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Abstract. In this paper we first introduce fuzzy s-b-open set, the
class of which is strictly larger than that of fuzzy open, fuzzy semiopen,
fuzzy preopen, fuzzy α-open, fuzzy β-open set. Using this newly defined
fuzzy set here we introduce a weak form of fuzzy regularity, a strong form
of fuzzy compactness and fuzzy T2-space. Afterwards, we introduce three
different types of fuzzy continuous-like functions and establish the mutual
relationships of these newly defined functions with fuzzy continuity. Lastly
several applications of these functions are established here.
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1. Introduction

In [1], fuzzy topology was introduced. Afterwards many mathematicians have
engaged themselves to introduce different types of fuzzy-open like sets. In [2], fuzzy
semiopen set was introduced. Using fuzzy semiopen set as a basic tool, here we
introduce fuzzy s-b-open set. It is shown that the intersection of any two fuzzy
s-b-open set need not be so and hence the collection of all fuzzy s-b-open sets on a
non-empty set does not form a fuzzy topology.
Recently, new types of fuzzy sets, viz., fuzzy soft set and fuzzy octahedron set are
introduced and studied. A new branch in fuzzy system is developed using these
types of fuzzy sets. In this context we have to mention [3, 4, 5, 6, 7, 8].
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2. Preliminaries

Throughout the paper, (X, τ) or simply by X we shall mean a fuzzy topological
space (fts, for short) in the sense of Chang [1]. In [9], Zadeh introduced fuzzy set
as follows : A fuzzy set A in an fts X is a mapping from a non-empty set X into
the closed interval I = [0, 1], i.e., A ∈ IX . The support of a fuzzy set A, denoted by
suppA, is defined by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set with the singleton
support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt. 0X and 1X are
the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of
a fuzzy set A in X is denoted by 1X \ A and is defined by (1X \ A)(x) = 1 − A(x)
for each x ∈ X. For any two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x) for
all x ∈ X while AqB means A is quasi-coincident (q-coincident, for short) [10] with
B, i.e., there exists x ∈ X such that A(x) + B(x) > 1. The negation of these two
statements will be denoted by A ̸≤ B and A ̸ qB respectively. For a fuzzy set A, clA
and intA stand for the fuzzy closure and the fuzzy interior of A in X [1]. A ∈ IX is
said to be fuzzy regular open [2] [resp., fuzzy semiopen [2], fuzzy preopen [11], fuzzy
α-open [12], fuzzy β-open [13]], if A = int(clA) [resp., A ≤ cl(intA), A ≤ int(clA),
A ≤ int(cl(intA)), A ≤ cl(int(clA)). The complement of fuzzy regular open [resp.,
fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy β-open] set is said to be fuzzy
regular closed [resp., fuzzy semiclosed, fuzzy preclosed, fuzzy α-closed, fuzzy β-closed]
set. The smallest fuzzy semiclosed [resp., fuzzy preclosed, fuzzy α-closed, fuzzy
β-closed] set containing a fuzzy set A in X is called the fuzzy semiclosure [resp.,
the fuzzy preclosure, the fuzzy α-closure, the fuzzy β-closure] of A, denoted by sclA
[resp., pclA, αclA, βclA]. It is obvious that A ∈ IX is fuzzy semiclosed [resp., fuzzy
preclosed, fuzzy α-closed, fuzzy β-closed] if and only if A = sclA [resp., A = pclA,
A = αclA, A = βclA]. The collection of all fuzzy regular open [resp., fuzzy semiopen,
fuzzy preopen, fuzzy α-open, fuzzy β-open] sets in X is denoted by FRO(X) [rssp.,
FSO(X), FPO(X), FαO(X), FβO(X)] and the collection of all fuzzy regular closed
[resp., fuzzy semiclosed, fuzzy preclosed, fuzzy α-closed, fuzzy β-closed] sets in X is
denoted by FRC(X) [rssp., FSC(X), FPC(X), FαC(X), FβC(X)]. For a fuzzy
open set A in X, sclA = int(clA) [14].

3. Fuzzy s-b-Open Set : Some properties

In this section fuzzy s-b-open set is introduced and studied, the class of which is
strictly larger than that of fuzzy open, fuzzy semiopen, fuzzy preopen, fuzzy α-open,
fuzzy β-open sets. Some basic properties of fuzzy s-b-open sets are discussed here.
First we recall some definitions from [15] for ready references.

Definition 3.1 ([15]). Let (X, τ) be an fts and A ∈ IX . A fuzzy point xα in X is
said to be fuzzy θ-semicluster point of A, if clUqA for all U ∈ FSO(X) with xαqU .
The union of all fuzzy θ-semicluster points of A is called the fuzzy θ-semiclosure of
A and is denoted by θ-sclA. It is clear that A(∈ IX) is fuzzy θ-semiclosed if and
only if A = θ-sclA.

Definition 3.2 ([15]). Let (X, τ) be an fts and A ∈ IX . Then r-kernel of A, denoted
by r-KerA, is defined as follows :

r-KerA =
∧
{U : U ∈ FRO(X), A ≤ U}.
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Let us now introduce the following concept.

Definition 3.3. A fuzzy set A in an fts (X, τ) is said to be fuzzy s-b-open, if
A ≤ cl(sint(clA)). The complement of a fuzzy s-b-open set is said to be fuzzy s-b-
closed. The collection of all fuzzy s-b-open [resp., fuzzy s-b-closed] sets in an fts X
is denoted by FsbO(X) [resp., FsbC(X)].

Remark 3.4. Union of any two fuzzy s-b-open sets is also so. But the intersection
of any two fuzzy s-b-open sets may not be so, as it seen from the following example.

Example 3.5. Let X = {a, b}, τ = {0X , 1X , A}, where A(a) = 0.5, A(b) = 0.6.
Then (X, τ) is an fts. Consider two fuzzy sets B,C defined by B(a) = 0.6, B(b) =
0.4, C(a) = 0.4, C(b) = 0.7. Then clearly B,C ∈ FsbO(X). Let D = B ∧ C. Then
D(a) = D(b) = 0.4. Thus cl(sint(clD)) = 0X ̸≥ D. So D ̸∈ FsbO(X).
Hence we can conclude that the set of all fuzzy s-b-open sets in an fts X does not
form a fuzzy topology.

