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1. Introduction

In early 1920, the notion of hyperspaces was introduced by Vietories (See [1, 2])
and it has been extensively investigated. Kelley [3] studied the hyperspace of metric
continua which has been applied in dynamical systems (See [4, 5, 6, 7, 8, 9, 10, 11]
for further background). Recently, Maćıas and Nadler [12] discussed continua whose
hyperspace of subcontinua is a cone.

In 1999, Molodtsov [13] introduced the concept of soft sets applied to several fields
as a tool for dealing with uncertainties (See [14, 15, 16, 17, 18]). Shabir and Naz [19]
defined a soft topology and separation axioms in a soft topological space, and studied
their various properties (See [20, 21, 23, 24, 25]). Nazmul and Samanta [26] proposed
the notion of soft metrics and dealt with its basic properties. Alcantud [27] dealt
with the relationships between fuzzy soft toplogies and soft topologies. Bayramov
and Aras [28] defined newly separation axioms in a soft topological space and investi-
gated their some properties (See [29, 30, 31] for the further researches). In particular,
Debnath and Tripathy [32] studied separation axioms in a soft bitopological space.
Recently, Baek et al. [33] proposed separation axioms in an interval-valued topo-
logical space and discussed some of their properties and some relationships among
them (See [34, 35]). Zorlutuna et al. [22] covered compactness in a soft topological
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space as well as basic properties related to soft topology (See [36, 37, 38]). Lin [39]
introduced the concept of soft connectednes and soft paracompactness and studied
some of their properties (See [38, 40, 41]).

In 2015, Akdağ and Erol [42] defined a soft Vietoris topology based on soft sets and
gave the relationship between Vietoris continuity of soft multifunction and continuity
of soft mapping (See [43] for further background). Shakir [44], independently from
Akdağ and Erol, defined Vietoies soft hyperspace and obtained some basic properties
of such a soft hyperspace. After that, Demir [45] discussed the Axiom of countabilty

in Vietoies soft hyperspaces in the viewpoint of Akdağ and Erol. Özkan [46] studied
various properties of the continuity of soft multifunction proposed by Akdağ and
Erol. As a generalization of classical hyperspaces, it is necessary to obtain various
properties for soft hyperspace. To do our research, first, we recall some basic notions
and results related soft topological spaces. Next, we deal with basic properties of
soft hyperspaces proposed by Shakir [44]. Finally, we discuss separation axioms in
a soft hyperspace.

2. Preliminaries

In this section, we recall basic concepts and results needed in the next sections.
Unless otherwise stated, let X, Y, Z, · · · denote non-empty universe sets, E a set of
parameters and 2X the power set of X.

Definition 2.1 ([13, 20]). Let A ∈ 2E , Then an FA is called a soft set over X, if
FA : A → 2X is a mapping such that FA(e) = ∅ for each e /∈ A.

For each e ∈ A, FA(e) may be considered as the set of e-approximate elements of
the soft set FA.

Definition 2.2 ([14, 15]). Let FA ∈ SS(X). Then FA is called:
(i) a null soft set or a relative null soft set (with respect to A), denoted by ∅A, if

FA(e) = ∅ for each e ∈ A,
(ii) an absolute soft set or a relative whole soft set (with respect to A), denoted

by XA, if FA(e) = X for each e ∈ A.
The empty [resp.whole] soft set over X with respect to E, denoted by ∅E [resp.

XE ], is a soft set over X defined by: for each e ∈ E,

∅E(e) = ∅ [resp. XE(e) = X].

We will denote the set of all soft sets over X as SS(X), while SSE(X) will denote
the set of all soft sets over X with respect to a fixed E. Throughout this paper,
members of SSE(X) will be written by A, B, C, etc.

Definition 2.3 (See [14, 19]). Let A, B ∈ SSE(X).
(i) We say that A is a soft subset B, denoted by A ⊂ B, if A(e) ⊂ B(e).
(ii) The intersection of A and B, denoted by A ∩ B, is a soft set over X defined

by:

(A ∩B)(e) = A(e) ∩B(e) for each e ∈ E.

(iii) The union of A and B, denoted by A ∪B, is a soft set over X defined by:

(A ∩B)(e) = A(e) ∪B(e) for each e ∈ E.
130
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(iv) The complement of A, denoted by Ac, is a soft set over X defined by:

Ac(x) = A(e)c for each e ∈ E.

(v) The difference of A and B, denoted by A \ B, is a soft set over X defined
by:

(A \B)(e) = A(e) \B(e) for each e ∈ E.

Definition 2.4 ([24, 26, 47]). Let A ∈ SSE(X). Then
(i) A is called a soft point in X with the value x ∈ X and the support e ∈ E or a

soft element, denoted by e
x
, if for each f ∈ E,

e
x
(f) =

 x if f = e

∅ otherwise.

(ii) we say that e
x
belongs to A, denoted by e

x
∈ A, if e

x
(e) = x ∈ A(e).

We will denote the set of all soft points over X with respect to E by SPE(X).

Definition 2.5 ([26]). Let e
x
, f

y
∈ SPE(X). Then we say that e

x
and f

y
are equal,

denoted by ex = fy , if e = f and ex(e) = fy (f), i.e., x = y.
It is obvious that ex(e) ̸= fy (f) if and only if x ̸= y or e ̸= f .

Result 2.6 (Proposition 3.5, [26]). For each A ∈ SSE(X), A =
⋃

ex∈A ex .

Result 2.7 (Proposition 3.6, [26]). Let A, B ∈ SSE(X). Then A ⊂ B if and only
if e

x
∈ B for each e

x
∈ A and thus A = B if and only if e

x
∈ A ⇔ e

x
∈ B.

Result 2.8 (Proposition 3.7, [26]). Let A, B ∈ SSE(X) and e
x
∈ SPE(X). Then

(1) e
x
∈ A if and only if e

x
/∈ Ac,

(2) e
x
∈ A ∪B if and only if e

x
∈ A or e

x
∈ B,

(3) ex ∈ A ∩B if and only if ex ∈ A and ex ∈ B.

Definition 2.9 ([19]). Let τ ⊂ SSE(X). Then τ is called a soft topology on X, if it
satisfies the following conditions:

(i) ∅E , XE ∈ τ ,
(ii) A ∩B ∈ τ for any A, B ∈ τ,
(iii)

⋃
j∈J Aj ∈ τ for each (Aj)j∈J ⊂ τ , where J denotes an index set.

The triple (X, τ,E) is called a soft topological space over X. Each member of τ is
called a soft open set in X and a soft set A over X is called a closed soft set in X,
if Ac ∈ τ .

It is obvious that {∅E , XE} [resp. SSE(X)] is a soft topology on X. In this case,
{∅E , XE} [resp. SSE(X)] is called the soft indiscrete [resp. discrete] topology on
X and the triple (X, {∅E , XE}, E) [resp. (X,SSE(X), E)] is called a soft indiscrete
[resp. discrete] space (See[19]).

Result 2.10 (Proposition 4, [19]). Let (X, τ,E) be a soft topological space, τ c the
set of all closed soft sets in (X, τ,E). Then

(1) ∅E , XE ∈ τ c,
(2) A ∪B ∈ τ c for any A, B ∈ τ c,
(3)

⋂
j∈J Aj ∈ τ c for each (Aj)j∈J ⊂ τ c.
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Result 2.11 (Proposition 5, [19]). Let (X, τ,E) be a soft topological space. Then
the collection of subsets of X

τ
e
= {A(e) ∈ 2X : A ∈ τ} for each e ∈ E

is a topology on X.
In this case, τ

e
is called the topology on X induced by E.

Definition 2.12 ([47]). Let (X, τ,E) be a soft topological space, e
x
∈ SPE(X) and

A ∈ SSE(X). Then ex is called a soft interior point of A, if there is U ∈ τ such that
ex ∈ U ⊂ A.

Definition 2.13 ([20]). Let (X, τ,E) be a soft topological space and A ∈ SSE(X).
Then the soft interior and the soft closure of A, denoted by Sint(A) or A◦ and
Scl(A) or A, are soft sets over X, respectively defined as follows:

Sint(A) =
⋃

{U ∈ τ : U ⊂ A}, Scl(A) =
⋂

{F ∈ τ c : A ⊂ F}.

Result 2.14 (Theorems 8 and 11, [20]). Let (X, τ,E) be a soft topological space and
A, B ∈ SSE(X). Then the followings hold:

(1) Scl(A)c = Sint(Ac),
(2) Sint(Sint(A)) = Sint(A), Scl(Scl(A)) = Scl(A),
(3) if A ⊂ B, then Sint(A) ⊂ Sint(B), Scl(A) ⊂ Scl(B),
(4) Sint(A) ∩ Sint(B) = Sint(A ∩B), Scl(A) ∩ Scl(B) ⊂ Scl(A ∩B),
(5) Sint(A) ∪ Sint(B) ⊂ Sint(A ∪B), Scl(A) ∪ Scl(B) = Scl(A ∪B).

Definition 2.15 ([47]). Let (X, τ,E) be a soft topological space, e
x
∈ SPE(X) and

A ∈ SSE(X). Then A is called a soft neighborhood (briefly, snbd) of ex , if there is
U ∈ τ such that ex ∈ U ⊂ A, i.e., ex is a soft interior point of A. The set of all soft
nbds of e

x
will be denoted by N (e

x
), i.e.,

N (ex) = {A ∈ SSE(X) : there is U ∈ τ such that ex ∈ U ⊂ A}.

In particular, the family of all soft open nbds of e
x
, denoted by SN (e

x
),

SN (e
x
) = {U ∈ τ : e

x
∈ U}

will be called the system of soft open neighborhoods of ex .

Result 2.16 ([47]). Let (X, τ,E) be a soft topological space, e
x
∈ SPE(X) and

A, B ∈ SSE(X). Then the followings hold:
(1) if A ∈ SN (e

x
), then e

x
∈ A,

(2) if A, B ∈ SN (e
x
), then A ∩B ∈ SN (e

x
),

(3) if A ∈ SN (ex) and A ⊂ B, then B ∈ SN (ex),
(4) if A ∈ SN (ex), then there is U ∈ SN (fy ) such that A ∈ SN (ex) for each

f
y
∈ SPE(X) such that f

y
∈ U,

(5) A ∈ τ if and only if A contains a soft nbd of each of its points.

Definition 2.17 (Proposition 3, [48]). Let (X, τ,E) be a soft topological space,
ex ∈ SPE(X) and A ∈ SSE(X). Then ex is called a soft limit point of A, if
U ∩ (A \ {ex}) ̸= ∅E for each U ∈ SN (ex). The set of all soft limit points of A is
called the derived soft set over X and will be denoted by Sd(A).
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Result 2.18 (Theorems 13 and 15, [20]). Let (X, τ,E) be a soft topological space
and A, B ∈ SSE(X). Then the followings hold:

(1) A ∪ Sd(A) = Scl(A),
(2) Sd(A) ⊂ Scl(A),
(3) if A ⊂ B, the Sd(A) ⊂ Sd(B),
(4) Sd(A ∩B) ⊂ Sd(A) ∩ Sd(B),
(5) Sd(A ∪B) = Sd(A) ∪ Sd(B),
(6) A ∈ τ c if and only if Sd(A) ⊂ A.

