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Abstract. In this paper, we introduce “primal ideal” to generate new
closure operators and, thus, new spaces named primal ideal approxima-
tion spaces. Some topological notions such as accumulation points, lower
separation axioms, and connectedness in these primal ideal approximation
spaces are defined and studied. Some examples are given to confirm the
implications. Improving the accuracy measure and reducing the boundary
region can be achieved easily by utilizing primal ideal in the construction
of the approximations as it plays an important role in removing the vague-
ness of concept. The emergence of primal ideals leads to increase the lower
approximations and decrease the upper approximations. Consequently, it
minimizes the boundary and makes the accuracy higher than the previous
based on ideals. Finally, a real life application induced from an information
system is introduced to demonstrate the importance of this paper.
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1. Introduction

Rough set [1, 2] is a nonstatistical technique to deal with the problems of in-
completeness of knowledge and uncertainty in data. The rationale for this set is
based on the fact that human knowledge is divided into three basic regions: inside,
outside, and boundary. Therefore, the main idea of this set is to concentrate on the
lower and upper approximations that are used to determine the boundary region and
accuracy measure. Approximations in the standard rough set model are based on
equivalence relations, however this requirement is not always true in many practical
problems, and this restriction limits the set’s vast uses.

An ideal is a nonempty collection of sets which is closed under hereditary prop-
erty and the finite additivity [3]. It is a completely new technique to modelling
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vagueness and uncertainty by shrinking the boundary region and boosting the set’s
precision. Novel rough models called ”ideal approximation spaces” have been in-
troduced. In fact, these models enlarge the lower approximation and shrink the
upper approximation of subsets, which means they increase their accuracy values.
Some researchers followed this course of study and addressed some phenomena as
presented in [4, 5, 6, 7]. Moreover, extensions of topology have been applied to
provide new rough paradigms using certain topological structures and concepts like
infra-topology, supra-topology, maximal and minimal neighbourhoods to deal with
rough set notions and address some real-life problems [8, 9]. Moreover, many au-
thors [10, 11] studied some topological notions in ideal approximation spaces such
as closure spaces, separation axioms, continuity, connectedness, etc.

Recently, authors in [12] introduced a new structure called ”primal”. They obtain
not only some fundamental properties related to primal but also some relationships
between topological spaces and primal topological spaces. Moreover, [13, 14, 15]
present types of operators have been defined by using the notion of primal with
deep studies of their various properties.

In this paper, we combine ideal and primal structures to introduce a novel struc-
ture named ”primal ideal”. We introduce the interior and closure in primal ideal ap-
proximation spaces, generating primal ideal approximation topological spaces based
on primal ideals. The relevant properties and results of these spaces are instituted.
Moreover, accumulation points, separation axioms, and connectedness with respect
to these primal ideal approximation spaces are reformulated and compared to the
corresponding definitions given in [16] with examples to show their implications. Fur-
thermore, we show that our primal ideal approximation space defined in Definition
3.12 produce better approximations and higher accuracy values than their counter-
parts ideal approximation spaces introduced in [1, 17, 18, 19, 20]. Finally, a real life
application is provided to demonstrate the significance of adopting primal ideals in
current techniques. In the proposed application, we illustrated that our technique
in Definition 3.12 reduce boundary regions and improve the accuracy measure of
the sets more than approach displayed in [20], which illustrate the importance of
utilizing primal ideals in decision making problems.

2. Preliminaries

A relation R from a universe X to a universe X (a relation on X) is a subset
of X × X. The formula (x, y) ∈ R is abbreviated as xRy and means that x is in
relation R with y. Also, the afterset of x ∈ X is xR = {y : xRy} and the forerset of
x ∈ X is Rx = {y : yRx}.

Definition 2.1 ([18]). Let R be any binary relation on X. Then the set < x > R
is the intersection of all aftersets containing x, i.e.,

< x > R =

{
∩x∈yR(yR) if ∃y : x ∈ yR,

ϕ otherwise.

Also, R < x > is the intersection of all foresets containing x, i.e.,

R < x >=

{
∩x∈yR(Ry) if ∃y : x ∈ Ry,

ϕ otherwise.
38
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Definition 2.2 ([18]). Let R be binary relation on X. For any subset A of X, the
lower approximation LR(A) and the upper approximation UR(A) of A are defined
by:

LR(A) = {x ∈ A :< x > R ⊆ A},(2.1)

UR(A) = A ∪ {x ∈ X :< x > R ∩A ̸= ϕ}.(2.2)

Theorem 2.3 ([21]). The upper approximation defined by Eq. (2.2) has the following
properties:

(1) UR(ϕ) = ϕ,
(2) LR(A) ⊆ A ⊆ UR(A), for A ⊆ X,
(3) UR(A ∪B) = UR(A) ∪ UR(B), ∀A,B ⊆ X,
(4) UR(UR(A)) = UR(A), ∀A ⊆ X,
(5) UR(A) = (LR(A

c))c, ∀A ⊆ X, where Ac denotes the complement of A.

Also, the operator UR on P (X) defined by Eq. (2.2) induced a topology on X
denoted by τR and defined by τR = {A ⊆ X : UR(A

c) = Ac}.
Definition 2.4 ([3]). Let X be a non-empty set. Then L ⊆ P (X) is called an ideal
on X, if it satisfies the following conditions:

(i) ϕ ∈ L,
(ii) if A ∈ L and B ⊆ A, then B ∈ L,
(iii) If A,B ∈ L, then A ∪B ∈ L.

Definition 2.5 ([19]). Let R be a binary relation on X and L be an ideal defined
on X and A ⊆ X. Then the lower approximation R(A) and the upper approximation
R(A) of A by L are defined respectively by:

R(A) = {x ∈ A :< x > R ∩Ac ∈ L},(2.3)

R(A) = A ∪ {x ∈ X :< x > R ∩A /∈ L}.(2.4)

Theorem 2.6 ([19]). The upper approximation defined by Eq. (2.4) has the following
properties: for A, B ⊆ X,

(1) R(A) = (R(Ac))c,
(2) R(ϕ) = ϕ,
(3) R(A) ⊆ A ⊆ R(A),
(4) if A ⊆ B, then R(A) ⊆ R(B),
(5) R(A ∩B) ⊆ R(A) ∩R(B),
(6) R(A ∪B) = R(A) ∪R(B),
(7) R(R(A)) = R(A).

