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1. Introduction

The exploration and development of algebraic structures have been a cornerstone
in the advancement of both theoretical and applied mathematics. The introduction
of BCK-algebras by Iséki and Tanaka [1] in 1978 marked a significant milestone in
this journey, providing a framework that has since been extended and refined through
concepts like BCI-algebras (Iséki, [2]), BCC-algebras (Dudek, [3] and Thomys, [4]),
QS-algebras (Ahn and Kim, [5]), Q-algebras (Neggers et al. [6]), BCH-algebras
(Hu and Li [7]) and BE-algebras (Kim and Kim [8]). These developments not
only enriched the algebraic theory but also paved the way for applying algebraic
structures to diverse fields such as topology and group theory. In particular, Jansi
and Thiruveni [9, 10] applied BCH-algebras to topology and topological group (See
[11, 12, 13, 14, 15, 16, 17, 18] for further researches).

Classical algebraic structures with Γ concept is another interest for most of the
researchers in algebra one of them is Γ-Semirings introduced by Rao [19] and further
studied by Kaushik and Moin [20]. Similar motivation comes from classical to logical
algebras to study different structures using Γ concept. For example, Saeid et al. [21]
introduced the concept of Γ-BCK-algebras as a generalization of BCK-algebras
and investigated some of its properties. Shi et al. [22] redefined a Γ-BCK-algebra
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proposed by Saeid et al. [21] and studied its various properties. After then, Ibedou et
al. [23] studied topological structures on Γ-BCK-algebras. Shi et al. [24] proposed
the notion of Γ-BCI-algebras as a generalization of BCI-algebras, and discussed
some of its basic properties and some topological structures on Γ-BCI-algebras.

In this vein, our research aims to contribute to this evolving landscape by in-
troducing the concept of Γ-BCH-algebras, a novel subclass within the realm of
Γ-BCI-algebras. Our focus is not only on defining and elucidating the properties of
Γ-BCH-algebras but also on exploring their application to topological structures.
This dual emphasis on theoretical foundation and practical application reflects our
broader objectives: to enrich the algebraic theory with new insights and to demon-
strate the utility of these insights in understanding and solving complex problems
in topology and beyond.

By defining Γ-BCH-ideals, the Γ-center, and the Γ-branch of a Γ-BCH-algebra,
we aim to provide a comprehensive framework that extends the applicability of
algebraic structures to topological concepts. Our investigation into the properties of
quotient Γ-BCH-algebras and their topological properties is motivated by a desire
to bridge the gap between abstract algebra and practical applications, fostering a
deeper understanding of the underlying principles that govern both fields.

In summary, our research is driven by a commitment to advancing the frontiers of
algebraic studies through the introduction of Γ-BCH-algebras and applying these
structures within the domain of topology. Our goal is to provide a rich, theoretically
sound foundation that not only adds to the algebraic discourse but also equips
other researchers with new tools for exploring the interplay between algebra and
topology, thus contributing to the broader scientific community’s understanding of
these fundamental concepts.

2. Preliminaries

We recall some definitions needed in next sections.

Definition 2.1 ([1, 2]). Let X be a nonempty set with a constant 0 and a binary
operation ∗. Consider the following axioms: for any x, y, z ∈ X,

(A1) [(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = 0,
(A2) [x ∗ (x ∗ y)] ∗ y = 0,
(A3) x ∗ x = 0,
(A4) x ∗ y = 0 and y ∗ x = 0 imply x = y,
(A5) 0 ∗ x = 0,
(A6) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Then X is called a:
(i) BCI-algebra [2], if it satisfies axioms (A1)–(A4),
(ii) BCK-algebra [1], if it satisfies axioms (A1)–(A5),
(iii) BCH-algebra [7], if it satisfies axioms (A3), (A4), (A6).

It is well-known that the followings hold (See [7]):

The class of BCK-alebras ⊂ The class of BCI-alebras ⊂ The class of BCH-alebras.
16
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In BCK/BCI/BCH-algebra X, we define a binary operation ≤ on X as follows:
for any x, y ∈ X,

x ≤ y if and only if x ∗ y = 0.

Definition 2.2 ([7]). A BCH-algebra X is said to be proper, if it is not a BCI-
algebra.

Definition 2.3 (See [7, 25]). A BCI/BCH-algebra X is said to be associative, if
it satisfies the following condition:

(2.1) (x ∗ y) ∗ z = x ∗ (y ∗ z) for any x, y, z ∈ X.

Definition 2.4 ([25]). A BCI/BCH-algebra X is said to be medial, if it satisfies
the following condition:

(2.2) (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u) for any x, y, u, z ∈ X.

Definition 2.5 ([19]). Let X and Γ be two nonempty sets. Then X is called a
Γ-semigroup, if there is a mapping f : X×Γ×X → X, denoted by f(x, α, y) = xαy
for each (x, α, y) ∈ X ×Γ×X, such that it satisfies the following condition: for any
x, y, z ∈ X and any α, β ∈ Γ,

(2.3) xα(yβz) = (xαy)βz.

3. Basic properties of Γ-BCH-algebras

In this section, we introduce the notions of Γ-BCH-algebras and medial Γ-BCH-
algebras, and study some of their properties.

Definition 3.1. Let X be a set with a constant 0 and let Γ be a nonempty set. Then
X is called a Γ–algebra, if it is Γ-groupoid, i.e., there is a mapping f : X×Γ×X → X,
denoted by f(x, α, y) = xαy for each (x, α, y) ∈ X × Γ×X.

Definition 3.2. Let Γ-algebra X satisfy the following axioms: for any x, y, z ∈ X
and α, β ∈ Γ,

(ΓA1) [(xαy)β(xαz)]β(zαy) = 0,
(ΓA2) [xα(xβy)]αy = 0,
(ΓA3) if xαy = 0 = yαx, then x = y,
(ΓA4) xαx = 0,
(ΓA5) 0αx = 0,
(ΓA6) (xαy)βz = (xαz)βy.

Then X is called a:
(i) Γ-BCK-algebra [22], if it satisfies the axioms (ΓA1)–(ΓA5),
(ii) Γ-BCI-algebra [24], if it satisfies the axioms (ΓA1)–(ΓA4),
(iii) Γ-BCH-algebra, if it satisfies the axioms (ΓA3), (ΓA4), (ΓA6).

For a Γ-BCK/BCI/BCH-algebra X and a fixed α ∈ Γ, we define the operation
∗ : X ×X → X as follows: for any x, y ∈ X,

x ∗ y = xαy.

Then it is clear (X, ∗, 0) is a BCK/BCI/BCH-algebra and is denoted by Xα.
17
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α 0 1 2
0 0 0 2
1 1 0 2
2 2 1 0

β 0 1 2
0 0 1 1
1 1 0 1
2 2 1 0

γ 0 1 2
0 0 2 2
1 1 0 2
2 2 2 0

Table 3.1

Example 3.3. (1) Let Γ = {α, β, γ} and X = {0, 1, 2} be a set with the ternary
operation defined as the following table:
Then clearly, X is a Γ-BCH-algebra.

(2) Let Γ = {α, β} and let X = {0, 1, 2, 3} be a set with the ternary operation
defined as the following table:

α 0 1 2 3
0 0 0 0 0
1 1 0 3 3
2 2 0 0 2
3 3 0 0 0

β 0 1 2 3
0 0 0 0 0
1 1 0 0 3
2 2 3 0 3
3 3 0 0 0

Table 3.2

Then we can easily check that X is a Γ-BCH-algebra.
(3) Let Γ = {α, β} and let X = {0, 1, 2, 3} be a set with the ternary operation

defined as the following table:

α 0 1 2 3
0 0 0 0 3
1 1 0 1 3
2 2 2 0 3
3 3 3 3 0

β 0 1 2 3
0 0 0 0 3
1 1 0 3 2
2 2 3 0 3
3 3 3 3 0

Table 3.3

Then clearly, X is a Γ-BCH-algebra.