Definition 2.19 ( [28]). A soft topological space (X, τ,E) is called a:
(i) soft T0-space, if for any e

x
, f

y
∈ SPE(X) with e

x
̸= f

y
, there are a U ∈

SN (e
x
), a V ∈ SN (f

y
) such that either e

x
∈ U, f

y
/∈ U or f

y
∈ V, e

x
/∈ V ,

(ii) soft T1-space, if for any e
x
, f

y
∈ SPE(X) with e

x
̸= f

y
, there are a U ∈

SN (ex), a V ∈ SN (fy ) such that ex ∈ U, fy /∈ U and fy ∈ V, ex /∈ V ,
(iii) soft T2-space, if for any ex , fy ∈ SPE(X) with ex ̸= fy , there are a U ∈

SN (e
x
), a V ∈ SN (f

y
) such that e

x
∈ U, f

y
∈ V and U ∩ V = ∅E ,

(iv) soft regular space, if for each A ∈ τ c with e
x
/∈ A, there are two U, V ∈ τ

such that e
x
∈ U, A ⊂ V and U ∩ V = ∅E ,

(v) soft T3-space, if it is both a soft regular and a soft T1-space.

Result 2.20 (Theorems 4.1 and 4.4, [28]). Let (X, τ,E) be a soft topological space.
Then

(1) X is a soft T1-space if and only if e
x
∈ τ c for each e

x
∈ SPE(X),

(2) X is a soft T3-space if and only if for each e
x
∈ U ∈ τ , there is V ∈ τ such

that e
x
∈ V ⊂ Scl(V ) ⊂ U.

Result 2.21 (Proposition 4.1 and Theorem 4.5, [28]). Let (X, τ,E) be a soft topo-
logical space. If X is a soft Ti-space, then (X, τe) is a Ti-space for each e ∈ E,
where i ∈ {0, 1, 2, 3}.

Definition 2.22 ([19]). A soft topological space (X, τ,E) is called a:
(i) soft normal space, if for any A, B ∈ τ c with A ∩B = ∅E , there are U, V ∈ τ

such that A ⊂ U , B ⊂ V and U ∩ V = ∅E ,
(ii) soft T4-space, if it is both a soft normal-space and a soft T1-space.

From Remarks 4.1, 4.2 and 4.3 in [28], the following implication hold:

(2.1) soft T4 ⇒ soft T3 ⇒ soft T2 ⇒ soft T1 ⇒ soft T0.

Result 2.23 (Theorem 4.6, [28]). Let (X, τ,E) be a soft topological space. Then X
is a soft T4-space if and only if for each A ∈ τ c and each U ∈ τ with A ⊂ U , there
is a V ∈ τ such that A ⊂ V ⊂ Scl(V ) ⊂ U,

Definition 2.24 ([24]). Let (X, τ,E) be a soft topological space and β ⊂ τ . Then
β is called a soft base for τ , if every member of τ can be expressed as the union of
some members of β.

Result 2.25 (Proposition 3.13, [24]). Let (X, τ,E) be a soft topological space and
β ⊂ τ . Then β is a soft base for τ if and only if for each A ∈ τ and each ex ∈ A,
there is a B ∈ β such that e

x
∈ B ⊂ A.

133



Baek et al./Ann. Fuzzy Math. Inform. 28 (2024), No. 2, 129–153

Result 2.26 (Proposition 3.14, [24]). Let β ⊂ SSE(X). Then β is a soft base for
a soft topology on X if and only if it satisfies the following conditions:

(1) ∅E ∈ β,
(2) XE =

⋃
β,

(3) if B1, B2 ∈ β, then there is a β
′ ⊂ β such that B1 ∩ B2 =

⋃
β

′
, i.e., if

B1, B2 ∈ β and e
x
∈ B1 ∩B2, then B ∈ β such that e

x
∈ B ⊂ B1 ∩B2.

3. A soft Vietories topology and its basic properties

In this section, we define a soft hyperspace and study its various properties.

Notation 3.1. Let (X, τ,E) be a soft topological space, A ∈ SSE(X) and e ∈ E.
Then

(i) 2X
E

= {F ∈ τ c : F ̸= ∅E},
(ii) 2A

E
= {F ∈ 2X

E
: F ⊂ A},

(iii) 2X
e

= {F (e) ∈ τ c
e
: F (e) ̸= ∅},

(iv) 2A(e)
e

= {F (e) ∈ 2X
e

: F (e) ⊂ A(e)}.

Example 3.2. (1) (See Example 4, [19]) Let X = {x, y, z}, E = {e, f} and τ be be
the soft topology on X given by:

τ = {∅E , A1, A2, A3, A4, A5, A6, A7, XE},

where A1(e) = A1(f) = {x, y}, A2(e) = {y}, A2(f) = {x, z},
A3(e) = {y, z}, A3(f) = {x}, A4(e) = {y}, A4(f) = {x},
A5(e) = {x, y}, A5(f) = X, A6(e) = X, A6(f) = {x, y},
A7(e) = {y, z}, A7(f) = {x, z}.

Then τ c = {∅E , A
c
1, A

c
2, A

c
3, A

c
4, A

c
5, A

c
6, A

c
7, XE},

where Ac
1(e) = Ac

1(f) = {z}, Ac
2(e) = {x, z}, Ac

2(f) = {y},
Ac

3(e) = {x}, Ac
3(f) = {y, z}, Ac

4(e) = {x, z}, Ac
4(f) = {y, z},

Ac
5(e) = {z}, Ac

5(f) = ∅, Ac
6(e) = ∅, Ac

6(f) = {z},
Ac

7(e) = {x}, Ac
7(f) = {y}.

Thus 2X
E

= τ c \ {∅E}.
Now consider the soft set A over X defined by A(e) = {x, y}, A(f) = {y, z}.

Then clearly, 2A
E
= {Ac

3, A
c
6, A

c
7}.

(2) (See Example 2.13, [24]) Let X = {a, b} and E = {e, f}. Consider all possible
soft sets over X given as follows:

∅E , A1(e) = ∅, A1(f) = {a}, A2(e) = ∅, A2(f) = {b},

A3(e) = ∅, A3(f) = X, A4(e) = {a}, A4(f) = ∅, A5(e) = A5(f) = {a},

A6(e) = {a}, A6(f) = {b}, A7(e) = {a}, A7(f) = X, A8(e) = {b}, A8(f) = ∅,

A9(e) = {b}, A9(f) = {a}, A10(e) = A10(f) = {b}, A11(e) = {b}, A11(f) = X,

A12(e) = X, A12(f) = ∅, A13(e) = X, A13(f) = {a}, A14(e) = X, A14(f) = {b}, XE .

Let τ = {∅E , A2, A6, A11, XE}. Then we can easily check that τ is a soft topology
on X. Thus τ c = {∅E , A

c
2, A

c
6, A

c
11, XE} = {∅E , A13, A9, A4, XE}. So we have

2X
E

= {A4, A9, A13, X} = τ c \ {∅E}, 2A1

E
= ∅, 2A7

E
= {A4}.
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On the other hand, τ
e
= {∅, {a}, {b}, X} and τ

f
= {∅, {b}, X}. Hence we get

2X
e

= {{a}, {b}, X}, 2X
f

= {{a}, X}, 2{a}
e

= {a}, 2{a}
f

= ∅.

Proposition 3.3. Let (X, τ,E) be a soft topological space, A, B ∈ SSE(X) and
(Aj)j∈J ⊂ SSE(X). Then

(1) 2A∩B
E

= 2A
E
∩ 2B

E
and generally, 2

⋂
j∈J Aj

E =
⋂

j∈J 2Aj
E

,

(2) A ⊂ B if and only if 2A
E
⊂ 2B

E
and thus A = B if and only if 2A

E
= 2B

E
.

Proof. The proofs follows from Notation 3.1 and the definitions of the inclusion and
the intersection of soft sets. □

Corollary 3.4 (See Exponential topology, [49]). Let (X, τ,E) be a soft topological
space, e ∈ E, A, B ∈ SSE(X) and (Aj)j∈J ⊂ SSE(X). Then

(1) 2A(e)∩B(e)
e

= 2A(e)
e

∩ 2B(e)
e

and generally, 2
⋂

j∈J Aj(e)
e

=
⋂

j∈J 2Aj(e)
e

,

(2) A(e) ⊂ B(e) if and only if 2A(e)
e

⊂ 2B(e)
e

and thus A(e) = B(e) if and only if

2A(e)
e

= 2B(e)
e

.

Proposition 3.5. Let (X, τ,E) be a soft topological space and A ∈ SSE(X). Then

2X
E
\ 2A

c

E
= {F ∈ 2X

E
: F ∩A ̸= ∅E}.

Corollary 3.6 (See Exponential topology, [49]). Let (X, τ,E) be a soft topological
space, e ∈ E and A ∈ SSE(X). Then

2X
e
\ 2A(e)c

e
= {F (e) ∈ 2X

e
: F (e) ∩A(e) ̸= ∅}.

Notation 3.7. Let (X, τ,E) be a soft topological space and A0, A1, · · · , An any
finite system of arbitrary soft sets over X. Then B(A0, A1, · · · , An) is defined as
follows:

B(A0, A1, · · · , An) = 2A0

E
∩ (2X

E
\ 2A

c
1

E
) ∩ (2X

E
\ 2A

c
2

E
) ∩ · · · ∩ (2X

E
\ 2A

c
n

E
).

It is obvious that

B(A0, A1, · · · , An) = {F ∈ 2X
E

: F ⊂ A0, F ∩Ai ̸= ∅E for each i = 1, · · · , n}.

In this case, B(A0, A1, · · · , An) will be denoted by ⟨A0, A1, · · · , An⟩ .

Proposition 3.8. Let (X, τ,E) be a soft topological space and SSe the collection of
all of 2U

E
and 2X

E
\2Uc

E
, where U ∈ τ. Let BSe be the collection of all finite intersections

of members of SSe. In fact, for each B ∈ BSe, there are U0, U1, · · · , Un ∈ τ such
that

B = ⟨U0, U1, · · · , Un⟩ .
Then there is a unique topology TSe on 2X

E
such that SSe is a soft subbase for TSe

and BSe a soft base for TSe.
In this case, TSe is called the soft exponential topology on 2X

E
.