Also, the operator R on P (X) defined by (2.4) induced a topology on X denoted
by τ∗R and defined as τ∗R = {A ⊆ X : R(Ac) = Ac}.
Definition 2.7 ([20]). Let R be a binary relation on X and L be an ideal on X and

A ⊆ X. Then the lower approximation R(A) and the upper approximation R(A) of
A by L are defined respectively by:

R(A) = {x ∈ A : R < x > R ∩Ac ∈ L},(2.5)

R(A) = A ∪ {x ∈ X : R < x > R ∩A /∈ L},(2.6)
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where

R < x > R = R < x > ∩ < x > R.(2.7)

Theorem 2.8 ([20]). The upper approximation defined by Eq. (2.6) has the following
properties: for A,B ⊆ X,

(1) R(A) = (R(Ac))c,

(2) R(ϕ) = ϕ,

(3) LR(A) ⊆ R(A) ⊆ R(A) ⊆ A ⊆ R(A) ⊆ R(A) ⊆ UR(A),

(4) if A ⊆ B, then R(A) ⊆ R(B),

(5) R(A ∩B) ⊆ R(A) ∩R(B),

(6) R(A ∪B) = R(A) ∪R(B),

(7) R(R(A)) = R(A).

Also, the operator R on P (X) defined by (2.6) induced a topology on X denoted

by τ∗∗R and defined as τ∗∗R = {A ⊆ X : R(Ac) = Ac}. It is clear that τR ⊆ τ∗R ⊆ τ∗∗R .

Definition 2.9 ([19]). Let R be a binary relation on X and L be an ideal defined
on X and A ⊆ X. Then the lower and upper approximations of A by L, denoted by
R(A) and R(A), of A are defined as follows:

R(A) = {x ∈ A : ⟨x⟩R ∩Ac ∈ L},(2.8)

R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩A /∈ L}.(2.9)

The operator R : P (X) −→ P (X) defined by Eq. (2.9) induced a topology on X
denoted by τ∗R and defined as τ∗R = {A ⊆ X : R(Ac) = Ac}.

Definition 2.10 ([20]). Let R be a binary relation on X and L be an ideal defined
on X and A ⊆ X. Then the lower and upper approximations, R(A) and R(A), the
boundary region and the accuracy measure of A are defined respectively by:

R(A) = {x ∈ A : R < x > R ∩Ac ∈ L},(2.10)

R(A) = A ∪ {x ∈ X : R ⟨x⟩R ∩A /∈ L},(2.11)

BND(A) = R(A)−R(A), ACC(A) =
|R(A)|

|R(A)|
, |R(A)| ≠ 0,(2.12)

where R ⟨x⟩R = R ⟨x⟩ ∩ ⟨x⟩R and 0 ≤ ACC(A) ≤ 1.

The operator R : P (X) −→ P (X) defined by Eq. (2.11) induced a topology on

X denoted by τ∗∗R and defined as τ∗∗R = {A ⊆ X : R(Ac) = Ac}.

Definition 2.11 ([18]). Let R be a binary relation on X. Then a point x ∈ X
is called an accumulation point of A, if (⟨x⟩R − {x}) ∩ A ̸= ϕ. The set of all
accumulation points of A is denoted by d(A), i.e.,

d(A) = {x ∈ X : (< x > R− {x}) ∩A ̸= ϕ}.

Definition 2.12 ([16]). Let (X,R,L) be an ideal approximation space and A ⊆ X.
Then a point x ∈ X is said to be:
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(i) ∗-ideal accumulation point of A, if (⟨x⟩R− {x}) ∩A /∈ L,
(ii) ∗∗-ideal accumulation point of A, if (R ⟨x⟩R− {x}) ∩A /∈ L.
The set of all ∗-ideal accumulation points of A is denoted by d∗(A), i.e.,

d∗(A) = {x ∈ X : (⟨x⟩R− {x}) ∩A /∈ L}.

The set of all ∗∗-ideal accumulation points of A is denoted by d∗∗(A), i.e.,

d∗∗(A) = {x ∈ X : (R ⟨x⟩R− {x}) ∩A /∈ L}.

Definition 2.13 ([16]). An ideal approximation space (X,R,L) is called a:
(i) T ∗

0 -space, if ∀x ̸= y ∈ X, there exists A ⊆ X such that

(x ∈ R(A), y /∈ A) or (y ∈ R(A), x /∈ A),

(ii) T ∗∗
0 -space, if ∀x ̸= y ∈ X, there exists A ⊆ X such that

(x ∈ R(A), y /∈ A) or (y ∈ R(A), x /∈ A),

(iii) T ∗
1 -space, if ∀x ̸= y ∈ X, there exist A, B ⊆ X such that

(x ∈ R(A), y /∈ A) and (y ∈ R(B), x /∈ B),

(iv) T ∗∗
1 -space, if ∀x ̸= y ∈ X, there exist A, B ⊆ X such that

(x ∈ R(A), y /∈ A) and (y ∈ R(B), x /∈ B),

(v) An ideal approximation space (X,R,L) is called a T ∗
2 -space, if ∀x ̸= y ∈ X,

there exist A, B ⊆ X such that

x ∈ R(A), y ∈ R(B) and A ∩B = ϕ,

(vi) T ∗∗
2 -space, if ∀x ̸= y ∈ X, there exist A, B ⊆ X such that

x ∈ R(A), y ∈ R(B) and A ∩B = ϕ.

Definition 2.14 ([16]). Let (X,R,L) be an ideal approximation space.
(i) A, B ⊆ X are called ∗-separated (resp. ∗∗-separated) sets, if R(A) ∩ B =

A ∩R(B) = ϕ (resp. R(A) ∩B = A ∩R(B) = ϕ).
(ii) Y ⊆ X is called a ∗-disconnected (resp. ∗∗-disconnected) set, if there exists

∗-separated (resp. ∗∗-separated) sets A, B ⊆ X such that Y ⊆ A ∪B.
(iii) Y ⊆ X is said to be ∗-connected (resp. ∗∗-connected), if it is not ∗-disconnected

(resp. ∗∗-disconnected).

Definition 2.15 ([22]). Let X be a nonempty set. A collection F ⊆ P (X) is called
a filter on X, if it satisfies the following conditions:

(i) ϕ /∈ F ,
(ii) if A ∈ F and A ⊆ B, then B ∈ F ,
(iii) if A,B ∈ F , then A ∩B ∈ F .

Definition 2.16 ([23]). Let X be a nonempty set. A collection G ⊆ P (X) is called
a grill on X, if it satisfies the following conditions:

(i) ϕ /∈ G,
(ii) if A ∈ G and A ⊆ B, then B ∈ G,
(iii) if A ∪B ∈ G, then A ∈ G or B ∈ G.
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Definition 2.17 ([12]). Let X be a nonempty set. A collection P ⊆ P (X) is called
a primal on X, if it satisfies the following conditions:

(i) X /∈ P,
(ii) if A ∈ P and B ⊆ A, then B ∈ P,
(iii) if A ∩B ∈ P, then A ∈ P or B ∈ P.