The followings are immediate consequences of Definition 3.2 (iii).

Lemma 3.4. Let X be a Γ-BCH-algebra. Then the axiom (ΓA2) holds.

The following is an immediate consequence of Definition 3.2 and Lemma 3.4.

Corollary 3.5. Every Γ-BCH-algebra satisfying the axiom (ΓA1) is a Γ-BCI-
algebra

Lemma 3.6. Let X be a Γ-BCH-algebra. Then the following condition hold:

(3.1) for each x ∈ X and each α ∈ Γ, xα0 = 0 implies x = 0.

Thus the following condition hold:

(3.2) xα0 = x for each x ∈ X and each α ∈ Γ.

Proof. The proof is straightforward from Definition 3.2. □
18
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The following is an immediate consequence of Definition 3.2 (ii) and (iii).

Proposition 3.7. Every Γ-BCI-algebra is a Γ-BCH-algebra. But the converse is
not true (See Example 3.8).

Example 3.8. Let X be the Γ-BCH-algebra given in Example 3.3 (2). Then

[(2α3)β(2α1)]β(1α3) = (2β0)β3 = 2β3 = 3 ̸= 0.

Thus the axiom (ΓA1) does not hold. So X is not a Γ-BCI-algebra

Proposition 3.9. Let X be a Γ-BCH-algebra. Then the following identity:

(3.3) (xαy)βx = 0βy for any x, y ∈ X and any α, β ∈ Γ.

Proof. The proof follows from the axioms (ΓA6) and (ΓA4). □

The followings are immediate consequences of Proposition 3.9.

Corollary 3.10. Let X be a Γ-BCH-algebra. Then the following identities:

(3.4) (0αx)β0 = 0βx, (xα0)βx = 0 for each x ∈ X and any α, β ∈ Γ.

Proposition 3.11. Let X be a Γ-BCH-algebra. Then the following identity:

(3.5) 0α(xβy) = (0αx)β(0αy) for any x, y ∈ X and any α, β ∈ Γ.

Proof. Let x, y ∈ X and let α, β ∈ Γ. Then we have
0α(xβy) = [(0αy)β(xβy)]α(0αy) [By the axiom (ΓA6)]

= [((xβy)αx)β(xβy)]β[(xβy)αx]
= [(((xβy)α(xβy))αx]β[(xβx)αy] [By the condition (3.3)]
= (0αx)β(0αy). [By the axiom (ΓA4)]

Thus the condition (3.4) holds. □

Proposition 3.12. Let X be a Γ-BCH-algebra. Then the following identity:

(3.6) 0α(0β(0αx)) = 0αx for each x ∈ X and any α, β ∈ Γ.

Proof. From the axiom (ΓA6), we get

(3.7) [0α(0β(0αx))]β(0αx) = 0.

On the other hand, we get
(0αx)β[0α(0β(0αx))] = [0α(0β(0αx))]β[0α(0β(0αx))] [By (3.7)]

= 0. [By the axiom (ΓA4)]
Thus by the axiom (ΓA3), the identity (3.6) holds. □

We have a characterization of Γ-BCH-algebras.

Theorem 3.13. Let X be a Γ-algebra. Then X is a Γ-BCH-algebra if and only if
it satisfies the axioms (ΓA3), (ΓA4) and the following condition:

(3.8) [(xαy)βz]α[(xαz)βy] = 0 for any x, y, z ∈ X and any α, β ∈ Γ.

Proof. Suppose X is a Γ-BCH-algebra. Since the axioms (ΓA3) and (ΓA4) hold,
it is sufficient to prove that the condition (3.8) holds. Let x, y, z ∈ X and let
α, β ∈ γ. Then by the axioms (ΓA6) and (ΓA4), we get

[(xαy)βz]α[(xαz)βy] = [(xαy)βz]α[(xαy)βz] = 0.
19
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Thus the condition (3.8) holds.
Conversely, suppose the axioms (ΓA3), (ΓA4) and the condition (3.8) hold. □

In Γ-BCK/BCI/BCH-algebra X, we define a binary operation ≤ on X as fol-
lows: for any x, y ∈ X and each α ∈ Γ,

x ≤ y if and only if xαy = 0.

Proposition 3.14. Let X be a Γ-BCH-algebra. Then the followings hold: for any
x, y ∈ X,

(1) x ≤ y, y ≤ x imply x = y,
(2) x ≤ x.

Proof. The proofs are straightforward from Definition 3.2 (iii) and the above defini-
tion of ≤. □

Definition 3.15. A Γ-BCH-algebra X is said to be proper, if it is not a Γ-BCI-
algebra.

Remark 3.16. From Example 3.8, we can easily see that there is a proper Γ-BCH-
algebra.

The following provides criteria for determining whether Γ-BCH-algebra is proper
or not.

Theorem 3.17. A Γ-BCH-algebra X is proper if and only if the axioms (ΓA1)
does not hold.

Proof. The proof is straightforward. □

Definition 3.18. A Γ-BCI/BCH-algebra X is said to be associative, if it is Γ-
semigroup, i.e., the following condition holds:

(3.9) (xαy)βz = xα(yβz) for any x, y, z ∈ X and any α, β ∈ Γ.

It is obvious that ifX is an associative Γ-BCI/BCH-algebra, then for each α ∈ Γ,
Xα is an associative BCI/BCH-algebra.

Proposition 3.19. Every associative Γ-BCH-algebra is an associative Γ-BCI-
algebra.

Proof. Let X be an associative Γ-BCH-algebra. From Lemma 3.4, it is sufficient to
show that the axiom (ΓA1) holds. Let x, y, z ∈ X and let α, β ∈ Γ. Then we get

[(xαy)β(xαz)]β(zαy) = [(xαy)βx]α[(zβz)αy] [By (3.5)]
= [(xαx)βy]α[(zαz)βy] [By the axiom (ΓA6)]
= (0βy)α(0βy) [By the axiom (ΓA3)]
= 0.

Thus the axiom (ΓA1) holds. So X is an associative Γ-BCI-algebra. □

The following is an immediate consequence of Definition 3.18 and Proposition
3.19.

Corollary 3.20. If X is an associative Γ-BCH-algebra, then for each α ∈ Γ, Xα

is an associative BCH-algebra and thus an associative BCI-algebra.
20
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Definition 3.21. A Γ-BCI/BCH-algebra X is said to be medial, if it satisfies the
following condition holds:

(3.10) (xαy)β(zαu) = (xαz)β(yαu) for any x, y, u, z ∈ X and any α, β ∈ Γ.

It is clear that if X is a medial Γ-BCI/BCH-algebra, then for each α ∈ Γ, Xα is
a medial BCI/BCH-algebra.

Proposition 3.22. Every medial Γ-BCH-algebra is a medial Γ-BCI-algebra.

Proof. Let X be a medial Γ-BCH-algebra. It is sufficient to prove that the axiom
(ΓA1) holds. Let x, y, z ∈ X and let α, β ∈ Γ. Then we get

[(xαy)β(xαz)]β(zαy) = [(xαy)β(zαy)]β(xαz) [By the axiom (ΓA6)]
= [(xαz)β(yαy)]β(xαz) [By (3.10)]
= [(xαz)β0]β(xαz) [By the axiom (ΓA4)]
= (xαz)β(xαz) [By Lemma 3.6]
= 0. [By the axiom (ΓA4)]

Thus the axiom (ΓA1) holds. So X is a medial Γ-BCI-algebra. □

The following is an immediate consequence of Definition 3.21 and Proposition
3.22.

Corollary 3.23. If X is a medial Γ-BCH-algebra, then for each α ∈ Γ, Xα is a
medial BCH-algebra and thus a medial BCI-algebra.