Remark 3.6. It is clear from definitions that fuzzy open set, fuzzy regular open
set, fuzzy semiopen set, fuzzy preopen set, fuzzy α-open set, fuzzy β-open set imply
fuzzy s-b-open set, but the reverse implications are not necessarily true follow from
the following example.

Example 3.7. LetX = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4. Then
(X, τ) is an fts. Here FSO(X) = {0X , 1X , U} where A ≤ U ≤ 1X \ A. Consider
a fuzzy set B defined by B(a) = B(b) = 0.5. Clearly B ̸∈ τ , B ̸∈ FRO(X),
B ̸∈ FPO(X). But cl(sint(clB)) = 1X \A ≥ B ⇒ B ∈ FsbO(X).
Next consider the fuzzy set C defined by C(a) = 0.5, C(b) = 0. Then clearly
C ̸∈ FSO(X), but cl(sint(clC)) = 1X \A ≥ C ⇒ C ∈ FsbO(X).
Again int(cl(intC)) = 0X ̸≥ C ⇒ C ̸∈ FαO(X).

Theorem 3.8. Let (X, τ) be an fts. Then the union of any collection of fuzzy
s-b-open sets in X is fuzzy s-b-open in X.

Proof. Let G = {Gα : α ∈ Λ} be any collection of fuzzy s-b-open sets in X. Then

for any α ∈ Λ, Gα ≤ cl(sint(clGα)). Also, Gα ≤
∨
α∈Λ

Gα. Then clGα ≤ cl(
∨
α∈Λ

Gα)

implies that Gα ≤ cl(sint(clGα)) ≤ cl(sint(cl(
∨
α∈Λ

Gα))) and this is true for all

α ∈ Λ. Thus
∨
α∈Λ

Gα ≤ cl(sint(cl(
∨
α∈Λ

Gα))). So
∨
α∈Λ

Gα is a fuzzy s-b-open in

X. □

Let us now introduce a new type of closure-like operator.

Definition 3.9. Let (X, τ) be an fts and A ∈ IX . Then the fuzzy s-b-closure of A,
denoted by sbclA, is defined by

sbclA =
∧
{U ∈ IX : A ≤ U,U ∈ FsbC(X)}

and the fuzzy s-b-interior of A, denoted by sbintA, is defined by

sbintA =
∨
{G : G ≤ A,G ∈ FsbO(X)}.
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Note 3.10. By Remark 3.4, we can conclude that for any fuzzy set A in an fts
X, sbclA is fuzzy s-b-closed and sbintA is fuzzy s-b-open. Again, if A ∈ FsbC(X)
[resp.,A ∈ FsbO(X)], then A = sbclA [resp.,A = sbintA].

Result 3.11. Let (X, τ) be an fts. Then the following statements are true:
(1) for any fuzzy point xt in X and any U ∈ IX , xt ∈ sbclU and so for any

V ∈ FsbO(X) with xtqV , V qU ,
(2) for any two fuzzy sets U, V , where V ∈ FsbO(X), if U ̸ qV , then sbclU ̸ qV .

Proof. (1) Let xt ∈ sbclU and V ∈ FsbO(X) with xtqV . Then xt ̸∈ 1X \ V ∈
FsbC(X). Thus U ̸≤ 1X \ V . So UqV .

(2) Suppose U ̸ qV and assume that sbclUqV . Then there exists x ∈ X such that
(sbclU)(x) + V (x) > 1. Thus V (x) + t > 1, where t = (sbclU)(x). So xt ∈ sbclU ,
where xtqV, V ∈ FsbO(X). By (1), V qU , a contradiction. □

Result 3.12. Let (X, τ) be an fts and A ∈ IX . Then the following statements are
true:

(1) sbcl(1X \A) = 1X \ sbintA,
(2) 1X \ sbclA = sbintA(1X \A).

Proof. (1) Let xt ∈ sbcl(1X \A) and assume that xt ̸∈ 1X \sbintA. Then xtqsbintA.
Thus there exists U ∈ FsbO(X) with U ≤ A such that xtqU . Since xt ∈ sbcl(1X\A),
by Result 3.11(1), Uq(1X \A). So Aq(1X \A), a contradiction. Hence we have

(3.1) sbcl(1X \A) ≤ 1X \ sbintA.

Conversely, let xt ∈ 1X \ sbintA. Then 1 − sbintA(x) ≥ t. Thus xt ̸ qsbintA. So
we get

(3.2) xt ̸ qU, where U ∈ FsbO(X) with U ≤ A.

Let V ∈ FsbC(X) with 1X \ A ≤ V . Then 1X \ V ≤ A, where 1X \ V ∈ FsbO(X).
By (3.2), xt ̸ q(1X \ V ) ⇒ xt ∈ V ⇒ xt ∈ sbcl(1X \A). Thus we have

(3.3) 1X \ sbintA ≤ sbcl(1X \A).

Combining (3.1) and (3.3), (1) holds.
(2) Writing 1X \A for A in (1), we get the proof. □

Lemma 3.13 ([15]). Let (X, τ) be an fts and A ∈ IX . Then the following statements
hold:

(1) for any A ∈ FRO(X), θ-sclA = A,
(2) for any A ∈ FβO(X), clA = αclA,
(3) for any A ∈ FSO(X), clA = pclA,
(4) for any A ∈ τ, sclA = θ-sclA.

4. Fuzzy s-b-r-continuous, s-b-continuous and almost s-b-continuous
functions

In this section a new type of fuzzy continuous-like function is introduced which
is an independent concept of fuzzy continuity [1]. Also we characterize this newly
defined function in several ways. Next we introduce two more functions and finally
establish the mutual relationships of these functions among themselves.
Let us now introduce the following concept.