Corollary 2.18 ([12]). Let X be a nonempty set. A collection P ⊆ P (X) is a primal
on X if and only if it satisfies the following conditions:

(1) X /∈ P,
(2) if B /∈ P and B ⊆ A, then A /∈ P,
(3) if A /∈ P and B /∈ P, then A ∩B /∈ P.

3. Approximation spaces based on primal ideals

In this section of the manuscript, we define the notion of “primal ideal” and
display the properties of the produced primal ideal approximation spaces.

Definition 3.1. Let L ̸= P (X) be an ideal on X. An extension of L denoted by
LP ⊆ P (X) is called a primal ideal on X, if it satisfies the following conditions:

(i) X /∈ LP ,
(ii) if A ∈ LP and B ⊆ A, then B ∈ LP ,
(iii) if A ∩B ∈ LP , then A ∈ LP or B ∈ LP ,
(iv) if A,B ∈ LP , then A ∪B ∈ LP .

Corollary 3.2. Let X be a nonempty set and L ̸= P (X) be an ideal on X. Then
LP is a primal ideal on X if and only if it satisfies the following conditions:

(1) X /∈ LP ,
(2) if B /∈ LP and B ⊆ A, then A /∈ LP ,
(3) if A /∈ LP and B /∈ LP , then A ∩B /∈ LP ,
(4) if A ∪B /∈ LP , then A /∈ LP or B /∈ LP .

Corollary 3.3. Let X be a nonempty set and LP be a primal ideal on X. Then

(1) LP is a primal on X,
(2) LP is an ideal on X.

Proof. Straightforward. □

Remark 3.4. Converse of Corollary 3.3 is not true in general as shown by the
following example.

Example 3.5. Let X = {a, b, c} with a primal P = {ϕ, {a}, {b}, {c}, {a, b}, {a, c}}
and an ideal L = {ϕ, {a}}.

(1) P is not a primal ideal on X since {b}, {c} ∈ P but {b, c} /∈ P.
(2) L is not a primal ideal on X since {a} = {a, b} ∩ {a, c} ∈ L but neither

{a, b} ∈ L nor {a, c} ∈ L.

Theorem 3.6. Let LP be a primal ideal on X. Then, {A|Ac ∈ LP} is a filter on X.

Proof. Let LP be a primal ideal of X and F = {A|Ac ∈ LP}. Then we are to show
that F is a filter.

(i) Since X /∈ LP , ϕ /∈ F .
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(ii) Let A ∈ F and A ⊆ B. Then Bc ⊆ Ac. Since Ac ∈ LP , Bc ∈ LP . Thus
B ∈ F .

(iii) Let A, B ∈ F . Then Ac ∪Bc = (A ∩B)c ∈ LP . Thus A ∩B ∈ F . So by (i),
(ii) and (iii), F is a filter on X. □

Theorem 3.7. Let LP be a primal ideal on X. Then {A|Ac ∈ LP} is a grill on X.

Proof. Let LP be a primal ideal of X and G = {A|Ac ∈ LP}. Then we are to show
that G is a grill.

(i) Since X /∈ LP , ϕ /∈ G.
(ii) Let A ∈ G and A ⊆ B. Then Bc ⊆ Ac. Since Ac ∈ LP , Bc ∈ LP . Thus

B ∈ G.
(iii) Let A ∪ B ∈ G. Then Ac ∩ Bc = (A ∪ B)c ∈ LP . Thus we get Ac ∈ LP or

Bc ∈ LP . So A ∈ G or B ∈ G. Hence by (i), (ii) and (iii), G is a grill on X. □

Definition 3.8. Let R be a binary relation on X and LP be a primal ideal defined
on X and A ⊆ X. Then the lower and upper approximations, RLP (A) and RLP (A)
of A are defined respectively by:

RLP (A) = {x ∈ A :< x > R ∩Ac ∈ LP},(3.1)

RLP (A) = A ∪ {x ∈ X :< x > R ∩A /∈ LP}.(3.2)

Lemma 3.9. The lower approximation defined by (3.1) has the following properties:
for A, B ⊆ X,

(1) RLP (A) = (RLP (Ac))c,
(2) RLP (ϕ) = ϕ and RLP (X) = X,
(3) RLP (A) ⊆ A,
(4) if A ⊆ B, then RLP (A) ⊆ RLP (B),
(5) RLP (A ∩B) = RLP (A) ∩RLP (B),
(6) RLP (A ∪B) ⊇ RLP (A) ∪RLP (B),
(7) RLP (RLP (A)) = RLP (A).

Lemma 3.10. The upper approximation defined by Eq. (3.2) has the following
properties: for A, B ⊆ X,

(1) RLP (A) = (RLP (Ac))c,

(2) RLP (ϕ) = ϕ and RLP (X) = X,
(3) A ⊆ RLP (A),
(4) if A ⊆ B, then RLP (A) ⊆ RLP (B),
(5) RLP (A ∩B) ⊆ RLP (A) ∩RLP (B),
(6) RLP (A ∪B) = RLP (A) ∪RLP (B),
(7) RLP (RLP (A)) = RLP (A).

The operator RLP : P (X) −→ P (X) defined by Eq. (3.2) induced a topology on
X denoted by τLP and defined as τLP = {A ⊆ X : RLP (Ac) = Ac}. In addition,
(X,R,LP) is called a primal ideal approximation space.

Definition 3.11. Let (X,R,LP) be a primal ideal approximation space. For A ⊆ X,
the boundary region and the accuracy measure, BNDLP (A) and ACCLP (A), are

43



Abbas et al. /Ann. Fuzzy Math. Inform. 28 (2024), No. 1, 37–55

defined respectively, as follows:

BNDLP (A) = RLP (A)−RLP (A), ACCLP (A) =
|RLP (A)|
|RLP (A)|

, |RLP (A)| ≠ 0,

where 0 ≤ ACCLP (A) ≤ 1.

Definition 3.12. Let (X,R,LP) be a primal ideal approximation space and A ⊆ X.

