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1. Introduction

Numerical patterns and relationships have intrigued mathematicians for cen-
turies. From prime numbers to Fibonacci sequences, these patterns often have a
captivating appeal. In this article, we examine an intriguing connection between
b-repdigits and generalized Lucas numbers, discovering an elegant representation of
b-repdigits as the difference between two generalized Lucas numbers. A b-repdigit
is a number composed of a repeated digit in base b. On the other hand, general-
ized Lucas numbers, denoted Un, are a sequence of numbers that exhibit a recursive
pattern, making them a fascinating subject of study in their own right. Recent pa-
pers have made significant contributions to the understanding of repdigits, exploring
various aspects of these intriguing numerical patterns. Investigation of the integer
sequences that are repdigits or the difference of two repdigits, or repdigits that are
the difference between two integers sequences has been of interest to investigators
(See [1, 2, 3, 4, 5, 6, 7, 8] for more details ). They contribute to the field of num-
ber theory, inspiring new research in the exploration of repdigits and their complex
links with other mathematical entities. With this in mind, we generalized Ray and
Bhoi’s work in [8]. We worked on b-repdigits, which are the difference between two
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generalized Lucas numbers, and gave an application to the case of the Pell sequence
in the decimal base.
This paper is organized as follows. In Section 2, we recall some useful results, Section
3 is devoted to the statement of our main results, Section 4 to the proof of the main
results, and Section 5 to the application of the fundamental theorem to the special
case of Pell numbers in decimal base.

2. Preliminaries

To make our results comprehensive, we have defined the concepts and presented
preliminary results before stating our main findings.

2.1. Some definitions and properties. This section is devoted to defining con-
cepts.

Definition 2.1 (Generalized Lucas sequence). The generalized Lucas sequence (Un)n⩾0

is defined with initial values U0 = 0, U1 = 1 and the linear recurrence,

Un = rUn−1 + sUn−2,

where r and s are integers such that ∆ = r2 + 4s > 0.

The Binet’s formula of the generalized Lucas sequence is given by

Un =
δn − γn

δ − γ
,

where δ =
r +

√
∆

2
and γ =

r −
√
∆

2
.

For more information about this sequence, the reader can refer to the book of
Ribenboim (My Numbers, my friends)[9].

Recently, the following result was proved in [10].

Lemma 2.2. The n-th term of the generalized Lucas sequence (Un)n⩾0, with r ≥ 1

and s ∈ {−1, 1}, satisfies the inequalities

δn−2 ⩽ Un < δn

for n ⩾ 2.

Definition 2.3 (Pell sequence). The Pell sequence (Pn)n⩾0 is a particular case of
the generalized Lucas sequence with r = 2 and s = 1. In fact, we have P0 = 0, P1 = 1
and

Pn = 2Pn−1 + Pn−2.

Definition 2.4 (Repdigit in base b). Let b ⩾ 2 be an integer. A positive integer n
is called a repdigit or simply a b-repdigit, if all of the digits in its base b expansion

are equal. Indeed, n is of the form a

(
bk − 1

b− 1

)
, where 1 ⩽ a ⩽ b− 1 and k ⩾ 1.

234
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2.2. A lower bound for linear forms in logarithms. The next tools are re-
lated to the transcendental approach to solving Diophantine equations. Let η be an
algebraic number of degree d, let a0 > 0 be the leading coefficient of its minimal
polynomial over Z and let η = η(1), . . . , η(d) denote its conjugates. The quantity
defined by

h(η) =
1

d

log |a0|+
d∑

j=1

logmax
(
1,
∣∣∣η(j)∣∣∣)


is called the logarithmic height of η. Some properties of height are as follows. For
η1, η2 algebraic numbers and m ∈ Z, we have

h(η1 ± η2) ⩽ h(η1) + h(η2) + log 2,

h(η1η
±1
2 ) ⩽ h(η1) + h(η2),

h(ηm1 ) = |m|h(η1).