158



Anjana Bhattacharyya/Ann. Fuzzy Math. Inform. 28 (2024), No. 2, 155–168

Definition 4.1. Let (X, τ) and (Y, τ1) be two fts’s. Then f : X → Y is said to be
fuzzy s-b-r-continuous function, if f−1(A) ∈ FsbC(X) for all A ∈ FRO(Y ).

Theorem 4.2. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function.
Then the following statements are equivalent:

(1) f is fuzzy s-b-r-continuous,
(2) f−1(A) ∈ FsbO(X) for all A ∈ FRC(Y ),
(3) f(sbclτU) ≤ r-ker(f(U)) for all U ∈ IX ,
(4) sbclτ (f

−1(A)) ≤ f−1(r-ker(A)) for all A ∈ IY ,
(5) sbclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)) for all R ∈ τ1,
(6) sbclτ (f

−1(R)) ≤ f−1(sclτ1R)) for all R ∈ τ1,
(7) sbclτ (f

−1(R)) ≤ f−1(intτ1(clτ1R)) for all R ∈ τ1,
(8) f−1(intτ1(clτ1A)) ∈ FsbC(X) for all A ∈ τ1,
(9) f−1(clτ1(intτ1F )) ∈ FsbO(X) for all F ∈ τ c1 ,
(10) f−1(clτ1U) ∈ FsbO(X) for all U ∈ FβO(Y ),
(11) f−1(clτ1U) ∈ FsbO(X) for all U ∈ FSO(Y ),
(12) f−1(intτ1(clτ1U)) ∈ FsbC(X) for all U ∈ FPO(Y ),
(13) f−1(αclτ1U) ∈ FsbO(X) for all U ∈ FβO(Y ),
(14) f−1(pclτ1U) ∈ FsbO(X) for all U ∈ FSO(Y ).

Proof. (1)⇔ (2) Obvious.
(2)⇒ (3) Suppose (2) holds and let U ∈ IX and suppose that yt be a fuzzy point

in Y with yt ̸∈ r-ker(f(U)). Then there exists V ∈ FRO(Y ) such that f(U) ≤ V
and yt ̸∈ V ⇒ V (y) < t. Thus ytq(1Y \ V ) ∈ FRC(Y ) and 1Y \ f(U) ≥ 1Y \ V . So
f(U) ̸ q(1Y \V ) implies that U ̸ qf−1(1Y \V ). By (2), f−1(1Y \V ) = 1X \f−1(V ) ∈
FsbO(X). By Result 3.11(2), sbclτU ̸ q(1X \ f−1(V )). Then sbclτU ≤ f−1(V ).
Thus f(sbclτU) ≤ V implies that 1Y \ f(sbclτU) ≥ 1Y \ V . So 1 − f(sbclτU)(y) ≥
1 − V (y) > 1 − t. Hence t > f(sbclτU)(y). Then yt ̸∈ f(sbclτU). Therefore
f(sbclτU) ≤ r-ker(f(U)).

(3) ⇒ (4) Suppose (3) holds and let A ∈ IY . Then f−1(A) ∈ IX . By (3),
f(sbclτf

−1(A)) ≤ r-ker(f(f−1(A))) ≤ r-ker(A). Thus sbclτ (f
−1(A)) ≤ f−1(r-

ker(A)).
(4) ⇒ (1) Suppose (4) holds and let A ∈ FRO(Y ). By (4), sbclτ (f

−1(A)) ≤
f−1(r-ker(A)) = f−1(A). But f−1(A) ≤ sbclτ (f

−1(A)) and thus f−1(A) = sbclτ (f
−1(A)).

So f−1(A) ∈ FsbC(X). Hence f is fuzzy s-b-r-continuous function.
(5) ⇔ (4) The proof follows from Lemma 3.13(4).
(6) ⇔ (7) Obvious.
(7) ⇒ (1) Suppose (7) holds and let A ∈ FRO(Y ). By (7), sbclτ (f

−1(A)) ≤
f−1(intτ1(clτ1A)) = f−1(A). Thus f−1(A) ∈ FsbC(X). So f is fuzzy s-b-r-
continuous function.

(1) ⇒ (7) Suppose (1) holds and let A ∈ τ1. Then intτ1(clτ1A) ∈ FRO(Y ). By
(1), f−1(intτ1(clτ1A)) ∈ FsbC(X). Thus sbclτ (f

−1(A)) ≤ sbclτ (f
−1(intτ1(clτ1A))) =

f−1(intτ1(clτ1A)).
(1)⇒ (8) Suppose (1) holds and let A ∈ τ1. Then intτ1(clτ1A) ∈ FRO(Y ). Thus

by (1), f−1(intτ1(clτ1A)) ∈ FsbC(X).
(8) ⇒ (1) Suppose (8) holds and let A ∈ FRO(Y ). Then A ∈ τ1. Thus by (8),

f−1(A) = f−1(intτ1(clτ1A)) ∈ FsbC(X).
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(2) ⇒ (9) Suppose (2) holds and let F ∈ τ c1 . Then clτ1intτ1F ∈ FRC(Y ). Thus
by (2), f−1(clτ1(intτ1F )) ∈ FsbO(X).

(9)⇒ (2) Suppose (9) holds and let F ∈ FRC(Y ). By (9), f−1(F ) = f−1(clτ1(intτ1F )) ∈
FsbO(X).

(2)⇒ (10) Suppose (2) holds and let U ∈ FβO(Y ). Then U ≤ clτ1(intτ1(clτ1U)) ≤
clτ1U . Thus clτ1U ≤ clτ1(clτ1(intτ1(clτ1U))) = clτ1(intτ1(clτ1U)) ≤ clτ1(clτ1U) =
clτ1U . So clτ1U = clτ1(intτ1(clτ1U)). Hence clτ1U ∈ FRC(Y ). Therefore by (2),
f−1(clτ1U) ∈ FsbO(X).

(10) ⇒ (9) Suppose (10) holds. Since FSO(Y ) ⊆ FβO(Y ), by (10), f−1(clτ1U) ∈
FsbO(X) for all U ∈ FSO(Y ).