Then the lower and the upper approximations, RLP (A) and RLP (A) of A are defined

respectively by:

RLP (A) = {x ∈ A : R < x > R ∩Ac ∈ LP},(3.3)

RLP (A) = A ∪ {x ∈ X : R < x > R ∩A /∈ LP}.(3.4)

Lemma 3.13. The lower approximation defined by Eq. (3.3) has the following
properties: for A, B ⊆ X,

(1) RLP (A) = (RLP (Ac))c,

(2) RLP (ϕ) = ϕ and RLP (X) = X,

(3) RLP (A) ⊆ A,

(4) if A ⊆ B, then RLP (A) ⊆ RLP (B),

(5) RLP (A ∩B) = RLP (A) ∩RLP (B),

(6) RLP (A ∪B) ⊇ RLP (A) ∪RLP (B),

(7) RLP (RLP (A)) = RLP (A).

Lemma 3.14. The upper approximation defined by Eq. (3.4) has the following
properties: for A, B ⊆ X,

(1) RLP (A) = (RLP (Ac))c,

(2) RLP (ϕ) = ϕ and RLP (X) = X,

(3) A ⊆ RLP (A),

(4) if A ⊆ B, then RLP (A) ⊆ RLP (B),

(5) RLP (A ∩B) ⊆ RLP (A) ∩RLP (B),

(6) RLP (A ∪B) = RLP (A) ∪RLP (B),

(7) RLP (RLP (A)) = RLP (A).

The operator RLP : P (X) −→ P (X) defined by Eq. (3.4) induced a topology on

X denoted by τLP and defined as τ∗LP = {A ⊆ X : RLP (Ac) = Ac}.

Definition 3.15. Let (X,R,LP) be a primal ideal approximation space. For A ⊆ X,
the boundary region and the accuracy measure, BND∗

LP (A) and ACC∗
LP (A), are

defined respectively, as follows:

BND∗
LP (A) = RLP (A)−RLP (A), ACC∗

LP (A) =
|RLP (A)|

|RLP (A)|
, |RLP (A)| ≠ 0,

where 0 ≤ ACC∗
LP (A) ≤ 1.
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Theorem 3.16. Let (X,R,LP) be a primal ideal approximation space and A ⊆ X.
Then

LR(A) ⊆ RLP (A) ⊆ RLP (A) ⊆ A ⊆ RLP (A) ⊆ RLP (A) ⊆ UR(A).

Proof. Straightforward from Definitions 2.9, 3.8, and 3.12. □

Proposition 3.17. Let (X,R,LP) be a primal ideal approximation space. Then
τR ⊆ τLP ⊆ τ∗LP .

Proof. Immediately by Theorem 3.16. □

Lemma 3.18. Let (X,R,LP) be a primal ideal approximation space and A ⊆ X.
Then

(1) BND∗
LP (A) ⊆ BNDLP (A),

(2) ACC∗
LP (A) ⊆ ACCLP (A).

Proof. Straightforward from Definitions 3.11, and 3.15 using Theorem 3.16. □

Remark 3.19. (1) It is noted from Lemma 3.18 that Definition 3.12 reduces the
boundary region and increases the accuracy measure of a set A by increasing the
lower approximation and decreasing the upper approximation with the comparison
of the method in Definition 3.8.

(2) If we take grill in stead of primal ideal in Definitions 3.8 and 3.12, then the
present accuracy measures produced by “primal ideal” are more accurate and higher
than those produced by grill. Since, the boundary regions are decreased (or empty).

Example 3.20. Let (X,R,LP) be a primal ideal approximation space with X =
{a, b, c}. Let L = {ϕ, {a}}. be an ideal. Then LP = {ϕ, {a}, {b}, {a, b}} is a primal
ideal on X with respect to L. Consider R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}.
Then < a > R = {a, b, c}, < b > R = {b, c}, < c > R = {c}. Also, we have
R < a >= {a}, R < b >= {a, b}, R < c >= {a, b, c}. Thus we get

R < a > R = {a}, R < b > R = {b}, R < c > R = {c}.

(1) If A = {a, b}, then RLP (A) = ϕ, RLP (A) = {a, b}, BNDLP (A) = {a, b}
and ACCLP (A) = 0. But, RLP (A) = RLP (A) = {a, b}, BND∗

LP (A) = ϕ and

ACC∗
LP (A) = 1.

(2) Take G = {A|Ac ∈ LP} = {X, {b, c}, {a, c}, {c}}.
The comparison between the introduced approach in Definition 3.12 utilizing

“primal ideal” and the method in which “primal ideal” is replaced by grill is shown
in Table 1. From Table 1, the approximation produced by “primal ideal” reduces
the boundary region and increases the accuracy measure of a set A by increasing the
lower approximation and decreasing the upper approximation with the comparison
of the approximations produced by grill.

4. Modified topological concepts via primal ideal approximation
spaces

In this section, we introduce accumulation points, separation axioms and con-
nectedness via primal ideal as a generalization of accumulation points, separation
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Table 1. Comparison between the boundary region and accuracy
measure of Definition 3.15 produced by “primal ideal” and those
produced by grill.

Grill approximations Primal ideal approximations

A ⊆ X RG(A) RG(A) BND∗
G(A) ACC∗

G(A) RLP (A) RLP (A) BND∗
LP (A) ACC∗

LP (A)

ϕ ϕ X X 0 ϕ ϕ ϕ 1
{a} ϕ X X 0 {a} {a} ϕ 1
{b} ϕ X X 0 {b} {b} ϕ 1
{c} ϕ X X 0 {c} {c} ϕ 1
{a, b} ϕ X X 0 {a, b} {a, b} ϕ 1
{a, c} ϕ X X 0 {a, c} {a, c} ϕ 1
{b, c} ϕ X X 0 {b, c} {b, c} ϕ 1
X ϕ X X 0 X X ϕ 1

axioms and connectedness via ideal given in [16]. We scrutinize its essential charac-
terizations and infer some of its relationships associated with the primal ideal closure
operators. Some illustrative examples are given. Furthermore, we compare between
the current purposed technique in Definition 3.12 and technique in [20]. Then, we
clarify that our approach in Definition 3.12 produces accuracy measures of subsets
higher than their counterparts displayed in [20].

Theorem 4.1. Let (X,R,LP) be a primal ideal approximation space and A ⊆ X.
Then

(1) R(A) ⊆ RLP (A) and RLP (A) ⊆ R(A),

(2) R(A) ⊆ RLP (A) and RLP (A) ⊆ R(A).

Proof. Straightforward. □

Definition 4.2. Let (X,R,LP) be a primal ideal approximation space and A ⊆ X.
Then A point x ∈ X is called a:

(i) ∗-primal ideal accumulation point of A, if (< x > R− {x}) ∩A /∈ LP ,
(ii) ∗∗-primal ideal accumulation point of A, if (R < x > R− {x}) ∩A /∈ LP .
The set of all ∗-primal ideal accumulation points of A is denoted by d∗(A),i.e.,

d∗LP (A) = {x ∈ X : (< x > R− {x}) ∩A /∈ LP}.
The set of all ∗∗-primal ideal accumulation points of A is denoted by d∗∗LP (A),i.e.,

d∗∗LP (A) = {x ∈ X : (R < x > R− {x}) ∩A /∈ LP}.

