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Abstract. We define a logical system, semilattice implication algebra,
for a generalization of lattice implication algebras and Heyting semilattices
and research some properties of this algebra, and the regular element in a
semilattice implication algebra is defined and it is porved that the set of all
regular elements is a distributive lattice. Also, we give some relationships
of filters and multipliers, and give a filter constructed by a subsemigroup
of monotone multipliers. And then it is showed that the filter generated
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1. Introduction

Heyting algebra was introduced by A. Heyting to formalize the intuitunistic
propositional calculus([1]). Heyting algebra has been known as several different
names: Brouwerian lattic or Brouwerian logics (See [1, 2]). This algebra was general-
ized to Brouwerian semmilattice, which is the same algebra as implicative semilattice
or Heyting semilattice (See [3, 4, 5]).

Lattice implication algebra was introduced in [6], and the notion of filters and
prime filters of lattice implication algebras was defined and investigated in [7, 8, 9,
10]. The filter generated by a subset was costruced in [10] and the connection of
filters and implicative filters was provided in [11].

Refer to [12, 13, 14] for additional related works on lattice implication algebrs.
All logical systems introduced above have propositional value in a lattice or a

semilattice and the similar properties about implication operator.
The aim of this paper is to propose an algebraic system to generalize lattice

implication algebras and Heyting semilattices and to research the common properties
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of these algebras. In section 3, we define the notion of semilattice implication algebra,
which is a generalization of lattice implication algebras and Heyting semilattices, and
research some basic properties that will be used in subsequent sections. In section
4, the regular element is defined and it is porved that the set of all regular elements
is a distributive lattice. In section 5, we define a multiplier and a simple multiplier,
and research some relationships of filters and multipliers. And then it is proved that
the filter generated by a subset is charaterized by simple multipliers.

2. Preliminary

A Heyting semilattice (or implicative semilattice or Brouwerian semilattice) is an
algebra (L;∧,→), where (L;∧) is a semilattice and → is a binary operation on L
satisfying: for any x, y, z ∈ L,

x ∧ y ≤ z if and only if x ≤ y → z.

Heyting algebra is an algebra (L;∨,∧,→, 0, 1), where (L;∨,∧, 0, 1) is a bounded
lattice and (L;∧,→) is a Heyting semilattice (See [3, 4, 5]). Every Heyting algebra
is clearly a Heyting semilattice.

Lemma 2.1 ([3, 4, 5, 15]). Let (L,∧,→, 1) be a Heyting semilattice. Then it satisfies
the following properties: for every x, y, z ∈ L,

(1) x→ x = 1 and 1 → x = x,
(2) x→ (y → z) = y → (x→ z),
(3) x ≤ (x→ y) → y,
(4) x→ (y → z) = (x ∧ y) → z,
(5) x→ (y ∧ z) = (x→ y) ∧ (x→ z).

A lattice implication algebra ([6]) is an algebra (L;∨,∧,→, ′, 0, 1), where (L;∧,∨, 0, 1)
is a bounded lattice, “ → ” a binary operation and “ ′ ” an order-reversing involution
satisfying the following axioms: for all x, y, z ∈ L,

(I1) x→ (y → z) = y → (x→ z),
(I2) x→ x = 1,
(I3) x→ y = y′ → x′,
(I4) x→ y = y → x = 1 ⇒ x = y,
(I5) (x→ y) → y = (y → x) → x.
(L1) (x ∨ y) → z = (x→ z) ∧ (y → z),
(L2) (x ∧ y) → z = (x→ z) ∨ (y → z).

