proof is similar to (1). □

Proposition 4.11. Let (X, τ,E) be an IVSTS and Y a nonempty subset of X.
If X is an IVST2(i) [resp. IVST2(ii)]-space, then (Y, τ

Y
, E) is an IVST2(i) [resp.

IVST2(ii)]-space.

Proof. Suppose X is an IVST2(i)-space and let x ̸= y ∈ Y. Then there are U, V ∈ τ

such that either x1 ∈ U, y1 ∈ V, U ∩V = X̃E . Then clearly, we have

x ∈ U−(e), y ∈ V −(e), U+(e) ∩ V +(e) = ∅.

Thus x ∈ Y ∩ U−(e), y ∈ Y ∩ V −(e), (Y ∩ U+(e)) ∩ (Y ∩ V +(e)) = ∅. So we get

x ∈ U−
Y
(e), y ∈ V −

Y
(e), U+

Y
(e) ∩ V +

Y
(e) = ∅.

Hence x1 ∈ U
Y
, y1 ∈ V

Y
, U

Y
∩ V

Y
= ∅̃E . Therefore (Y, τ

Y
, E) is an IVST2(i)-

space. The proof of the second part is similar. □
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Proposition 4.12. Let (X, τ,E) be an IVSTS and Y a nonempty subset of X.
If X is an IVST3(i) [resp. IVST3(ii)]-space, then (Y, τ

Y
, E) is an IVST3(i) [resp.

IVST3(ii)]-space.

Proof. Suppose X is an IVST3(i)-space. Then by Proposition 4.10 (2), (X, τ
Y
, E) is

an IVST1(i)-space. Let y ∈ Y and A ∈ τ c
Y
such that y

1
/∈ A. Then by Theorem 4.9

(2), there is B ∈ τ c such that A = ỸE ∩B. Since y
1
/∈ A, y

1
/∈ ỸE ∩B. But y

1
∈ ỸE .

Thus y
1
/∈ B. By the hypothesis, there are U, V ∈ τ such that y

1
∈ U, B ⊂ V

and U ∩V = ∅̃E . So by Proposition 4.10 (1), ỸE ∩U, ỸE ∩V ∈ τ
Y
. Furthermore,

y1 /∈ ỸE ∩U, A ⊂ ỸE ∩V and (ỸE ∩U) ∩ (ỸE ∩V = ∅̃E . Hence (Y, τ
Y
, E) is an

IVST3(i)-space. The proof of the second part is similar. □

Remark 4.13. Let (X, τ,E) be an IVSTS and let Y be a nonempty subset of X.
When (X, τ,E) is an IVST4(i) [resp. IVST4(ii)]-space and Y is a nonempty subset
of X, (Y, τ

Y
, E) need not be an IVST3(i) [resp. IVST3(ii)]-space (See Example 4.14).

Example 4.14. Consider the IVST4(i)-space (X, τ,E) given in Example 3.31 and
let Y = {a, b, c}. Then clearly, we have

τ
Y
= {∅̃E ,A1Y

,A2Y
,A3Y

,A4Y
,A5Y

,A6Y
,A7Y

,A7Y
, ỸE},

where A1Y
(e) = [{a, b}, {a, b}], A1Y

(f) = [Y, Y ],
A2Y

(e) = [{a, c}, {a, c}], A2Y
(f) = [Y, Y ],

A3Y
(e) = [{a}, {a}], A3Y

(f) = [Y, Y ],
A4Y

(e) = [{b, c}, {b, c}], A4Y
(f) = [Y, Y ],

A5Y
(e) = [{b}, {b}], A5Y

(f) = [Y, Y ],
A6Y

(e) = [{c}, {c}], A6Y
(f) = [Y, Y ],

A7Y
(e) = ∅̃, A7Y

(f) = [Y, Y ],

A8Y
(e) = X̃, A7Y

(f) = [Y, Y ].
Thus we can check that (Y, τ

Y
, E) is not an IVST3(i)-space.

5. Interval-valued soft α-closures [resp. interiors]

In this section, we define an interval-valued α-closure [resp. interior] of an interval-
valued soft set and discuss some of their properties, and give some examples.

Definition 5.1. Let (X, τ,E) be a soft topological space over X and A, B ∈
SSE(X).

(i) The soft closure of A [16], denoted by clτ (A) or cl(A) or A, is a soft set over
X defined as follows:

clτ (A) =
⋂

{F ∈ τ c : A ⊂ F}.

(ii) The soft interior of A [20], denoted by intτ (A) or int(A) or A◦, is a soft set
over X defined as follows:

intτ (A) =
⋃

{U ∈ τ : U ⊂ A}.

It is obvious that cl(A) is the smallest soft closed set in X which contains A and
int(A) is the largest soft open set in X which is contained in A.
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Definition 5.2 ([34]). Let (X, τ,E) be an IVSTS and A ∈ IV SSE(X).
(i) The interval-valued soft closure of A w.r.t. τ , denoted by IV Scl(A), is an

IVSS over X defined as:

IV Scl(A) =
⋂

{K ∈ τ c : A ⊂ K}.