Lemma 4.3. Let (X,R,LP) be a primal ideal approximation space and A ⊆ X.
Then we have

(1) RLP (A) = A ∪ d∗LP (A),

(2) RLP (A) = A iff d∗LP (A) ⊆ A,

(3) RLP (A) = A ∪ d∗∗LP (A),

(4) RLP (A) = A iff d∗∗LP (A) ⊆ A.

Proof. (1) Let x ∈ RLP (A). Then x ∈ (A ∪ {y ∈ X :< y > R ∩ A /∈ LP}). Thus we
have either x ∈ A, i.e,

(4.1) x ∈ A ∪ d∗LP (A)
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or x /∈ A. So x ∈ {y ∈ X :< y > R ∩ A /∈ LP}. In the latter case, we have
(< x > R− {x}) ∩A /∈ LP . Hence x ∈ d∗LP (A), i.e,

(4.2) x ∈ A ∪ d∗LP (A).

From Eq. (4.1) and Eq. (4.2), we have RLP (A) ⊆ A ∪ d∗LP (A).
Conversely, let x ∈ A ∪ d∗LP (A). Then we have either x ∈ A, i.e,

(4.3) x ∈ RLP (A)

or x /∈ A. Thus x ∈ d∗LP (A). So (< x > R− {x}) ∩A /∈ LP . Hence x ∈ RLP (A),i.e,

(4.4) x ∈ RLP (A).

From Eq.(4.3) and Eq. (4.4), we have A ∪ d∗LP (A) ⊆ RLP (A). Therefore RLP (A) =
A ∪ d∗LP (A).

(2) For x /∈ A, x /∈ RLP (A). Then < x > R∩A ∈ LP . Thus (< x > R−{x})∩A ∈
LP and x /∈ d∗LP (A).

Conversely, let d∗LP (A) ⊆ A. Then by (1), d∗LP (A) ∪A = RLP (A) = A.
The proofs of (3) and (4) are similar.

□

Corollary 4.4. Let (X,R,LP) be any primal ideal approximation space and A ⊆ X.
Then we have

(1) d∗∗LP (A) ⊆ d∗LP (A) ⊆ d(A),
(2) d∗LP (A) ⊆ d∗(A) and d∗∗LP (A) ⊆ d∗∗(A).

Proof. (1) Let x /∈ d(A). Then (< x > R−{x})∩A = ϕ. Thus (< x > R−{x})∩A ∈
LP . So x /∈ d∗LP (A) and (R < x > R−{x})∩A ∈ LP , where R < x > R ⊆< x > R.
Hence x /∈ d∗∗LP (A). Therefore d∗∗LP (A) ⊆ d∗LP (A) ⊆ d(A).

(2) The proof is similar. □

Remark 4.5. The following example shows that the converse of Corollary 4.4 is
not true in general.

Example 4.6. In Example 3.20, let L = {ϕ, {a}}. be an ideal. Then LP =
{ϕ, {a}, {c}, {a, c}} is a primal ideal on X with respect to L.

(1) Conciser A = {b, c}. Then we have

(< a > R− {a}) ∩A = {b, c} ≠ ϕ,

(< b > R− {b}) ∩A = {c} ≠ ϕ,

(< c > R− {c}) ∩A = ϕ.

Thus a ∈ d(A), b ∈ d(A), c /∈ d(A). So d(A) = {a, b}.
On the other hand, we get

(< a > R− {a}) ∩A = {b, c} /∈ LP ,

(< b > R− {b}) ∩A = {c} ∈ LP ,

(< c > R− {c}) ∩A = ϕ ∈ LP .

Then a ∈ d∗LP (A), b /∈ d∗LP (A) c /∈ d∗LP (A). Thus d∗LP (A) = {a}. Also, we have

(R < a > R− {a}) ∩A = ϕ ∈ LP ,
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(R < b > R− {b}) ∩A = ϕ ∈ LP ,

(R < c > R− {c}) ∩A = ϕ ∈ LP .

Then a /∈ d∗∗LP (A), b /∈ d∗∗LP (A), c /∈ d∗∗LP (A). Thus d∗∗LP (A) = ϕ. So we get

d(A) ⊈ d∗LP (A) ⊈ d∗∗LP (A).

(2) From (1), A = {b, c} implies that d∗LP (A) = {a}. But
(< a > R− {a}) ∩A = {b, c} /∈ L,
(< b > R− {b}) ∩A = {c} /∈ L,
(< c > R− {c}) ∩A = ϕ ∈ L.

Then a ∈ d∗(A), b ∈ d∗(A), c /∈ d∗(A). Thus d∗(A) = {a, b}. So d∗(A) ⊈ d∗LP (A).
In the same way, anyone can give an example to show that d∗∗(A) ⊈ d∗∗LP (A).

Definition 4.7. A primal ideal approximation space (X,R,L) is called a:
(i) primal ideal-T ∗

0 , if ∀x ̸= y ∈ X, there exists A ⊆ X such that

(x ∈ RLP (A), y /∈ A) or (y ∈ RLP (A), x /∈ A),

(ii) primal ideal-T ∗∗
0 , if ∀x ̸= y ∈ X, there exists A ⊆ X such that

(x ∈ RLP (A), y /∈ A) or (y ∈ RLP (A), x /∈ A).

Proposition 4.8. Let (X,R,LP) be a primal ideal approximation space. For x ̸=
y ∈ X, then we have

(1) x ∈ RLP ({y}) iff < x > R∩{y} /∈ LP and x /∈ RLP ({y}) iff < x > R∩{y} ∈
LP .

(2) x ∈ RLP ({y}) iff R < x > R ∩ {y} /∈ LP and x /∈ RLP ({y}) iff R < x >
R ∩ {y} ∈ LP .

Proof. (1) Suppose x ∈ RLP ({y}). Then x ∈ ({y} ∪ {z ∈ X :< z > R ∩ {y} /∈ LP}).
Thus < x > R ∩ {y} /∈ LP .

Conversely, suppose < x > R∩{y} /∈ LP . Then by Definition 3.8, x ∈ RLP ({y}).
The proof of the second part is similar.

(2) The proof is similar to (1). □

Proposition 4.9. For a primal ideal approximation space (X,R,LP), the following
are equivalent:

(1) X is a primal ideal-T ∗
0 space,

(2) RLP ({x}) ̸= RLP ({y}) for each x ̸= y ∈ X.