(11) ⇒ (12) Suppose (11) holds and let U ∈ FPO(Y ). Then U ≤ intτ1(clτ1U).
We claim that intτ1(clτ1U) ∈ FRO(Y ). Indeed, intτ1(clτ1U) ≤ intτ1(clτ1(intτ1(clτ1U))) ≤
intτ1(clτ1U) implies that intτ1(clτ1U) = intτ1(clτ1(intτ1(clτ1U))). Thus 1Y \intτ1(clτ1U) ∈
FRC(Y ). So 1Y \ intτ1(clτ1U) ∈ FSO(Y ). By (11), f−1(clτ1(1Y \ intτ1(clτ1U))) ∈
FsbO(X). Hence 1X\f−1(intτ1(intτ1(clτ1U))) = 1X\f−1(intτ1(clτ1U)) ∈ FsbO(X).
Therefore f−1(intτ1(clτ1U)) ∈ FsbC(X).

(12) ⇒ (1) Suppose (12) holds and let U ∈ FRO(Y ). Then U ∈ FPO(Y ).
Thus by (12), f−1(intτ1(clτ1U)) ∈ FsbC(X). So f−1(U) = f−1(intτ1(clτ1U)) ∈
FsbC(X). Hence (1) follows.

(10) ⇔ (13) The proof follows from Lemma 3.13(2).
(11) ⇔ (14) The proof follow from Lemma 3.13(3). □

Theorem 4.3. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function. Let
us consider the following statements:

(1) for each fuzzy point xt in X and each A ∈ FSO(Y ) with f(xt)qA, there exists
U ∈ FsbO(X) with xtqU and f(U) ≤ clτ1A,

(2) f(sbclτP ) ≤ θ-sclτ1(f(P )) for all P ∈ IX ,
(3) for each fuzzy point xt in X and each A ∈ FSO(Y ) with f(xt) ∈ A, there

exists U ∈ FsbO(X) such that xt ∈ U and f(U) ≤ clτ1A,
(4) f−1(A) ≤ sbintτ (f

−1(clτ1A)) for all A ∈ FSO(Y ),
(5) sbclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)) for all R ∈ IY ,
(6) f is fuzzy s-b-r-continuous function. Then (1), (2), (3), (4) and (5) are

equivalent, and (5) implies (6).

Proof. (1) ⇒ (2) Suppose (1) holds and let P ∈ IX and xt be any fuzzy point in
X such that xt ∈ sbclτP and G ∈ FSO(Y ) with f(xt)qG. By (1), there exists
U ∈ FsbO(X) with xtqU , f(U) ≤ clτ1G. As xt ∈ sbclτP , by Result 3.11(1), UqP .
Then f(U)qf(P ). Thus f(P )qclτ1G. So f(xt) ∈ θ-sclτ1(f(P )). Hence f(sbclτP ) ≤
θ-sclτ1(f(P )).

(2) ⇒ (5) Suppose (2) holds and let R ∈ IY . Then f−1(R) ∈ IX . Thus by
(2), f(sbclτ (f

−1(R))) ≤ θ-sclτ1(f(f
−1(R))) ≤ θ-sclτ1R. So sbclτ (f

−1(R)) ≤ f−1(θ-
sclτ1R).

(5) ⇒ (1) Suppose (5) holds and let xt be any fuzzy point in X and A ∈ FSO(Y )
with f(xt)qA. Since clτ1A ̸ q (1Y \ clτ1A), by definition, f(xt) ̸∈ θ-sclτ1(1Y \ clτ1A).
Then xt ̸∈ f−1(θ-sclτ1(1Y \ clτ1A)). By (5), xt ̸∈ sbclτ (f

−1(1Y \ clτ1A)). Thus there
exists U ∈ FsbO(X) such that xtqU, U ̸ qf−1(1Y \ clτ1A). So f(U) ̸ q(1Y \ clτ1A).
Hence f(U) ≤ clτ1A.
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(1) ⇒ (4) Suppose (1) holds and let A ∈ FSO(Y ) and xt be any fuzzy point in
X such that xtqf

−1(A). Then f(xt)qA. Thus by (1), there exists U ∈ FsbO(X)
such that xtqU , f(U) ≤ clτ1A ⇒ xtqU ≤ f−1(clτ1A). So xtqU = sbintτU ≤
sbintτ (f

−1(clτ1A)). Hence xtqsbintτ (f
−1(clτ1A)) since sbintτ (f

−1(clτ1A)) is the
union of all fuzzy s-b-open sets in X contained in f−1(clτ1A). Therefore f−1(A) ≤
sbintτ (f

−1(clτ1A)).
(4) ⇒ (1) Suppose (4) holds and let xt be any fuzzy point in X and A ∈ FSO(Y )

with f(xt)qA. Then by (4), xtqf
−1(A) ≤ sbintτ (f

−1(clτ1A)). Thus there exists
U ∈ FsbO(X) with xtqU , U ≤ f−1(clτ1A). So f(U) ≤ clτ1A.

(3) ⇒ (4) Suppose (3) holds and let A ∈ FSO(Y ) and xt be any fuzzy point in
X such that xt ∈ f−1(A). Then f(xt) ∈ A. By (3), there exists U ∈ FsbO(X)
with xt ∈ U and f(U) ≤ clτ1A. Thus U ≤ f−1(clτ1A). So xt ∈ U = sbintτU ≤
sbintτ (f

−1(clτ1A)). Hence f−1(A) ≤ sbintτ (f
−1(clτ1A)).

(4) ⇒ (3) Suppose (4) holds and let xt be any fuzzy point in X and A ∈ FSO(Y )
with f(xt) ∈ A. Then by (4), xt ∈ f−1(A) ≤ sbintτ (f

−1(clτ1A)). Thus there exists
U ∈ FsbO(X) with xt ∈ U and U ≤ f−1(clτ1A). So f(U) ≤ clτ1A.