If η =
p

q
∈ Q is a rational number in reduced form with q > 0, then the above defini-

tion reduces to h(η) = log(max{|p|, q}). We can now present the famous Matveev re-
sult used in this study. Thus, let L be a real number field of degree dL, η1, . . . , ηs ∈ L
and b1, . . . , bs ∈ Z \ {0}. Let B ≥ max{|b1|, . . . , |bs|} and

Λ = ηb11 · · · ηbss − 1.

Let A1, . . . , As be real numbers with

Ai ≥ max{dLh(ηi), | log ηi|, 0.16}, i = 1, 2, . . . , s.

With the above notations, Matveev proved the following result.

Lemma 2.5 (Matveev [11]). Assume that Λ ̸= 0. Then

log |Λ| > −1.4 · 30s+3 · s4.5 · d2L · (1 + log dL) · (1 + logB) ·A1 · · ·As.

2.3. Reduction methods. Our next tool is a version of the reduction method of
Baker and Davenport [12]. We use a slight variant of the version given by Dujella
and Pethő [13] due to Bravo, Gomez and Luca [14].

Lemma 2.6 (Bravo-Gomez-Luca). Assume that τ and µ are real numbers and M is
a positive integer. Let p/q be the convergent of the continued fraction of the irrational
τ such that q > 6M , and let A, B, µ be some real numbers with A > 0 and B > 1.
Let ε = ||µq|| −M · ||τq||, where || · || denotes the distance from the nearest integer.
If ε > 0, then there is no solution to the inequality

0 < mτ − n+ µ < AB−k

in positive integers m, n and k with

m ⩽ M and k ⩾
log(Aq/ε)

logB
.

We also need the following result from Sanchez and Luca [15].

Lemma 2.7 (Sánchez-Luca ). Let r ⩾ 1 and H > 0 be such that H > (4r2)r and
H > L/(logL)r. Then

L < 2rH(logH)r.
235
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3. Statement of main results

The main results of this paper are the following.

Theorem 3.1. Let b be a positive integer such that b ⩾ 2. If k, m and n are positive
integers that satisfy the Diophantine equation

(3.1) a

(
bk − 1

b− 1

)
= Un − Um

with n > m and 1 ⩽ a ⩽ b− 1, then

k < 2.5n log δ

and

n log δ − log(8.1
√
∆) < 2 · 1012(1 + logD) log δ log b · ξ,

where

ξ = log(4b2∆(1 + 3
√
∆) + 2 · 1012(1 + logD) · log δ · log b · (2 log b+ log∆)

with

D = 2.5n log δ.

Moreover, the above result implies the following corollary and theorem.

Corollary 3.2. The Diophantine equation (3.1) has only finitely many solutions in
positive integers k,m, n, b and a.

By considering the case b = 10 and the particular case of Pell numbers, we get
the following result.

Theorem 3.3. The only repdigits that are differences between two Pell numbers are

1, 3, 4, 7, 11 and 99.

Moreover, we have

n m Pn − Pm (a,k)
2 1 1 (1,1)
3 2 3 (3,1)
3 1 4 (4,1)
4 3 7 (7,1)
4 1 11 (1,2)
7 6 99 (9,2)

Table 1. Repdigits which are differences between two Pell numbers

where Pl is l-th term of Pell sequence.
236
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4. Proof of main results

In this study, we reconsider Diophantine equation (3.1)

a

(
bk − 1

b− 1

)
= Un − Um

with n > m and 1 ⩽ a ⩽ b− 1.
From (3.1), we deduce that bk−1 < Un ⩽ δn, where we used Lemma 2.2. Then we
get (k − 1) log b < n log δ which leads to

(4.1) k < 1 + n
log δ

log b
.