(ii) The interval-valued soft interior of A w.r.t. τ , denoted by IV Sint(A), is an
IVSS over X defined as:

IV int(A) =
⋃

{U : U ∈ τ and U ⊂ A}.

We can see that IV Scl(A) is the smallest IVSCS inX containingA and IV Sint(A)
is the largest IVSOS in X contained A.

Remark 5.3. IV Scl(A) = [clτ−(A−), clτ+(A+)], IV Sint(A) = [intτ−(A−), intτ+(A+)].

Example 5.4. Let X = {a, b, c}, E = {e, f} and consider τ the IVST on X given
by:

τ = {∅̃E ,U, X̃E},
where U(e) = [{a}, {a, b}], U(f) = [{b}, {b, c}]. Then we have

τ− = {∅E , U
−, XE}, τ+ = {∅E , U

+, XE},
where U−(e) = {a}, U−(f) = {b}, U+(e) = {a, b}, U+(f) = {b, c}. Moreover,

τ c = {∅̃E ,U
c, X̃E},

where Uc(e) = [{c}, {b, c}], Uc(f) = [{a}, {a, c}].
Consider the IVSS A over X defined by A(e) = [{c}, {c}], A(f) = [{a}, {a}].

Then clearly, A ⊂ Uc and A ⊂ X̃E . Thus cl(A) = Uc ∩ X̃E = Uc. On the other
hand, we get

clτ−(A−) = U c,−, clτ+(A+) = U c,+,

where U c,−(e) = {c}, U c,−(f) = {a}, U c,+(e) = {b, c}, U c,+(f) = {a, c}. So
cl(A) = [clτ−(A−), clτ+(A+)].

Definition 5.5 ([36]). Let (X, τ,E) be a soft topological space and A ∈ SSE(X).
A is called a soft α-open set in X, if A ⊂ int(cl(int(A))). The complement of a soft
α-open set is called a soft α-closed set in X.

The set of all soft α-open [resp. closed] sets in a soft topological space (X, τ,E)
is denoted by SαOS(X) [resp. SαCS(X)].

Definition 5.6. (i) Let (X, τ,E) be an IVSTS and A ∈ IV SSE(X). Then A is
called an interval-valued soft α-open set (briefly, IVSαOS) in X, if it satisfies the
following conditions:

A ⊂ IV Sint(IV Scl(IV Sint(A))).

The complement of an IVSαOS is called an interval-valued soft α-closed set (briefly,
IVSαCS) in X.

(ii) Let (X, τ) be an IVTS and let A ∈ IV S(X). Then A is called an interval-
valued α-open set (briefly, IVαOS) in X, if A ⊂ IV int(IV cl(IV int(A))), where
IV int(A) and IV cl(A) denote the interval-valued interior and the interval-valued
closure of A (See [37]). The complement of an IVαOS is called an interval-valued
α-closed set (briefly, IVαCS) in X.
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We will denote the set of all IVSαOSs [resp. IVSαCS] by IVSαOS(X) [resp.
IVSαCS(X)]. Also, We will denote the set of all IVαOSs [resp. IVαCS] by IVαOS(X)
[resp. IVαCS(X)].

From Remark 5.3, it is obvious thatA ∈ IV SαOS(X), thenA− ∈ SαOS(X, τ−, E)
and A+ ∈ SαOS(X, τ+, E).

Example 5.7. Let (X, τ,E) be the IVSTS given in Example 5.4. Observe that
U ∈ IV SαOS(X). Furthermore we can confirm that U− ∈ SαOS(X, τ−, E) and
U+ ∈ SαOS(X, τ+, E).

Proposition 5.8. Let (X, τ,E) be an IVSTS. Then
(1)

⋃
j∈J Aj ∈ IV SαOS(X) for each (Aj)j∈J ⊂ IV SαOS(X),

(2)
⋂

j∈J Aj ∈ IV SαCS(X) for each (Aj)j∈J ⊂ IV SαCS(X).

Proof. The proofs are straightforward. □

Remark 5.9. In an IVSTS (X, τ,E), τ ⊂ IV SαOS(X) and τ c ⊂ IV SαCS(X).
But the converse need not be true (See Example 5.10)

Example 5.10. Let X = {a, b, c, d}, E = {e, f, g} and consider the IVST τ given
by:

τ = {∅̃E ,A1,A2, · · · ,A17, X̃E},
where A1(e) = [{a}, {a}], A1(f) = [{b, c}, {b, c}], A1(g) = [{a, d}, {a, d}],