Lemma 2.2 ([12, 14]). Let L be a lattice implication algebra. Then it satisfies the
following properties: for every x, y, z ∈ L,

(1) 1 → x = x,
(2) x ≤ (xy)y,
(3) x→ (y ∧ z) = (x→ y) ∧ (x→ z),
(4) x→ (y ∧ z) = (x→ y) ∨ (x→ z).
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3. semilattice implication algebras

Definition 3.1. An semilattice implication algebra is a semilattice (L,∧) with the
greatest element 1 and a binary operation “·” satisfying the following axioms: for
every x, y, z ∈ L,

(SI1) x · (y · z) = y · (x · z),
(SI2) 1 · x = x,
(SI3) x ∧ (xy)y = x,
(SI4) x · (y ∧ z) = (x · y) ∧ (x · z).

We will denote x · y by xy shortly. Semilattice L has the binary operation ∧
defined by x ∧ y = inf{x, y} for every x, y ∈ L, hence L is a partially ordered set
with the partial order ≤ defined by: x ≤ y if and only if x ∧ y = x for any x, y ∈ L.

Example 3.2. (1) Let I0 = (0, 1] be the interval in the set R of real numbers. Then
it is a chain lattice with the usual order of the real numbers. If we define a binary
operation · by

x · y =

{
1 if x ≤ y

y otherwise

for any x, y ∈ L, then L is a semilattice implication algebra.
(2) Let (R,U) be the topological space with the usual topology U on R. We define

a binary operation · on U by

A ·B = int(Ac ∪B)

for any A,B ∈ U , where int(A) is interior of A. Then U is a semilattice implication
algebra.

(3) For a poset P = {0, a, b} with 0 ≤ a, 0 ≤ b, and a, b are non-comparable, and
the interval I0 = (0, 1] in R in (1) of this example, let L = P ⊕ I0 be a semilattice
with the partial order defined by x < y for every x ∈ P and y ∈ I0. If we define a
binary operation · on L by the following: for 0, a, b ∈ P and every x, y ∈ I0,

· 0 a b y
0 1 1 1 1
a b 1 b 1
b a a 1 1
x 0 a b x · y

and x · y =

{
1 if x ≤ y

y otherwise
,

then L be a semilattice implication algebra, and the least upper bound a ∨ b of a
and b does not exist in L. Figure 1 is the Hasse diagram of L.

Lemma 3.3. Let L be a semilattice implication algebra. Then it satisfies the fol-
lowing properties: for every x, y ∈ L,

(1) xx = 1,
(2) x ≤ (xy)y,

Proof. (1) Let x ∈ L. Then 1 = 1 ∧ (1x)x = 1 ∧ xx = xx by (SI3) and (SI2).
(2) It is clear from (SI3). □
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Figure 1. Hasse diagram of a lattice A

Lemma 3.4. Let L be a semilattice implication algebra. Then it satisfies the fol-
lowing property: for any x, y ∈ L,

x ≤ y ⇐⇒ xy = 1.

Proof. Suppose x ≤ y in L for any x, y ∈ L. Then x = x ∧ y. Thus we have

1 = xx = x(x ∧ y) = (xx) ∧ (xy) = 1 ∧ (xy) = xy

by Lemma 3.3 (1) and (SI4).
Conversely, suppose xy = 1 for any x, y ∈ L. Then

x = x ∧ (xy)y = x ∧ 1y = x ∧ y.

by (SI3) and (SI2). This implies x ≤ y. □

Lemma 3.5. Let L be a semilattice implication algebra. Then it satisfies the fol-
lowing properties: for every x, y, z ∈ L,

(1) x1 = 1,
(2) x ≤ yz implies y ≤ xz,
(3) y ≤ xy,
(4) x ≤ y implies yz ≤ xz and zx ≤ zy,
(5) xy = ((xy)y)y,
(6) xy ≤ (yz)(xz),
(7) xy ≤ (zx)(zy).