We give a characterization of medial Γ-BCH-algebras.

Theorem 3.24. A Γ-BCH-algebra is medial if and only if it satisfies one of the
following conditions: for any x, y, z ∈ X and α, β ∈ Γ,

(3.11) xαy = 0β(yαx),

(3.12) xα(yβz) = zα(yβx)

(3.13) xα(xβy) = y,

(3.14) 0α(0βy) = y.

Proof. Suppose X is a medial Γ-BCH-algebra, and let x, y ∈ X and let α, β ∈ Γ.
Then by Lemma 3.6, the axiom (ΓA4) and (3.10), we have

xαy = (xαy)β0 = (xαy)β(xαx) = (xαx)β(yαx) = 0β(yαx).

Thus the condition (3.11) holds.
Now suppose the condition (3.11) holds, let x, y, z ∈ X and let α, β ∈ γ. Then

by (3.11) and the axiom (ΓA6), we get

(xαy)βz = 0β[(yαz)βx] = 0β[(yαx)βz] = zα(yβx).

Thus the condition (3.12) holds. It is clear that [xα(xβy)]βy = 0. On the other
hand, yβ[xα(xβy)] = 0β[(xα(xβy))βy] = 0. By the axiom (ΓA3), xα(xβy) = y. So
the condition (3.13) holds. the condition (3.12) follows from the condition (3.13).

Finally suppose the condition (3.14) holds, let x, y ∈ X and let α, β ∈ Γ. Then
we have

xαy = 0α[0α(xβy)] [By the hypothesis]
21



Baek et al./Ann. Fuzzy Math. Inform. 28 (2024), No. 1, 15–36

= 0α[(0αx)β(0αy)] [By (3.5)]
= 0α[(0α(0αy))βx] [By the axiom (ΓA6)]
= 0α(yβx). [By the hypothesis]

Thus the condition (3.11) holds.
Conversely, suppose the necessary condition (3.12) holds, let x, y, u, z ∈ X and

let α, β ∈ Γ. Then we have

uα[zβ(xαy)] = uα[yε(xαz)] = (xαz)β(yαu).

Since uα[zβ(xαy)] = (xαy)β(zαu), (xαy)β(zαu) = (xαz)β(yαu). Thus the condi-
tion (3.10) holds. So X is medial. □

4. Γ-BCH-ideals of Γ-BCH-algebras

In this section, we define a Γ-BCH-ideal, the Γ-center and the Γ-branch of a
Γ-BCH-algebra, and deal with some of their properties

Definition 4.1 (See [24]). LetX be a Γ-BCI/BCH-algebra and let S be a nonempty
subset of X. Then S is called a Γ-subalgebra of X, if S itself is a Γ-BCI/BCH-
algebra.

It is obvious that X and {0} are Γ-subalebras of X. In this case, X and {0} will
be called the trivial Γ-subalgebras of X. A nonempty subset S is called a proper
Γ-subalgebra of X, if S is a Γ-subalgebra of X and S ⫋ X. It is clear that {0} is a
proper Γ-subalgebra of X.

From Definition 4.1, we obtain easily the following.

Theorem 4.2 (See Theorem 3.25, [24]). Let X be a Γ-BCI/BCH-algebra and let
S be a nonempty subset of X. Then S is a Γ-subalgebra of X if and only if xαy ∈ X
for any x, y ∈ S and each α ∈ Γ.

Definition 4.3 (See [24]). LetX be a Γ-BCI/BCH-algebra and let I be a nonempty
subset of X. Then I is called a Γ-BCH-ideal of X, if it satisfies the following con-
ditions: for any x, y ∈ X and α ∈ Γ,

(ΓI1) 0 ∈ I,
(ΓI2) if xαy ∈ I and y ∈ I, then x ∈ I.
We will denote the set of all Γ-BCH-ideals of X by ΓI(X).

Example 4.4. (1) Let X be the Γ-BCH-algebra given in Example 3.3 (2). Then
clearly, {0, 1} is a Γ-subalgebra of X but {0, 1} /∈ ΓI(X) since 2α1 ∈ {0, 1} and
1 ∈ {0, 1} but 2 /∈ {0, 1}.

(2) Let X be the Γ-BCI-algebra given in Example 3.3 (3). Then we can see that

{0, 1}, {0, 2}, {0, 3} ∈ ΓI(X).

However, {0, 1, 2} /∈ ΓI(X) because 3β2 = 2 ∈ {0, 1, 2} and 2 ∈ {0, 1, 2} but
3 /∈ {0, 1, 2}.

Definition 4.5 (See [24]). Let X be a Γ-BCI/BCH-algebra X and let I ∈ ΓI(X).
Then I is called a closed Γ-BCH-ideal of X, if x ∈ I implies 0αx ∈ I for each α ∈ Γ.

We will denote the set of all closed Γ-ideals of X by ΓIc(X).
22
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Example 4.6. Let X be the Γ-BCH-algebra given in Example 3.3 (2). The we
can check that {0, 1} ∈ ΓIc(X) but {0, 2} /∈ ΓIc(X) because 2 ∈ {0, 2} and {0, 2} ∈
ΓI(X) but 0β2 = 1 /∈ {0, 2}.

Proposition 4.7 (See Proposition 4.10, [24]). Every closed Γ-BCH-ideal of a Γ-
BCH-algebra X is a Γ-subalgebra of X. But the converse is not true.

Proof. Let I be a closed Γ-BCH-ideal of X. Since 0 ∈ I, I ̸= ∅. Let x, y ∈ I and
let α ∈ Γ. Then (xαy)βx = (xαx)βy = 0βy ∈ I. Since I ∈ ΓI(X), xαy ∈ I. Thus I
is a Γ-subalgebra of X.

Consider the Γ-BCH-algebra X given in Example 3.3 (2). Then {0, 3} is a Γ-
subalgebra of X but {0, 3} /∈ ΓIc(X). □

The following is a characterization of closed Γ-ideals.

Theorem 4.8 (See Theorem 4.11, [24]). Let X be a Γ-BCH-algebra and let I be
a subset of X. Then I ∈ ΓIc(X) if and only if it satisfies the following conditions:
for any x, y, z ∈ X and each α ∈ Γ,

(1) 0 ∈ I,
(2) xαz, yαz, z ∈ I imply xαy ∈ I.

Proof. The proof is similar to one of Theorem 4.11 in [24]. □

Definition 4.9. Let X be a Γ-BCH-algebra. Then the subset of X defined by:

{x ∈ X : 0αx = 0 for each α ∈ Γ}
is called a Γ-BCA-part of X and denoted by ΓBCA(X).

If X is a Γ-BCK-algebra, then the subset of X is called a Γ-BCK-part of X and
denoted by ΓBCK(X).

It is obvious that ΓBCA(X) ̸= ∅ and if X is a Γ-BCI-algebra, then ΓBCA(X) =
ΓBCK(X).

Remark 4.10. ΓBCA(X) is not necessarily a Γ-BCK-algebra (See Example 4.11).

Example 4.11. Let Γ = {α, β} and let X = {0, 1, 2, 3, 4} be a set with the ternary
operation defined as the following table:

α 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 0 4
3 3 3 3 0 4
4 4 4 4 4 0

β 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 2 4
2 2 2 0 0 4
3 3 3 3 0 4
4 4 4 4 4 0

Table 4.1

Then clearly, X is a Γ-BCH-algebra and ΓBCA(X) = {0, 1, 2, 3}. On the other
hand,

[(1α3)β(1α2)]β(2α3) = 1 ̸= 0.