Proof. The proof is almost similar to Theorem 1.12 in [50]. □

Corollary 3.9 (See Exponetial topology, [49]). Let (X, τ,E) be a soft topological
space and Se the collection of all of 2U(e)

e
and 2X

e
\ 2U(e)c

e
, where U(e) ∈ τ

e
for each
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e ∈ E. Let Be be the collection of all finite intersections of members of Se. In fact,
for each B ∈ Be, there are U0(e), U1(e), · · · , Un(e) ∈ τe such that

B = ⟨U0(e), U1(e), · · · , Un(e)⟩ .
Then there is a unique topology Tep,e on 2X

e
such that Se is a subbase for Tep,e and

Be a base for Tep,e.
In this case, Tep,e is called the exponential topology on 2X

e
for e ∈ E.

For a soft topological space (X, τ,E) and any soft sets U1, U2, · · · , Un be over
X, let ⟨U1, U2, · · · , Un⟩ be the collection of soft closed sets in X defined by:

⟨U1, U2, · · · , Un⟩ = {F ∈ 2X
E

: F ⊂
n⋃

i=1

Ui, E ∩ Ui ̸= ∅E for each i = 1, 2, · · · , n}.

Proposition 3.10. Let (X, τ,E) be a soft topological space and BSv a family of the
form ⟨U1, U2, · · · , Un⟩ such that Ui ∈ τ for each i = 1, 2, · · · , n. Then BSv is a
soft base for some topology TSv on 2X

E
. In fact,

TSv = {∅E} ∪ {U ∈ SSE(X) : U =
⋃

B for some B ⊂ BSv}.

In this case, TSv is called the soft Vietories (finite) topology on 2X
E
. The pair

(2X
E
, TSv) is called a soft hyperspace with soft Vietories topology (briefly, soft hyper-

space) (See Definition 3.2, [44]).

Proof. Since 2X
E

= ⟨XE⟩ and ⟨XE⟩ ∈ BSv, 2
X
E

=
⋃

BSv. Suppose U = ⟨U1, U2, · · · , Un⟩ ,
V = ⟨V1, V2, · · · , Vm⟩ ∈ BSv and let U =

⋃n
i=1 Ui, V =

⋃m
j=1 Vj . Then clearly,

U, V ∈ τ. Moreover, we can easily prove that the following holds:

U ∩ V = ⟨U1 ∩ V, · · · , Un ∩ V,U ∩ V1, · · · , U ∩ Vm⟩ .
Thus BSv is a base for TSv. □

Remark 3.11. If E is a singleton set, then soft hyperspace of a soft topological
space (X, τ,E) coincide with the classical hyperspace.

Corollary 3.12 (See Proposition 2.1, [51]). Let (X, τ,E) be a soft topological space
and Bv,e a family of the form ⟨U1(e), U2(e), · · · , Un(e)⟩ such that Ui(e) ∈ τe for each
i = 1, 2, · · · , n and each e ∈ E. Then Bv,e is a base for some topology Tv,e on 2X

e
.

In fact,

Tv,e = {∅} ∪ {U(e) ∈ 2X : U(e) =
⋃

B for some B ⊂ Bv,e}.

In this case, Tv,e is called the Vietories (finite) topology on 2X
e

for e ∈ E. The

pair (2X
e
, Tv,e) is called a hyperspace with Vietories topology (briefly, hyperspace) for

e ∈ E.

Example 3.13. Let (X, τ,E) be the soft topological space given in Example 3.2
(2). Then we have

⟨A2⟩ = ⟨A6⟩ = ⟨A2, A6⟩ = ∅,

⟨A11⟩ = ⟨A2, A11⟩ = {A4, A9}, ⟨A6, A11⟩ = ⟨XE⟩ = 2X
X
.

Thus TSv = {∅, {A4, A9}, 2XE }. Furthermore, we get

Tv,e = {∅, {a}, {b}, 2X
e
}, Tv,f = {∅, 2X

f
}.
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Proposition 3.14. BSe and BSv are equivalent and then TSe = TSv.

Proof. Let ⟨U0, U1, · · · , Un⟩ ∈ BSe and F ∈ ⟨U0, U1, · · · , Un⟩ . Then clearly, F ⊂ U0

and F ∩ Ui ̸= ∅E for each i ∈ {1, 2, · · · , n}. Let Gi = U0 ∪ Ui for each i ∈
{1, 2, · · · , n}. Then Gi ∈ τ , F∩Gi ̸= ∅E for each i ∈ {1, 2, · · · , n} and F ⊂

⋃n
i=1 Gi.

Thus F ∈ ⟨G1, G2, · · · , Gn⟩ ∈ BSv and ⟨G1, G2, · · · , Gn⟩ ⊂ ⟨U0, U1, · · · , Un⟩ .
Conversely, let F ∈ ⟨G1, G2, · · · , Gn⟩ ∈ BSv. Then F ⊂

⋃n
i=1 Gi and F ∩ Gi ̸=

∅E for each i ∈ {1, 2, · · · , n}. Let U0 =
⋃n

i=1 Gi and Ui = U0 ∩ Gi for each
i ∈ {1, 2, · · · , n}. Then clearly, F ⊂ U0 and F ∩ Ui ̸= ∅E for each i ∈ {1, 2, · · · , n}.
Thus F ∈ ⟨U0, U1, · · · , Un⟩ ∈ BSe and ⟨G1, G2, · · · , Gn⟩ ⊂ ⟨U0, U1, · · · , Un⟩. So BSe

and BSv are equivalent. □

Lemma 3.15. Let (X, τ,E) be a soft topological space and A ∈ SSE(X). If A ∈ τ c,
then 2A

E
, 2X

E
\ 2Ac

E
∈ T c

Sv, i.e.,

{F ∈ 2X
E

: F ⊂ A}, {F ∈ 2X
E

: F ∩A ̸= ∅E} ∈ T c
Sv.

Proof. Let F ∈ d(2A
E
), where d(2A

E
) denotes the derived set of 2A

E
in (2X

E
, TSv) and

assume that F /∈ 2A
E
. Then F ̸⊂ A, i.e., there are e ∈ E and x ∈ X such that

e
x
∈ F \ A. Since A ∈ τ c and e

x
/∈ A, by Result 2.18(6), e

x
/∈ Sd(A). Thus there is

U ∈ SN (e
x
) such that U ∩ A = ∅E . Since U, XE ∈ τ , F ⊂ U ∪XE , F ∩ U ̸= ∅E

and F ∩XE ̸= ∅E , F ∈ ⟨U,XE⟩ . Thus 2AE ∩ ⟨U,XE⟩ = ∅. So F /∈ d(2A
E
). This is a

contradiction. Hence 2A
E
∈ T c

Sv.

Now we prove the second part. Let F ∈ d(2X
E
\2Ac

E
) and assume that F /∈ 2X

E
\2Ac

E
.

Then clearly, F ∩ A = ∅E . Since A ∈ τ c, e
x
/∈ Sd(A) for each e

x
∈ A. By Result

2.18(6), there is U ∈ τ such that A ⊂ U and A ∩ U = ∅E . Thus F ∈ ⟨U⟩ and
(2X

E
\2Ac

E
)∩⟨U⟩ = ∅. So F /∈ d(2X

E
\2Ac

E
). This is a contradiction. Hence 2X

E
\2Ac

E
∈

T c
Sv. □

Corollary 3.16 (See Lemma 2.2, [51]). Let (X, τ,E) be a soft topological space,
A ∈ SSE(X) and e ∈ E. If A(e) ∈ τ c

e
, then 2A(e)

e
, 2X

e
\ 2A(e)c

e
∈ T c

v,e, i.e.,

{F (e) ∈ 2X
e

: F ∈ 2X
E
, F (e) ⊂ A(e)}, {F (e) ∈ 2X

e
: F ∈ 2X

E
, F (e)∩A(e) ̸= ∅} ∈ T c

v,e.

Lemma 3.17. If (X, τ,E) is a soft T1-space and A ∈ SSE(X), then

cl(2A
E
) = 2Scl(A)

E
, int(2A

E
) = 2Sint(A)

E
,

where cl(2A
E
) and int(2A

E
) denote the closure and the interior of 2A

E
in (2X

E
, TSv).

Proof. It is clear that 2A
E
⊂ 2Scl(A)

E
and 2Scl(A)

E
⊂ 2A

E
. It remains to prove that

(3.1) 2Scl(A)
E

⊂ cl(2A
E
),

(3.2) int(2A
E
) ⊂ 2Sint(A)

E
.

Let F ∈ 2Scl(A)
E

, i.e., F ⊂ Scl(A). Let U = ⟨U1, · · · , Un⟩ be any basic open

set in 2X
E

such that F ∈ ⟨U1, · · · , Un⟩ and U =
⋃n

i=1 Ui. Then clearly, F ⊂ U
and F ∩ Ui ̸= ∅E for each i ∈ {1, · · · , n}. Since F ⊂ Scl(A), by Result 2.18(1),
F ⊂ A∪Sd(A). Then there is eixi

∈ A∩Ui for each i ∈ {1, · · · , n}. PutG =
⋃n

i=1 eixi
.

Since X is soft T1, G ∈ τ c. Moreover, G ⊂ A ∩ U and G ∩ Ui ̸= ∅E for each
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i ∈ {1, · · · , n}. Thus G ∈ 2A
E
∩ U . So F ∈ cl(2A

E
). Hence (3.1) holds. Therefore

cl(2A
E
) = 2Scl(A)

E
.

Now let F /∈ 2Sint(A)
E

. By Result 2.14(1), Scl(Ac) = Sint(A)c. Then F ̸⊂
[Scl(Ac)]c, i.e., F ∩ Scl(A)c ̸= ∅E . Let U = ⟨U1, · · · , Un⟩ be any basic open set
in 2X

E
such that F ∈ ⟨U1, · · · , Un⟩ and U =

⋃n
i=1 Ui. Then F ⊂ U and F ∩Ui ̸= ∅E

for each i ∈ {1, · · · , n}. Since F ∩Scl(A)c ̸= ∅E , there is ex
∈ U \A. Put G = F ∪e

x
.

Since X is T1, ex ∈ τ c. Thus G ∈ τ c, i.e., G ∈ 2X
E
. Moreover, G ̸⊂ A, G ⊂ U and

G ∩ Ui ̸= ∅E for each i ∈ {1, · · · , n}, i.e., G ∈ U . So each neighborhood of F in
2X

E
contains G such that G ̸⊂ A, i.e., G ∈ 2X

E
\ 2A

E
. It follows that F /∈ cl(2X

E
\ 2A

E
).

Hence F /∈ int(2A
E
), i.e., (3.2) holds. Therefore 2Scl(A)

E
= int(2A

E
). □

Corollary 3.18 (See page 161, [49]). If (X, τ,E) is a soft T1-space and e ∈ E, then
cl(2A(e)

e
) = 2cl(A(e))

e
, int(2A(e)

e
) = 2int(A(e))

e
for each A ∈ SSE(X).

Theorem 3.19. Let (X, τ,E) be a soft T1-space and A ∈ SSE(X). Then 2A
E

and

2X
E
\ 2A

E
are closed [resp. open] in 2X

E
if and only if A is soft closed [resp. open] in

X.