Proof. (1) It is clear from Lemma 3.4, because 1 is the greatest element in L.
(2) Let x ≤ yz. Then 1 = x(yz) = y(xz) by (SI1). Thus y ≤ xz by Lemma 3.4.
(3) Let x, y ∈ L. Then x ≤ 1 = yy. This implies y ≤ xy by (2) of this lemma.
(4) Let x ≤ y in L. Then x ≤ y ≤ (yz)z by Lemma 3.3 (2). Thus yz ≤ xz by

(2) of this lemma. Also, since x = x ∧ y, zx = z(x ∧ y) = (zx) ∧ (zy) by (SI4). So
zx ≤ zy.

(5) Let x, y ∈ L. Then xy ≤ ((xy)y)y by Lemma 3.3 (2). Also by Lemma 3.3 (2),
x ≤ (xy)y ≤ (((xy)y)y)y. This implies ((xy)y)y ≤ xy by (2) of this lemma. Thus
xy = ((xy)y)y.

(6) Let x, y, z ∈ L. Then y ≤ (yz)z by Lemma 3.3 (2). Thus xy ≤ x((yz)z) =
(yz)(xz) by (4) of this lemma and (SI1).

(7) Let x, y, z ∈ L. Then zx ≤ (xy)(zy) by (6) of this lemma. Thus xy ≤ (zx)(zy)
by (2) of this lemma. □
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Theorem 3.6. Every lattice implication algebra is a semilattice implication algebra.

Proof. It is clear from the definition of lattice implication algebra and Lemma 2.2.
□

The semilattice implication algebra L of Example 3.2 (3) is not lattice implication
algebra, because it is not lattice; a ∨ b does not exist. The converse direction of
Theorem 3.6 is not true in general.

Theorem 3.7. Every Heyting semilattice is a semilattice implication algebra.

Proof. It is clear from Lemma 2.1. □

The converse of Theorem 3.7 is not true in general as the following example shows.

Example 3.8. Let A = {0, a, b, c, d, 1} be a lattice with Hasse diagram of Figure 2.
If we define a binary operation · on A as following:

· 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b c c 1 c 1 1
c b d b 1 d 1
d a c d c 1 1
1 0 a b c d 1

then A is a lattice implication algebra, and so a semilattice implication algebra, but
A is not Heyting semilattice, because a ≤ d = db but a ∧ d = a ̸≤ b.
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Figure 2. Hasse diagram of a lattice A

From Lemma 3.3 (2) and Lemma 3.5 (3), we know (xy)y and (yx)x are upper
bounds of x and y, hence any two elements of a semilattice implication algebra has
at lest one upper bound, and if x ∨ y exists, x ∨ y ≤ (xy)y and x ∨ y ≤ (yx)x.

Lemma 3.9. Let L be a semilattice implication algebra and x, y, z ∈ L. If x ∨ y
exists, then

(x ∨ y)z = xz ∧ yz.

Proof. Let x, y, z ∈ L and x∨ y exists in L. Then x ≤ x∨ y and y ≤ x∨ y. Thus by
Lemma 3.5 (4), (x∨ y)z ≤ xz and (x∨ y)z ≤ yz. So (x∨ y)z is a lower bound of xz
and yz.

Suppose that l is an lower bound of xz and yz. Since l ≤ xz and l ≤ yz, x ≤ lz
and y ≤ lz by Lemma 3.5 (2). Then x ∨ y ≤ lz and l ≤ (x ∨ y)z. Thus (x ∨ y)z is
the greatest lower bound of xz and yz, i.e., (x ∨ y)z = xz ∧ yz. □
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4. Regularity in semilattice implication algebras

For each element a in a semilattice implication algebra L, we can define a unary
operation ∗a on L by x∗a = xa for every x ∈ L. Then x∗a ∈ [a, 1] for all x ∈ L since
a ≤ xa. We denote x∗a∗a for (x∗a)∗a .

Lemma 4.1. Let L be a semilattice implication algebra and a ∈ L. Then the
operation ∗a satisfies the following properties: for every x, y ∈ L,

(1) a∗a = 1 and 1∗a = a,
(2) x ≤ y implies y∗a ≤ x∗a ,
(3) x ≤ x∗a∗a ,
(4) xy∗a = yx∗a ,
(5) x∗a∗a∗a = x∗a ,
(6) xy ≤ y∗ax∗a .