A2(e) = [{b, d}, {b, d}], A2(f) = [{a, c, d}, {a, c, d}], A2(g) = [{a, b, d}, {a, b, d}],
A3(e) = [∅,∅], A3(f) = [{c}, {c}], A3(g) = [{a}, {a}],
A4(e) = [{a, b, d}, {a, b, d}], A4(f) = [X,X], A4(g) = [X,X],
A5(e) = [{a, c}, {a, c}], A5(f) = [{b, d}, {b, d}], A5(g) = [{b}, {b}],
A6(e) = [{a}, {a}], A6(f) = [{b}, {b}], A6(g) = [∅,∅],
A7(e) = [{a, c}, {a, c}], A7(f) = [{b, d, d}, {b, c, d}], A7(g) = [{a, b, d}, {a, b, d}],
A8(e) = [∅,∅], A8(f) = [{d}, {d}], A8(g) = [{b}, {b}],
A9(e) = [X,X], A9(f) = [X,X], A9(g) = [{a, b, c}, {a, b, c}],
A10(e) = [{a, c}, {a, c}], A10(f) = [{b, c, d}, {b, c, d}], A10(g) = [{a, b}, {a, b}],
A11(e) = [{b, c, d}, {b, c, d}], A11(f) = [X,X], A11(g) = [{a, b, c}, {a, b, c}],
A12(e) = [{a}, {a}], A12(f) = [{b, c, d}, {b, c, d}], A12(g) = [{a, b, d}, {a, b, d}],
A13(e) = [{a}, {a}], A13(f) = [{b, d}, {b, d}], A13(g) = [{b}, {b}],
A14(e) = [{c, d}, {c, d}], A13(f) = [{a, b}, {a, b}], A14(g) = [∅,∅],
A15(e) = [{a}, {a}], A15(f) = [{b, c}, {b, c}], A15(g) = [{a}, {a}]
A16(e) = [∅,∅], A16(f) = [{c}, {c}], A16(g) = [{a, d}, {a, d}],
A17(e) = [{a, b, d}, {a, b, d}], A15(f) = [X,X], A15(g) = [{a, b, d}, {a, b, d}].

Then we have

τ c = {∅̃E ,A
c
1,A

c
2, · · · ,Ac

15, X̃E}.
Let A be the IVSS over X defined by:

A(e) = [{a, b, c}, {a, b, c}], A(f) = [{b, c, d}, {b, c, d}] A(g) = [{a, b}, {a, b}].

Then clearly, IV Sint(A) = A10. Thus IV Scl(IV Sint(A)) = X̃E . So we have

IV Sint(IV Scl(IV Sint(A))) = X̃E , i.e., A ⊂ IV Sint(IV Scl(IV Sint(A))).

Hence A ∈ IV SαOS(X) but A /∈ τ. Therefore IV SαOS(X) ̸⊂ τ.
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Definition 5.11 ([36]). Let (X, τ,E) be a soft topological space and A ∈ SSE(X).
Then

(i) the soft α-closure of A, denoted by cl
Sα

(A) or cl
Sα,τ

(A), is a soft set over X
defined as follows:

cl
Sα

(A) =
⋂

{F ∈ SαCS(X) : A ⊂ F},

(ii) the soft α-interior of A, denoted by int
Sα

(A) or int
Sα,τ

(A), is a soft set over
X defined as follows:

cl
Sα

(A) =
⋃

{U ∈ SαOS(X) : U ⊂ A}.

It is clear that cl
Sα

(A) is the smallest soft α-closed set over X which contains A
and int

Sα
(A) is the largest soft α-open set over X which is contained in A.

Definition 5.12. Let (X, τ,E) be an IVSTS and A ∈ IV SSE(X). Then
(i) the interval-valued soft α-closure of A, denoted by cl

IV Sα
(A), is an IVSS over

X defined as follows:

cl
IV Sα

(A) =
⋂

{F ∈ IV SαCS(X) : A ⊂ F},

(ii) the interval-valued soft α-interior of A, denoted by int
IV Sα

(A), is an IVSS
over X defined as follows:

int
IV Sα

(A) =
⋃

{U ∈ IV SαOS(X) : U ⊂ A}.

It is obvious that cl
IV Sα

(A) is the smallest interval-valued soft α-closed set over
X containing A and int

IV Sα
(A) is the largest interval-valued soft α-open set over

X contained in A.

Remark 5.13. Let (X, τ,E) be an IVSTS and A ∈ IV SSE(X). Then
(1) cl

IV Sα
(A) = [cl

Sα,τ− (A−), cl
Sα,τ+ (A

+)],

(2) int
IV Sα

(A) = [int
Sα,τ− (A−), int

Sα,τ+ (A
+)].

