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Abstract. Khalaf and El-Latif [1] introduced and investigated the
concept of L-almost separation axioms in L-fuzzifying bitopological spaces,
where L is a complete residuated lattice, but we note that some of their
results are incorrect (See Theorems 6, 7, 8, 18 in [1]). Firstly in this paper
we give some counterexamples to show that these results generally need not
be true. Secondly, we introduced the notions of L-almost continuity, L-
almost open function and L-completely continuous function in L-fuzzifying
bitopological spaces with studying some important results. Finally, under
these types of L-fuzzy mappings we study the image of these kinds of L-
fuzzifying bitopological spaces.

2020 AMS Classification: 54A40, 54D10, 54E55

Keywords: Fuzzifying topology, Fuzzifying bitopological spaces, Almost separa-
tion axioms.

Corresponding Author: A. K. Mousa (akmousa@azhar.edu.eg)

1. Introduction

In 1963, Kelley [2] defined the concept of bitopological spaces by spaces equipped
with its two (arbitrary) topologies. In 1993, Shen [3] is considered the first to study
the separation axioms in fuzzifying topologies.

In 2000, Zahran [4] introduced the notion of regular open sets in I-fuzzifying
topological spaces but some of his results were incorrect so, in 2004, Sayed and
Zahran [5] gave corrections of them. Also, Sayed et al. [6, 7, 8, 9, 10, 11, 12, 13]
studied many deferent separation axioms in fuzzifying topology and (L,M)-fuzzy
convexity spaces. Allam et al. [14, 15] studied separation axioms and semi-separation
axioms in fuzzifying bitopological spaces. In 2023, Binshahnah et al. [16] studied
strongly separation axioms in fuzzifying bitopological spaces
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In 2019, Khalaf and El-Latif [1] deal with regular open sets similar to open sets
in their study of L-almost separation axioms. So, they introduced their results as
the same as the results on open sets but this is a big mistake because regular open
sets and open sets are independent in I-fuzzifying topology (See [5]) and thus in
L-fuzzifying bitopology as we illustrate in this paper.

The contents of this paper are arranged as follows: In Section 3, we prove that
some results obtained in [1] need not be true, by giving some counterexamples. In
Section 4, we introduced the notions of L-almost continuity, L-almost open func-
tion and L-completely continuous function in L-fuzzifying bitopological spaces with
studying some important results. Finally, in Section 5, under these types of L-fuzzy
mappings we study the image of these kinds of L-fuzzifying bitopological spaces

2. Preliminaries

Definition 2.1 ([17, 18]). A structure (L,∨,∧, ∗,−→,⊥,⊤) is called a complete
residuated lattice, if the following conditions are satisfied:

(i) (L,∨,∧,⊥,⊤) is a complete lattice whose greatest and least element are ⊤,⊥
respectively,

(ii) (L, ∗,⊤) is a commutative monoid, i.e.,
(a) ∗ is a commutative and associative binary operation on L and
(b) for every a ∈ L, a ∗ ⊤ = a,

(iii) −→ is related with ∗ as: a ∗ b ≤ c if and only if a ≤ b −→ c ∀a, b, c ∈ L,
where ” −→ ” is defined by: α −→ β =

∨
{λ ∈ L : α ∗ λ ≤ β} ∀α, β ∈ L.

In each statement in the rest of this paper, L is assumed to be a complete residu-
ated lattice. Sometimes we need to add more conditions on L such as the completely
distributive law (briefly, CDL) or the double negation law (briefly, DNL).

Definition 2.2 ([19]). We say that L satisfies CDL, if the following law is satisfied:∧
j∈J

∨
Aj =

∨
f∈

∏
j∈J

Aj

(
∧
j∈J

f(j)) ∀{Aj |j ∈ J} ⊆ 2L,

where 2L is the power subset of L.

Definition 2.3 ([20]). We say that L satisfies DNL, if the following law is satisfied:

(a −→ ⊥) −→ ⊥ = a ∀ a ∈ L.

Definition 2.4 ([20]). Let f, g ∈ LX . Then the L-equality between f and g, denoted
by [[f, g]], is defined as follows: [[f, g]] =

∧
x∈X

(
(f(x) −→ g(x)) ∧ (g(x) −→ f(x))

)
.