Using now Binet’s formula for (Un)n⩾0, Diophantine equation (3.1) becomes:

δn − γn

δ − γ
−

δm − γm

δ − γ
= a

(
bk − 1

b− 1

)
,

which implies that

δn

δ − γ
−

abk

b− 1
=

γn

δ − γ
+

δm

δ − γ
−

γm

δ − γ
−

a

b− 1
.

Taking absolute values on both sides we get:

(4.2)

∣∣∣∣∣ δn

δ − γ
−

abk

b− 1

∣∣∣∣∣ ⩽ |γ|n
√
∆

+
δm
√
∆

+
|γ|m
√
∆

+
a

b− 1
.

Note that |γ| = δ−1. Thus (4.2) becomes :∣∣∣∣∣ δn

δ − γ
−

abk

b− 1

∣∣∣∣∣ ⩽ 1

δn
√
∆

+
δm
√
∆

+
1

δm
√
∆

+
a

b− 1

< 3 +
δm
√
∆

=
3
√
∆+ δm
√
∆

.

Since s ∈ {−1, 1}, δ ⩾
1 +

√
5

2
,

(4.3)

∣∣∣∣∣ δn

δ − γ
−

abk

b− 1

∣∣∣∣∣ < 3 +
δm
√
∆

<
1 + 3

√
∆

√
∆

δm.

By dividing both sides of (4.3) by
δn
√
∆
, we get∣∣∣∣∣1− δ−nbk

a
√
∆

b− 1

∣∣∣∣∣ < 1 + 3
√
∆

√
∆

·
√
∆

δn
· δm

=
1 + 3

√
∆

δn−m
.
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So we have

(4.4) |Γ| :=

∣∣∣∣∣1− δ−nbk
a
√
∆

b− 1

∣∣∣∣∣ < 1 + 3
√
∆

δn−m
.

Next, we have to show that Γ ̸= 0.
If Γ = 0, then we get

δn = bk
a
√
∆

b− 1

which leads to

δ2n = b2k
a2∆

(b− 1)2
= x+ y

√
∆,

where x and y are rational numbers. This is a contradiction since n ⩾ 1. Thus Γ ̸= 0
and we can apply Matveev result to Γ.
Now we put

η1 = δ, η2 = b, η3 =
a
√
∆

b− 1
,

b1 = −n, b2 = k, b3 = 1 and s = 3.

Let L := Q(η1, η2, η3) = Q(
√
∆). Then

dL = [Q(η1, η2, η3) : Q] = 2.

For the logarithm heights of η1, η2 and η3, we have

h (η1) =
1

2
log δ, h (η2) = log b

and

h (η3) = h

(
a
√
∆

b− 1

)
⩽ h

(
a

b− 1

)
+ h

(√
∆
)

⩽ log(b− 1) +
1

2
log∆

< log b+
1

2
log∆.

Thus we can take A1 = log δ, A2 = 2 log b and A3 = 2 log b+ log∆.
Applying Lemma 2.5, we have

(4.5) log |Γ| > −1.4·306 ·34.5 ·22 ·(1+log 2)·(1+logD)·log δ ·2 log b·(2 log b+log∆),

where, D = max{|b1| , |b2| , |b3|} = {1, n, k}.

Note that k < 1 + n
log δ

log b
= n log δ(

1

n log δ
+

1

log b
) for b ⩾ 2.
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Since b ⩾ 2, n ⩾ 2 and δ ⩾
1 +

√
5

2
,

k < n log δ

 1

2 log

(
1 +

√
5

2

)+
1

log 2

 < 2.5n log δ

we can take

D = 2.5n log δ.

Combining (4.4) and (4.5), we get

(n−m) log δ − log(1 + 3
√
∆) < 1.4 · 306 · 34.522(1 + log 2)(1 + logD)

log δ · 2 log b · (2 log b+ log∆)

< 2 · 1012(1 + logD) log δ2 log b(2 log b+ log∆).

We rewrite Diophantine equation (3.1) to obtain that

δn
√
∆

−
δm
√
∆

−
abk

b− 1
=

γn

√
∆

−
γm

√
∆

−
a

b− 1
.