Thus the axiom (ΓA1) does not hold. So ΓBCA(X) is not a Γ-BCK-algebra.
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Proposition 4.12. Let X be a Γ-BCH-algebra X. Then ΓBCA(X) ∈ ΓIc(X)
and thus ΓBCA(X) is a Γ-subalgebra of X. Furthermore, if x ∈ ΓBCA(X) and
y ∈ ΓBCA(X)c, then xαy, yαx ∈ ΓBCA(X)c for each α ∈ Γ.

Proof. By the definition of ΓBCA(X), 0 ∈ ΓBCA(X). Then the condition (ΓI1)
holds. Suppose xαy, y ∈ ΓBCA(X) for each α ∈ Γ. By the definition of ΓBCA(X),
we have

0β(xαy) = 0, 0βy = 0 for each β ∈ Γ.

Then (xαy)βx = (xαx)βy = 0βy = 0. Thus, we get

0 = 0β(xαy) = [(xαy)βx]β(xαy) = [(xαy)β(xαy)]βx = 0βx.

So x ∈ ΓBCA(X), i.e., the condition (ΓI2) holds. Hence ΓBCA(X) ∈ ΓI(X).
Finally, let x ∈ ΓBCA(X). Then clearly, 0αx = 0. Thus 0β(0αx) = 0β0 = 0. So
0αx ∈ ΓBCA(X). Hence ΓBCA(X) ∈ ΓIc(X).

Now suppose x ∈ ΓBCA(X) and y ∈ ΓBCA(X)c. Assume that xαy ∈ ΓBCA(X)
for each α ∈ Γ. Since ΓBCA(X) ∈ ΓIc(X), (xαy)βx = 0βy ∈ ΓBCA(X) for each
β ∈ Γ. Thus 0α(0βy) = 0, i.e., 0 = [0α(0βy)]αy = 0αy. So y ∈ ΓBCA(X). This is a
contradiction. Hence xαy /∈ ΓBCA(X) for each α ∈ Γ. Similarly, yαx /∈ ΓBCA(X)
for each α ∈ Γ. □

For a Γ-BCH-algebra X, the subset ΓMed(X) of X defined by:

ΓMed(X) = {x ∈ X : 0α(0βx) = x for any α, β ∈ Γ}
is called the Γ-medial part of X. Each member of ΓMed(X) is called a Γ-medial
element ofX. It is obvious that 0 is a Γ-medial element ofX and then ΓMed(X) ̸= ∅.

Definition 4.13. LetX be a Γ-BCH-algebra. Then ΓMed(X) is called the Γ-center
of X, if it is a medial Γ-subalgebra of X. In this case, we will denote ΓMed(X) by
ΓIX .

It is obvious that ΓIX is a Γ-subalgebra of X.

Example 4.14. Let X be the Γ-BCH-algebra given in Example 4.11. Then clearly,
ΓIX = {0, 4}. Moreover, we can confirm that ΓIX is a Γ-subalebra of X.

Proposition 4.15. Let X be a Γ-BCH-algebra. Then for each x ∈ X and each
α ∈ Γ, there is a unique x0 ∈ ΓIX such that x0αx = 0, i.e., x0 ≤ x.

Proof. Let x ∈ X and let α, β ∈ Γ. It is clear that [0α(0βx)]αx = 0. Let x0 =
0α(0βx). Then we have

0β[0α(0βx)] = [(0α(0βx))αx]β[0α(0βx)] = 0βx.

Thus 0α[0β(0α(0βx))] = 0α(0βx) = x0. So x0 ∈ ΓIX and x0 ≤ x.
Now suppose y0 ∈ ΓIX such that y0 ≤ x, i.e., y0αx = 0 for each α ∈ Γ.

Then 0βy0 = (y0αx)βy0 = (y0αy0)βx = 0βx. Thus by the hypothesis, 0α(0βx) =
0α(0βy0) = y0. So y0 = x0. Hence x0 is unique. □

For each x ∈ X and any α, β ∈ Γ, the point 0α(0βx) = x0 ∈ ΓIX is called the
medial Γ-point or central Γ-point of x and will be denoted by Γmed(x).

The following is an immediate consequence of Proposition 4.15.
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Corollary 4.16. Let X be a Γ-BCH-algebra. If x, y ∈ X such that x ≤ y and
x0 = Γmed(x), y0 = Γmed(y), then x0 = y0.

Remark 4.17. If x0 ∈ ΓIX and y ≤ x0, then clearly, y = x0 by Corollary 4.15.
Thus each central Γ-point of a Γ-BCH-algebra X is also a minimal point. Moreover,
we have the following identity:

(4.1) zα(zβx0) = x0 for each z ∈ X and any α, β ∈ Γ.

Proposition 4.18. Let X be a Γ-BCH-algebra. If for any x, y ∈ X and each
α ∈ Γ, x0 = Γmed(x), y0 = Γmed(y), then Γmed(xαy) = x0αy0, i.e., for any
α, β ∈ Γ,

(4.2) (xαy)0 = 0α[0β(xαy)] = [0α(0βx)]α[0α(0βy)] = x0αy0.

Proof. Suppose x0 = Γmed(x), y0 = Γmed(y) for any x, y ∈ X and each α ∈ Γ.
Then clearly, x0, y0 ∈ ΓIX . Since ΓIX is a subalgebra of X, x0αy0 ∈ ΓIX . Thus
there is z ∈ X such that x0αy0 = Γmed(z). It is sufficient to prove that z = xαy,
i.e., x0αy0 ≤ xαy. Let β ∈ Γ. Then we get

(x0αy0)β(xαy) = [(0α(0βx))α(0α(0βy))]β(xαy) [Since x0, y0 ∈ ΓIX ]
= [(0α(0α(0βy)))α(0βx)]β(xαy) [By the axiom (ΓA6)]
= [(0βy)α(0βx)]β(xαy) [By Proposition 3.12]
= [(0β(0βx))αy]β(xαy) [By the axiom (ΓA6)]
= (x0αy)β(xαy) [Since x0, y0 ∈ ΓIX ]
= [(xα(xβx0))αy]β(xαy) [By (4.1)]
= [(xαy)α(xβx0)]β(xαy)
= [(xαy)α(xαy)]β(xβx0)
= 0β(xβx0)
= (xαx)β(xβx0)
= [xα(xβx0)]βx
= x0βx
= 0.

Thus (4.2) holds. □

Definition 4.19. Let X be a Γ-BCH-algebra and let x0 ∈ ΓIX . Then the subset
of X, denoted by ΓB(x0), defined by:

ΓB(x0) = {x ∈ X : x0 ≤ x} = {x ∈ X : x0αx = 0 for each α ∈ Γ}
is called the Γ-branch of X determined by x0.

Remark 4.20. From Remark 4.17, if y ≤ x0, then y = x0. Thus we can consider x0

as the starting point of ΓB(x0). Moreover, x ∈ ΓB(x0) if and only if Γmed(x) = x0.
So x0 ∈ ΓB(x0) and hence ΓB(x0) ̸= ∅. Furthermore, we can see that ΓB(0) =
ΓBCA(X).

Example 4.21. Let X be the Γ-BCH-algebra given in Example 4.11. Then we can
easily check that ΓB(0) = {0, 1, 2, 3, 4} = ΓBCA(X). Moreover, ΓB(4) = {4}.

Proposition 4.22 (See Theorem 6, [25]). Let X be a Γ-BCH-algebra and let x, y ∈
X. Then

(1) X =
⋃

x0∈ΓIX
ΓB(x0),
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(2) ΓB(x0) ∩ ΓB(y0) = ∅ for any x0, y0 ∈ ΓIX ,
(3) xαy, yαx ∈ ΓBCA(X) for each α ∈ Γ if and only if there is x0 ∈ ΓIX such

that x, y ∈ ΓB(x0),
(4) xαy, yαx ∈ ΓBCA(X)c for each α ∈ Γ if and only if x ∈ ΓB(x0), y ∈ ΓB(y0)

and x0 ̸= y0,
(5) x ∈ ΓB(x0), y ∈ ΓB(y0) imply xαy ∈ ΓB(x0αy0) for each α ∈ Γ.