Definition 2.5 ([20, 21, 22, 23]). The L-fuzzifying topology is a mapping ϱ : 2X −→
L satisfying the following conditions:

(i) ϱ(X) = ϱ(∅) = ⊤,
(ii) ϱ(

⋃
γ∈Υ

Oγ) ≥
∧

γ∈Υ

ϱ(Oγ) ∀{Oγ |γ ∈ Υ} ⊆ 2X ,

(iii) ϱ(O ∩ G) ≥ ϱ(O) ∧ ϱ(G) ∀O, G ∈ 2X .
A pair (X, ϱ) is called an L-fuzzifying topological space.
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Definition 2.6 ([24]). Let (X, ϱ1) and (X, ϱ2) be two L-fuzzifying topological
spaces. Then a system (X, ϱ1, ϱ2) is called an L-fuzzifying bitopological space (briefly,
L-fbs).

Definition 2.7 ([1]). Let (X, ϱ1, ϱ2) be an L-fbs.

(i) The set of all L-fuzzifying (s, k)-regular open sets is denoted by Rϱ(s,k) ∈ L2X

and defined as follows:

Rϱ(s,k)(O) = min
( ∧
x∈O

Ik(Cs(O))(x),
∧

x∈X−O
(Ik(Cs(O))(x) −→ ⊥)

)
,

where s, k = 1, 2 and s ̸= k, Ik(A) is means the interior of a set A with respect to
ϱk and Cs(A) is means the closure of a set A with respect to ϱs, ∀A ∈ 2X .

(ii) The set of all L-fuzzifying (s, k)-regular closed sets is denoted by RF(s,k) ∈
L2X and defined as follows: RF(s,k)(O) = Rϱ(s,k)(X −O).

Definition 2.8 ([1]). Let (X, ϱ1, ϱ2) be an L-fbs and x ∈ O. Then

(i) an (s, k)-regular neighborhood system of x, denoted by RN
(s,k)
x ∈ L2X , is

defined as follows: RN
(s,k)
x (O) =

∨
x∈B⊆O

Rϱ(s,k)(B),

(ii) an (s, k)-regular closure operator, denoted by RC(s,k) ∈ (LX)2
X

, is defined as
follows:

RC(s,k)(O)(x) = RN (s,k)
x (O) −→ ⊥.

For simplicity, we take:

K
(s,k)
R (x, y) = (

∨
y/∈A

RN
(s,k)
x (A)) ∨ (

∨
x/∈A

RN
(s,k)
y (A)),

H
(s,k)
R (x, y) = (

∨
y/∈B

RN
(s,k)
x (B)) ∧ (

∨
x/∈C

RN
(s,k)
y (C)),

M
(s,k)
R (x, y) =

∨
C∩B=ϕ

(
RN

(s,k)
x (B) ∧RN

(s,k)
y (A)

)
,

V
(s,k)
R (x,D) =

∨
A∩B=ϕ,D⊆B

(RN
(s,k)
x (A) ∧Rϱ(s,k)(B)),

where x, y ∈ X and A,B,D ∈ 2X .

Definition 2.9 ([1]). Let Ω be the class of all L-fbss. Then the unary L-predicates

L-almost−T
(s,k)
n ∈ LΩ, denoted by RT

(s,k)
n , n = 0, 1, 2, 3 are defined as follows:

(i) RT
(s,k)
0 (X, ϱ1, ϱ2) =

∧
x ̸=y

K
(s,k)
R (x, y),

(ii) RT
(s,k)
1 (X, ϱ1, ϱ2) =

∧
x ̸=y

H
(s,k)
R (x, y),

(iii) RT
(s,k)
2 (X, ϱ1, ϱ2) =

∧
x̸=y

M
(s,k)
R (x, y),

(iv) RT
(s,k)
3 (X, ϱ1, ϱ2) =

∧
x/∈D

(RF(s,k)(D) −→ V
(s,k)
R (x,D)).

Definition 2.10 ([1]). Let (X, ϱ1, ϱ2) be an L-fbs. The L-fuzzifying derived set of

O ⊆ X, denoted by Rd(s,k) ∈ (LX)2
X

, is defined by: for each x ∈ X,

Rd(s,k)(O)(x) = RN (s,k)
x

(
(X −O) ∪ {x}

)
−→ ⊥.
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Definition 2.11 ([1]). Let Ω be the class of all L-fbss. Then the unary L-predicate
1RT

(s,k)
3 ∈ LΩ are defined as follows:

1RT
(s,k)
3 (X, ϱ1, ϱ2)

=
∧

x/∈D

(
RFs(D) −→

∨
A∈2X

(
RN

(s,k)
x (A) ∧ (

∧
y∈D

RC(s,k)(A)(y) −→ ⊥)
))

.