(5) ⇒ (6) Suppose (5) holds and let A ∈ FRO(Y ). Then by (5), sbclτ (f
−1(A)) ≤

f−1(θ-sclτ1A) = f−1(A). Thus by Lemma 3.13(1), f−1(A) ∈ FsbC(X). So f is
fuzzy s-b-r-continuous function. □

Theorem 4.4. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function satis-
fying sbclτ (f

−1(R)) ≤ f−1(θ-sclτ1R) for all R ∈ IY . Then the following statements
hold:

(1) sbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R) for all R ∈ FSO(Y ),

(2) sbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R) for all R ∈ FPO(Y ),

(3) sbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R), for all R ∈ FβO(Y ).

Proof. Obvious. □

Definition 4.5. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function.
Then f is said to be:

(i) fuzzy s-b-continuous, if f−1(A) ∈ FsbO(X) for all A ∈ τ1,
(ii) fuzzy almost s-b-continuous, if f−1(A) ∈ FsbO(X) for all A ∈ FRO(Y ).

Let us now recall the following definition from [1] for ready references.

Definition 4.6 ([1]). Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a
function. Then f is said to be fuzzy continuous function, if f−1(U) ∈ τ for all
U ∈ τ1.

Remark 4.7. It is clear from definitions that
(1) fuzzy continuity ⇒ fuzzy s-b-continuity ⇒ fuzzy almost s-b-continuity, but

reverse implications are not necessarily true, in general, follow from the next exam-
ples,

(2) fuzzy s-b-r-continuity is an independent concept of fuzzy continuity, fuzzy
s-b-continuity and fuzzy almost s-b-continuity, follow from the next examples.

Example 4.8. Fuzzy continuity, fuzzy s-b-continuity and fuzzy almost s-b-continuity
̸⇒ fuzzy s-b-r-continuity.
Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , B}, where A(a) = A(b) =
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0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Clearly i is fuzzy continuous and thus fuzzy s-b-
continuous as well as fuzzy almost s-b-continuous function. Now B ∈ FRO(X, τ2).
i−1(B) = B. Then intτ1(sclτ1(intτ1(B))) = A ̸≥ B ⇒ B ̸∈ FsbC(X, τ1) ⇒ i is not
fuzzy s-b-r-continuous function.

Example 4.9. Fuzzy s-b-r-continuity, fuzzy almost s-b-continuity ̸⇒ fuzzy s-b-
continuity, fuzzy continuity.
Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C}, where A(a) = A(b) = 0.4,
B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Clearly i is fuzzy s-b-r-continuous
and fuzzy almost s-b-continuous function, but not fuzzy continuous function. Now
C ∈ τ2, but i−1(C) = C ̸≤ clτ1(sintτ1(clτ1C)) = B ⇒ C ̸∈ FsO(X, τ1) ⇒ i is not
fuzzy s-b-continuous function.

Example 4.10. Fuzzy s-b-continuity ̸⇒ fuzzy continuity.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B}, where A(a) = A(b) =
0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Clearly i is not fuzzy continuous function. Now
B ∈ τ2, i

−1(B) = B ≤ clτ1(sintτ1(clτ1B)) = A ⇒ B ∈ FsbO(X, τ1) ⇒ i fuzzy
s-b-continuous function.

Example 4.11. Fuzzy s-b-r-continuity ̸⇒ fuzzy almost s-b-continuity.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B}, where A(a) = 0.5, A(b) =
0.6, B(a) = 0.5, B(b) = 0.3. Then (X, τ1) and (X, τ2) are fts’s. Consider the iden-
tity function i : (X, τ1) → (X, τ2). Now B ∈ FRO(X, τ2), i−1(B) = B. Then
intτ1(sclτ1(intτ1B)) = 0X ≤ B ⇒ B ∈ FsbC(X, τ1) ⇒ i is fuzzy s-b-r-continuous
function. But clτ1(sintτ1(clτ1B)) = 0X ̸≥ B ⇒ B ̸∈ FsbO(X, τ1) ⇒ i is not fuzzy
almost s-b-continuous function.

Definition 4.12 ([16]). An fts (X, τ) is said to be fuzzy extremally disconnected, if
the closure of ever fuzzy open set in X is fuzzy open in X.

Theorem 4.13. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function.
Let (Y, τ1) be fuzzy extremally disconnected space. Then f is fuzzy s-b-r-continuous
if and only if f is fuzzy almost s-b-continuous function.

Proof. Suppose that f is fuzzy s-b-r-continuous function and let U ∈ FRO(Y ).
Then U = intτ1(clτ1U). As Y is fuzzy extremally disconnected, clτ1U ∈ τ1. Thus
U = intτ1clτ1U = clτ1U = clτ1intτ1U . So U ∈ FRC(Y ). By the hypothesis,
f−1(U) ∈ FsbO(X). Hence f is fuzzy almost s-b-continuous function.

Conversely, suppose f is fuzzy almost s-b-continuous function and let U ∈ FRC(Y ).
As Y is fuzzy extremally disconnected, U ∈ FRO(Y ). Then by the hypothesis,
f−1(U) ∈ FsbO(X). Thus f is fuzzy s-b-r-continuous function. □

Remark 4.14. Composition of two fuzzy s-b-r-continuous (resp., fuzzy s-b-continuous
and fuzzy almost s-b-continuous) functions need not be so, as it seen from the fol-
lowing examples.

Example 4.15. Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X}, τ3 =
{0X , 1X , B}, where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ1),
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(X, τ2) and (X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2),
i2 : (X, τ2) → (X, τ3). Clearly i1 and i2 are fuzzy s-b-r-continuous functions. Let
i3 = i2 ◦ i1. Now B ∈ FRO(X, τ3), i

−1
3 (B) = B. Then intτ1(sclτ1(intτ1(B))) = A ̸≥

B ⇒ B ̸∈ FsbC(X, τ1) ⇒ i3 is not fuzzy s-b-r-continuous function.

