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ABSTRACT.  Khalaf and El-Latif [1] introduced and investigated the
concept of L-almost separation axioms in L-fuzzifying bitopological spaces,
where L is a complete residuated lattice, but we note that some of their
results are incorrect (See Theorems 6, 7, 8, 18 in [1]). Firstly in this paper
we give some counterexamples to show that these results generally need not
be true. Secondly, we introduced the notions of L-almost continuity, L-
almost open function and L-completely continuous function in L-fuzzifying
bitopological spaces with studying some important results. Finally, under
these types of L-fuzzy mappings we study the image of these kinds of L-
fuzzifying bitopological spaces.
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1. INTRODUCTION

In 1963, Kelley [2] defined the concept of bitopological spaces by spaces equipped
with its two (arbitrary) topologies. In 1993, Shen [3] is considered the first to study
the separation axioms in fuzzifying topologies.

In 2000, Zahran [4] introduced the notion of regular open sets in I-fuzzifying
topological spaces but some of his results were incorrect so, in 2004, Sayed and
Zahran [5] gave corrections of them. Also, Sayed et al. [6, 7, 8, 9, 10, 11,
studied many deferent separation axioms in fuzzifying topology and (L,M)- fuzzy
convexity spaces. Allam et al. [14, 15] studied separation axioms and semi-separation
axioms in fuzzifying bitopological spaces. In 2023, Binshahnah et al. [16] studied
strongly separation axioms in fuzzifying bitopological spaces
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In 2019, Khalaf and El-Latif [1] deal with regular open sets similar to open sets
in their study of L-almost separation axioms. So, they introduced their results as
the same as the results on open sets but this is a big mistake because regular open
sets and open sets are independent in I-fuzzifying topology (See [5]) and thus in
L-fuzzifying bitopology as we illustrate in this paper.

The contents of this paper are arranged as follows: In Section 3, we prove that
some results obtained in [1] need not be true, by giving some counterexamples. In
Section 4, we introduced the notions of L-almost continuity, L-almost open func-
tion and L-completely continuous function in L-fuzzifying bitopological spaces with
studying some important results. Finally, in Section 5, under these types of L-fuzzy
mappings we study the image of these kinds of L-fuzzifying bitopological spaces

2. PRELIMINARIES

Definition 2.1 ([17, 18]). A structure (L,V,A,*,—, 1, T) is called a complete
residuated lattice, if the following conditions are satisfied:
(i) (L,V, A, L, T) is a complete lattice whose greatest and least element are T, L
respectively,
(ii) (L, *, T) is a commutative monoid, i.e.,
(a) * is a commutative and associative binary operation on L and
(b) for every a € Lya*x T = a,
(iii) — is related with x as: axb < ¢ if and only if a < b — ¢ Va,b,c € L,
where 7 — 7 is defined by: a« — 8 =V{ € L:a*x X < S} Vo,8 € L.

In each statement in the rest of this paper, L is assumed to be a complete residu-
ated lattice. Sometimes we need to add more conditions on L such as the completely
distributive law (briefly, CDL) or the double negation law (briefly, DNL).

Definition 2.2 ([19]). We say that L satisfies CDL, if the following law is satisfied:
AV4a= V (ArG)vi4lie sy c2t,

JjeJ fejl;[JAj jeJ
where 27 is the power subset of L.
Definition 2.3 ([20]). We say that L satisfies DNL, if the following law is satisfied:
(a— 1)— L=aVaelL

Definition 2.4 ([20]). Let f, g € L. Then the L-equality between f and g, denoted
by [[f,g]], is defined as follows: [[f,q]] = A ((f(z) — g(2)) A (9(z) — f(2))).

zeX

Definition 2.5 ([20, 21, 22, 23]). The L-fuzzifying topology is a mapping o : 2% —
L satisfying the following conditions:
(i) o(X) = 0(2) =T,

(if) of EJTOw) 2 /G\TQ((%) {0,y € T} € 2%,

(iii) o(ONG) > 0(0) A 0(G) VO, G € 2¥.
A pair (X, o) is called an L-fuzzifying topological space.
224
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Definition 2.6 ([21]). Let (X, p01) and (X, 02) be two L-fuzzifying topological
spaces. Then a system (X, 01, 02) is called an L-fuzzifying bitopological space (briefly,
L-fbs).