3. L-almost separation axioms in L-fbss

First, the following example shows that
(1) For any {Oγ : γ ∈ Υ}, Rϱ(s,k)(

⋃
γ∈Υ

Oγ) ≥
∧

γ∈Υ

Rϱ(s,k)(Oγ) and

(2) For any O, G ⊆ X, Rϱ(s,k)(O ∩ G) ≤ Rϱ(s,k)(O) ∧Rϱ(s,k)(G), generally need
not be true.

Example 3.1. Let S = {l, t,m} and L = [0, 1], ϱ1, ϱ2 be two fuzzifying topologies
defined on S as follows:

ϱ1(B) =

 1 if B ∈ {∅, S, {l}, {l,m}},
1/8 if B ∈ {{m}, {t,m}},
0 if B ∈ {{t}, {l, t}},

ϱ2(B) =

 1 if B ∈ {∅, S, {l}, {l,m}},
1/4 if B ∈ {{m}, {t,m}},
0 if B ∈ {{t}, {l, t}}.

Note that

Rϱ(1,2)(B) =


1 if B ∈ {∅, S},

1/4 if B ∈ {{m}, {t,m}},
1/8 if B ∈ {{l}, {l, t}},

0 if B ∈ {{t}, {l,m}},

RF(1,2)(B) =


1 if B ∈ {∅, S},

1/4 if B ∈ {{l}, {l, t}},
1/8 if B ∈ {{m}, {t,m}},

0 if B ∈ {{t}, {l,m}}.
We note that Rϱ(1,2)({l, t}) ∧Rϱ(1,2)({t,m}) = 1/4 ∧ 1/8 = 1/8 and Rϱ(1,2)({l, t} ∩
{t,m}) = Rϱ(1,2)({t}) = 0. ThenRϱ(1,2)({l, t}∩{t,m}) ⩾̸ Rϱ(1,2)({l, t})∧ϱ(1,2)({t,m}).
Also, Rϱ(1,2)({l} ∪ {m}) = Rϱ(1,2)({l,m}) = 0 ⩾̸ 1/8 = Rϱ(1,2)({l}) ∧Rϱ(1,2)({m}).

In Definition 6 (1) [1], Khalaf and Abd El-Latif said Rϱ(s,k)(O) =
∧

y∈O
RN

(s,k)
y (O),

but generally, this is not true as shown by the following theorem.

Theorem 3.2. Let (X, ϱ1, ϱ2) be an L-fbs. Then Rϱ(s,k)(O) ≤
∧

y∈O
RN

(s,k)
y (O).

Proof. Note that
∧

y∈O

∨
y∈B⊆O

Rϱ(s,k)(B) ≥ Rϱ(s,k)(O). Then we have

Rϱ(s,k)(O) ≤
∧
y∈O

RN (s,k)
y (O).

□
226
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The following example illustrates that Rϱ(s,k)(O) ̸=
∧

y∈O
RN

(s,k)
y (O) in general.

Example 3.3. From Example 3.1, we have

Rϱ(1,2)({l,m}) = 0 ̸= 1/8 =
∧

x∈{l,m}

RN (1,2)
x ({l,m}).

Theorem 3.4 (Theorem 6, [1]). Let (X, ϱ1, ϱ2) be an L-fbs. If L satisfies CDL,

then RT
(s,k)
1 (X, ϱ1, ϱ2) =

∧
x∈X

RF(s,k)({x}).

The following example shows that RT
(s,k)
1 (X, ϱ1, ϱ2) >

∧
x∈X

RF(s,k)({x}). Then

the above theorem is not true in general.

Example 3.5. From Example 3.1, we have

RT
(1,2)
1 (S, ϱ1, ϱ2) = 1/8 > 0 =

∧
x∈S

RF(1,2)({x}).

Theorem 3.6 (Theorem 7, [1]). Let (X, ϱ1, ϱ2) be an L-fbs and O ⊆ X. If L

satisfies CDL, then RT
(s,k)
1 (X, ϱ1, ϱ2) ≤

∧
x∈X

RN
(s,k)
x

(
(X −O) ∪ {x}

)
.