Proof. The proof follows from Lemma 3.17. □

Corollary 3.20 (See Theorem 17.III.1, [49]). Let (X, τ,E) be a soft T1-space, e ∈ E
and A ∈ SSE(X). Then 2A(e)

e
and 2X

e
\ 2A(e)

e
are closed [resp. open] in 2X

e
if and

only if A(e) is closed [resp. open] in (X, τ
e
).

Proposition 3.21. If (X, τ,E) is a soft T1-space and A ∈ SSE(X), then the set
{F ∈ 2X

E
: A ⊂ F} is closed in 2X

E
.

Proof. It is sufficient to show that the set {F ∈ 2X
E

: A ̸⊂ F} is open in 2X
E
. Note

that {F ∈ 2X
E

: A ̸⊂ F} =
⋃

ex∈A{F ∈ 2X
E

: F ⊂ ec
x
} =

⋃
ex∈A 2

ec
x

E . Since X

is soft T1, ex
∈ τ c. Then ec

x
∈ τ. Thus by Theorem 3.19, 2

ec
x

E is open in 2X
E
. So

{F ∈ F ∈ 2X
E

: A ̸⊂ F} is open in 2X
E
. □

Corollary 3.22 (See Theorem 17.III.2, [49]). Let (X, τ,E) be a soft T1-space, e ∈ E
and A ∈ SSE(X). Then the set {F (e) ∈ 2X

e
: F ∈ 2X

E
, A(e) ⊂ F (e)} is closed in

2X
e
.

Proposition 3.23. For a soft T1-space (X, τ,E), the followings hold:
(1) ⟨U1, · · · , Un⟩ ⊂ ⟨V1, · · · , Vm⟩ if and only if

⋃n
i=1 Ui ⊂

⋃m
j=1 Uj and for each

j ∈ {1, · · · ,m}, there is i ∈ {1, · · · , n} such that Ui ⊂ Vj ,
(2) cl(⟨U1, · · · , Un⟩) = ⟨Scl(U1), · · · , Scl(Un)⟩ , where cl(⟨U1, · · · , Un⟩) denotes

the closure of ⟨U1, · · · , Un⟩ in (2X
E
, TSv),

(3) if {Uα}α∈Λ is a soft neighborhood base at e
x
, then {⟨Uα⟩}α∈Λ is a neighborhood

base at {e
x
} in (2X

E
, TSv),

(4) if O ∈ TSv, then
⋃
O ∈ τ.

Proof. (1) Let U = ⟨U1, · · · , Un⟩ and V = ⟨V1, · · · , Um⟩. Suppose U ⊂ V and
assume that

⋃n
i=1 Ui ̸⊂

⋃m
j=1 Vj , say eixi

∈ Ui for each i ∈ {1, · · · , n} and en+1xn+1
∈⋃n

i=1 Ui but en+1xn+1
/∈
⋃m

j=1 Vj , where ei ∈ E and xi ∈ X for each i ∈ {1, · · · , n, n+
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1}. Since X is a soft T1-space, by Result 2.20(1), eixi
∈ τ c. Thus F =

⋃n+1
i=1 eixi

∈ τ c

and F ∈ U \V. This is a contradiction. So
⋃n

i=1 Ui ⊂
⋃m

j=1 Vj . Now assume that the

second part is not true, say there is j ∈ {1, · · · ,m} such that Ui \ Vj ̸= ∅E for each
each i ∈ {1, · · · , n}. Then there are ei ∈ E and xi ∈ X such that eixi

∈ Ui \ Vj .

Since X is a soft T1-space, by Result 2.20(1), eixi
∈ τ c. Thus A =

⋃n
i=1 eixi

∈ τ c

and A ∈ U \ V. This is a contradiction. So the second part holds.
Conversely, suppose the necessary conditions hold and let F ∈ U . Then clearly,

F ⊂
⋃n

i=1 Ui and F ∩ Ui ̸= ∅E for each i ∈ {1, · · · , n}. Thus by the hypothesis,
F ⊂

⋃m
j=1 Vj and F ∩ Vj ̸= ∅E for each j ∈ {1, · · · ,m}. So F ∈ V. Hence U ⊂ V.

(2) Let F ∈ ⟨Scl(U1), · · · , Scl(Un)⟩, V = ⟨V1, · · · , Vm⟩ be an open neighborhood
of F in 2X

E
, U =

⋃n
i=1 Ui and V =

⋃m
j=1 Vj . Since V ∈ V, F ⊂ V and F ∩ Vj ̸= ∅E

for each j ∈ {1, · · · ,m}. Since F ∈ ⟨Scl(U1), · · · , Scl(Un)⟩, F ∩ Scl(Ui) ̸= ∅E for
each i ∈ {1, · · · , n}. Moreover, F ⊂ Scl(V ) and Scl(V ) =

⋃n
i=1 Scl(Ui) by Result

2.14(5). Then V ∩ Scl(Ui) ̸= ∅E ̸= Vj ∩ Scl(U) for each i ∈ {1, · · · , n} and each
j ∈ {1, · · · ,m}. Thus V ∩ Ui ̸= ∅E ̸= Vj ∩ U for each i ∈ {1, · · · , n} and each j ∈
{1, · · · ,m}. Let us take eixi

∈ V ∩Ui and fj
yj

∈ Vj ∩U for each i ∈ {1, · · · , n} and

each j ∈ {1, · · · ,m}. Since X is a soft T1-space, by Result 2.20(1), eixi
, fj

yj
∈ τ c.

Then F =
(⋃n

i=1 eixi

)
∪
(⋃m

j=1 fjyj

)
∈ τ c. Thus F ∈ ⟨U1, · · · , Un⟩ ∩ ⟨V1, · · · , Vm⟩ .

So F ∈ d(⟨U1, · · · , Un⟩). Hence ⟨Scl(U1), · · · , Scl(Un)⟩ ⊂ cl(⟨U1, · · · , Un⟩).
Now we show that the converse inclusion holds. It is clear that

(3.3) ⟨U1, · · · , Un⟩ ⊂ ⟨Scl(U1), · · · , Scl(Un)⟩

and

(3.4) ⟨Scl(U1), · · · , Scl(Un)⟩ =

(
n⋂

i=1

{F ∈ 2X
E

: F ∩ Scl(Ui) ̸= ∅E}

)
∩ ⟨Scl(U)⟩ ,

where U =
⋃n

i=1 Ui. Since Scl(Ui) ∈ τ c for each i ∈ {1, · · · , n} and SclU) ∈ τ c, by

Lemma 3.15,
(⋂n

i=1{F ∈ 2X
E

: F ∩ Scl(Ui) ̸= ∅E}
)
∩ ⟨Scl(U)⟩ is closed in 2X

E
. Thus

⟨Scl(U1), · · · , Scl(Un)⟩ is closed in 2X
E
. So cl(⟨U1, · · · , Un⟩) ⊂ ⟨Scl(U1), · · · , Scl(Un)⟩ .

Hence cl(⟨U1, · · · , Un⟩) = ⟨Scl(U1), · · · , Scl(Un)⟩.
(3) The proof is straightforward.
(4) It is sufficient to show that

⋃
U ∈ τ for each base element U = ⟨U1, · · · , Un⟩ in

2X
E
. Let V =

⋃
⟨U1, · · · , Un⟩ and e

x
∈ V. Let W ∈ SN (e

x
) such that W ⊂

⋃n
i=1 Ui

and f
y
∈ W. Take eixi

∈ Ui for each i ∈ {1, · · · , n} and let F =
(⋃n

i=1 eixi

)
∪ {f

y
}.

Since X is soft T1, F ∈ τ c. Moreover, F ⊂
⋃n

i=1 Ui and F ∩ Ui ̸= ∅E for each
i ∈ {1, · · · , n}. Then F ∈ U . Thus f

y
∈ V. So W ⊂ V . Hence V ∈ τ. □

The following is an immediate consequence of Proposition 3.23.

Corollary 3.24 (See Lemma 2.3, [51]). Let (X, τ,E) be a soft topological space,
⟨U1, · · · , Un⟩ and ⟨V1, · · · , Vm⟩ any base members in (2X

e
, Tv,e) for each e ∈ E. If X

is a soft T1-space, then the followings hold:
(1) ⟨U1(e), · · · , Un(e)⟩ ⊂ ⟨V1(e), · · · , Vm(e)⟩ if and only if

⋃n
i=1 Ui(e) ⊂

⋃m
j=1 Uj(e)

and for each j ∈ {1, · · · ,m}, there is i ∈ {1, · · · , n} such that Ui(e) ⊂ Vj(e),
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(2) Cl(⟨U1(e), · · · , Un(e)⟩) = ⟨cl(U1(e)), · · · , cl(Un(e))⟩ , where Cl(⟨U1(e), · · · , Un(e)⟩)
denotes the closure of ⟨U1(e), · · · , Un(e)⟩ in (2X

e
, Tv,e),

(3) if {Uα(e)}α∈Λ is a neighborhood base at x in (X, τe), then {⟨Uα(e)⟩}α∈Λ is a
neighborhood base at {x} in (2X

e
, Tv,e),

(4) if O ∈ Tv,e, then
⋃
O ∈ τ

e
.

Notation 3.25. Let (X, τ,E) be a soft topological space and e ∈ E. Then
(i) SFn(X) = {F ∈ 2X

E
: F has at most n soft points},

(ii) SF(X) = {F ∈ 2X
E

: F is finite},
(iii) SK(X) = {F ∈ 2X

E
: F is soft compact},

(iv) SC(X) = {F ∈ 2X
E

: F is soft connected},
(v) SCK(X) = SK(X) ∩ SC(X),
(Vi) Fn,e(X) = {F (e) ∈ 2X

e
: F (e) has at most n elements},

(Vii) Fe(X) = {F (e) ∈ 2X
e

: F (e) is finite},
(Viii) Ke(X) = {F (e) ∈ 2X

e
: F (e) is compact},

(ix) Ce(X) = {F (e) ∈ 2X
e

: F (e) is connected},
(x) CKe(X) = Ke(X) ∩ Ce(X).
The topology on SK(X) [resp. SF(X), SFn(X), SC(X) and SCK(X)] is the

subspace topology induced by TSv. Also, the topology on Ke(X) [resp. Fe(X),
Fn,e(X), Ce(X) and CKe

(X)] is the subspace topology induced by Tv,e. Moreover,
SF(X) [resp. SFn(X) and SCK(X)] is a subspace of SK(X) and Fe(X) [resp.
Fn,e(X) and CKe(X)] is a subspace of Ke(X).

Proposition 3.26. Let (X, τ,E) be a soft T1-space.
(1) If U is an open set in the subspace SK(X), then

⋃
U ∈ τ ,

(3) If U is an open set in the subspace SFn(X), then
⋃
U ∈ τ ,

(3) If U is an open set in the subspace SF(X), then
⋃
U ∈ τ .