Proof. It is clear from Lemma 3.3, (4)–(6) of Lemma 3.5 and (SI1). □

Let L be a semilattice implication algebra and a ∈ L. An element x in L is said
to be a-regular, if x∗a∗a = x and Ra(L) will be denoted for the set of all a-regular
elements in L.

Lemma 4.2. Let L be a semilattice implication algebra and a ∈ L. Then

(1) 1 ∈ Ra(L) and a ∈ Ra(L),
(2) xy = y∗ax∗a for every x ∈ L and every y ∈ Ra(L),
(3) x∗ay = y∗ax for every x, y ∈ Ra(L),
(4) x∗a ∈ Ra(L) for every x ∈ L.

Proof. (1) It is clear from Lemma 4.1 (1).
(2) Let x ∈ L and y ∈ Ra(L). Then y∗ax∗a = x(y∗a)∗a = xy by Lemma 4.1 (4)

and the regularity of y.
(3) Let x, y ∈ Ra(L). Then x

∗ay = y∗ax∗a∗a = y∗ax by (2) of this lemma.
(4) It is clear from Lemma 4.1 (5). □

Theorem 4.3. Let L be a semilattice implication algebra and a ∈ L. Then Ra(L)
is closed under ∧ of L.

Proof. Let x, y ∈ Ra(L). Then x∧y ≤ (x∧y)∗a∗a by Lemma 4.1 (3). Since x∧y ≤ x
and x ∧ y ≤ y, (x ∧ y)∗a∗a ≤ x∗a∗a = x and (x ∧ y)∗a∗a ≤ y∗a∗a = y by Lemma 4.1
(2). Thus (x ∧ y)∗a∗a ≤ x ∧ y. So (x ∧ y)∗a∗a = x ∧ y, and x ∧ y ∈ Ra(L). □

Theorem 4.4. Let L be a semilattice implication algebra and a ∈ L. Then Ra(L)
is closed under the implication · of L.
Proof. Let x, y ∈ Ra(L). Then xy ≤ (xy)∗a∗a by Lemma 4.1 (3). Also, we have

(xy)∗a∗a(xy) = x((xy)∗a∗ay) (by (SI1))

= x((y∗a(xy)∗a∗a∗a) (by Lemma 4.2 (2))

= x(y∗a(xy)∗a) (by Lemma 4.1 (5))

= x((xy)y∗a∗a) (by Lemma 4.1 (4))

= x((xy)y)

= 1.
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Thus (xy)∗a∗a ≤ xy. So (xy)∗a∗a = xy and xy ∈ Ra(L). □

From Theorem 4.3 and Theorem 4.4, we know that Ra(L) is a subalgebra of a
semilattice implication algebra L.

Theorem 4.5. Let L be a semilattice implication algebra and a ∈ L. Then Ra(L)
is a join-semilattice with x ∨Ra(L) y = (x∗a ∧ y∗a)∗a for every x, y ∈ Ra(L).

Proof. Let x, y ∈ Ra(L). Since L is a semilattice, there exists x∗a ∧ y∗a . Then
by Lemma 4.2 (4), there exists (x∗a ∧ y∗a)∗a . Also, since x∗a ∧ y∗a ≤ x∗a and
x∗a ∧ y∗a ≤ y∗a , x = x∗a∗a ≤ (x∗a ∧ y∗a)∗a and y = y∗a∗a ≤ (x∗a ∧ y∗a)∗a .