Example 5.14. Let (X, τ,E) be the IVSTS given in Example 5.4. To find IVSαOSs
in X, consider the following IVSSs containing U:

U, A1, A2, · · · , A20,

where A1(e) = [{a}, {a, b}], A1(f) = [{b}, X], A2(e) = [{a}, {a, b}],
A2(f) = [{b, c}, {b, c}], A3(e) = [{a}, {a, b}], A3(f) = [{b, c}, X],
A4(e) = [{a}, {a, b}], A4(f) = [{b, c}, X],A5(e) = [{a}, {a, b}],
A5(f) = [X,X], A6(e) = [{a, b}, {a, b}], A6(f) = [{b}, {b, c}],
A6(e) = [{a, b}, {a, b}], A6(f) = [{b}, {b, c}], A7(e) = [{a, b}, {a, b}],
A6(f) = [{b}, X], A8(e) = [{a, b}, {a, b}], A8(f) = [{b, c}, {b, c}],
A9(e) = [{a, b}, {a, b}], A9(f) = [{b, c}, X], A10(e) = [{a, b}, {a, b}],
A10(f) = [X,X], A11(e) = [{a, b}, X], A11(f) = [{b}, {b, c}],
A12(e) = [{a, b}, X], A12(f) = [{b}, X], A13(e) = [{a, b}, X],
A13(f) = [{b, c}, {b, c}], A14(e) = [{a, b}, X], A14(f) = [{b, c}, X],
A15(e) = [{a, b}, X], A15(f) = [X,X], A16(e) = [X,X],
A16(f) = [{b}, {b, c}], A17(e) = [X,X], A17(f) = [{b}, X],
A18(e) = [X,X], A18(f) = [{b, c}, {b, c}], A19(e) = [X,X],
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A19(f) = [{b, c}, X], A20(e) = [X,X], A20(f) = [X,X].

Then clearly, IV Sint(Ai) = U for each i ∈ {1, 2, · · · , 19}. Since X̃E is the only

IVSCS in X containing U, IV Scl(IV Sint(Ai)) = X̃E for each i ∈ {1, 2, · · · , 20}.
Thus by Proposition 5.26 in [34], IV Sint(IV Scl(IV Sint(Ai))) = X̃E for each i ∈
{1, 2, · · · , 20}. Since Ai ⊂ X̃E , Ai ∈ IV SαOS(X) for each i ∈ {1, 2, · · · , 20}. So

cl
IV Sα

(Ai) = X̃E for each i ∈ {1, 2, · · · , 20}.

Theorem 5.15. Let (X, τ,E) be an IVSTS and A ∈ IV SSE(X). Then
(1) A ∈ IV SαCS(X) if and only if A = cl

IV Sα
(A),

(2) A ∈ IV SαOS(X) if and only if A = int
IV Sα

(A).

Proof. The proofs are straightforward. □

Proposition 5.16. Let (X, τ,E) be an IVSTS and A ∈ IV SSE(X). Then
(1) [cl

IV Sα
(A)]c = int

IV Sα
(Ac),

(2) [int
IV Sα

(A)]c = cl
IV Sα

(Ac).

Proof. The proofs follow from Definition 5.12. □

Proposition 5.17. Let (X, τ,E) be an IVSTS and A, B ∈ IV SSE(X). Then

(1) cl
IV Sα

(∅̃E) = ∅̃E , cl
IV Sα

(X̃E) = X̃E ,
(2) cl

IV Sα
(A) ∈ IV SαCS(X),

(3) if A ⊂ B, then cl
IV Sα

(A) ⊂ cl
IV Sα

(B),
(4) cl

IV Sα
(cl

IV Sα
(A)) = cl

IV Sα
(A),

(5) cl
IV Sα

(A ∪B) = cl
IV Sα

(A) ∪ cl
IV Sα

(B),
(6) cl

IV Sα
(A ∩B) ⊂ cl

IV Sα
(A) ∩ cl

IV Sα
(B).

Proof. The proofs are straightforward. □

Proposition 5.18. Let (X, τ,E) be an IVSTS and A, B ∈ IV SSE(X). Then

(1) int
IV Sα

(∅̃E) = ∅̃E , int
IV Sα

(X̃E) = X̃E ,
(2) int

IV Sα
(A) ∈ IV SαOS(X),

(3) if A ⊂ B, then int
IV Sα

(A) ⊂ int
IV Sα

(B),
(4) int

IV Sα
(int

IV Sα
(A)) = int

IV Sα
(A),

(5) int
IV Sα

(A ∪B) ⊂ int
IV Sα

(A) ∪ int
IV Sα

(B),
(6) int

IV Sα
(A ∩B) = int

IV Sα
(A) ∩ int

IV Sα
(B).

Proof. The proofs are straightforward. □

6. Interval-valued soft α-separation axioms

In this section, we propose some of new separation axioms such as the IVSαT0(j),
IVSαT1(j), IVSαT2(j), IVSαT3(j) and IVSαT4(j) axioms for j=i, ii as a generaliza-
tion of separation axioms discussed in Section 3. Furthermore, we study some of
their properties and the relations between them in the general framework of IVSTSs.