Proof. (1) It is clear that ΓB(x0) ⊂ X for each x0 ∈ ΓIX . Then
⋃

x0∈ΓIX
ΓB(x0) ⊂

X. Now let y ∈ X. Then by Proposition 4.15, there is unique y0 = 0α(0βy) ∈ ΓIX
such that y0 ≤ y for any α, β ∈ Γ. Thus y ∈ ΓB(y0) ⊂

⋃
x0∈ΓIX

ΓB(x0). So

X ⊂
⋃

x0∈ΓIX
ΓB(x0). Hence X =

⋃
x0∈ΓIX

ΓB(x0).

(2) Assume that ΓB(x0)∩ ΓB(y0) ̸= ∅ for some x0, y0 ∈ ΓIX , say z ∈ ΓB(x0)∩
ΓB(y0). Then z ∈ ΓB(x0 and z ∈ ΓB(y0 such that z ≤ x0 and z ≤ y0. Thus
Γmed(z) = {x0, y0}. This is a contradiction to Proposition 4.15. So ΓB(x0) ∩
ΓB(y0) = ∅.

(3) (⇒): Suppose xαy, yαx ∈ ΓBCA(X) for each α ∈ Γ and let x ∈ ΓB(x0),
y ∈ ΓB(y0). Then x0 = Γmed(x), y0 = Γmed(y). Thus by Proposition 4.18, we have

Γmed(xαy) = Γmed(x)αΓmed(y) = x0αy0

and

Γmed(yαx) = Γmed(y)αΓmed(x) = y0αx0.

Since ΓB(0) = ΓBCA(X),, by the hypothesis, xαy, yαx ∈ ΓB(0). So Γmed(xαy) =
0 = Γmed(yαx). Since a medial Γ-point is unique, x0αy0 = y0αx0. Hence x0 = y0.
Therefore x, y ∈ ΓB(x0) for some x0 ∈ ΓIX .

(⇐): Conversely, suppose there is x0 ∈ ΓIX such that x, y ∈ ΓB(x0). Then
clearly, x0 ≤ x, x0 ≤ y, i.e., x0αx = 0, x0αy = 0 for each α ∈ Γ. Thus we get: for
each β ∈ Γ,

0β(xαx0) = (xαx)β(xαx0) = [xα(xαx0)]βx = x0βx = 0.

Thus xαx0 ∈ ΓBCA(X). Similarly, yαx0 ∈ ΓBCA(X). On the other hand, we have

(xαy)β(xαx0) = [xα(xαx0)]βy = x0βy = 0 ∈ ΓBCA(X).

Note that ΓBCA(X) is a Γ-ideal ofX by Proposition 4.12. Since xαx0 ∈ ΓBCA(X),
xαy ∈ ΓBCA(X). Similarly, yαx ∈ ΓBCA(X). So the sufficient condition holds.

(4) (⇒): Suppose xαy, yαx ∈ ΓBCA(X)c for each α ∈ Γ. Assume that x, y ∈
ΓB(x0). Then by (3), xαy, yαx ∈ ΓBCA(X). This is a contradiction. Thus the
necessary conditions hold.

(⇐): Suppose x ∈ ΓB(x0), y ∈ ΓB(y0) and x0 ̸= y0. Assume that xαy ∈
ΓBCA(X) = ΓB(0) for some α ∈ Γ. Then by Proposition 4.18, Γmed(xαy) = x0αy0.
Thus xαy ∈ ΓB(x0αy0). Since xαy ∈ ΓB(0), x0αy0 = 0. So (x0αy0)βx0 = 0βx0, i.e.,
0βy0 = 0βx0 for some β ∈ Γ. I follows that 0α(x0αy0) = 0α(0βx0). Hence x0 = y0.
This is a contradiction. Therefore xαy ∈ ΓBCA(X)c. Similarly, yαx ∈ ΓBCA(X)c.

(5) The proof is straightforward. □

From Theorem 4.22 (1) and (2), we can see that each Γ-BCH-algebra is a disjoint
union of its Γ-branches determined by its medial Γ-points.
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Theorem 4.23 (See Theorem 7, [25]). Let X be a Γ-BCH-algebra and let D ⊂ ΓIX .
Then the followings are equivalent:

(1) J =
⋃

d0∈D ΓB(d0) ∈ ΓIc(X),

(2) D is a closed Γ-ideal in ΓIX .

Proof. (1) ⇒ (2): Suppose J =
⋃

d0∈D ΓB(d0) ∈ ΓI(X). Since J ̸= ∅, ∅ ̸= D ⊂
ΓIX . Let x0 ∈ D. Then x0 ∈ ΓB(x0) ⊂

⋃
d0∈D ΓB(d0) = J. Since J ∈ ΓIc(X),

0αx0 ∈ J for each α ∈ Γ. Thus there is d0,1 ∈ D such that 0αx0 ∈ ΓB(d0,1). So
Γmed(0αx0) = d0,1. Since 0αx0 ∈ ΓIX , Γmed(0αx0) = 0αx0. Hence 0αx0 = d0,1 ∈
D.

Now suppose y0αx0, x0 ∈ D for each α ∈ Γ. Then y0αx0 ∈ ΓB(y0αx0) ⊂ J, x0 ∈
ΓB(x0) ⊂ J. Since J ∈ ΓIc(X), y0 ∈ J. Thus there is d0,2 ∈ D ⊂ ΓIX such that
y0 ∈ ΓB(d0,2). So d0,2 = Γmed(y0) = y0 ∈ D. Hence D is a closed Γ-ideal in ΓIX .

(2) ⇒ (1): Conversely, suppose D is a closed Γ-ideal in ΓIX . Then clearly, D ̸= ∅.
Thus J ̸= ∅. Let x ∈ J. Then there is a unique d0,3 ∈ D such that x ∈ ΓB(d0,3). Thus
by the hypothesis, 0αd0,3 ∈ D. Since 0 ∈ ΓB(0) and x ∈ ΓB(d0,3), by Proposition
4.22 (5), 0αx ∈ ΓB(0αd0,3). So 0αx ∈ ΓB(0αd0,3) ⊂ J. Hence 0αx ∈ J.

Now suppose yαx, x ∈ J for each α ∈ Γ. Then there are unique d0,3, d0,4 ∈ D
such that yαx ∈ ΓB(d0,3) and x ∈ ΓB(d0,4). Let Γmed(y) = y0. Then we have

d0,4 = Γmed(x) = x0, d0,3 = Γmed(yαx) = y0αx0 = y0αd0,4.

Thus (y0αd0,4)βy0 = d0,3βy0 for each β ∈ Γ. Note that 0βd0,4 = d0,3βy0. So
d0,3α(0βd0,4) = 0βd0,3α(d0,3βy0) = y0. SinceD is a Γ-ideal ofX,D is a Γ-subalgebra
of X. Since 0, d0,3, d0,4 ∈ D, y0 = d0,3α(0βd0,4) ∈ D. Hence we have

y ∈ ΓB(y0) = ΓB(d0,3α(0βd0,4)) ⊂
⋃

d0∈D

ΓB(d0) = J.

Therefore D is a closed Γ-ideal in X. □

5. Quotient Γ-BCH-algebras

Definition 5.1 (See [21]). Let X, Y be two Γ-BCH-algebras. Then a mapping
f : X → Y is called a Γ-homomorphism, if it satisfies the following condition:

(5.1) f(xαy) = f(x)αf(y) for any x, y ∈ X and each α ∈ Γ.