Proof. (1) ⇒ (2): Suppose X is a primal ideal-T ∗
0 space and let x ̸= y ∈ X. Then

by the hypothesis, there exists A ⊆ X such that x ∈ RLP (A), y /∈ A. Then < x >

R ∩ Ac ∈ LP , y ∈ Ac. Thus < x > R ∩ {y} ∈ LP and by Proposition 4.8 (1),
x /∈ RLP ({y}). By the same way, we can prove that y /∈ RLP ({x}). So RLP ({x}) ̸=
RLP ({y}).

(2) ⇒ (1): Suppose the necessary condition (2) holds and let x ̸= y ∈ X. Then
by (2), we have x /∈ R({y}) or y /∈ R({x}). Thus by Proposition 4.8 (1), we get

< x > R ∩ {y} ∈ LP or < y > R ∩ {x} ∈ LP , i.e.,

(x ∈ RLP ({y}c), y /∈ {y}c) or (y ∈ RLP ({x}c), x /∈ {x}c).
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So X is a primal ideal-T ∗
0 space. □

Corollary 4.10. For a primal ideal approximation space (X,R,LP), the following
are equivalent:

(1) X is a primal ideal-T ∗∗
0 space,

(2) RLP ({x}) ̸= RLP ({y}) for each x ̸= y ∈ X.

Corollary 4.11. Let (X,R,LP) be any primal ideal approximation space and A ⊆
X. Then we have

(1) primal ideal-T ∗
0 ⇒ primal ideal-T ∗∗

0 ,
(2) T ∗

0 ⇒ primal ideal-T ∗
0 and T ∗∗

0 ⇒ primal ideal-T ∗∗
0 .

Proof. The proof is straightforward from Theorems 3.16 and 4.1. □

Remark 4.12. The following example shows that the converse of Corollary 4.11
does not hold.

Example 4.13. Let X = {a, b, c}, R = {(a, a), (a, b), (b, a), (b, b), (c, c)}. Consider
L = {ϕ, {c}} and LP = {ϕ, {b}, {c}, {b, c}} Then we have

< a > R = R < a > R = {a, b},

< b > R = R < b > R = {a, b},
< c > R = R < c > R = {c}.

Thus there exist {b}, {c} ⊆ X such that

RLP ({b}) = RLP ({b}) = {b} and RLP ({c}) = RLP ({c}) = {c}.

So we get
(i) For a ̸= b, b ∈ RLP ({b}) = RLP ({b}) = {b} and a /∈ {b},
(ii) For b ̸= c, b ∈ RLP ({b}) = RLP ({b}) = {b} and c /∈ {b},
(iii) For a ̸= c, c ∈ RLP ({c}) = RLP ({c}) = {c} and /∈ {c}.

Hence X is primal ideal-T ∗
0 and primal ideal-T ∗∗

0 . But

R({a}) = R({a}) = R({b}) = R({b}) = {a, b}.
This means that, X is neither T ∗

0 -space nor T ∗∗
0 -space.

Definition 4.14. A primal ideal approximation space (X,R,L) is called a:
(i) primal ideal-T ∗

1 , if ∀x ̸= y ∈ X, there exist A, B ⊆ X such that

(x ∈ RLP (A), y /∈ A) and (y ∈ RLP (B), x /∈ B),

(ii) primal ideal-T ∗∗
1 , if ∀x ̸= y ∈ X, there exist A,B ⊆ X such that

(x ∈ RLP (A), y /∈ A) and (y ∈ RLP (B), x /∈ B).

Proposition 4.15. For a primal ideal approximation space (X,R,LP), the following
are equivalent:

(1) X is a primal ideal-T ∗
1 space,

(2) RLP ({x}) = {x} for each x ∈ X,
(3) d∗LP ({x}) = ϕ for each x ∈ X.
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Proof. (1) ⇒ (2): Suppose (X,R,LP) is T ∗
1 -space and let x ∈ X. Then for y ∈

X − {x}, x ̸= y and ∃A ⊆ X such that y ∈ RLP (A), x /∈ A. Thus ⟨y⟩R ∩ Ac ∈
LP , x ∈ Ac. So ⟨y⟩R ∩ {x} ∈ LP , i.e., y /∈ RLP ({x}). Hence

RLP ({x}) = {x}.
(2) ⇒ (3): Suppose (2) holds and let x ∈ X. Then RLP ({x}) = {x} ∪ d∗LP ({x})

but x /∈ d∗LP ({x}). Thus d∗LP ({x}) = ϕ.
(3) ⇒ (1): Suppose (3) holds and let x ̸= y ∈ X. Then by (3), d∗LP ({x}) =

d∗LP ({y}) = ϕ. Thus by Lemma 4.3 (1), we have RLP ({x}) = {x} and RLP ({y}) =
{y}, i.e., RLP ({x}c) = {x}c and RLP ({y}c) = {y}c. So there exist {x}c and {y}c ⊆
X such that y ∈ RLP ({x}c), x /∈ {x}c and x ∈ RLP ({y}c), y /∈ {y}c. Hence X is a
T ∗
1 -space. □

Corollary 4.16. For a primal ideal approximation space (X,R,LP), the following
are equivalent:

(1) X is a primal ideal-T ∗∗
1 space,

(2) RLP ({x}) = {x} for each x ∈ X,
(3) d∗∗LP ({x}) = ϕ for each x ∈ X.

Corollary 4.17. Let (X,R,LP) be any primal ideal approximation space and A ⊆
X. Then we have

(1) primal ideal-T ∗
1 ⇒ primal ideal-T ∗∗

1 ,
(2) T ∗

1 ⇒ primal ideal-T ∗
1 and T ∗∗

1 ⇒ primal ideal-T ∗∗
1 .

Proof. The proof is straightforward from Theorems 3.16 and 4.1. □

Remark 4.18. The following example shows that the converse of Corollary 4.17
does not hold.

Example 4.19. In Example 4.13, consider L = {ϕ, {a}} and LP = {ϕ, {a}{b}, {a, b}}
Then there exist {a}, {b}, {c} ⊆ X such that

RLP ({a}) = RLP ({a}) = {a},
,

RLP ({b}) = RLP ({b}) = {b},

RLP ({c}) = RLP ({c}) = {c}.
Thus X is primal ideal-T ∗

1 and primal ideal-T ∗∗
1 . But X is neither T ∗

1 -space nor
T ∗∗
1 -space since we can not find a set A ⊆ X such that a ∈ R(A), b /∈ A.