Definition 6.1 ([35]). A soft topological space (X, τ,E) is called a soft αT0-space,
if for any x ̸= y ∈ X, there are U, V ∈ SαOS(X) such that either x ∈ U, y /∈ U or
y ∈ V, x /∈ V .
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Definition 6.2. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft αT0(i)-space (briefly, IVSαT0(i)-space), if for any x ̸=

y ∈ X, there are U, V ∈ IV SαOS(X) such that either x1 ∈ U, y1 /∈ U or
y
1
∈ V, x

1
/∈ V,

(ii) interval-valued soft αT0(ii)-space (briefly, IVSαT0(ii)-space), if for any x ̸=
y ∈ X, there are U, V ∈ IV SαOS(X) such that either x

0
∈ U, y

0
/∈ U or

y0 ∈ V, x0 /∈ V.

Remark 6.3. (1) Every IVST0(i) [resp. IVST0(ii)]-space is an IVSαT0(i) [resp.
IVSαT0(ii)]-space.

(2) Every IVSαT0(i)-space is an IVSαT0(ii)-space. The converse is not true in
general (See Example 6.4).

(3) If an IVSTS (X, τ,E) is an IVSαT0(i) [resp. IVSαT0(ii)]-space, then (X, τ−, E)
and (X, τ+, E) are soft αT0-spaces [resp. (X, τ+, E) is a soft αT0-space].

Example 6.4. Let X = {a, b}, E = {e, f} and consider the IVST τ1 given by:

τ1 = {∅̃E ,A, X̃E},
where A(e) = A(f) = [{a}, {a}]. Then we can easily check that (X, τ1, E) is an
IVSαT0(i)-space. Moreover, we can confirm that τ−1 = τ+1 and (X, τ−1 , E) is a soft
αT0-space.

Now consider the IVST τ2 given by:

τ2 = {∅̃E ,A, X̃E},
where A(e) = A(f) = {∅, {a}]. Then clearly, (X, τ2, E) is an IVSαT0(ii)-space and
(X, τ+2 , E) is a soft αT0-space. But (X, τ2, E) is not an IVSαT0(i)-space.

The following is a similar consequence of Proposition 3.13.

Proposition 6.5. Let (X, τ,E) be an IVSTS and let x ̸= y ∈ X.
(1) If there are U, U ∈ IV SαOS(X) such that either x1 ∈ U, y1 ∈ Uc or

y
1
∈ V, x

1
∈ Vc, then X is an IVSαT0(i)-space.

(2) If there are U, U ∈ IV SαOS(X) such that either x
0
∈ U, y

0
∈ Uc or

y
0
∈ V, x

0
∈ Vc, then X is an IVSαT0(ii)-space.

Proof. The proofs are similar to Proposition 3.13. □

Also, we obtain a similar consequence of Proposition 4.10 (1).

Proposition 6.6. Let (X, τ,E) be an IVSTS and let Y be a nonempty subset of
X. If X is an IVSαT0(i) [resp. IVSαT0(ii)]-space, then (Y, τ

Y
, E) is an IVSαT0(i)

[resp. IVSαT0(ii)]-space.

Proof. The proofs are similar to Proposition 4.10 (1). □

Definition 6.7 ([35]). A soft topological space (X, τ,E) is called a soft αT1-space,
if for any x ̸= y ∈ X, there are U, V ∈ SαOS(X) such that x ∈ U, y /∈ U and
y ∈ V, x /∈ V .

Definition 6.8. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft αT1(i)-space (briefly, IVSαT1(i)-space), if for any x ̸= y ∈

X, there are U, V ∈ IV SαOS(X) such that x
1
∈ U, y

1
/∈ U and y

1
∈ V, x

1
/∈ V,
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(ii) interval-valued soft αT1(ii)-space (briefly, IVSαT1(ii)-space), if for any x ̸= y ∈
X, there are U, V ∈ IV SαOS(X) such that x0 ∈ U, y0 /∈ U and y0 ∈ V, x0 /∈ V.

Remark 6.9. (1) Every IVSαT1(i)-space is an IVSαT1(ii)-space.
(2) If an IVSTS (X, τ,E) is an IVSαT1(i) [resp. IVSαT1(ii)]-space, then (X, τ−, E)

and (X, τ+, E) are soft αT1-spaces [resp. (X, τ+, E) is a soft αT1-space].

Example 6.10. Let X = {a, b}, E = {e, f} and consider the IVST τ1 given by:

τ1 = {∅̃E ,A1,A2,A3, X̃E},
where A1(e) = [X,X], A1(f) = [{b}, {b}],

A2(e) = [{a}, {a}], A2(f) = [X,X],
A3(e) = [{a}, {a}], A3(f) = [{b}, {b}].

Then we can easily see that (X, τ1, E) is an IVSαT1(i)-space. Moreover, (X, τ−1 , E)
and (X, τ+1 , E) are soft αT1-spaces.

Now consider the IVST τ2 given by:

τ2 = {∅̃E ,A1,A2,A3, X̃E},
where A1(e) = [∅, X], A1(f) = [∅, {b}],

A2(e) = [∅, {a}], A2(f) = [∅, X],
A3(e) = [∅, {a}], A3(f) = [∅, {b}].