Proof. (1) Suppose U is an open set in SK(X). Without loss of generality, let
U = ⟨U1, · · · , Un⟩ ∩ SK(X) and U =

⋃
U . Let e

x
∈ U. Then there is i ∈ {1, · · · , n}

such that e
x
∈ Ui. Choose ej

xj
∈ Uj for each j ̸= i. For each f

y
∈ Ui, let Ffy

=(⋃n
j=1 ejxj

)
∪{f

y
}. Since X is a soft T1-space, Ffy

∈ τ c. Then Ffy
∈ ⟨U1, · · · , Un⟩∩

SK(X). Thus fy ∈ Ffy
⊂ U. So Ui ⊂ U. Hence

⋃
U ∈ τ .

(2) Suppose U is an open set in SFn(X), let U =
⋃

U and e1x1
∈ U. Then

there is F ∈ SFn(X) such that e1x1
∈ F ∈ U . Let F =

⋃m
i=1 eixi

for m ≤ n. By

the hypothesis, there is a basic open set ⟨U1, · · · , Uk⟩ ∩ SFn(X) in 2X
E

such that
F ∈ ⟨U1, · · · , Uk⟩ ∩ SFn(X) ⊂ U , where k ≤ n. We may suppose e1x1

∈ U1 and

let F = {U1, U2, · · · , Uk}. For each eixi
∈ F, let Fi = {Uj ∈ F : eixi

∈ Uj} and

Vi =
⋂k

j=1 Fi, where i ∈ {1, 2, · · · ,m} and j ∈ {1, 2, · · · , k}. It is clear that Vi ∈ τ

for each i ∈ {1, 2, · · · ,m}. Then by Proposition 3.23(1), we have

F ∈ ⟨V1, · · · , Vm⟩ ∩ Fn(X) ⊂ ⟨U1, · · · , Uk⟩ ∩ Fn(X).

Let f
y
∈ V1 and Efy

= {f
y
} ∪

(⋃m
i=1 eixi

)
. Then by Result 2.20(1), Efy

∈ τ c.

Moreover, Efy
∈ ⟨V1, · · · , Vm⟩∩Fn(X). Thus Efy

∈ U . So Efy
⊂ U. Hence e1x1

, f
y
∈

V1 ⊂ U. Therefore U =
⋃
U ∈ τ.
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(3) The proof follows from (2). □

Corollary 3.27. Let (X, τ,E) be a soft T1-space and e ∈ E.
(1) If U is an open set in the subspace Ke(X), then

⋃
U ∈ τe ,

(3) If U is an open set in the subspace Fn,e(X), then
⋃

U ∈ τe ,
(3) If U is an open set in the subspace Fe(X), then

⋃
U ∈ τ

e
.

Proposition 3.28. (X, τ,E) is a soft topological space.
(1) If X is soft T1, then SF(X) is dense in 2X

E
.

(2) If X is soft T2, then SFn(X) is closed in 2X
E

for each n ∈ N.

Proof. (1) Suppose X is soft T1. Then clearly, cl(SF(X)) ⊂ 2X
E
. Let F ∈ 2X

E
and

U = ⟨U1, · · · , Un⟩ be any basic open set in 2X
E

such that F ∈ U . Then F ⊂
⋃n

i=1 Ui

and F ∩ Ui ̸= ∅E for each i ∈ {1, · · · , n}. Let eixi
∈ F ∩ Ui for each i ∈ {1, · · · , n}

and G =
⋃n

i=1 eixi
. Then G ∈ τ c, G ⊂

⋃n
i=1 Ui and G ∩ Ui ̸= ∅E for each i ∈

{1, · · · , n}. Thus G ∈ U ∩ SF(X). So F ∈ cl(SF(X)). Hence 2X
E

⊂ cl(SF(X)), i.e.,

2X
E

= cl(SF(X)). Therefore SF(X) is dense in 2X
E
.

(2) Suppose X is soft T2 and let n ∈ N be fixed. Assume that d(SFn(X)) ̸⊂
SFn(X), say F ∈ d(SFn(X)) \ SFn(X).

Case 1. Suppose F is a soft set over X having exactly n + 1 distinct elements,
say F =

⋃n+1
i=1 eixi

. Then by the hypothesis, for any i ̸= j ∈ {1, · · · , n + 1}, there
are Ui ∈ SN (eixi

) and Uj ∈ SN (ej
xj
) such that Ui ∩ Uj = ∅E . Note that F ⊂⋃n+1

i=1 Ui and F ∩ Ui ̸= ∅E for each i ∈ {1, · · · , n + 1}. Thus F ∈ ⟨U1, · · · , Un+1⟩ .
So ⟨U1, · · · , Un+1⟩ ∩ SFn(X) ̸= ∅. But ⟨U1, · · · , Un+1⟩ ∩ SFn(X) = ∅. This is a
contradiction.

Case 2. Suppose F is a soft set over X containing more than n + 1 elements,
say V = X \

⋃n+1
i=1 eixi

. Since X is soft T1,
⋃n+1

i=1 eixi
∈ τ c. Then V ∈ τ . Now let

{Ui} be the collection of soft open neighborhoods of eixi
such as Case 1. Then F ∈

⟨U1, · · · , Un+1, V ⟩ . Thus ⟨U1, · · · , Un+1, V ⟩∩SFn(X) ̸= ∅. But ⟨U1, · · · , Un+1, V ⟩∩
SFn(X) = ∅. This is a contradiction. So, in either case, SFn(X) is closed in 2X

E
. □

Corollary 3.29 (See Lemma 2.4, [51]). Let (X, τ,E) be a soft topological space.
(1) If X is soft T1, then Fe(X) is dense in 2X

e
for each e ∈ E.

(2) If X is soft T2, then Fn,e(X) is closed in 2X
e

for each n ∈ N and each e ∈ E.

Definition 3.30 ([22]). Let (X, τ,E) be a soft topological space, Ψ a family of soft
sets over X and A ∈ SSE(X). Then Ψ is called a:

(i) cover of A, if A ⊂
⋃
Ψ,

(ii) soft open cover of A, if it is a cover of A and Ψ ⊂ τ .
If Ψ is a cover of A and Ω ⊂ Ψ is a cover of A, then Ω is called a subcover of Ψ.

Definition 3.31 ([22]). Let (X, τ,E) be a soft topological space and Ψ a family of
soft sets over X. Then

(i) we say that Ψ has the finite intersection property, if
⋂

Ω ̸= ∅E for each finite
Ω ⊂ Ψ,

(ii) X is said to be compact, if each soft open cover of XE has a finite subcover.

141



Baek et al./Ann. Fuzzy Math. Inform. 28 (2024), No. 2, 129–153

Result 3.32 (Theorem 7.4, [22]). A soft topological space is compact if and only if⋂
Ψ ̸= ∅E for each family Ψ of soft closed sets over X with the finite intersection

property.

Proposition 3.33. (1) If (X, τ,E) is a soft regular space, then
⋃

B ∈ 2X
E

for each
B ∈ SK(X).

(2) If (X, τ,E) is a soft topological space, then
⋃
B ∈ SK(X) for each B ∈ SK(X).

Proof. (1) Suppose X is a soft regular space and let B ∈ SK(2X
E
). Let A =

⋃
B,

e
x
∈ Scl(A) and N ∈ τ c with e

x
∈ N. Then by Lemma 3.15,

{F ∈ 2X
E

: F ∩N ̸= ∅E} ∈ T c
v .

Thus B
⋂
{F ∈ 2X

E
: F ∩N ̸= ∅E} is a closed subcollection of B and has the finite

intersection property. Since B is compact in 2X
E
, there is D ⊂ B such that D ̸= ∅.

Since X is a soft regular space, e
x
∈ B for each B ∈ D. Since D =

⋃
D ⊂ A, e

x
∈ A.

So Scl(A) ⊂ A, i.e., Scl(A) = A. Hence
⋃
B ∈ 2X

E
.

(2) Suppose X is a soft topological space and let B ∈ SK(SK(X)). Let A =
⋃

B
and U be a collection of soft open sets which covers A. Now let F ∈ B. Since
B ∈ SK(SK(X)), F is a compact subset of XE . Since F ⊂ A and U is a soft
open cover of A, U is a soft open cover of F . Then there is a finite subcol-
lection {UF,1, UF,2 · · · , UF,n} of U which covers F and UF,i ∩ F ̸= ∅E for each
i ∈ {1, 2, · · · , n}. Thus UF = ⟨UF,1, UF,2 · · · , UF,n⟩ ∈ Tv and F ∈ UF . So {UF }F∈B
is an open cover of B. On the other hand, since B is compact in SK(X), there is a
finite subcollection {F1, F2, · · · , Fm} of B such that {UF1 , UF2 , · · · , UFm} is a cover
of B. Hence {UFi,j}i=1,2,··· ,m;j=1,2,··· ,n is a finite subcollection of U which covers A.
Therefore

⋃
B ∈ SK(X). □

We obtain the following results from Result 2.23 and Theorem 2.5 in [51].

Corollary 3.34 (See Theorem 2.5, [51]). (1) If (X, τ,E) is a soft regular space,
then

⋃
B ∈ 2X

e
for each B ∈ Ke(X) for each e ∈ E.

(2) If (X, τ,E) is a soft topological space, then
⋃

B ∈ Ke(X) for each B ∈
Ke(Ke(X)) for each e ∈ E.

Definition 3.35 ([39]). Let (X, τ,E) be a soft topological space and A, B ∈
SSE(X). Then A and B are said to be soft separated in X, if A ∩ Scl(B) = ∅E =
Scl(A) ∩B.

Definition 3.36 ([39]). Let (X, τ,E) be a soft topological space and A, B ∈
SSE(X). Then

(i) A and B are said to be a soft division or a soft separation of X, if A and B
are soft separated in X such that A ∪B = XE , A ̸= ∅E and B ̸= ∅E ,

(ii) X is said to be soft disconnected, if it has a soft division,
(iii) X is said to be soft connected, if it has no a soft division, i.e., it cannot be

expressed as the union of two nonempy disjoint soft open sets.

Result 3.37 (Theorem 4.5, [39]). Let (X, τ,E) be a soft topological space. Then the
followings are equivalent:

(1) X has a soft division.
(2) there are A, B ∈ τ c such that A ∪B = XE and A ∩B = ∅E ,
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(3) there are A, B ∈ τ such that A ∪B = XE and A ∩B = ∅E ,
(4) X has a proper soft open and soft closed set in X.

Result 3.38 (Theorem 4.6, [39]). Let (X, τ,E) be a soft topological space. Then the
followings are equivalent:

(1) X is soft connected,
(2) there are not A, B ∈ τ c such that A ∪B = XE and A ∩B = ∅E ,
(3) there are not A, B ∈ τ such that A ∪B = XE and A ∩B = ∅E ,
(4) X has at most two soft open and soft closed set in X, i.e., ∅E and XE.

Proposition 3.39. Let (X, τ,E) be a soft topological space. If B is a connected sub-
set of 2X

E
containing at least one soft connected element, then

⋃
B is soft connected

in X.