Definition 2.7 ([1]). Let (X, 01, 02) be an L-fbs.
(i) The set of all L-fuzzifying (s, k)-regular open sets is denoted by Ro(, x) € 2"
and defined as follows:

Ros(0) = min ( \ I(Co(O)) (@), (Ik(Cs(O))() — 1)),

zeO zeX-0
where s,k = 1,2 and s # k, I;(A) is means the interior of a set A with respect to
o and C,(A) is means the closure of a set A with respect to g5, VA € 2%.
(ii) The set of all L-fuzzifying (s, k)-regular closed sets is denoted by RF(s ) €
L*" and defined as follows: RF (4 1)(O) = Ro(e i) (X — O).

Definition 2.8 ([1]). Let (X, 01, 02) be an L-fbs and = € O. Then
(i) an (s, k)-regular neighborhood system of x, denoted by RNS® ¢ L is
defined as follows: RNés’k)((’)) = V Roer(B),
zeBCO

X .
27 is defined as

(ii) an (s, k)-regular closure operator, denoted by RC(s 1) € (L)
follows:

RC (4 1)(0)(z) = RN (0) — L.

For simplicity, we take:
s,k s,k s,k
K5 (2,y) = (V RNSP(A) v (V RNSP(4)),

yg¢A z¢A
s,k s,k s,k
HM (2,y) = (V RNSH(B) A (V RN (0)),
k y§£B k :m’;éC k
Mg (@) =V (RN:(B) A RN (4)),
CNB=¢
v (2, D) = V. (BNSF(A) A Roga(B)),
ANB=¢,DCB

where z,y € X and A, B, D € 2¥.

Definition 2.9 ([1]). Let © be the class of all L-fbss. Then the unary L-predicates
L-almost—Tygs’k) € L2, denoted by RT,ELS’k)
() RIS (X, 01,00 = A KF (@),

Yy
(i) RTEM (X, 01,00) = N HGM (2, ),

,n=0,1,2,3 are defined as follows:

TH#Y

(iii) RT3 (X, 01, 02) = A MM (,y),
zFY

(iv) RTS"™ (X, 01,00) = A (RF(aiy)(D) — V¥ (2, D)).
x¢D

Definition 2.10 ([1]). Let (X, 01, 02) be an L-fbs. The L-fuzzifying derived set of
O C X, denoted by Rd(s ) € (LX)2" | is defined by: for each z € X,

Rd(s 1)(O)(x) = RNSM (X - O)Ufa}) — L.
225
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Definition 2.11 ([1]). Let Q be the class of all L-fbss. Then the unary L-predicate
1RT3(S’k) € L% are defined as follows:

LRTS (X, 01, 02)

= A (BRF.(D) — V_(BNEM(A) A (A RCa(A)) — 1))).
z¢ D Ae2X yeD

3. L-ALMOST SEPARATION AXIOMS IN L-FBSS

First, the following example shows that
(1) For any {O4 : v € T}, Roisi( U Oy) > A Ro(s,k)(O) and
YT YT

(2) For any O, G C X, Ro(s,1)(ONG) < Ro(s,1)(O) A Ros 1) (G), generally need

not be true.

Example 3.1. Let S = {l,¢,m} and L = [0,1], 01, 02 be two fuzzifying topologies
defined on S as follows:
1 if Be{s, S {l},{l,m}},
a(B)={ 15 it Be{{mh{tml},
0 if Be{{t}{l,t}},

1 if Be{@,8 {1}, {l,m}},
{ 1/4 if Be {{m},{t,m}},

0 if Bel{{t){lt})

1 if Be{o,8},
1/4 it Be {{m},{t,m}},
Roan(B)Y=3 18 it Be{{i}.{Li}),
0 if Be{{t}{lm}},
1 if Be{o, S},
1/4 if Be {{i},{l,t}},
BFa2(B)=1 18 i Be{{m}, {t,m}},
0 if Be{{t}{l,m}}.
We note that Ro(12)({l,t}) A Ro1,2)({t,m}) =1/4AN1/8 =1/8 and Ro12y({l, 1} N
{t,m}) = Req 2 ({1}) = 0. Then Ro ({1, 1301, m}) £ Req ) ({L ) Ao ({,m}).
Also, Ro 2 ({IHU {m}) = Req ({1, m}) = 0 £ 1/8 = Roq 2 ({1}) A Req 2 ({m}).

Note that

In Definition 6 (1) [1], Khalaf and Abd El-Latif said Ro(, ) (0) = A RNS*M(0),
yeO
but generally, this is not true as shown by the following theorem.