Then clearly (X, τ2, E) is an IVSαT1(ii)-space but not an IVSαT1(i)-space. Further-
more, (X, τ+2 , E) is a soft αT1-spaces.

The following is an immediate consequence of Definitions 6.5 and 6.8.

Proposition 6.11. Every IVST1(i) [resp. IVST1(ii)]-space is an IVSαT1(i) [resp.
IVSαT1(ii)]-space. But the converse is not true in general (See Example 6.12).

Proof. The proof is obvious. □

Example 6.12. Let X = {a, b, c, d}, E = {e, f} and consider the IVST τ1 given by:

τ1 = {∅̃E ,A1,A2,A3, X̃E},
where A1(e) = A1(f) = [{a, b, c}, {a, b, c}],

A2(e) = A2(f) = [{b, c}, {b, c}],
A3(e) = A2(f) = [{b}, {b}].

Then we can see that (X, τ1, E) is an IVSαT0(i)-space but not an IVSαT1(i)-space.
Now consider IVST τ2 given by:

τ2 = {∅̃E ,A1,A2,A3, X̃E},
where A1(e)A1(f) = [∅, {a, b, c}],

A2(e) = A2(f) = [∅, {b, c}],
A3(e) = A2(f) = [∅, {b}].

Then we can easily check that (X, τ2, E) is an IVSαT0(i)-space but not an IVSαT1(ii)-
space.

We have a similar consequence of Proposition 3.10.

Proposition 6.13. Let (X, τ,E) be an IVSTS.
(1) If x1 is an IVSαCS in X for each x ∈ X, then X is an IVSαT1(i)-space.
(2) If x0 is an IVSαCS in X for each x ∈ X, then X is an IVSαT1(ii)-space.
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Proof. The proofs are similar to Proposition 3.10. □

Theorem 6.14. Let (X, τ,E) be an IVSTS.
(1) X is an IVSαT1(i)-space if and only if x

1
∈ IV SαCS(X) for each x ∈ X.

(2) X is an IVSαT1(ii)-space if and only if x0 ∈ IV SαCS(X) for each x ∈ X.

Proof. (1) Suppose X is an IVSαT1(i)-space and let x ̸= y ∈ X. Then there is
Ux

1
∈ IV SαOS(X) such that x1 ∈ Ux

1
, y1 /∈ Ux

1
. Thus by Proposition 5.8 (1),

x
1
∈
⋃

x∈X Ux
1
∈ IV SαOS(X). So x

1
= [

⋃
x∈X Ux

1
]c ∈ IV SαCS(X).

Conversely, suppose the necessary condition holds and let x ̸= y ∈ X. Then
clearly, y

1
∈ [X − {x}, X − {x}] ∈ IV SαOS(X) and x

1
/∈ [X − {x}, X − {x}].

Similarly, x1 ∈ [X − {y}, X − {y}] ∈ IV SαOS(X) and y1 /∈ [X − {y}, X − {y}].
Thus X is an IVSαT1(i)-space.

(2) The proof is similar to (1). □

The following is a similar consequence of Proposition 4.10 (2).

Proposition 6.15. Let (X, τ,E) be an IVSTS and let Y be a nonempty subset of
X. If X is an IVSαT1(i) [resp. IVSαT1(ii)]-space, then (Y, τ

Y
, E) is an IVSαT1(i)

[resp. IVSαT1(ii)]-space

Proof. The proof is similar to Proposition 4.10 (2). □

Definition 6.16 ([35]). A soft topological space (X, τ,E) is called a soft αT2-space,
if for any x ̸= y ∈ X, there are U, V ∈ SαOS(X) such that x ∈ U, y ∈ V and
U ∩ C = ∅E .

Definition 6.17. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft αT2(i)-space (briefly, IVSαT2(i)-space), if for any x ̸= y ∈

X, there are U, V ∈ IV SαOS(X) such that x1 ∈ U, y1 ∈ V and U ∩V = ∅̃E ,
(ii)interval-valued soft αT2(ii)-space (briefly, IVSαT2(ii)-space), if for any x ̸= y ∈

X, there are U, V ∈ IV SαOS(X) such that x
0
∈ U, y

0
∈ V and U ∩V = ∅̃E .

Remark 6.18. (1) Every IVSαT2(i)-sapce is an IVSαT2(ii)-space.
(2) If an IVSTS (X, τ,E) is an IVSαT2(i) [resp. IVSαT2(ii)]-space, then (X, τ−, E)

and (X, τ+, E) are soft αT2-spaces [resp. (X, τ+, E) is a soft αT2-space].

Example 6.19. Let X = {a, b}, E = {e, f} and consider the IVST τ1 given by:

τ1 = {∅̃E ,A1,A2, X̃E},
where A1(e) = A1(f) = [{a}, {a}], A2(e) = A2(f) = [{b}, {b}].
Then clearly, (X, τ1, E) is an IVSαT2(i)-space, and, (X, τ−1 , E) and (X, τ+1 , E) are
soft αT2-spaces.