If u is an upper bound of x and y in Ra(L), then u∗a ≤ x∗a and u∗a ≤ y∗a

by Lemma 4.1 (2). Thus u∗a ≤ x∗a ∧ y∗a . So (x∗a ∧ y∗a)∗a ≤ u∗a∗a = u. Hence
(x∗a ∧ y∗a)∗a is the least upper bound of x and y in Ra(L). □

Let L be a semilattice implication algebra and a ∈ L. Then by Theorem 4.3 and
Theorem 4.5, Ra(L) is a lattice with x∧Ra(L)y = x∧y and x∨Ra(L)y = (x∗a∧y∗a)∗a

for every x, y ∈ Ra(L).

Lemma 4.6. Let L be a semilattice implication algebra and a ∈ L. Then for every
x, y, z ∈ Ra(L),

(1) (x ∨Ra(L) y)
∗a = x∗a ∧ y∗a ,

(2) (x ∧ y)∗a = x∗a ∨Ra(L) y
∗a ,

(3) (x ∨Ra(L) y)z = (xz) ∧ (yz).

Proof. (1) Let x, y ∈ Ra(L). Then by Lemma 4.2 (4) and Theorem 4.3, we get

x∗a , y∗a ∈ Ra(L) and x
∗a ∧ y∗a ∈ Ra(L).

Thus by Theorem 4.5, (x ∨Ra(L) y)
∗a = (x∗a ∧ y∗a)∗a∗a = x∗a ∧ y∗a .

(2) Let x, y ∈ Ra(L). Then x
∗a , y∗a ∈ Ra(L). Thus by Theorem 4.5, we have

x∗a ∨Ra(L) y
∗a = (x∗a∗a ∧ y∗a∗a)∗a = (x ∧ y)∗a .

(3) Let x, y, z ∈ Ra(L). Then x ∨Ra(L) y ∈ Ra(L), and we have

(x ∨Ra(L) y)z = z∗a(x ∨Ra(L) y)
∗a (by Lemma 4.2 (2))

= z∗a(x∗a ∧ y∗a) (by (1) of this lemma)

= (z∗ax∗a) ∧ (z∗ay∗a) (by (SI1))

= (xz) ∧ (yz) (by Lemma 4.2 (2)).

□

Theorem 4.7. Let L be a semilattice implication algebra and a ∈ L. Then the
following are equivalent:

(1) x∗ax = x for every x ∈ Ra(L),
(2) x∨Ra(L) y = x∗ay and x∧Ra(L) y = x∧y = (xy∗a)∗a for every x, y ∈ Ra(L).

Proof. (1)⇒(2): Suppose (1) holds and let x, y ∈ Ra(L). Then x
∗ay ∈ Ra(L) since

x∗a , y ∈ Ra(L). Also a ≤ y implies x∗a = xa ≤ xy and (xy)y ≤ x∗ay. This implies
x∗ay is an upper bound of x and y in Ra(L) since (xy)y is an upper bound of x and
y.
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Suppose u is an upper bound of x and y in Ra(L). Then u∗a ≤ x∗a and y ≤ u.
This implies x∗ay ≤ u∗ay ≤ u∗au. Since u∗au = u, by the hypothesis, x∗ay ≤ u.
Thus x∗ay is the least upper bound of x and y in Ra(L), i.e., x ∨Ra(L) y = x∗ay.
Moreover, by Lemma 4.6 (2), we have

x ∧ y = (x ∧ y)∗a∗a = (x∗a ∨Ra(L) y
∗a)∗a = (x∗a∗ay∗a)∗a = (xy∗a)∗a .

(2)⇒(1): Suppose (2) holds and let x ∈ Ra(L). Then x
∗ax = x ∨Ra(L) x = x by

the hypothesis. □

In Example 3.8, R0(A) = A, but a ∨ d = d ̸= 1 = dd = (a0)d = a∗0d, and
a∗0a = (a0)a = da = c ̸= a.

In (2) of Example 3.2, R∅(U) is the family of all regular open sets in the topology
U and it satisfies the property U∗∅U = U for every U ∈ R∅(U), hence U∨R∅(U)V =
U∗∅V for every U, V ∈ R∅(U).