Definition 4.20. A primal ideal approximation space (X,R,L) is called a:
(i) primal ideal-T ∗

2 , if ∀x ̸= y ∈ X there exist A, B ⊆ X such that

x ∈ RLP (A), y ∈ RLP (B) and A ∩B = ϕ.

(ii) primal ideal-T ∗∗
2 , if ∀x ̸= y ∈ X there exist A, B ⊆ X such that

x ∈ RLP (A), y ∈ RLP (B) and A ∩B = ϕ.

Theorem 4.21. For a primal ideal approximation space (X,R,LP), the following
are equivalent:
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(1) X is a primal ideal-T ∗
2 space,

(2) ∃A ⊆ X : x ∈ RLP (A), y ∈ (RLP (A))c for all x ̸= y ∈ X.

Proof. (1) ⇒ (2): Suppose X is primal ideal-T ∗
2 space and let x ̸= y ∈ X. Then

there exist A, B ⊆ X such that x ∈ RLP (A), y ∈ RLP (B) and A ∩ B = ϕ. Thus

⟨y⟩R ∩ Bc ∈ LP and A ⊆ Bc. So (⟨y⟩R − {x}) ∩ A ∈ LP , i.e., y /∈ d∗LP (A). Hence

RLP (B)∩ d∗LP (A) = ϕ and RLP (B)∩A = ϕ, i.e., RLP (B)∩RLP (A) = ϕ. Therefore

x ∈ RLP (A), y ∈ RLP (B) ⊆ (RLP (A))c.
(2) ⇒ (1): Suppose (2) holds and let x ̸= y ∈ X. Then there exists A ⊆ X such

that x ∈ RLP (A), y ∈ (RLP (A))c. Let B = (RLP (A))c. Then B = RLP (Ac) and
thus RLP (B) = RLP (RLP (Ac)) = RLP (Ac) = B. Also, we get

A ∩B = A ∩RLP (Ac) ⊆ A ∩Ac = ϕ.

So X is a primal ideal-T ∗
2 space. □

Corollary 4.22. For a primal ideal approximation space (X,R,LP), the following
are equivalent:

(1) X is a primal ideal-T ∗∗
2 space,

(2) ∃A ⊆ X : x ∈ RLP (A), y ∈ (RLP (A))c for all x ̸= y ∈ X.

Corollary 4.23. Let (X,R,LP) be any primal ideal approximation space and A ⊆
X. Then we have

(1) primal ideal-T ∗
2 ⇒ primal ideal-T ∗∗

2 ,
(2) T ∗

2 ⇒ primal ideal-T ∗
2 and T ∗∗

2 ⇒ primal ideal-T ∗∗
2 .

Proof. The proof is straightforward from Theorems 3.16 and 4.1. □

Example 4.24. In Example 4.13, consider L = {ϕ, {b}} and LP = {ϕ, {a}{b}, {a, b}}.
Then there exist {a}, {b}, {c} ⊆ X such that

RLP ({a}) = RLP ({a}) = {a},

RLP ({b}) = RLP ({b}) = {b},

RLP ({c}) = RLP ({c}) = {c}.
Thus X is primal ideal-T ∗

2 and primal ideal-T ∗∗
2 . But X is neither T ∗

2 -space nor
T ∗∗
2 -space since we can not find a set A ⊆ X such that b ∈ R(A), a /∈ A.

Definition 4.25. Let (X,R,LP) be a primal ideal approximation space.
(i) A, B ⊆ X are called ∗-primal ideal separated (resp. ∗∗-primal ideal separated)

sets, if RLP (A) ∩B = A ∩RLP (B) = ϕ (resp. RLP (A) ∩B = A ∩RLP (B) = ϕ).
(ii) Y ⊆ X is called a ∗-primal ideal disconnected (resp. ∗∗-primal ideal discon-

nected) set, if there exist ∗-primal ideal separated (resp. ∗∗-primal ideal separated)
sets A, B ⊆ X such that Y ⊆ A ∪B.

(iii) Y ⊆ X is said to be ∗-primal ideal connected (resp. ∗∗-primal ideal con-
nected), if it is not ∗-primal ideal disconnected (resp. ∗∗-primal ideal disconnected).

(iv) (X,R,LP) is called a ∗-primal ideal disconnected (resp. ∗∗-primal ideal dis-
connected) space, if there exist ∗-primal ideal separated (resp. ∗∗-primal ideal sepa-
rated) sets A, B ⊆ X such that A ∪B = X.
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(v) (X,R,LP) is called a ∗-primal ideal connected (resp. ∗∗-primal ideal con-
nected) space, if it is not a ∗-primal ideal disconnected (resp. ∗∗-primal ideal discon-
nected) space.

Remark 4.26. We have the following implications:

∗-separated =⇒ ∗-primal ideal separated,

∗∗-separated =⇒ ∗∗-primal ideal separated,

∗-primal ideal connected =⇒ ∗-connected,
∗∗-primal ideal connected =⇒ ∗∗-connected.

Next examples show that the Implication in the diagrams is not reversible.

Example 4.27. LetX = {a, b, c, d}, R = {(a, a), (a, b), (b, b), (b, c), (c, c), (d, d), (d, b)}
Then < a > R = {a, b}, < b > R = {b}, < c > R = {c}, < d > R = {b, d}. Consider
an ideal L = {ϕ, {d}}. Then LP = {ϕ, {a}{b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}} is
a primal ideal with respect to L.

If A = {b}, B = {a, d}, then R(A) = A ∪ {x ∈ X :< x > R ∩ A /∈ L} = {a, b, d},
and R(B) = {a, d}. Also, RLP (A) = A ∪ {x ∈ X :< x > R ∩ A /∈ LP} = {b} and
RLP (B) = {a, d}. Thus RLP (A)∩B = A∩RLP (B) = ϕ but R(A)∩B = {a} ≠ ϕ. So
A, B are ∗−primal ideal separated sets but are not ∗-separated sets. Similarly, any
one can add an example to show that ∗∗-primal ideal separated ⇏ ∗∗-separated.

Example 4.28. Let X = {a, b, c, d}, R = {(a, a), (a, b), (a, c), (b, b), (b, c), (d, d)}.
Then ⟨a⟩R = {a, b, c}, ⟨b⟩R = {b, c}, ⟨c⟩R = {b, c}, ⟨d⟩R = {d}. Consider L = {ϕ}
and LP = {ϕ, {b}, {c}, {b, c}}. Then we get

R({b}) = R({c}) = R({b, c}) = R({a, b}) = R({a, c}) = X, R({a}) = {a}.
Thus X is a ∗-connected space. But we have

X = {a} ∪ {b, c}, RLP ({a}) ∩ {b, c} = {a} ∩RLP ({b, c}) = ϕ.