Now consider the IVST τ2 given by:

τ2 = {∅̃E ,A1,A2, X̃E},
where A1(e) = A1(f) = [∅, {a}], A2(e) = A2(f) = [∅, {b}].
Then it is conspicuous that (X, τ2, E) is an IVSαT2(ii)-space but not an IVSαT2(i)-
space. Moreover, (X, τ+2 , E) is a soft αT2-spaces.

Proposition 6.20. Every IVSαT2(i) [resp. IVSαT2(ii)]-space is an IVSαT1(i) [resp.
IVSαT1(ii)]-space. But the converse is not true in general (See Example 6.21).
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Proof. The proof is clear. □

Example 6.21. Consider the IVSαT1(i)-space (X, τ1, E) [resp. IVSαT1(ii)-space
(X, τ2, E) given in Example 6.10. Then we can see that (X, τ1, E) is not an IVSαT2(i)
[resp. IVSαT2(ii)]-space.

We have a similar consequence of Proposition 4.11.

Proposition 6.22. Let (X, τ,E) be an IVSTS and let Y be a nonempty subset of
X. If X is an IVSαT2(i) [resp. IVSαT2(ii)]-space, then (X, τ

Y
, E) is an IVSαT2(i)

[resp. IVSαT2(ii)]-space.

Proof. The proof is similar to Proposition 4.11. □

Definition 6.23 ([35]). A soft topological space (X, τ,E) is called a soft α-regular
space, if for each A ∈ SαCS(X) and each x ∈ X with x /∈ A, there are U, V ∈
SαOS(X) such that x ∈ U, A ⊂ V and U ∩ V = ∅E .

Definition 6.24. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft α-regular(i)-space (briefly, IVSαR(i)-space), if for each

A ∈ IV SαCS(X) and each x ∈ X with x
1
/∈ A, there are U, V ∈ IV SαOS(X)

such that x1 ∈ U, A ⊂ V and U ∩V = ∅̃E ,
(ii)interval-valued soft α-regular(ii)-space (briefly, IVSαR(ii)-space), if for each

A ∈ IV SαCS(X) and each x ∈ X with x
0
/∈ A, there are U, V ∈ IV SαOS(X)

such that x0 ∈ U, A ⊂ V and U ∩V = ∅̃E .

It is obvious that if an IVSTS (X, τ,E) is an IVSR(i) [resp. IVSR(ii)]-space, then
it is an IVSαR(i) [resp. IVSαR(ii)]-space.

Example 6.25. Let X = {a, b, c}, E = {e, f} and consider the IVST τ1 on X
defined by:

τ1 = {∅̃E ,A1,A2, X̃E},
where A1(e) = A1(f) = [{a}, {a}], A2(e) = A2(f) = [{b, c}, {b, c}].
Then we can easily check that (X, τ1, E) is an IVSαR(i)-space but not an IVSαT1(i)-
space. Now consider the IVST τ2 on X defined by:

τ2 = {∅̃E ,A1,A2, X̃E},
where A1(e) = A1(f) = [∅, {a}], A2(e) = A2(f) = [∅, {b, c}].
Then clearly, (X, τ1, E) is an IVSαR(ii)-space but not an IVSαT1(ii)-space.

Definition 6.26 ([35]). A soft topological space (X, τ,E) is called a soft αT3-space,
if it is a soft αT1-space and a soft α-regular space.

Definition 6.27. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft αT3(i)-space (briefly, IVSαT3(i)-space), if it is an IVSαT1(i)-

space and an IVSαR(i)-space,
(ii) interval-valued soft αT3(ii)-space (briefly, IVSαT3(ii)-space), if it is an IVSαT1(ii)-

space and an IVSαR(ii)-space.

Remark 6.28. Every IVSαT3(i)-space is an IVSαT3(ii)-space.

Proposition 6.29. Every IVSαT3(i) [resp. IVSαT3(ii)]-space is an IVSαT2(i) [resp.
IVSαT2(ii)]-space. But the converse is not true in general (See Example 6.30).
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Proof. Let (X, τ,E) be an IVSαT3(i)-space and let x ̸= y ∈ X. Since X is an
IVSαT1(i)-space, by Theorem 6.14, y1 ∈ IV SαCS(X) and x1 /∈ y1 . Since X is an
IVSαR(i)-space, there are U, V ∈ IV SαOS(X) such that x1 ∈ U, y1 ⊂ V and
U ∩V = ∅̃E . Then (X, τ,E) is an IVSαT2(i)-space. The proof of the second part
can be done by the same token. □

We obtain a similar consequence of Proposition 4.12.