Theorem 4.8. Let L be a semilattice implication algebra and a ∈ L. If x∗ax = x
for every x ∈ Ra(L), then Ra(L) is distributive.

Proof. Let x, y, z ∈ Ra(L). Then we have

x ∧ (y ∨Ra(L) z) = (x(y ∨Ra(L) z)
∗a)∗a (by Theorem 4.7)

= ((y ∨Ra(L) z)x
∗a)∗a (by Lemma 4.1 (4))

= ((yx∗a) ∧ (zx∗a))∗a (by Lemma 4.6 (3))

= (yx∗a)∗a ∨Ra(L) (zx
∗a)∗a (by Lemma 4.6 (2))

= (x ∧ y) ∨Ra(L) (x ∧ z) (by Theorem 4.7).

Hence Ra(L) is distributive. □

The converse direction of Theorem 4.8 is not true in general. For example, the
semilattice implication algebra A = R0(A) in Example 3.8 is distributive, but a∗0a =
da = c ̸= a.

5. Multipliers and filters of semilattice implication algebras

Let L be a semilattice implication algebra. A map φ : L→ L is called a multiplier
of L, if it satisfies

φ(xy) = xφ(y)

for every x, y ∈ L.

Example 5.1. (1) Let L be the semilattice implication algebra and a ∈ L. If we
define a map φa : L→ L by

φa(x) = ax

for every x ∈ L. Then φa is a multiplier of L.
(2) Let L = P ⊕ I0 be the semilattice implication algebra of Example 3.2 (3). If

we define a map φ : L→ L by

φ(x) =

{
1, if x = 0, a, b

x, if x ∈ I0

for every x ∈ L, then φ is a multiplier of L.
176



Yong Ho Yon /Ann. Fuzzy Math. Inform. 28 (2024), No. 2, 169–179

The multiplier φa in Example 5.1 (1) is called simple multiplier induced by a.

Lemma 5.2. Let φ be a multipliers of a semilattice implication algebra L. Then it
satisfies the following:

(1) φ(1) = 1,
(2) x ≤ φ(x) for every x ∈ L.

Proof. (1) Let φ be a multiplier of L. Since 1 is the greatest element in L, 1 = φ(1)1.
Then φ(1) = φ(φ(1)1) = φ(1)φ(1) = 1.

(2) Let x ∈ L. Then xφ(x) = φ(xx) = φ(1) = 1 by (1) of this lemma. Thus
x ≤ φ(x). □

Lemma 5.3. Let φ and ψ be multipliers of a semilattice implication algebra L.
Then

(1) the composition ψφ := ψ ◦ φ is a multiplier of L,
(2) if φ and ψ are monotone, then ψφ is monotone.

Proof. It is clear from the definitions of multiplier and monotonity. □

Lemma 5.4. Let L be a semilattice implication algebra. Then for each a, b ∈ L,

(1) φa is monotone,
(2) φaφb = φbφa.

Proof. (1) Let x ≤ y in L. Then φa(x) = ax ≤ ay = φ(y) by Lemma 3.5 (4). Thus
φ is monotone.

(2) Let a, b ∈ L. Then

(φaφb)(x) = φa(φb(x)) = a(bx) = b(ax) = φb(φa(x)) = (φbφa)(x)

for every x ∈ L. Thusφaφb = φbφa. □

The multiplier φ in Example 5.1 (2) is not simple, because it is not monotone. In
fact, a ≤ x for some x ∈ I0 but φ(a) = 1 ̸≤ x = φ(x). Then the multiplier φ is not
simple by Lemma 5.4.

We will denote the family of all multipliers of L by Mul(L) and the family of
all monotone multipliers of L by mMul(L). Then Mul(L) and mMul are semi-
groups under the composition ◦ of functions by Lemma 5.3, and has identity φ1. In
particular, mMul is a subsemigroup of Mul(L).