Proof. Suppose B is a connected subset of 2X
E

containing at least one soft connected
element, say D ∈ B and let A =

⋃
B. Assume that A is not soft connected, i.e., A

has a soft division. Then there are A1, A2 ∈ SSE(X) such that A1 ̸= ∅E , A2 ̸= ∅E ,
A = A1 ∪A2 and Scl(A1) ∪A2 = ∅E = A1 ∪ Scl(A2). Suppose D ⊂ A1 and let

A1 = {F ∈ B : F ⊂ A1}, A2 = {F ∈ B : F ∩A2 ̸= ∅E}.
Then clearly, D ∈ A1 and A ∈ A2. Thus A1 ̸= ∅ and A2 ̸= ∅. Moreover,
B = A1 ∪A2. By Lemma 3.15, {F ∈ B : F ⊂ Scl(A1)} and {F ∈ B : F ∩A2 ̸= ∅E}
are closed in B such that {F ∈ B : F ⊂ Scl(A1)} ⊃ A1 and {F ∈ B : F∩A2 ̸= ∅E} ⊃
A2. So {F ∈ B : F ⊂ Scl(A1)} = cl(A1) and {F ∈ B : F ∩A2 ̸= ∅E} = cl(A2). Now
assume that cl(A1) ∩ A2 ̸= ∅, say F ∈ cl(A1) ∩ A2. Then clearly, F ⊂ Scl(A1) and
F ∩A2 ̸= ∅E . Since Scl(A1) ∪A2 = ∅E , this is impossible. Thus cl(A1) ∩A2 = ∅.
Similarly, A1 ∩ cl(A2) = ∅. So B is not connected. This is a contradiction. Hence⋃
B is soft connected in X. □

Corollary 3.40. Let (X, τ,E) be a soft topological space. If B is a connected subset
of SFn(X) [resp. SF(X) and SK(X)] containing at least one soft connected ele-
ment, then

⋃
B is soft connected in X. In particular, if B is a connected subset of

SCK(X) or SC(X), then
⋃
B is soft connected in X.

Proof. The proof follows from Proposition 3.39. □

Corollary 3.41 (See Theorem 2.8, [51]). Let (X, τ,E) be a soft topological space and
e ∈ E. If B is a connected subset of 2X

e
containing at least one connected element,

then
⋃
B is connected in (X, τ

e
).

Corollary 3.42. Let (X, τ,E) be a soft topological space and e ∈ E. If B is a con-
nected subset of Fn,e(X) [resp. Fe(X) and Ke(X)] containing at least one connected
element, then

⋃
B is connected in X. In particular, if B is a connected subset of

CKe
(X) or Ce(X), then

⋃
B is connected in X.

Proof. The proof follows from Corollary 3.40. □

4. Separation axioms in 2X
E

In this section, we discuss some relationships between soft separation axioms in
a soft topological space X and separation axioms in a soft hyperspace 2X

E
.
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Proposition 4.1. Let (X, τ,E) be a soft topological space. Then
(1) 2X

E
is always T0 (See Proposition 3.4(1), [44]),

(2) if X is a soft T1-space, then 2X
E

is T1 but the converse is not true.

Proof. (1) Let A, B ∈ 2X
E

with A ̸= B, i.e., A \ B ̸= ∅E . Let x(e) ∈ (A \ B)(e) =
A(e) \ B(e) for each e ∈ E and U = Bc. Then x ∈ A \ B and U ∈ τ. Moreover,
A ⊂ XE ∪ U, A ∩ XE ̸= ∅E , A ∩ U ̸= ∅E but B ∩ U = ∅E . Thus A ∈ ⟨XE , U⟩,
B /∈ ⟨XE , U⟩ and ⟨XE , U⟩ ∈ Tv. So 2X

E
is T0.

(2) Suppose X is a soft T1-space and let A, B ∈ 2X
E

such that B \ A ̸= ∅E , say
ex ∈ B \ A. Then B ∈ ⟨XE , A

c⟩ , A /∈ ⟨XE , A
c⟩ and ⟨XE , A

c⟩ ∈ Tv. On the other
hand, by Result 2.19(1), ex ∈ τ c. Thus ec

x
∈ τ . Moreover, A ∈

〈
ec
x

〉
, B /∈

〈
ec
x

〉
and〈

ec
x

〉
∈ Tv. So 2X

E
is T1.

See Example 4.3 for the converse. □

Corollary 4.2 (See Theorems 4.9.1 and 4.9.2, [51]). Let (X, τ,E) be a soft topolog-
ical space and e ∈ E. Then

(1) 2X
e

is always T0,

(2) if X is a soft T1-space, then 2X
e

is T1 but the converse is not true.

Example 4.3. Let X be a finite set containing more than two points and τ be the
soft indiscrete topology on X. Then clearly, (X, τ,E) is not a soft T1-space. On the
other hand, 2X

E
= {XE}. Thus 2XE is T1.

Result 4.4 (Theorem 3.2, [36]). Let (X, τ,E) be a soft topological space. If X is T2,
A and B are soft compact subsets of X and A ∩ B = ∅E, then there are U, V ∈ τ
such that A ⊂ U , B ⊂ V and U ∩ V = ∅E.

Lemma 4.5. Let (X, τ,E) be a soft topological space. If X is soft T1, then X is
homeomorphic to the subspace SF1(X).

Proof. Let f : X → 2X
E

be the natural mapping defined by f(x) = {x} for each

x ∈ X. Let e
x
∈ SPE(X). Since X is T1, ex

∈ τ c. Then {e
x
} ∈ 2X

E
. Let V be

any neighborhood of {e
x
} in 2X

E
. Then V has the form ⟨V ⟩, where V ∈ τ. Thus

f(V ) = {V } ⊂ ⟨V ⟩. So f is continuous. Now let U ∈ τ and {e
x
} ∈ f(U) = {U}.

Since e
x
∈ U ∈ τ , there is Uex

such that e
x
∈ Uex

⊂ U. Then {e
x
} ∈

〈
Uex

〉
= 2

Uex
E

and
⋃

ex∈U 2
Uex
E ⊂ U, i.e.,

⋃
ex∈U 2

Uex
E = U. Since 2

Uex
E is open in 2X

E
,
⋃

ex∈U 2
Uex
E

is open in 2X
E
. Furthermore, f is a homeomorphism between X and the subspace

SF1(X). Thus X is homeomorphic to SF1(X). □

Corollary 4.6. Let (X, τ,E) be a soft topological space and e ∈ E. If X is soft T1,
then (X, τ

e
) is homeomorphic to the subspace F1,e(X).

Proof. The proof is similar to Lemma 4.5. □

Theorem 4.7. Let (X, τ,E) be a soft topological space. Then X is soft T2 if and
only if SK(X) is T2.

Proof. Suppose X is soft T2 and let A, B ∈ SK(X) such that A ̸= B, say B \A ̸=
∅E , i.e., ex ∈ B \ A. Since A ∈ SK(X), A is a soft compact subset of X. Also,
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e
x
/∈ A is a soft compact subset of X. Then by Result 4.4, there are U, V ∈ τ such

that ex ∈ U, A ⊂ V and U ∩ V = ∅E . Thus we have

A ∈ ⟨V ⟩ ∩ SK(X), B ∈ ⟨XE , U⟩ ∩ SK(X)

and

(⟨V ⟩ ∩ SK(X)) ∩ (⟨XE , U⟩ ∩ SK(X)) = ∅.

Moreover, ⟨V ⟩ ∩SK(X) and ⟨XE , U⟩ ∩SK(X) are open in the subspace SK(X). So
SK(X) is T2.

Conversely, suppose SK(X) is T2. Then by Lemma 4.5, X is homeomorphic to
the subspace SF1(X). Since SF1(X) ⊂ SK(X), SF1(X) is T2. Thus X is soft
T2. □

Corollary 4.8 (See Theorem 4.9.8, [51]). Let (X, τ,E) be a soft topological space
and e ∈ E. Then (X, τ

e
) is T2 if and only if Ke(X) is T2.

Proof. Suppose (X, τ
e
) is T2 and let A(e), B(e) ∈ Ke(X) such that A(e) ̸= B(e),

i.e., B(e) \ A(e) ̸= ∅, say x ∈ B(e) \ A(e). Since A(e) is compact set in (X, τ
e
)

and x /∈ A(e), there are U(e), V (e) ∈ τ
e
such that x ∈ U(e), A(e) ⊂ V (e) and

U(e) ∩ V (e) = ∅. Then we have

A(e) ∈ ⟨V (e)⟩ = ⟨V (e)⟩ ∩ Ke(X), B ∈ ⟨X,U(e)⟩ = ⟨X,U(e)⟩ ∩ Ke(X)

and

(⟨V (e)⟩ ∩ Ke(X)) ∩ (⟨X,U(e)⟩ ∩ Ke(X)) = ∅.

Thus Ke(X) is T2.
Conversely, suppose Ke(X) is T2. Then by Corollary 4.6, X is homeomorphic

to F1,e(X). Since F1,e(X) ⊂ Ke(X), by the hypothesis, F1,e(X) is T2. Since the
property of T2 is a topological property, (X, τ

e
) is T2. □

Theorem 4.9. Let (X, τ,E) be a soft topological space. Then the following state-
ments are equivalent:

(1) X is soft T2,
(2) K(X) is T2,
(3) Fn(X) is T2,
(4) F(X) is T2,
(5) CK(X) is T2.

Proof. (1)⇔(2) The proof follows from Theorem 4.7.
The proofs of (2)⇒(3), (2)⇒(4) and (2)⇒(5) are straightforward.
(5)⇔(1) Suppose CK(X) is T2. Then clearly, F1(X) ⊂ CK(X). By Lemma 4.5,

F1(X) is homeomorphic to X. Thus by the hypothesis, X is soft T2. □

Corollary 4.10. Let (X, τ,E) be a soft topological space and e ∈ E. Then the
following statements are equivalent:

(1) (X, τ
e
) is T2,

(2) Ke(X) is T2,
(3) Fn,e(X) is T2,
(4) Fe(X) is T2,
(5) CKe(X) is T2.
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Proposition 4.11. Let (X, τ,E) be a soft topological space.
(1) If X is soft regular, then 2X

E
is T2.

(2) If X is soft T1 and 2X
E

is T2, then X is soft regular.

Proof. (1) Suppose X is soft regular and let A, B ∈ 2X
E

such that A ̸= B, say
ex ∈ B \A. Then clearly, A ∈ τ c such that ex /∈ A. Since X is soft regular, there are
U, V ∈ τ such that A ⊂ U, e

x
∈ V and U ∩ V = ∅E . Thus A ∈ ⟨U⟩ , B ∈ ⟨XE , V ⟩

and ⟨U⟩ ∩ ⟨XE , V ⟩ = ∅. So 2X
E

is T2.