So X is not a ∗-primal ideal connected space.

Theorem 4.29. Let (X,R,LP) be any primal ideal approximation space and A ⊆
X. Then

(1) BNDLP (A) ⊆ BND(A),
(2) ACC(A) ⊆ ACCLP (A).

Proof. Immediately by Theorem 4.1. □

Remark 4.30. Theorem 4.29 states that Definition 3.12 reduces the boundary
region and increases the accuracy measure of a set A by increasing the lower ap-
proximations and decreasing the upper approximations via primal ideal, compared
to Definition 2.10 in [20] as shown in the next examples. Then our suggested method
is more accurate than [20] in decision making.

Example 4.31. Let X = {a, b, c, d}, L = {ϕ, {a}}, LP = {ϕ, {a}, {b}, {d}, {a, b},
{a, d}, {a, b, d}} andR = {(a, a), (a, b), (a, d), (b, a), (b, b), (b, d), (c, c), (d, a), (d, b), (d, d)}.
Then R < a > R = {a, b, d}, R < b > R = {a, b, d}, R < c > R = {c}, R < d > R =
{a, b, d}.
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Table 2. Comparison between the boundary region and accuracy
measure by using our method in Definition 3.12 and the previous
one in Definition 2.10 in [20]

.
Method in Definition 2.10 in [20] Our method in Definition 3.12

A ⊆ X R(A) R(A) BND(A) ACC(A) RLP (A) RLP (A) BND∗
LP (A) ACC∗

LP (A)

X X X ϕ 1 X X ϕ 1
{a} ϕ {a} {a} 0 {a} {a} ϕ 1
{b} ϕ {a, b, d} {a, b, d} 0 {b} {b} ϕ 1
{c} {c} {c} ϕ 1 {c} {c} ϕ 1
{d} ϕ {a, b, d} {a, b, d} 0 {d} {d} ϕ 1
{a, b} ϕ {a, b, d} {a, b, d} 0 {a, b} {a, b} ϕ 1
{a, c} {c} {a, c} {a} 1/2 {a, c} {a, c} ϕ 1
{a, d} ϕ {a, b, d} {a, b, d} 0 {a, d} {a, d} ϕ 1
{b, c} {c} X {a, b, d} 1/4 {b, c} {b, c} ϕ 1
{b, d} {b, d} X {a, c} 1/2 {b, d} {b, d} ϕ 1
{c, d} {c} X {a, b, d} 1/4 {c, d} {c, d} ϕ 1
{a, b, c} {c} X {a, b, d} 1/4 {a, b, c} {a, b, c} ϕ 1
{a, b, d} {a, b, d} {a, b, d} ϕ 1 {a, b, d} {a, b, d} ϕ 1
{a, c, d} {c} X {a, b, d} 1/4 {a, c, d} {a, c, d} ϕ 1
{b, c, d} {b, c, d} X {a} 3/4 {b, c, d} {b, c, d} ϕ 1

The comparison between the introduced method in Definition 3.12 and the pre-
vious method in Definition 2.10 in [20] is shown in Table 2. From Table 2, the
approximation by Definition 3.12 reduces the boundary region and increases the ac-
curacy measure of a set A by increasing the lower approximation and decreasing the
upper approximation via primal ideal with the comparison of the approximation by
Definition 2.10.

Example 4.32. Consider Example 8.2 in [24], where the data about six students is
given as in Table 3. From Table 3, we have:

Table 3. Decision system of six students.

Student Science German Mathematics Decision
a1 Bad Good Medium Accept
a2 Good Bad Medium Accept
a3 Good Good Good Accept
a4 Bad Good Bad Reject
a5 Good Bad Medium Reject
a6 Bad Good Good Accept

• The set of universe:X = {a1, a2, a3, a4, a5, a6}.
• The set of attributes: AT = {Science, German, Mathematics}.
• The sets of values: VA = {Bad, Good,Medium,Accept, Reject}.

The set of condition attributes, C = {Science, German, Mathematics}. Then the
corresponding equivalence relation is

R = {(a1, a1), (a2, a5), (a3, a3), (a4, a4), (a5, a2), (a6, a6)}.
Thus R < a1 > R = {a1}, R < a2 > R = R < a5 > R = {a2, a5}, R < a3 > R =
{a3}, R < a4 > R = {a4}, R < a6 > R = {a6}.
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Consequently, anyone can present an ideal and a corresponding primal ideal to il-
lustrate that the approximations in Definition 3.12 are superior to the previous
Definition 2.10 in [20] by extending a table similar to Table 2 by comparing the
resultant accuracy.
For example, let L = {ϕ, {a1}} and LP = P (Y ), where Y = {a1, a2, a3, a4, a5}. From
Table 3 A = {a1, a2, a3, a6} (Decision: Accept). Thus we respectively computed the
lower and upper approximations, the boundary and the accuracy measure of A to
be as follows.

(1) The approach in Definition 2.10 yields {a1, a3, a6}, {a1, a2, a3, a5, a6}, {a2, a5}
and 3/5. This means that the student a2 have decision (Reject), which contradicts
the decision system in Table 3.

(2) The approach in Definition 3.12 yields {a1, a2, a3, a6}, {a1, a2, a3, a6}, ϕ and
1. This means that the students {a1, a2, a3, a5, a6}, have decision (Accept) according
to the proposed technique which is coincident with Table 3. Hence, a decision made
according to the calculations of our current technique via primal ideals in Definition
3.12 is more accurate than the approach via ideals in Definition 2.10.

5. Conclusions

There is a close homogeneity between rough set theory and general topology.
Ideal is a fundamental concept in topological spaces and played an important role in
the study of a generalization of rough set. This investigation was dedicated to the
discourse of ”primal ideal”. It is illustrated that using ”primal ideal” to deal with
the decision-making problems is more accurate than using ideal, grill, or primal.

In this paper, we define primal ideal as an extension of a given ideal. We in-
troduced two new closure operators using primal ideal generating two primal ideal
topological spaces. The properties of the proposed spaces were studied. Some topo-
logical notions such as accumulation points, lower separation axioms, and connect-
edness of such spaces were defined and compared to there corresponding notions
defined by [16] in ideal approximation spaces. In the current results, primal ideals
were very helpful for increasing the current lower approximations and decreasing the
current upper approximations. Consequently, they reduced the boundary region and
increased the accuracy measure. So, they removed the vagueness of a concept that is
an essential goal for the rough set. Finally, a particle example was provided to clar-
ify the technique of the present primal ideal approximation spaces and demonstrate
their utility and efficiency.
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