After taking absolute values on both sides, we have∣∣∣∣∣ δn√
∆

−
δm
√
∆

−
abk

b− 1

∣∣∣∣∣ ⩽ 1

δn
√
∆

+
1

δm
√
∆

+
a

b− 1
< 3.

So we have ∣∣∣∣∣ δn√
∆

(
1− δm−n

)
−

abk

b− 1

∣∣∣∣∣ < 3.

Dividing both sides by
δn
√
∆
(1− δm−n), we get that∣∣∣∣∣1− δ−n · bk

a
√
∆

(b− 1)(1− δm−n)

∣∣∣∣∣ < 3
√
∆

δn(1− δm−n)

=
3
√
∆ · δn−m

δn(δn−m − 1)
.

(4.6)

Moreover, n−m ⩾ 1. Let us show it.
From equation (3.1), we have Un − Um > 0. So

δm−2 ⩽ Um < Un < δn.

Hence m− 2 < n which implies that n−m ⩾ −1.
Note that n−m cannot be equal to −1 or 0. Therefore we have to consider

n−m ⩾ 1.
239
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Since n−m ⩾ 1, then δn−m ⩾ δ ⩾ α =
1 +

√
5

2
.

Using now the fact that the numerical function f(x) =
x

x− 1
is decreasing for

x ⩾
1 +

√
5

2
, we have

δn−m

δn−m − 1
⩽

α

α− 1
< 2.7.

Hence (4.6) becomes

(4.7)

∣∣∣∣∣1− δ−n · bk ·
a
√
∆

(b− 1)(1− δm−n)

∣∣∣∣∣ < 8.1 ·
√
∆

δn
.

Now set
∣∣∣Γ′
∣∣∣ := ∣∣∣∣∣1− δ−n · bk

a
√
∆

(b− 1)(1− δm−n)

∣∣∣∣∣.
Similarly, we can show that Γ

′ ̸= 0.
Put

η1 = δ, , η2 = b, η3 =
a
√
∆

(b− 1)(1− δm−n)

b1 = −n, b2 = k, b3 = 1.

Note that

h(η3) = h

(
a
√
∆

(b− 1)(1− δm−n)

)

⩽ h

(
a

b− 1

)
+ h

(√
∆
)
+ h

(
1

1− δm−n

)

< log b+
1

2
log∆ + (n−m) ·

log δ

2
+ log 2

= log
(
2b
√
∆
)
+

n−m

2
log δ.

h(η3) < log
(
2b
√
∆
)
+1012(1+logD) · log δ · log b ·(2 log b+log∆)+

log
(
1 + 3

√
∆
)

2
.

Then we can take

A3 = 2 log
(
2b
√
∆
)
+ 2 · 1012 (1 + logD) · log δ · log b · (2 log b+ log∆) + log(1 + 3

√
∆)

= log(4b2∆(1 + 3
√
∆) + 2 · 1012(1 + logD) · log δ · log b · (2 log b+ log∆).

By Lemma 2.5, we get that

log
∣∣∣Γ′
∣∣∣ > −1.4 · 306 · 34.5(1 + log 2)(1 + logD) · log δ · (2 log b) ·A3.

Combining this with (4.7), we have

(4.8) n log δ − log(8.1 ·
√
∆) < 2 · 1012(1 + logD) · log δ · log b ·A3.

From (4.1) and (4.8), we have the proof of Theorem 3.1.
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5. Application: Pell numbers in decimal base

In this section, we explicitly determine all repdigits which can be written as
difference of two Pell numbers. So our result in this case is Theorem 3.3. In this
case, Un is Pell number. We have

(r, s) = (2, 1), ∆ = 8, and δ = 1 +
√
2.