In particular, a Γ-homomorphism f : X → X is called a Γ-endomorphism on X. We
will denote the set of all Γ-endomorphisms on a Γ-BCH-algebra X as ΓEnd(X).

The subset of X [resp. Y ], denoted by Γker(f) [resp. ΓIm(f)], defined by:

Γker(f) = {x ∈ X : f(x) = 0} [resp. ΓIm(f) = {f(x) : x ∈ X}]

is called the Γ-kernel [resp. Γ-image] of f .

Lemma 5.2. Let X be a Γ-BCH-algebra and let φ : X → X be the mapping defined
by: for each x ∈ X and each α ∈ Γ,

(5.2) φ(x) = 0αx.

Then φ ∈ ΓEnd(X).
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Proof. Let x, y ∈ X and let α, β ∈ Γ. Then by Proposition 3.11, we have

φ(xαy) = 0β(xαy) = (0βx)α(0βx) = φ(x)βφ(y).

Thus φ is a Γ-enomorphism on X. So φ ∈ ΓEnd(X). □

Proposition 5.3. Let X be a Γ-BCH-algebra and let f ∈ ΓEnd(X). Then
(1) f(0) = 0,
(2) f(0αx) = 0αf(x) for each x ∈ X and each α ∈ Γ,
(3) if xαy = 0, then f(x)αf(y) = 0 for any x, y ∈ X and each α ∈ Γ,
(4) if A is a Γ-subalgebra of X, then so is f(A),
(5) if I ∈ ΓI(X), then f(I) ∈ ΓI(X),
(6) Γker(f) ∈ ΓIc(X).

Proof. The proofs of (1)–(3) are straightforward from Definition 5.1.
(4) Suppose A is a Γ-subalgebra of X and let x, y ∈ f(A), α ∈ Γ. Then there are

a, b ∈ A such that x = f(a) and y = f(b). Thus xαy = f(a)αf(b) = f(aαb). Since
A is a Γ-subalgebra of X, aαb ∈ A, i.e., f(aαb) ∈ f(A). So xαy ∈ f(A). Hence f(A)
is Γ-subalgebra of X.

(5) Suppose I ∈ ΓI(X). Then clearly, 0 ∈ f(I). Now suppose xαy, y ∈ f(I)
for each α ∈ Γ. Then there are a, b ∈ I such that x = f(a) and y = f(b). Thus
xαy = f(aαb). Since aαb ∈ I, b ∈ I and I ∈ ΓI(X), a ∈ I. So x = f(a) ∈ f(I).
Hence f(I) ∈ ΓI(X).

(6) From (1), it is clear that 0 ∈ Γker(f). Suppose xαy, y ∈ Γker(f) for any
x, y ∈ X and each α ∈ Γ. Then f(xαy) = f(x)αf(y) = 0 and f(y) = 0. Thus by
Lemma 3.6, f(x) = 0, i.e., x ∈ Γker(f). So Γker(f) ∈ ΓI(X). Now let x ∈ Γker(f).
Then f(x) = 0. On the other hand, by (2), f(0αx) = 0αf(x) for each α ∈ Γ. Thus
f(0αx) = 0. So 0αx ∈ Γker(f). Hence Γker(f) ∈ ΓIc(X). □

From Lemma 5.2 and Proposition 5.3 (3), we have the following.

Corollary 5.4. Let φ be the Γ-endomorphism on a Γ-BCH-algebra X given in
Lemma 5.2. Then Γker(φ) ∈ ΓIc(X).

Lemma 5.5. Let X be a Γ-BCH-algebra and let ∼ be the binary relation on X
defined as follows: for any x, y ∈ X and each α ∈ Γ,

(5.3) x ∼ y if and only if xαy, yαx ∈ Γker(φ), i.e., φ(xαy) = φ(yαx) = 0.

Then ∼ is a congruence relation on X. In this case, ∼ is called a Γ-congruence
relation on X determined by Γker(φ).

Proof. The proof is straightforward. □

For a congruence relation ∼ on a Γ-BCH-algebra X and each x ∈ X, a subset
Cx of X defined by

Cx = {y ∈ X : x ∼ y} = {y ∈ X : φ(x) = φ(y)}

is called the congruence class in X determined by x with respect to ∼. The set of
all congruence classes in X is denoted by X/Γker(φ) or X/ ∼.
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Proposition 5.6. Let X be a Γ-BCH-algebra and let ∼ be a Γ-congruence relation
on X determined by by Γker(φ). We define a mapping f : X/ ∼ ×Γ×X/ ∼→ X/ ∼
as follows: for each (Cx, α, Cy) ∈ X/ ∼ ×Γ×X/ ∼,

f(Cx, α, Cy) = CxαCy = Cxαy = {z ∈ X : φ(z) = φ(xαy)} = {z ∈ X : 0βz = 0β(xαy)}.
Then X/ ∼ is a Γ-BCH-algebra. In this case, X/ ∼ is called the quotient Γ-BCH-
algebra of X by Γker(φ).

Proof. By the definition of φ and Corollary 5.4, it is obvious that f is well-defined
and C0 = Γker(φ). Let x ∈ X and let α ∈ Γ. Then CxαCx = Cxαx = C0. Thus the
axiom (ΓA4) holds.

Let x, y, z ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA6), we have

(CxαCy)βCz = C(xαy)βz = Cxαz)βy) = (CxαCz)βCy.

Thus the (ΓA6) holds.
Finally, suppose CxαCy = C0 = CyαCx for any x, y ∈ X and each α ∈ Γ.

Then φ(x)αφ(y) = φ(xαy) = 0 = φ(yαx) = φ(y)αφ(x). Thus by the axiom (ΓA3),
φ(x) = φ(y), i.e., Cx = Cy. So the axiom (ΓA3) holds. Hence X/ ∼ is a Γ-BCH-
algebra. □

We define a partial ordering ≤ on X/ ∼ as follows: for any x, y ∈ X and each
α ∈ Γ,

Cx ≤ Cy if and only if CxαCy = C0 = Γker(φ).

Then we have similar consequences of Proposition 3.14.

Proposition 5.7. Let X be a Γ-BCH-algebra and let X/ ∼ be the quotient Γ-
BCH-algebra of X by Γker(φ). Then the followings hold: for any x, y ∈ X and
any α, β ∈ Γ,

(1) Cx ≤ Cy, Cy ≤ Cx imply Cx = Cy,
(2) Cx ≤ Cy.

Proposition 5.8. If X is an associative Γ-BCH-algebra, then so is X/ ∼.

Proof. Suppose X is an associative Γ-BCH-algebra and let x, y, z ∈ X and let
α, β ∈ Γ. Then we have

(CxαCy)βCz = C(xαy)βz

= Cxα(yβz) [By the hypothesis]
= Cxα(CyβCz).

Thus X/ ∼ is an associative Γ-BCH-algebra. □

The following is an immediate consequence of Propositions 3.19 and 5.8.

Corollary 5.9. If X is an associative Γ-BCH-algebra, then X/ ∼ is an associative
Γ-BCI-algebra.

Proposition 5.10. If X is a medial Γ-BCH-algebra, then so is X/ ∼.

Proof. Suppose X is a medial Γ-BCH-algebra and let x, y, u, z ∈ X and let
α, β ∈ Γ. Then we have

(CxαCy)β(CzαCu) = C(xαy)β(zαu)

= C(xαz)β(yαu) [By the hypothesis]
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= (CxαCz)β(CyαCu).
Thus X/ ∼ is a medial Γ-BCH-algebra. □

The following is an immediate consequence of Propositions 3.22 and 5.10.

Corollary 5.11. If X is a medial Γ-BCH-algebra, then X/ ∼ is a medial Γ-BCI-
algebra.

Definition 5.12. Let X, Y be two Γ-BCH-algebras. Then a mapping f : X → Y
is called an isomorphism, if it is bijective and a homomorphism.