Theorem 3.2. Let (X, 01,02) be an L-fbs. Then Ro(s1)(0) < A RNZSS’k)(O).
yeo

Proof. Note that A \/  Rox)(B) > Ro(s,k)(O). Then we have
yeOyeBCO

Ro(: 1) (0) < \ RN{M(0).
yeO
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The following example illustrates that Rosx)(O) # A RN;s’k)(O) in general.
yeO

Example 3.3. From Example 3.1, we have
Reuay({lm}) =0#1/8=" N\ RNID({l,m}).
ze{l,m}

Theorem 3.4 (Theorem 6, [1]). Let (X, 01,02) be an L-fbs. If L satisfies CDL,
then RT{™ (X, 01,02) = N\ BF(so({#}).
€

The following example shows that RTls’k) (X,01,02) > A RF(s1)({x}). Then
zeX

the above theorem is not true in general.

Example 3.5. From Example 3.1, we have
RT{ (S, 01,00) = 1/8 > 0= N\ RF15)({z}).
zeS

Theorem 3.6 (Theorem 7, [1]). Let (X, 01,02) be an L-fbs and O C X. If L
satisfies CDL, then RTl(S’k) (X,01,02) < A RNés’k)((X —0)u{z}).
zeX

Theorem 3.7 (Theorem 8, [1]). Let (X, 01,02) be an L-fbs and O C X. If L
satisfies CDL, then RTl(S’k) (X, 01,02) < [[Rds,1)(O), 15]].

The following example shows that Theorem 3.6 and Theorem 3.7 are incorrect in
general.

Example 3.8. From Example 3.1, take O = {l, m}, we have
(1) A RNV ({13 U{a}) =0 £ 1/8 = RT{ (S, 01, 02),
zeS
(2) [[Rd(1,2)(0), 15]) = 0 # 1/8 = RT{"” (S, 01, 02)-

Theorem 3.9 (Theorem 18, [1]). Let (X, 01,02) be an L-fbs. If L satisfies CDL
and DNL, then RTy*™ (X, 01,02) = 'RT}"" (X, 01, 02).

The following example shows that Theorem 3.9 need not be true in general.
Example 3.10. From Example 3.1, we have

1 if Be{w, S}
RQI(B) = 1/8 if Be€ {{l}a {l7t}’ {m}a {tam}},
0 if Be{{t},{l,m}},

1 if Be{w,S},
RFi(B)=1<¢ 1/8 if Be {{I},{l,t},{m},{t,m}},
0 if Be{{t},{l,m}}.

Then RT"?(S, 01, 00) = 7/8 £ 1 = 'RT{D(S, 01, 02).
227
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4. L-ALMOST CONTINUITY, L-ALMOST OPENNES AND L-COMPLETELY
CONTINUITY IN L-FBSS
Definition 4.1. Let (X, 01,02),(Y,&1,&2) be two L-fbss and g : (X, 01,02) —
(Y,&1,&2) be a mapping. A unary L-predicate AC( ) € L) g called L-almost
continuous, provide that
ACm(9) = N (Réey(W) — oslg™ (W),
we2Yy
Theorem 4.2. Let (X, 01, 02), (Y, &1,&2) be two L-fbss and g : (X, 01, 02) = (Y, &1,&2)
be a mapping. Then AC(s 1) (9) < N A (RN(ZS)(W) — Ni(g7'(W))).
reXWe2Y g

Proof. We have AC(51)(9) = A (R 0y (W) — 0s(g~(W))). Then
we2Yy

AC(s1)(9) € RE(sy(W) — 0s(g7" (W) Yz € X, YW € 2V
Thus AC(s,k:) (g) * Rs(s,k)(W) < Qs(g_l(W)) implies

AC (5,1)(9) * RE(s,1) (W) < \/  es(H)=Ni(g ' (W)).
z€HCg~1(W)

So V  (ACiuw(9) * Ry (H)) <V N3(g~'(H)) implies
g(x)eHCW g(z)EHCW

g(z)eHCW z€g~H(H)Cf~1 (W)

Hence AC(, 1) (g) * RNS?;;)(W) < N:3(g~1(W)) implies

AC(up(9) < RN (W) — Ni(g~H(W)).
Therefore AC(.1)(9) < A A (RNZE (W) — Ni(g7 (W) O
zeXWe 2Y

Definition 4.3. Let (X, 01,02),(Y,&1,&2) be two L-fbss and g : (X, 01,02) —
(Y,£1,&2) be a mapping. A unary L-predicate AO(, ) € L™ s called L-almost
open, provide that
AO 1y (9) = /\ (Rogs, i (U) — &(g(U))).
Ue2X