Example 4.16. LetX = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}, τ3 = {0X , 1X , B},
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.3. Then (X, τ1), (X, τ2) and
(X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2) and i2 :
(X, τ2) → (X, τ3). Clearly i1 and i2 are fuzzy s-b-continuous and hence fuzzy almost
s-b-continuous functions. Let i3 = i2 ◦ i1. Bow B ∈ τ3 as well as B ∈ FRO(X, τ3).
i−1
3 (B) = B. Now clτ1(sintτ1(clτ1B)) = 0X ̸≥ B ⇒ B ̸∈ FsbO(X, τ1) ⇒ i3 is not
fuzzy s-b-continuous and also fuzzy almost s-b-continuous functions.

5. Fuzzy s-b-regular, s-b-compact and s-b-T2-spaces

In this section new types of separation axioms and compactness are introduced
and studied. Then the mutual relationships of these spaces with the spaces defined
in [1, 17] are established.

Definition 5.1. An fts (X, τ) is called a fuzzy s-b-regular space, if for each fuzzy
point xt in X and each fuzzy s-b-closed set F with xt ̸∈ F , there exist a fuzzy open
set U and a fuzzy s-b-open set V in X such that xtqU , F ≤ V and U ̸ qV .

Theorem 5.2. For an fts (X, τ), the following statements are equivalent:
(1) X is fuzzy s-b-regular,
(2) for each fuzzy point xt in X and each fuzzy s-b-open set U in X with xtqU ,

there exists a fuzzy open set V in X such that xtqV ≤ sbclV ≤ U ,
(3) for each fuzzy s-b-closed set F in X,

∧
{clV : F ≤ V, V ∈ FsbO(X)} = F ,

(4) for each fuzzy set G in X and each fuzzy s-b-open set U in X such that GqU ,
there exists a fuzzy open set V in X such that GqV and sbclV ≤ U .

Proof. (1)⇒(2) Suppose (1) holds and Let xt be a fuzzy point in X and U , a fuzzy
s-b-open set in X with xtqU . Then xt ̸∈ 1X \U ∈ FsbC(X). Thus by (1), there exist
a fuzzy open set V and a fuzzy s-b-open set W in X such that xtqV , 1X \ U ≤ W ,
V ̸ qW . So xtqV ≤ 1X \W ≤ U. Hence xtqV ≤ sbclV ≤ sbcl(1X \W ) = 1X \W ≤ U .

(2)⇒(1) Suppose (2) holds and Let F be a fuzzy s-b-closed set in X and xt be a
fuzzy point in X with xt ̸∈ F . Then xtq(1X \ F ) ∈ FsbO(X). Thus by (2), there
exists a fuzzy open set V in X such that xtqV ≤ sbclV ≤ 1X \F . So U ∈ FsbO(X)
and xtqV , F ≤ U and U ̸ qV , where U = 1X \ sbclV .

(2)⇒(3) Suppose (2) holds and let F be fuzzy s-b-closed set in X. Then we have

F ≤
∧

{clV : F ≤ V, V ∈ FsbO(X)}.

Conversely, let xt ̸∈ F ∈ FsbC(X). Then F (x) < t. Thus xtq(1X \ F ), where
1X \ F ∈ FsbO(X). By (2), there exists a fuzzy open set U in X such that xtqU ≤
sbclU ≤ 1X \ F . Put V = 1X \ sbclU . Then F ≤ V and U ̸ qV. Thus xt ̸∈ clV. So
we get ∧

{clV : F ≤ V, V ∈ FsbO(X)} ≤ F.

Hence
∧
{clV : F ≤ V, V ∈ FsbO(X)} = F.
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(3)⇒(2) Suppose (3) holds and let V be any fuzzy s-b-open set in X and xt any
fuzzy point in X with xtqV . Then V (x)+ t > 1. Thus xt ̸∈ (1X \V ), where 1X \V ∈
FsbC(X). By (3), there exists G ∈ FsbO(X) such that 1X \ V ≤ G and xt ̸∈ clG.
So there exists a fuzzy open set U in X with xtqU , U ̸ qG ⇒ U ≤ 1X \ G ≤ V
⇒ xtqU ≤ sbclU ≤ sbcl(1X \G) = 1X \G ≤ V .

(3)⇒(4) Suppose (3) holds and let G be any fuzzy set in X and U any fuzzy
s-b-open set in X with GqU . Then there exists x ∈ X such that G(x) + U(x) > 1.
Let G(x) = t. Then xtqU. Thus xt ̸∈ 1X \ U , where 1X \ U ∈ FsbC(X). By (3),
there exists W ∈ FsbO(X) such that 1X \U ≤ W and xt ̸∈ clW ⇒ (clW )(x) < t ⇒
xtq(1X \clW ). Let V = 1X \clW . Then V is fuzzy open set in X and V (x)+t > 1 ⇒
V (x)+G(x) > 1 ⇒ V qG and sbclV = sbcl(1X \clW ) ≤ sbcl(1X \W ) = 1X \W ≤ U .

(4)⇒(2) Obvious. □

Note 5.3. It is clear from Theorem 5.2 that in a fuzzy s-b-regular space, every fuzzy
s-b-closed set is fuzzy closed and hence every fuzzy s-b-open set is fuzzy open. As
a result, in a fuzzy s-b-regular space, the collection of all fuzzy closed (resp., fuzzy
open) sets and fuzzy s-b-closed (resp., fuzzy s-b-open) sets coincide.

Definition 5.4. Let A be a fuzzy set in X. A collection U of fuzzy sets in X is
called a fuzzy cover of A, if sup{U(x) : U ∈ U} = 1, for each x ∈ suppA (See [18]).
In particular, if A = 1X , we get the definition of fuzzy cover of X (See [1]).

Definition 5.5. A fuzzy cover U of a fuzzy set A in X is said to have a finite
subcover U0, if U0 is a finite subcollection of U such that

⋃
U0 ≥ A, i.e., U0 is also a

fuzzy cover of A (See [18]). In particular, if A = 1X , we get
⋃

U0 = 1X (See [1]).