Two Γ-BCH-algebras are said to be isomorphic, denoted by X ∼= Y , if there is
an isomorphism f : X → Y.

Let ΓA denote the class of all Γ-BCH-algebras.

Proposition 5.13. (1) ∼= is an equivalence relation on ΓA, i.e.,
(a) X ∼= X for each Γ-BCH-algebra X,
(b) X ∼= Y implies Y ∼= X for any Γ-BCH-algebras X and Y ,
(c) X ∼= Y and Y ∼= Z imply X ∼= Z for any Γ-BCH-algebras X, Y and Z.

(2) Let X, Y be two Γ-BCH-algebras. If X is proper and X ∼= Y , then Y is
proper.

Proof. The proof are straightforward. □

Let ΓBCHA be the family of the class of all Γ-BCH-algebras and isomorphisms
between them.

Remark 5.14. From Proposition 5.13 (1) and (2), we can easily see that the fol-
lowings hold:

(1) ΓBCHA forms a concrete category,
(2) PΓBCHA is a full subcategory of ΓBCHA, where PΓBCHA denotes the family

of the class of all proper Γ-BCH-algebras and isomorphisms between them.

6. Topological structures on Γ-BCH-algebras

Definition 6.1 ([9]). Let (X, ∗, 0) be a BCH-algebra and let τ be a topology on
X. Then (X, ∗, τ) is called a topological BCH-algebra (briefly, TBCH-algebra), if
∗ : (X × X, τ × τ) → (X, τ) is continuous, i.e., for any x, y ∈ X and each W ∈ τ
with x ∗ y ∈ W , there are U, V ∈ τ such that x ∈ U, y ∈ V and U ∗ V ⊂ W, where
U ∗ V = {x ∗ y ∈ X : x ∈ U, y ∈ V } (See [26]).

Definition 6.2. Let X be a Γ-BCH-algebra and let τ be a topology on X. Then
(X, τ) is called a semitopological Γ-BCH-algebra (briefly, STΓ-BCH-algebra), if the
mapping f : (X, τ)×Γ×(X, τ) → (X, τ) is continuous at each (x, α, y) ∈ X×Γ×X,
i.e., for each α ∈ Γ, any x, y ∈ X and each W ∈ τ with xαy ∈ W , there are U, V ∈ τ
such that x ∈ U, y ∈ V and UαV ⊂ W , where UαV = {xαy : x ∈ U, y ∈ V }.

It is obvious that if X is a STΓ-BCH-algebra, then Xα is a TBCH-algebra for
each α ∈ Γ in the sense of Definition 6.1.

Example 6.3. (1) Let Γ = {α, β} and let X = {0, 1, 2, 3} be the Γ-BCH-algebra
having the the ternary operation defined as the following table:
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α 0 1 2 3
0 0 0 0 0
1 1 0 0 2
2 2 2 0 0
3 3 3 3 0

β 0 1 2 3
0 0 0 0 0
1 1 0 0 2
2 2 0 0 0
3 3 3 3 0

Table 6.1

Consider the topology τ on X defined by:

τ = {∅, {2}, {3}, {0, 1}, {0, 1, 2}, {0, 1, 3}, X}.
Then we can easily confirm that (X, τ) is a STΓ-BCH-algebra. Moreover, Xα and
Xβ are TBCH-algebras.

(2) Let X = {0, 1, 2, 3} be the Γ-BCH-algebra given in Example 3.3 (2). Let us
consider the topology τ on X defined by:

τ = {∅, {2}, {2, 3}, X}.
Let W = {2} ∈ τ. Then clearly, 2α0 = 2 ∈ {2} = W. Now let U = {2}, V = X ∈ τ.
Then clearly, 2 ∈ U, 0 ∈ X. But UαX = {0, 2} ̸⊂ W. Thus (X, τ) is not a STΓ-
BCH-algebra.

Definition 6.4 (See [27]). Let X be a STΓ-BCH-algebra and let a ∈ X. Then a
mapping la : X → X defined as follows:

la(x) = aαx for each x ∈ X each α ∈ Γ

is called a left mapping on X. We will denote the set of all left mappings on X by
l(X).

Proposition 6.5. Every left mapping on a STΓ-BCH-algebra X is continuous.

Proof. Let a, x ∈ X, let la : (X, τ) → (X, τ) be a left mapping on X and let
W ∈ τ such that la(x) = a ∗ x ∈ W. Since X is STΓ-BCH-algebra, there are
U, V ∈ τ such that a ∈ U , x ∈ V and UαV ⊂ W for each α ∈ Γ. Then clearly,
la(V ) = aαV ⊂ UαV ⊂ W. Thus la is continuous. □

Definition 6.6 (See [9]). Let X be a Γ-BCH-algebra and let α ∈ Γ. Then the
ternary operation α on l(X) as follows: for any la, lb ∈ l(X) and each x ∈ X,

(laαlb)(x) = la(x)αlb(x), i.e., (laαlb)(x) = (aαx)α(bαx).

Example 6.7. Let Γ = {α, β} and letX = {0, 1, 2, 3} be the Γ-BCH-algebra having
the the ternary operation defined as the following table:

α 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 3 3 0

β 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 3 3 0

Table 6.2

Then clearly, l(X) = {l0, l1, l2, l3}. Moreover, we can easily check that l1αl2 = l0 for
l1, l2 ∈ l(X).

31



Baek et al./Ann. Fuzzy Math. Inform. 28 (2024), No. 1, 15–36

Proposition 6.8. If X is a Γ-BCH-algebra, then l(X) is a Γ-BCH-algebra with
thee zero element l0.

Proof. Let la, lb ∈ l(X), let x ∈ X and let α ∈ Γ. Then we have
(laαlb)(x) = (aαx)α(bαx) [By Definition 6.6]

= (aαb)αz [Since X is positive implicative]
= laαb(x).

Thus laαlb = laαb.
Now let a, b, c ∈ X and let α, β ∈ Γ. Then by the axiom (ΓA4), we get

laαla = laαa = l0.

Thus l(X) satisfies the axiom (ΓA4). On the other hand, by the axiom (ΓA6), we
have

(laαlb)βlc = l(aαb)βc = l(aαc)βb = (laαlc)βlb.

So l(X) satisfies the axiom (ΓA6).
Suppose laαlb = l0 and lbαla = l0. Then laαb = l0 and lbαa = l0. Thus aαb = 0 =

bαa. By the axiom (ΓA3), a = b. So la = lb. Hence l(X) satisfies the axiom (ΓA3).
Therefore l(X) is a Γ-BCH-algebra. □

Definition 6.9 (See [9]). Let X be a Γ-BCH-algebra. Then X is called a positive
implicative Γ-BCH-algebra, if it satisfies the following condition:

(6.1) (xαz)β(yαz) = (xαy)βz for any x, y, z ∈ X and any α, β ∈ Γ.

Example 6.10. Let X be the Γ-BCH-algebra given in Example 6.7. Then we can
easily see that X is a positive implicative Γ-BCH-algebra.

Definition 6.11. A Γ-algebra X is called a positive implicative semitopological Γ-
BCH-algebra (briefly, positive implicative STΓ-BCH-algebra), if it is a positive
implicative Γ-BCH-algebra and a STΓ-BCH-algebra.

Definition 6.12. Let X be a Γ-BCH-algebra. Then the mapping Φ : X → l(X)
defined by: for each x ∈ X,

Φ(x) = lx

is called the natural mapping on X.

Example 6.13. Let X be the Γ-BCH-algebra given in Example 6.10 and consider
the topology τ on X defined by:

τ = {∅, {0, 1}, {0, 1, 2}, {0, 1, 3}, X}.

Then we can easily check that X is a positive implicative STΓ-BCH-algebra.