Theorem 4.4. Let (Xa 01, QQ)? (Ya 517 52) be two L-beS (mdg : (Xv 01, 92) — (K 51752)

be a mapping. Then AO1y(g9) < N A (RN,gs’k)(g_l(W)) — N;(m)(W)).
zEXWe2Y

Proof. We can prove this theorem in the same way as the proof of Theorem 4.2. [

Definition 4.5. Let (X, 01,02),(Y,&1,&) be two L-fbss and ¢ : (X, 01,02) —
(Y,&1,&2) be amapping. A unary L-predicate RC(4 ) € LY
continuous, provide that

RC 1y (9) = /\ (&(W) — Ro(s (g~ (W))).

we2Yy

is called L-completely
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Theorem 4.6. Let (X, 01, 02), (Y, &1,82) be two L-fboss and g : (X, 01, 02) — (Y, &1,82)

be a mapping. Then RC(s1)(9) < N A (Ngs(x)(W) — RN;s’k)(gfl(W))).
zeXWe2Y

Proof. We can prove this theorem in the same way as the proof of Theorem 4.2. [

5. L-ALMOST SEPARATION AXIOMS AND L-FUZZY MAPPINGS IN L-FBSS
Theorem 5.1. Let (X, 01, 02), (Y, &1,&2) be two L-fbss. If g : (X, 01, 02) — (Y, &1,&2)
is a bijective mapping and [AC(4 1)(9)] = T, then

(1) RIS MY, 6. &) < To(X, 04),
(2) RN (Y, 61,6) < Ti(X, 04),
(3) RSN (Y.61,6) < Ta(X, 04).

Proof. (1) From Theorem 4.2 and [AC(, )(g)] = T, we have

RIG™M(V.6,6) = N\ (\/ RNEPW) v \/ RNGP (W)
2w w¢gWw z2gW

A (V  RNGEL W)
9971 (2)#gg~H(w) gg~H(w)¢gW
(s:k)
v \/  RNE V)
99~ (2)gW

AV Nt )

g (2)#g™H(w) g~ (w)gg— (W)

v \V  Niiw(aT (W)
g~ (z)¢g— (W)

IN

=NV N@O) v\ N@U)) =To(X, 05).

z#y ygU x¢U

We can prove (2) and (3) in the same way as the proof of (1) above. O

Theorem 5.2. Let (X, 01, 02), (Y, &1,&2) be two L-fbss. If g : (X, 01, 02) — (Y, &1,&2)
is a bijective mapping and [AO, 1y(g)] = T, then
(1) RTSM (X, 01, 02) < To(Y, &),
(2) RT{*M (X, 01, 02) < T(Y, €0,
(3) RT{™M (X, 01,00) < To(V,£5).
229
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Proof. (1) From Theorem 4.4 and [AO(, )(g)] = T, we have

RIS (X 01,0 = J\ (\ BNER©) v\ RN (©0))

zAy ygo ¢ O

= A\ (V BNPP(g719(0)) v \/ RN (g719(0))
z#y ygo zgO
/\ \/ (1) \/ (y)
Ty ygo z¢0

= AV Moy Vo Ny, 6o)
9(@)#g(y) 9(y)¢g(0) 9(z)¢9(0)

= AV N v\ Ny
zFw  w¢H z¢H

=To(Y,&s).

We can prove (2) and (3) in the same way as the proof of (1) above. O

Theorem 5.3. Let (X, 01,02), (Y, &1,&2) be two L-foss. If g : (X, 01,02) — (Y. &1,82)
is an injective mapping and [RC, y(g)] = T, then

(1) To(Y. &) < RTM (X, 01, 09),
(2) Ty(Y, &) < RTU™(X, 01, 02),
(3) T(Y, &) < RTSM (X, 01, 02).

Proof. (1) From Theorem 4.2 and [RC(s x)(g)] = T, we have for every W € 2% and
v € X, N3 (W) < RNS™M (g7 (W)). Therefore

RTS™ (X, 01,00) = N\ (\/ RNSP(©0) v \/ RNSM(0))

£y y¢O z¢ O

= A\ (\/ BNER(g7g(0)) v \/ RN{P(g719(0)))
z#y ygo z¢0O

> A (V Niwy(9(0) v\ Ny (9(0))
£y y¢O zgO

= AV Nuo)v \/ Ny (9(0))
9(x)#9(y) 9(y)¢g(0) z)¢g(0)

= A\ N#H) v\ Ny(H)) =TO<Y,£S)-
2w w¢H z¢H

The proof of (2) and (3) is similar to (1) above. O

6. CONCLUSIONS

In the present paper, we prove that some results obtained in [1] need not be true,
by giving some counterexamples. Also, we study some types of L-fuzzy mappings
and the image of these kinds of L-fuzzifying bitopological spaces. In the future, we
can take these properties in applications of L-fuzzifying bitopological spaces.
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