(2) Suppose X is soft T1 and 2X
E

is T2, let F ∈ τ c and e
x
∈ SPE(X) such that

ex /∈ F. Since X is soft T1, F ∪ ex ∈ τ c. Then F, F ∪ ex ∈ 2X
E

such that F ̸= F ∪ ex .

Since 2X
E

is T2, there are basic open sets U = ⟨U1 · · · , Un⟩ , V = ⟨V1 · · · , Vm⟩ in 2X
E

such that

(4.1) F ∈ U , F ∪ ex ∈ V, U ∩ V = ∅.

Let U =
⋃n

i=1 Ui, V =
⋃m

j=1 Vj and assume that if ex ∈ Vj , then U ∩ V ∩ Vj ̸= ∅E ,

say ej
xj

∈ U ∩ V ∩ Vj for each j ∈ {1, · · · ,m}. Let K =
⋃m

j=1 ejxj
and A = F ∪K.

Then we can easily see that

A ⊂ U, A ∩ Ui ̸= ∅E and A ⊂ V, A ∩ Vj ̸= ∅E

for each i ∈ {1, · · · , n} and each j ∈ {1, · · · ,m}. Thus A ∈ U ∩ V. This is a
contradiction. So there is j ∈ {1, · · · ,m} such that ex ∈ Vj , U ∩ V ∩ Vj = ∅E . By
(4.1), F ⊂ U ∩ V and U ∩ V ∈ τ. Hence X is soft regular. □

Remark 4.12. If (X, τ,E) is soft T1 but not soft regular, then Proposition 4.11 (1)
may be not true in general (See Example 4.13).

Example 4.13. Let (X, τ,E) be a soft T1-space which is not soft regular. Then
there are e

x
∈ SPE(X) and A ∈ τ c with e

x
/∈ A such that e

x
and A cannot be

separated by soft open sets in X. It is obvious that A, A ∪ {ex} ∈ 2X
E

such that
A ̸= A ∪ {ex}. Let U = ⟨U1, · · · , Un⟩ , V = ⟨V1, · · · , Vm⟩ ∈ Tv such that A ∈ U
and A ∪ {e

x
} ∈ V. Let U =

⋃n
i=1 Ui and W =

⋂m
j=1{Vj : e

x
∈ Vj}. Then clearly,

U, W ∈ τ , ex ∈ W and A ⊂ U. Since ex and A cannot be separated, there fy ∈ W∩U.
Let B = A ∪ {f

y
}. Then clearly, B ∈ U ∩ V. Thus 2X

E
is not T2.

Corollary 4.14 (See Theorems 17.IV.3 and 17.IV.4, [49]; Theorem 4.9.3, [51]). Let
(X, τ,E) be a soft topological space and e ∈ E.

(1) If X is soft regular, then 2X
e

is T2.

(2) If X is soft T1 and 2X
e

is T2, then (X, τ
e
) is regular.

Question 4.15. (1) Let (X, τ,E) be a soft topological space. If SC(X) is T2, then
is X soft regular?

(2) Let (X, τ,E) be a soft T1-space. Then X is soft regular if and only if K(X)
is regular?

Theorem 4.16 (See Theorem 4.9.10, [51]). Let (X, τ,E) be a soft T1-space and
e ∈ E. Then (X, τe) is regular if and only if Ke(X) is regular.

Proof. Suppose Ke(X) is regular. Then the subspace F1,e(X) is regular. By Corol-
lary 4.6, (X, τ

e
) and F1,e(X) are homeomorphic. Thus (X, τ

e
) is regular.
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Conversely, suppose (X, τ
e
) is regular. LetA(e) ∈ Ke(X), A(e) ∈ ⟨U1(e), · · · , Un(e)⟩

∩ Ke(X) and U =
⋃n

i=1 Ui(e), where ⟨U1(e), · · · , Un(e)⟩ ∈ Tv,e. Since A(e) ⊂
U(e), A(e) is compact and (X, τe) is regular, by Theorem 5.10 in [52], there is
V (e) ∈ τ

e
such that A(e) ⊂ V (e) ⊂ cl(V (e)) ⊂ U(e). Let xi ∈ Ui(e) ∩ V (e) for

each i ∈ {1, 2, · · · , n}. Since (X, τ
e
) is regular, by Theorem 5.11 in [50], there is

Vi(e) ∈ τ
e
such that xi ∈ Vi(e) ⊂ cl(Vi(e)) ⊂ Ui(e) for each i ∈ {1, 2, · · · , n}. Then

A(e) ∈ ⟨V1(e), · · · , Vn(e), V ⟩ ∩ Ke(X), where ⟨V1(e), · · · , Vn(e), V (e)⟩ ∈ Tv,e. Since
(X, τ,E) is a soft T1-space, by Corollary 3.24(2), we have

cl(⟨V1(e), · · · , Vn(e), V (e)⟩) = ⟨cl(V1(e)), · · · , cl(Vn(e)), cl(V (e))⟩ ⊂ ⟨U1(e), · · · , Un(e)⟩ .

Thus Ke(X) is regular. □

Theorem 4.17. Let (X, τ,E) be a soft T1-space and e ∈ E. Then The followings
are equivalent:

(1) (X, τ
e
) is regular,

(2) Ke(X) is regular,
(3) Fe(X) is regular,
(4) Fn,e(X) is regular,
(5) CKe

(X) is regular.

Proposition 4.18. If (X, τ,E) is a soft T3-space, then the sets

{(K,L) ∈ 2X
E
× 2X

E
: K ⊂ L} and {(e

x
,K) ∈ X × 2X

E
: e

x
∈ K}

are closed in 2X
E
× 2X

E
and X × 2X

E
, respectively.

Proof. Suppose X is soft T3 and let U = {(K,L) ∈ 2X
E
×2X

E
: K ⊂ L}. It is sufficient

to prove that Uc is open in 2X
E
× 2X

E
. It is clear that

Uc = {(K,L) ∈ 2X
E
× 2X

E
: K ̸⊂ L}.

Since X is soft regular and K ̸⊂ L, there is V ∈ τ such that K ∩ V ̸= ∅E and
L ⊂ Scl(V )c. Then we have

Uc =
⋃
V ∈τ

[
{K ∈ 2X

E
: K ∩ V ̸= ∅E} × {L ∈ 2X

E
: L ⊂ Scl(V )c}

]
.

Since V, Scl(V )c ∈ τ, by Theorem 3.19, we get

{K ∈ 2X
E

: K ∩ V ̸= ∅E}, {L ∈ 2X
E

: L ⊂ Scl(V )c} ∈ TSv.

Thus Uc is open in 2X
E
× 2X

E
. So U is closed in 2X

E
× 2X

E
.

The proof of the second part is similar to the one of the first part. □

Corollary 4.19 (See Theorem 17.IV.1, [49]). Let (X, τ,E) be a soft T3-space and
e ∈ E. Then the sets {(K(e), L(e)) ∈ 2X

e
× 2X

e
: K, L ∈ 2X

E
, K ⊂ L} and

{(x,K(e)) ∈ X × 2X
e

: e
x
∈ XE , K ∈ 2X

E
, e

x
∈ K}

are closed in 2X
e
× 2X

e
and (X, τ

e
)× (2X

e
, Tv,e), respectively.

Proposition 4.20. Let (X, τ,E) be a soft T1-space. If the set {(e
x
,K) ∈ X × 2X

E
:

e
x
∈ K} is closed in X × 2X

E
, then X is soft regular.
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Proof. Suppose {(e
x
,K) ∈ X×2X

E
: e

x
∈ K} is closed in X×2X

E
, let U = {(e

x
,K) ∈

X×2X
E

: e
x
∈ K} and (e

x
,K) ∈ Uc. Since Uc = {(e

x
,K) ∈ X×2X

E
: e

x
̸∈ K} ∈ TSv,

there are U, U1, · · · , Un ∈ τ such that

(ex ,K) ∈ U × ⟨U1, · · · , Un⟩ ⊂ U .

Then e
x
∈ U and K ∈ ⟨U1, · · · , Un⟩ . Thus K ⊂

⋃n
i=1 Ui = V and K ∩ Ui ̸= ∅E for

each i ∈ {1, · · · , n}. It is obvious that V ∈ τ.
Assume that U ∩ V ̸= ∅E , say e

x
∈ U ∩ V and let F = K ∪ e

x
. Since X is T1,

ex ∈ τ c. Then F ∈ τ c. Moreover, ex ∈ U , F ⊂ U and F ∩Ui for each i ∈ {1, · · · , n}.
Thus (ex , F ) ∈ Uc. So ex /∈ F. This is a contradiction. Hence U∩V = ∅E . Therefore
X is soft regular. □

Corollary 4.21 (See Theorem 17.IV.2, [49]). Let (X, τ,E) be a soft T1-space and
e ∈ E. Then the set

{(x,K(e)) ∈ X × 2X
e

: e
x
∈ XE , K ∈ 2X

E
, e

x
∈ K}

is closed in (X, τ
e
)× (2X

E
, Tv,e).

Theorem 4.22. If (X, τ,E) is a soft T1-space, then followings are equivalent:
(1) X is soft regular,
(2) {(K,L) ∈ 2X

E
× 2X

E
: K ⊂ L} is closed in 2X

E
× 2X

E
,

(3) {(e
x
,K) ∈ X × 2X

E
: e

x
∈ K} is closed in X × 2X

E
,

(4) 2X
E

is T2.

Proof. The proof follows from Propositions 4.18 and 4.20 □

Theorem 4.23 (See Corollary 17.IV.5, [49]). Let (X, τ,E) be a soft T3-space and
e ∈ E. Then followings are equivalent:

(1) (X, τ
e
) is regular,

(2) {(K(e), L(e)) ∈ 2X
e
× 2X

E
: K, L ∈ 2X

E
, K ⊂ L} is closed in 2X

2
× 2X

e
,

(3) {(x,K(e)) ∈ X × 2X
e

: e
x
∈ XE , K ∈ 2X

E
, e

x
∈ K} is closed in (X, τ

e
) ×

(2X
e
, Tv,e),
(4) 2X

e
is T2.

Proposition 4.24. If (X, τ,E) is a soft normal space, then SC(X) is closed in 2X
E
.

Proof. Suppose X is a soft normal space and assume that F ∈ 2X
E

such that F is a

limit point of SC(X) and F ∈ 2X
E
\SC(X). Let F ∈ ⟨U1, · · · , Un⟩ and U =

⋃n
i=1 Ui.