For a Γ-BCH-algebra X and any subset A of X, the subset lA of l(X) is defined
as follows:

lA = {la ∈ l(X) : a ∈ A}.
It is clear that Φ(A) = lA.
The following is an immediate consequence of Definition 6.12.

32



Baek et al./Ann. Fuzzy Math. Inform. 28 (2024), No. 1, 15–36

Lemma 6.14. Let X be a Γ-BCH-algebra and let A, B ⊂ X. Then the followings
hold:

(1) Φ(A) ⊂ Φ(B), i.e., lA ⊂ lB ,
(2) Φ(A ∪B) = Φ(A) ∪ Φ(B), i.e., lA∪B = lA ∪ lB ,
(3) Φ(A ∩B) = Φ(A) ∩ Φ(B), i.e., lA∩B = lA ∩ lB ,
(4) Φ(AαB) = Φ(A)αΦ(B), i.e., lAαB = lAαlB for each α ∈ Γ.

Proposition 6.15. If X is a positive implicative Γ-BCH-algebra, then the natural
mapping Φ is a Γ-isomorphism of Γ-BCH-algebras.

Proof. Suppose X is a positive implicative Γ-BCH-algebra. Then clearly, by Propo-
sition 6.9, l(X) is a Γ-BCH-algebras with the zero element l0. Let a, b, xinX and
let α ∈ Γ. Then we have

Φ(aαb)(x) = l(aαb)(x)
= (aαb)αx [By the definition of the left mapping]
= (aαx)α(bαx) [By Definition 6.8]
= laαlb
= Φ(a)αΦ(b).

Thus Φ is a Γ-homomorphism of Γ-BCH-algebras. It is obvious that Φ is bijective.
So Φ is a Γ-isomorphism. □

Proposition 6.16. If (X, τ) is a positive implicative STΓ-BCH-algebra, then

τΦ = {Φ(U) ⊂ l(X) : U ∈ τ} = {lU ⊂ l(X) : U ∈ τ}

is a topology on l(X).
In this case, τ

Φ
is called a left Γ-topology on l(X).

Proof. It is clear that l(X), ∅ ∈ τΦ . Suppose A, B ∈ τΦ . Then there are U, V ∈ τ
such that A = Φ(U), B = Φ(V ). Thus by Lemma 6.14 (3), A ∩B = Φ(U ∩ V ) and
U ∩ V ∈ τ. So A ∩B ∈ τ

Φ
. Now let (Aj)j∈J be any family of members of τ

Φ
, where

J is an index set. Then for each j ∈ J, there is Uj ∈ τ such that Aj = Φ(Uj). Thus⋃
j∈J Uj ∈ τ and

⋃
j∈J Aj =

⋃
j∈J Φ(Uj) by Lemma 6.14 (2). So

⋃
j∈J Aj ∈ τ

Φ
.

Hence τ
Φ
is a topology on l(X). □

Example 6.17. Let Γ = {α, β} and let X = {0, 1, 2, 3} be the positive implicative
Γ-BCH-algebra having the the ternary operation defined as the following table:

α 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 2 0 2
3 3 3 3 0

β 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 2 0 0
3 3 3 3 0

Table 6.3

Consider the topology τ = {∅, {2}, {3}, {0, 1}, {2, 3}, {0, 1, 2}, {0, 1, 3}, X} on X.
Note that l(X) = {l0, l1, l2, l3}. Then the left Γ-topology τΦ on l(X) as follows:

τΦ = {∅, {l2}, {l3}, {l0, l1}, {l2, l3}, {l0, l1, l2}, {l0, l1, l3}, l(X)}.
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Proposition 6.18. If (X, τ) is a positive implicative STΓ-BCH-algebra, then (l(X), τ
Φ
)

is a STΓ-BCH-algebra.
In this case, (l(X), τΦ) is called a left semitopological Γ-BCH-algebra (briefly,

LSTΓ-BCH-algebra.

Proof. Suppose (X, τ) is a positive implicative STΓ-BCH-algebra and let a, b ∈ X.

Then clearly, Φ(a) = la, Φ(b) = lb ∈ l(X). Let α ∈ Γ and let W
′ ∈ τ

Φ
such that

laαlb ∈ W
′
. Then there is W ∈ τ such that W

′
= Φ(W ). Since X is a STΓ-BCH-

algebra, there are there are U, V ∈ τ such that a ∈ U, b ∈ V and UαV ⊂ W.
Thus Φ(UαV ) = Φ(U)αΦ(V )subsetΦ(W ) = W

′
. Moreover, Φ(U), Φ(V ) ∈ τ

Φ

and la ∈ Φ(U), lb ∈ Φ(V ). So α is continuous. Hence (l(X), τ
Φ
) is a STΓ-BCH-

algebra. □

Proposition 6.19. Let (X, τ) be a positive implicative STΓ-BCH-algebra. If {0} ∈
τ, then (l(X), τ

Φ
) is a discrete space.

Proof. Suppose {0} ∈ τ , let lx ∈ l(X) and let α ∈ Γ. Then clearly, lxαlx = l0.
Since xαx = 0, {0} ∈ τ and X is a positive implicative STΓ-BCH-algebra, there
are U, V ∈ τ such that x ∈ U ∩ V and UαV ⊂ {0}. Thus Φ(U), Φ(V ) ∈ τΦ ,
lx ∈ Φ(U) ∩ Φ(V ) and Φ(U ∩ V ) = Φ(U) ∩ Φ(V ) ⊂ Φ({0}) = Φ({l0}). Now let
W = U ∩ V . Then clearly, Φ(WαW ) = Φ({l0}). Thus Φ(W ) = Φ({lx}). Since
W ∈ τ , Φ(W ) ∈ τ

Φ
. So (l(X), τ

Φ
) is a discrete space. □

Theorem 6.20. Let (X, τ) be a positive implicative STΓ-BCH-algebra. Then {0}
is closed in X if and only if X is Hausdorff.

Proof. Suppose {0} is closed in X, let a ̸= b ∈ X and let α ∈ Γ. Then clearly, either
aαb ̸= 0 or bαb ̸= 0, say aαb ̸= 0. Since X is a STΓ-BCH-algebra and {0}c ∈ τ ,
aαb ∈ {0}c, there are U , V ∈ τ such that a ∈ U, b ∈ V and UαV ⊂ {0}c. Thus
U ∩ V = ∅. So X is Hausdorff.

Conversely, suppose X is Hausdorff and let a ∈ {0}c. Then clearly, a ̸= 0. Thus
by the hypothesis, there are U, V ∈ τ such that a ∈ Ua, 0 ∈ Va and Ua ∩ Va = ∅,
i.e., 0 ̸∈ Ua. So Ua ⊂ {0}c, i.e., {0}c =

⋃
a∈{0}c Uaτ . Hence {0} is closed in X. □

The following is an immediate consequence of Lemma 6.14 (3).

Theorem 6.21. Let (X, τ) be a positive implicative STΓ-BCH-algebra. Then X is
Hausdorff if and only if (l(X), τ

Φ
) is Hausdorff.

We obtain the following from Theorems 6.20 and 6.21.

Corollary 6.22. Let (X, τ) be a positive implicative STΓ-BCH-algebra. Then {0}
is closed in X if and only if (l(X), τ

Φ
) is Hausdorff.

7. Conclusions

We have established foundational properties of Γ-BCH-algebras, including the
introduction and examination of concepts such as Γ-ideals, the Γ-center, and the
Γ-branch, alongside exploring several attributes of quotient Γ-BCH-algebras. Fur-
thermore, we have ventured into analyzing some topological characteristics inherent
to Γ-BCH-algebras.
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Moving forward, our objective will be to advance our study of Γ-BCH-algebras
within the framework of topological groups, aiming to enrich and refine our under-
standing of their structural and topological nuances.
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