Definition 5.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy compact (See [18]),
if every fuzzy covering U of A by fuzzy open sets in X has a finite subcovering U0 of
U . In particular, if A = 1X , we get the definition of fuzzy compact space (See [1]).

Definition 5.7. An fts (X, τ) is said to be fuzzy s-closed [19] [resp., fuzzy nearly
compact [16]], if every fuzzy covering ofX by fuzzy regular closed [resp., fuzzy regular
open] sets of X contains a finite subcovering.

Let us now introduce the following concept.

Definition 5.8. A fuzzy set A in an fts (X, τ) is called fuzzy s-b-compact, if every
fuzzy covering of A by fuzzy s-b-open sets ofX has a finite subcovering. In particular,
if A = 1X , we get the definition of fuzzy s-b-compact space.

Remark 5.9. It is clear from above discussion that fuzzy s-b-compact space is fuzzy
compact. But the converse is not necessarily true follows from the next example.

Example 5.10. Let X = {a}, τ = {0X , 1X}. The clearly (X, τ) is a fuzzy compact
space. Here every fuzzy set is fuzzy s-b-open set in X. Consider the fuzzy cover
U = {Un(a) : n ∈ N} where Un(a) = { n

n+1 : n ∈ N}. Then U is a fuzzy s-b-open
cover of X. But it does not have any subcovering of X. Thus X is not fuzzy
s-b-compact space.

Theorem 5.11. Every fuzzy s-b-closed set A in a fuzzy s-b-compact space X is fuzzy
s-b-compact.
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Proof. Let A be a fuzzy s-b-closed set in a fuzzy s-b-compact space X. Let U be a
fuzzy covering of A by fuzzy s-b-open sets in X. Then V = U

⋃
(1X \ A) is a fuzzy

s-b-open covering of X. By the hypothesis, there exists a finite subcollection V0 of
V which also covers X. If V0 contains 1X \A, we omit it and get a finite subcovering
of A. Consequently, A is fuzzy s-b-compact. □

Let us now recall the following definition from [17] for ready references.

Definition 5.12. [17] Let (X, τ) be an fts. Then X is said to be a fuzzy T2-space,
if for each pair of distinct fuzzy points xα, yβ : when x ̸= y, there exist fuzzy open
sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1 and U1 ̸ qV1 and xαqU2, yβ ∈ V2 and
U2 ̸ qV2 ; when x = y, α < β (say), there exist fuzzy open sets U, V in X such that
xα ∈ U, yβqV and U ̸ qV .

Now we introduce the following concept.

Definition 5.13. Let (X, τ) be an fts. Then X is said to be a fuzzy s-b-T2-space, if
for each pair of distinct fuzzy points xα, yβ : when x ̸= y, there exist fuzzy s-b-open
sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1 and U1 ̸ qV1 and xαqU2, yβ ∈ V2 and
U2 ̸ qV2 ; when x = y, α < β (say), there exist fuzzy s-b-open sets U, V in X such
that xα ∈ U, yβqV and U ̸ qV .

Let us now recall the following definition from [17] for ready references.

Definition 5.14. [17] An fts (X, τ) is said to be a fuzzy regular space, if for any
fuzzy point xt in X and any fuzzy closed set F in X with xt ̸∈ F , there exist fuzzy
open sets U, V in X such that xtqU, F ≤ V and U ̸ qV .

Remark 5.15. It is clear from Note 5.3 that fuzzy s-b-regular space is fuzzy reg-
ular and fuzzy T2-space is fuzzy s-b-T2-space. But the reverse implications are not
necessarily true, follow from the next example.

Example 5.16. Consider Example 5.10. It is clear that (X, τ) is fuzzy regular and
fuzzy s-b-T2-space (as every fuzzy set is fuzzy s-b-open set as well as fuzzy s-b-closed
set). Now consider the fuzzy point a0.4 and a fuzzy set A defined by A(a) = 0.3.
Then a0.4 ̸∈ A ∈ FsbC(X). But there do not exist any fuzzy open set U and a fuzzy
s-b-open set V in X such that a0.4qU,A ≤ V and U ̸ qV (because 1X is the only
fuzzy open set in X with a0.4q1X and 1XqV for all fuzzy set V (̸= 0X) in X). Then
X is not fuzzy s-b-regular space. Consider two fuzzy points a0.4 and a0.5 in X. But
there do not exist fuzzy open sets U, V in X such that a0.4 ∈ U, a0.5qV and U ̸ qV .
Thus X is not fuzzy T2-space.

6. Applications of fuzzy s-b-r-continuous, s-b-continuous and almost
s-b-continuous functions

In this section the applications of the functions introduced in this paper are
established.

First we recall the following definition from [20] for ready references.

Definition 6.1 ([20]). A function f : X → Y is said to be a fuzzy open function, if
f(U) is a fuzzy open set in Y for every fuzzy open set U in X.
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Theorem 6.2. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y surjective, fuzzy
s-b-r-continuous function. If X is fuzzy s-b-compact space, then Y is fuzzy s-closed
space.

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy covering of Y by fuzzy regular closed sets
of Y . As f is fuzzy s-b-r-continuous, V = {f−1(Uα) : α ∈ Λ} covers X by fuzzy
s-b-open sets of X. As X is fuzzy s-b-compact space, there exists a finite subset Λ0

of Λ such that 1X =
∨

α∈Λ0

f−1(Uα). Then we have

1Y = f(
∨

α∈Λ0

f−1(Uα)) =
∨

α∈Λ0

f(f−1(Uα)) ≤
∨

α∈Λ0

Uα.

Thus Y is fuzzy s-closed space. □

Theorem 6.3. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y fuzzy s-b-
continuous function. If A is fuzzy s-b-compact set relative to X, then the image
f(A) is fuzzy compact relative to Y .