Since F is not soft disconnected and soft closed in X, there are F1, F2 ∈ τ c such that
F = F1 ∪ F2 and F1 ∩ F2 = ∅E . Since X is soft normal, there are W1, W2 ∈ τ such
that F1 ⊂ W1, F2 ⊂ W2, W1 ∪W2 ⊂ U and W1 ∩W2 = ∅E . Let {U1

i1
, · · · , U1

ik
} and

{U2
i1
, · · · , U2

ip
} be the collection of all Ui such that Ui ∩F1 ̸= ∅E and Ui ∩F2 ̸= ∅E ,

respectively for each i ∈ {1, · · · , n}. Now let V 1
j = W1 ∩ U1

ij
for each j ∈ {1, · · · , k}

and V 2
l = W2 ∩ U2

il
for each l ∈ {1, · · · , p}. Then we have

F1 ⊂
k⋃

j=1

V 1
j = V 1, F2 ⊂

p⋃
l=1

V p
j = V 2 and V 1 ∩ V 1 = ∅E .
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We can easily prove that F ∈
〈
V 1
1 , · · · , V 1

k , V
2
1 , · · · , V 2

p

〉
⊂ ⟨U1, · · · , Un⟩ . Since F is a

limit point of SC(X), there is C ∈ SC(X) such that C ∈
〈
V 1
1 , · · · , V 1

k , V
2
1 , · · · , V 2

p

〉
.

Thus C ⊂ V 1 ∪ V 2 and C ∩ V i ̸= ∅E for each i ∈ {1, 2}. So C is soft disconnected.
Since C ∈ SC(X), C is soft connected. This is a contradiction. Hence F ∈ SC(X).
Therefore SC(X) is closed in 2X

E
. □

Corollary 4.25. Let (X, τ,E) be a soft topological space and e ∈ E. If (X, τ
e
) is

normal, then Ce(X) is closed in 2X
e
.

Proof. The proof is similar to Proposition 4.24. □

Proposition 4.26. If (X, τ,E) is a soft normal space, then the set

{(K,L) ∈ 2X
E
× 2X

E
: K ∩ L = ∅E}

is open in 2X
E
× 2X

E
.

Proof. Suppose X is soft normal and let K, L ∈ τ c such that K ∩ L = ∅E . Then
there are U, V ∈ τ such that K ⊂ U, L ⊂ V, U ∩ V = ∅E . Thus we have

{(K,L) ∈ 2X
E
× 2X

E
: K ∩ L = ∅E}

=
⋃

U, V ∈τ, U∩V=∅E
{(K,L) ∈ 2X

E
× 2X

E
: K ⊂ U, L ⊂ V }

=
⋃

U, V ∈τ, U∩V=∅E

(
2U
E
× 2V

E

)
.

Since U, V ∈ τ , by Theorem 3.19, 2U
E
, 2V

E
∈ TSv. Thus 2

U
E
× 2V

E
is open in 2X

E
× 2X

E
.

So the result holds. □

Corollary 4.27 (See Theorem 17.V.1, [49]). Let (X, τ,E) be a soft topological space
and e ∈ E. If (X, τe) is normal, then the set

{(K(e), L(e)) ∈ 2X
e
× 2X

e
: K, L ∈ 2X

E
, K ∩ L = ∅E}

is open in 2X
e
× 2X

e
.

Proposition 4.28. If (X, τ,E) is soft T1 and {(K,L) ∈ 2X
E

× 2X
E

: K ∩ L = ∅E}
is open in 2X

E
× 2X

E
, then X is soft normal.

Proof. Suppose X is soft T1 and {(K,L) ∈ 2X
E

× 2X
E

: K ∩ L = ∅E} is open in

2X
E
×2X

E
. Then there are basic open sets U = ⟨U1, · · · , Un⟩ , V = ⟨V1, · · · , Vm⟩ in 2X

E

such that K ∈ U , L ∈ V and (K,L) ∈ U × V ⇒ K ∩ L = ∅E . Thus we get

(4.2) K ⊂
n⋃

i=1

Ui = U, K ∩ Ui ̸= ∅E (i ≤ n),

(4.3) L ⊂
m⋃
j=1

Vj = V, L ∩ Vj ̸= ∅E (j ≤ m),

(4.4) [(K ⊂ U)(K ∩ Ui ̸= ∅E)(L ⊂ V )(L ∩ Vj ̸= ∅E)] ⇒ K ∩ L = ∅E .

Assume that U ∩ V ̸= ∅E , say e
x
∈ U ∩ V. Let us take eiai

∈ K ∩ Ui for i ≤ n and

ej
bj

∈ L∩ Vj for j ≤ m. Let F = e
x
∪
⋃n

i=1 eiai
and G = e

x
∪
⋃m

j=1 ejbj
. Since X is

T1, F, G ∈ τ c. Moreover, [(F ⊂ U)(F ∩Ui ̸= ∅E)(G ⊂ V )(G∩ Vj ̸= ∅E)]. Then by
(4.4), F ∩G = ∅E . But ex ∈ F ∩G. This is a contradiction. Thus U ∩ V ̸= ∅E . So
X is soft regular. □
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Corollary 4.29 (See Theorem 17.V.2, [49]). Let (X, τ,E) be soft T1 and e ∈ E.
If {(K(e), L(e)) ∈ 2X

e
× 2X

e
: K, L ∈ 2X

E
, K ∩ L = ∅E} is open in 2X

e
× 2X

e
, then

(X, τ
e
) is normal.

Proposition 4.30. If (X, τ,E) is soft normal, then 2X
E

is regular.

Proof. Suppose X is soft normal and let A be any basic open set in 2X
E

with F ∈ A,

i.e., F /∈ Ac, where F ∈ 2X
E

and A = ⟨A1, · · · , An⟩. To prove that 2X
E

is regular, let
us show that the followings hold: there are U , V ∈ TSv such that

(4.5) F ∈ U , Ac ⊂ V, U ∩ V = ∅.

Since F ∈ A, we have

(4.6) F ⊂
n⋃

i=1

Ai = A,

(4.7) F ∩Ai ̸= ∅E each i ∈ {1, · · · , n}.
Since Ai ∈ τ for each i ∈ {1, · · · , n}, A ∈ τ. Then Ac ∈ τ c. Moreover, by (4.6),
F ∩Ac = ∅E . Since X is soft normal, there are U, V ∈ τ such that

(4.8) F ⊂ U, Ac ⊂ V, U ∩ V = ∅E .

According to (4.7), put eixi
∈ F ∩Ai and Ui, Vi ∈ τ with Ui ⊂ U, Vi ⊂ V such that

(4.9) eixi
∈ Ui, Ac

i ⊂ Vi, Ui ∩ Vi = ∅E

for each i ∈ {1, · · · , n}, where U =
⋃n

i=1 Ui and V =
⋃n

i=1 Vi.
Now let us define U , V in (4.5) as follows:

U = ⟨U1, · · · , Un⟩ , V = {G ∈ 2X
E

: either G ∩ V ̸= ∅E or G ⊂ Vi for some i ≤ n}.
By the first parts of (4.8) and (4.9), F ∈ U . Also, by the third parts of (4.8) and
(4.9), U ∩ V = ∅. Then the first and third parts of (4.5) hold. Let F ∈ Ac, i.e.,
F /∈ A. Then either F ̸⊂ A or F ∩ Ai = ∅E for some i ≤ n. Thus by the second
parts of (4.8) and (4.9), either F ∩ V ̸= ∅E or F ⊂ Vi for some i ≤ n. So F ∈ V,
i.e., Ac ⊂ V. Hence the second part of (4.5) holds. Therefore 2X

E
is regular. □

Corollary 4.31 (See Theorem 17.V.3, [49]). Let (X, τ,E) be a soft topological space
and e ∈ E. If (X, τe) is normal, then 2X

e
is regular.

Proposition 4.32. If (X, τ,E) is soft T1 and 2X
E

is regular, then X is soft normal.

Proof. Suppose X is soft T1 and 2X
E

is regular and let A, B ∈ τ c such that A ∩
B = ∅E . In order to prove that X is soft normal, we will show that the following
conditions hold:

(4.10) there is U ∈ τ such that A ⊂ U ⊂ Scl(U) ⊂ Bc, i.e., Scl(U) ∩B = ∅E .

Since A ∩ B = ∅E , A ⊂ Bc. Then A ∈ 2B
c

E
. Since X is soft T1 and Bc ∈ τ,

by Theorem 3.19, 2B
c

E
∈ TSv. Since 2X

E
is regular, there is a basic open set U =

⟨U1, · · · , Un⟩ in 2X
E

such that

(4.11) A ∈ U ⊂ cl(U) ⊂ 2B
c

E
.
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Thus A ⊂ U =
⋃n

i=1 Ui and A∩Ui ̸= ∅E for each i ∈ {1, · · · , n}. Since X is soft T1,

by Proposition 3.23(2), cl(U) = ⟨Scl(U1), · · · , Scl(Un)⟩ ⊂ 2B
c

E
. Since ∅E ̸= Ui ⊂ U

for each i ∈ {1, · · · , n}, Scl(U)∩Scl(Ui) = Scl(Ui) ̸= ∅E for each i ∈ {1, · · · , n}. So
Scl(U) ∈ ⟨Scl(U1), · · · , Scl(Un)⟩ = cl(U). By (4.10), Scl(U) ∈ 2B

c

E
, i.e., Scl(U) ⊂

Bc. Hence (4.11) holds. Therefore X is soft normal. □

Corollary 4.33 (See Theorem 17.V.4, [49]). Let (X, τ,E) be soft T1 and e ∈ E. If
2X

e
is regular, then (X, τ

e
) is normal.

We have the following consequence from Propositions 4.26, 4.28, 4.30 and 4.32.

Theorem 4.34. Let (X, τ,E) be soft T1. Then the followings are equivalent:
(1) X is soft normal,
(2) {(K,L) ∈ 2X

E
× 2X

E
: K ∩ L = ∅E} is open in 2X

E
× 2X

E
,

(3) 2X
E

is regular.

Corollary 4.35 (See Corollary 17.V.5, [49]). Let (X, τ,E) be soft T1 and e ∈ E.
the followings are equivalent:

(1) (X, τ
e
) is normal,

(2) {(K(e), L(e)) ∈ 2X
e
× 2X

e
: K, L ∈ 2X

E
, K ∩ L = ∅E} is open in 2X

e
× 2X

e
,

(3) 2X
e

is regular.

5. Conclusions

We obtained various basic properties in a soft hyperspace, for examples, Propo-
sitions 3.23, 3.28, 3.33 and 3.39. Also, we studied some relationships between sep-
aration axioms in a soft topological space and its soft hyperspace. In particular, in
Theorem 4.7, it has been proven that X is soft T2 and SK(X) is T2 are equivalent.
In Proposition 4.11, sufficient conditions were obtained for 2X

E
to be T2 and X to

be soft regular, respectively. Also, we had a sufficient condition for SC(X) to be
closed in 2X

E
(See Proposition 4.24). We got two sufficient conditions for X to be

soft normal (See Propositions 4.28 and 4.32). Furthermore, we obtained a sufficient
condition for 2X

E
to be regular (See Proposition 4.30). Results related to classical

hyperspace were treated as Corollary whenever possible.
In the future, we intend to investigate compactness, local compactness, separa-

bility, first and second countability, connectedness and local connectedness in a soft
hyperspace.
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