Proposition 6.30. Let (X, τ,E) be an IVSTS and let Y be a nonempty subset of
X. If X is an IVSαT3(i) [resp. IVSαT3(ii)]-space, then (X, τ

Y
, E) is an IVSαT3(i)

[resp. IVSαT3(ii)]-space.

Proof. The proof is similar to Proposition 4.12. □

Definition 6.31 ([35]). A soft topological space (X, τ,E) is called a soft α-normal
space, if for each A, B ∈ SαCS(X) with A ∩B = ∅E , there are U, V ∈ SαOS(X)
such that A ⊂ U , B ⊂ V and U ∩ V = ∅E .

Definition 6.32. An IVSTS (X, τ,E) is called an interval-valued soft α-normal-
space (briefly, IVSαN-space), if for each A, B ∈ IV SαCS(X) with A ∩ B = ∅̃E ,
there are U, V ∈ IV SαOS(X) such that x1 ∈ U, A ⊂ V and U ∩V = ∅̃E .

Remark 6.33. Every IVSαN-space may be neither an IVSαR(i) [resp. IVSαR(ii)]-
space nor an IVSαT1(i) [resp. IVSαT1(ii)]-space (See Example 6.34).

Example 6.34. Let X = {a, b, c}, E = {e, f} and consider the IVST τ on X given
by:

τ = {∅̃E ,A1,A2,A3, X̃E},
where A1(e) = A1(f) = [{a}, {a}], A2(e) = A2(f) = [{b}, {b}],

A3(e) = A3(f) = [{a, b}, {a, b}].
Then we can see that (X, τ,E) is an IVSαN-space but neither an IVSαR(i) [resp.
IVSαR(ii)]-space nor an IVSαT1(i) [resp. IVSαT1(ii)]-space.

Definition 6.35 ([35]). A soft topological space (X, τ,E) is called a soft αT4-space,
if it is a soft αT1-space and a soft α-normal space.

Definition 6.36. An IVSTS (X, τ,E) is called an:
(i) interval-valued soft αT4(i)-space (briefly, IVSαT4(i)-space), if It is an IVSαT1(i)-

space and an IVSαN-space,
(ii) interval-valued soft αT4(ii)-space (briefly, IVSαT4(ii)-space), if It is an IVSαT1(ii)-

space and an IVSαN-space.

Example 6.37. In Example 6.19, we can easily check that an IVSTS (X, τ1, E)
[resp. (X, τ2, E)[ is an IVSαT4(i) [resp. IVSαT4(ii)]-space.

Proposition 6.38. Every IVSαT4(i) [resp. IVSαT4(ii)]-space is an IVSαT3(i) [resp.
IVSαT3(ii)]-space.

Proof. Let X be an IVSαT4(i)-space. Since X is an IVSαT1(i)-space, it is enough
to prove that X is an IVSαR(i)-space. Let A ∈ IV SαCS(X) with x

1
/∈ A. Since X

is an IVSαT1(i)-space, by Theorem 6.14 (1), x
1
∈ IV SαCS(X). Note that A∩x

1
=

∅̃E . Since X is an IVSαN-space, there are U, V ∈ IV SαOS(X) such that x
1
∈ U,
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A ⊂ V and U ∩V = ∅̃E . Thus X is an IVSαT3(i)-space. The proof of the second
part is analogous and therefore omitted. □

Remark 6.39. From Propositions 6.11, 6.20, 6.29 and 6.38, we have relationships
among IVSαT0(i) [resp. IVSαT0(ii)], IVSαT1(i) [resp. IVSαT1(ii)], IVSαT2(i) [resp.
IVSαT2(ii)], IVSαT3(i) [resp. IVSαT3(ii)] and IVSαT4(i) [resp. IVSαT4(ii)]:

IVSαT4(i) [resp. IVSαT4(ii)] =⇒ IVSαT3(i) [resp. IVSαT3(ii)]
=⇒ IVSαT2(i) [resp. IVSαT2(ii)]
=⇒ IVSαT1(i) [resp. IVSαT1(ii)]
=⇒ IVSαT0(i) [resp. IVSαT0(ii)].

7. Conclusions

First, we defined separation axioms, i.e., IVST0(i) [resp. IVST0(ii)], IVST1(i)
[resp. IVST1(ii)], IVST2(i) [resp. IVST2(ii)], IVST3(i) [resp. IVST3(ii)] and IVST4(i)
[resp. IVST4(ii)], and studied some of their relationships. Second, by using interval-
valued soft α-open sets, we introduced some of new separation axioms, i.e., IVSαT0(i)
[resp. IVSαT0(ii)], IVSαT1(i) [resp. IVSαT1(ii)], IVSαT2(i) [resp. IVSαT2(ii)],
IVSαT3(i) [resp. IVSαT3(ii)] and IVSαT4(i) [resp. IVSαT4(ii)], and discussed re-
lationships among them. Moreover, we dealt with hereditary properties of each
separation axiom.

In the future, we would like to study new separation axioms as well as decision
making problems that were not covered in our study.
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