Proof. Let A be fuzzy s-b-compact relative to X and U = {Uα : α ∈ Λ} a fuzzy cov-

ering of f(A) by fuzzy open sets of Y , i.e, f(A) ≤
∨
α∈Λ

Uα. Then A ≤ f−1(
∨
α∈Λ

Uα) =∨
α∈Λ

f−1(Uα). Thus V = {f−1(Uα) : α ∈ Λ} is a fuzzy covering of A by fuzzy s-b-

open sets in X. As A is fuzzy s-b-compact set relative to X, there exists a finite

subcollection V0 = {f−1(Uαi) : 1 ≤ i ≤ n} of V such that A ≤
n∨

i=1

f−1(Uαi). So

f(A) ≤ f(

n∨
i=1

f−1(Uαi
)) =

n∨
i=1

f(f−1(Uαi
)) ≤

n∨
i=1

Uαi
.

Hence U0 = {Uαi : 1 ≤ i ≤ n} is a finite subcovering of f(A). Therefore f(A) is
fuzzy compact relative to Y . □

Theorem 6.4. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y fuzzy almost s-
b-continuous function. If A is fuzzy s-b-compact relative to X, then the image f(A)
is fuzzy nearly compact relative to Y .

Proof. Let A be fuzzy s-b-compact relative to X and U = {Uα : α ∈ Λ} a fuzzy

covering of f(A) by fuzzy regular open sets of Y , i.e, f(A) ≤
∨
α∈Λ

Uα. Then A ≤

f−1(
∨
α∈Λ

Uα) =
∨
α∈Λ

f−1(Uα). Thus V = {f−1(Uα) : α ∈ Λ} is a fuzzy covering of A

by fuzzy s-b-open sets in X (since f is fuzzy almost s-b-continuous function). As
A is fuzzy s-b-compact set relative to X, there exists a finite subcollection V0 =

{f−1(Uαi) : 1 ≤ i ≤ n} of V such that A ≤
n∨

i=1

f−1(Uαi). So we have

f(A) ≤ f(

n∨
i=1

f−1(Uαi
)) =

n∨
i=1

f(f−1(Uαi
)) ≤

n∨
i=1

Uαi
.
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Hence U0 = {Uαi
: 1 ≤ i ≤ n} is a finite subcovering of f(A). Therefore f(A) is

fuzzy nearly compact relative to Y . □

Theorem 6.5. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be injective, fuzzy
s-b-continuous function and Y is fuzzy T2-space. Then X is fuzzy s-b-T2-space.

Proof. Let xα and yβ be two distinct fuzzy points in X, where x ̸= y. As f is
injective, f(xα) ̸= f(yβ). As Y is a fuzzy T2-space, there exist fuzzy open sets
U1, U2, V1, V2 in Y such that f(xα) ∈ U1, f(yβ)qV1 and U1 ̸ qV1 and f(xα)qU2,
f(yβ) ∈ V2 and U2 ̸ qV2. Then xα ∈ f−1(U1), yβqf

−1(V1) and f−1(U1) ̸ qf−1(V1).
Indeed, f−1(U1)qf

−1(V1) ⇒ there exists z ∈ X such that f−1(U1)(z)+f−1(V1)(z) >
1 ⇒ U1(f(z)) + V1(f(z)) > 1 ⇒ U1qV1. This is a contradiction. Also, we get

xαqf
−1(U2), yβ ∈ f−1(V2) and f−1(U2) ̸ qf−1(V2),

where f−1(U1), f−1(V1), f−1(U2), f−1(V2) ∈ FsbO(X, τ1).
Similarly, when x = y, α < β (say), there exist U1, U2 ∈ τ1 such that f(xα) ∈
U1, f(yβ)qU2 and U1 ̸ qU2. Then xα ∈ f−1(U1), yβqf

−1(U2) and f−1(U1) ̸ qf−1(U2)
where f−1(U1), f

−1(U2) ∈ FsbO(X, τ1). Hence X is fuzzy s-b-T2-space. □

Theorem 6.6. If a bijective function h : X → Y is fuzzy s-b-continuous, fuzzy open
function from a fuzzy s-b-regular space X onto an fts Y , then Y is fuzzy regular
space.

Proof. Let yt be a fuzzy point in Y and F , a fuzzy closed set in Y with yt ̸∈ F .
As h is injective, there exists x ∈ X such that h(x) = y. Then h(xt) ̸∈ F. As h is
fuzzy s-b-continuous function, xt ̸∈ h−1(F ) ∈ FsbC(X). As X is fuzzy s-b-regular
space, there exist a fuzzy open set U and a fuzzy s-b-open set V in X such that
xtqU, h−1(F ) ≤ V and U ̸ qV . Since X is fuzzy s-b-regular, by Note 5.3, V is also
fuzzy open set in X. As h is fuzzy open function, we have h(xα)qh(U), F ≤ h(V )
and h(U) ̸ qh(V ), where h(U), h(V ) are fuzzy open sets in Y. Thus Y is fuzzy regular
space. □

7. Conclusions

By introducing a larger class of fuzzy open-like sets here we introduce a weaker
form of fuzzy regularity. But in this new type of fuzzy regular space, fuzzy open
set and this new type of fuzzy set coincide. Our next goal is to find interrelations
between these types of fuzzy open-like sets defined earlier.
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[15] Anjana Bhattacharyya, Several concepts of continuity in fuzzy setting, The 10th International

Conference MSAST 2016, December 21–23 (2016), Kolkata, 282–293.
[16] M. N. Mukherjee and B. Ghosh, On nearly compact and θ-rigid fuzzy sets in fuzzy topological

spaces, Fuzzy Sets and Systems 43 (1991) 57–68.

[17] B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy sets and Systems
31 (1980) 93–104.

[18] S. Ganguly and S. Saha, A note on compactness in fuzzy setting, Fuzzy Sets and Systems 34

(1990) 117–124.
[19] S. P. Sinha and S. Malakar, On s-closed fuzzy topological spaces, J. Fuzzy Math. 2 (1) (1994)

95–103.
[20] C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46

(1974) 316–328.

Anjana Bhattacharyya (anjanabhattacharyya@hotmail.com)
Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road
Kolkata - 700009, India

168


	s-b-open sets and its applications in fuzzy setting. By 
	s-b-open sets and its applications in fuzzy setting. By 