By the main theorem 3.1, we have

n log(1 +
√
2)− log(8.1 ·

√
8) < 2 · 1012(1 + log 8) · log(1 +

√
2) · log 10 · ξ

with

ξ = log(4×102 ·8(1+3
√
8)+2 ·1012(1+ logD) · log(1+

√
2) · log 10 · (2 log 10+ log 8)

and

D = 2.5n log(1 +
√
2) < 2.21n.

First,

ξ < 10.4 + 2.8 · 1013(1 + log (2.21n))

< 3 · 1013(1 + log (2.21n)) for n ⩾ 2.

Then we get

n < 1.4 · 1026(1 + log (2.21n))2

= 1.4 · 1026(1 + log 2.21 + log n)2.

Since n ⩾ 2, we obtain
n < 1.82 · 1027 · log2 n.

Now, we can apply the Lemma 2.7 by putting

l = 2, L = n, and H = 1.82 · 1027.

Thus we have n < 22 · 1.82 · 1027 ·
(
log(1.82 · 1027)

)2
, so

n < 2.87 · 1031.
Next, we need to reduce the bound on n by using the Lemma 2.6
Let

Λ1 := −n log δ + k log 10 + log

(
a
√
8

9

)
.

The inequality (4.4) can be written as∣∣eΛ1 − 1
∣∣ < 1 + 3

√
8

δn−m
.

Observe that Λ1 ̸= 0 as eΛ1 − 1 = Γ ̸= 0.
Assume that n−m ⩾ 4. Then∣∣eΛ1 − 1

∣∣ < 1 + 3
√
8

δn−m
<

1

2
.

This implies that:

|Λ1| < 2
1 + 3

√
8

δn−m

241
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since |x| < 2 |ex − 1| for every real x with |x| <
1

2
.

Dividing both sides by log δ, we get that:∣∣∣∣∣k log 10

log δ
− n+

log(a
√
8/9)

log δ

∣∣∣∣∣ < 21.6

δn−m
.

Thus we can take:

τ =
log 10

log δ
, µ =

log(a
√
8/9)

log δ
, A = 21.6, B = δ = 1 +

√
2 ω = n−m.

Let’s show that τ =
log 10

log δ
is irrational. Assume that τ is rational. Then, there exist

two positive integers p and q with gcd(p, q) = 1 such that τ =
p

q
. This implies that

10q = (1 +
√
2)p. This is impossible because we cannot find two positive integers p

and q with gcd(p, q) = 1 satisfying 10q = (1 +
√
2)p. So τ is irrational. Moreover

k < 2.21n < 6.35 · 1031. Then we take M := 6.35 · 1031. With Mathematica, we have

q73 = 1189285833530929228438091844076539, ϵ = 0.108608, and n−m ⩽ 93.

Put now

Λ2 := −n log δ + k log 10 + log

(
a
√
8

9 (1− δm−n)

)
.

So the inequality (4.7) can be written as∣∣eΛ2 − 1
∣∣ < 8.1

√
8

δn
.

Note also that Λ2 ̸= 0 as eΛ2 − 1 = Γ
′ ̸= 0.

Assuming n ⩾ 5, we get ∣∣eΛ2 − 1
∣∣ < 8.1

√
8

δn
<

1

2
and then

|Λ2| <
16.2

√
8

δn
.

By dividing both sides by log δ, we get that:∣∣∣∣∣k log 10

log δ
− n+

log(a
√
8/(9(1− δm−n)))

log δ

∣∣∣∣∣ < 52

δn
.

To apply the Lemma 2.6, we can set

τ =
log 10

log δ
, µ =

log

(
a
√
8

9(1− δm−n)

)
log δ

, A = 52, B = δ = 1 +
√
2 ω = n.

Since k < 2.5n log δ < 2.21n < 6.35·1031. Thus we takeM := 6.35·1031.WithMathe-
matica, we get q73 = 1189285833530929228438091844076539, ϵ = 0.423322, and n ⩽
92. So we have proved the Theorem 3.3.
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Ismäıla Diouf (ismail.diouf@ucad.edu.sn)
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