Let L be the semilattice implication algebra. A subset F of L is call a filter of L,
if it satisfies the following: for any x, y ∈ L,

(i) 1 ∈ F ,
(ii) x ∈ F and xy ∈ F imply y ∈ F .

Lemma 5.5. Let L be a semilattice implication algebra and F a filter of L. Then

(1) φ(F ) ⊆ F for ever multiplier φ of L,
(2) φ−1

a (F ) = F for every a ∈ F .

Proof. (1) Let y ∈ φ(F ). Then y = φ(x) for some x ∈ F and

xy = xφ(x) = φ(xx) = φ(1) = 1 ∈ F.

Since F is a filter and x ∈ F , y ∈ F . Thus y = φ(x) ⊆ F .
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(2) Let a ∈ F . Then it is clear F ⊆ φ−1
a (F ). If x ∈ φ−1

a (F ), then ax = φa(x) ∈ F ,
and since a ∈ F and F is a filter of L, x ∈ F . This implies φ−1

a (F ) ⊆ F . Thus
φ−1
a (F ) = F □

Theorem 5.6. Let L be a semilattice implication algebra and S a subsemigroup of
mMul(L). Then FS := {x ∈ L | φ(x) = 1 for some φ ∈ S} is a filter of L.

Proof. For any φ ∈ S, φ(1) = 1. Then 1 ∈ FS .
Let x ∈ FS and xy ∈ FS . Then φ(x) = 1 and ψ(xy) = 1 for some φ,ψ ∈ S. Since

xψ(y) = ψ(xy) = 1 and φ is monotone, x ≤ ψ(y) and 1 = φ(x) ≤ φ(ψ(y)). This
implies (φψ)(y) = φ(ψ(y)) = 1 and φψ ∈ S since S is a subsemigroup of mMul(L).
Thus y ∈ FS . □

Let L be a semilatiice implication algebra and S ⊆ L. If M(S) is the subsemi-
group of Mul(L) generated by the set

s(S) := {φs | s ∈ S}

of simple multipliers induced by s ∈ S, then

M(S) = {φs1φs2 · · ·φsn | for some s1, s2, · · · sn ∈ S and for some n ∈ N}

and M(S) is a subsemigroup of mMul(L) by Lemma 5.4 (1) and Lemma 5.3 (2).

Theorem 5.7. Let L be a semilattice implication algebra and S ⊆ L. Then

FM(S) = {x ∈ L | φ(x) = 1 for some φ ∈ M(S)}

is the smallest filter of L containing S.

Proof. Since M(S) is a subgroup of mMul(L), FM(S) is a filter by Theorem 5.6.
Let s ∈ S. Then there is a multiplier φs ∈ M(S) such that φs(s) = ss = 1. Thus
s ∈ FM(S). So S ⊆ FM(S).

Suppose that G be a filter of L and S ⊆ G. Let x ∈ FM(S). Then there is a
multiplier φ = φs1 · · ·φs1 ∈ M(S) such that s1, s2, · · · , sn ∈ S and

(φs1 · · ·φsn)(x) = 1 ∈ G.

Since si ∈ S ⊆ G for each i = 1, 2, · · · , n, x ∈ φ−1
sn (· · · (φ−1

s1 (G)) · · · ) = G by Lemma
5.5 (2). Thus FM(S) ⊆ G. So FM(S) is the smalltest filter of L containing S. □

The set FM(S) is the filter generated by a subset S of L from Theorem 5.7.

6. Conclusions

We defined the notion of semilattice implication algebras, which is a generalization
of lattice implication algebras and Heyting semilattices, and researched the common
properties of those algebras. In section 4, the regular element was defined and it
was proved that the set of all regular elements is a distributive lattice. In section 5,
we gave some relationships of filters and multipliers, and gave a filter construced by
a subsemigroup in the semigroup of monotone multipliers. In particular we showed
that the filter generated by a subset was charaterized by simple multipliers.
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