Theorem 3.7 (Theorem 8, [1]). Let (X, ϱ1, ϱ2) be an L-fbs and O ⊆ X. If L

satisfies CDL, then RT
(s,k)
1 (X, ϱ1, ϱ2) ≤ [[Rd(s,k)(O), 1∅]].

The following example shows that Theorem 3.6 and Theorem 3.7 are incorrect in
general.

Example 3.8. From Example 3.1, take O = {l,m}, we have

(1)
∧
x∈S

RN
(1,2)
t ({t} ∪ {x}) = 0 ⩾̸ 1/8 = RT

(1,2)
1 (S, ϱ1, ϱ2),

(2) [[Rd(1,2)(O), 1∅]] = 0 ⩾̸ 1/8 = RT
(1,2)
1 (S, ϱ1, ϱ2).

Theorem 3.9 (Theorem 18, [1]). Let (X, ϱ1, ϱ2) be an L-fbs. If L satisfies CDL

and DNL, then RT
(s,k)
3 (X, ϱ1, ϱ2) =

1RT
(s,k)
3 (X, ϱ1, ϱ2).

The following example shows that Theorem 3.9 need not be true in general.

Example 3.10. From Example 3.1, we have

Rϱ1(B) =

 1 if B ∈ {∅, S},
1/8 if B ∈ {{l}, {l, t}, {m}, {t,m}},

0 if B ∈ {{t}, {l,m}},

RF1(B) =

 1 if B ∈ {∅, S},
1/8 if B ∈ {{l}, {l, t}, {m}, {t,m}},
0 if B ∈ {{t}, {l,m}}.

Then RT
(1,2)
3 (S, ϱ1, ϱ2) = 7/8 ̸= 1 = 1RT

(1,2)
3 (S, ϱ1, ϱ2).
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4. L-almost continuity, L-almost opennes And L-completely
continuity in L-fbss

Definition 4.1. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss and g : (X, ϱ1, ϱ2) →
(Y, ξ1, ξ2) be a mapping. A unary L-predicate AC(s,k) ∈ L(Y X) is called L-almost
continuous, provide that

AC(s,k)(g) =
∧

W∈2Y

(
Rξ(s,k)(W ) −→ ϱs(g

−1(W ))
)
.

Theorem 4.2. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss and g : (X, ϱ1, ϱ2) → (Y, ξ1, ξ2)

be a mapping. Then AC(s,k)(g) ≤
∧

x∈X

∧
W∈2Y

(
RN

(s,k)
g(x) (W ) −→ Ns

x(g
−1(W ))

)
.

Proof. We have AC(s,k)(g) =
∧

W∈2Y

(
Rξ(s,k)(W ) −→ ϱs(g

−1(W ))
)
. Then

AC(s,k)(g) ≤ Rξ(s,k)(W ) −→ ϱs(g
−1(W )) ∀x ∈ X, ∀W ∈ 2Y .

Thus AC(s,k)(g) ∗Rξ(s,k)(W ) ≤ ϱs(g
−1(W )) implies

AC(s,k)(g) ∗Rξ(s,k)(W ) ≤
∨

x∈H⊆g−1(W )

ϱs(H) = Ns
x(g

−1(W )).

So
∨

g(x)∈H⊆W

(
AC(s,k)(g) ∗Rξ(s,k)(H)

)
≤

∨
g(x)∈H⊆W

Ns
x(g

−1(H)) implies

AC(s,k)(g) ∗
∨

g(x)∈H⊆W

Rξ(s,k)(H) ≤
∨

x∈g−1(H)⊆f−1(W )

Ns
x(g

−1(H)).

Hence AC(s,k)(g) ∗RN
(s,k)
g(x) (W ) ≤ Ns

x(g
−1(W )) implies

AC(s,k)(g) ≤ RN
(s,k)
g(x) (W ) −→ Ns

x(g
−1(W )).

Therefore AC(s,k)(g) ≤
∧

x∈X

∧
W∈ 2Y

(
RN

(s,k)
g(x) (W ) −→ Ns

x(g
−1(W ))

)
. □

Definition 4.3. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss and g : (X, ϱ1, ϱ2) →
(Y, ξ1, ξ2) be a mapping. A unary L-predicate AO(s,k) ∈ L(Y X) is called L-almost
open, provide that

AO(s,k)(g) =
∧

U∈2X

(
Rϱ(s,k)(U) −→ ξs(g(U))

)
.

Theorem 4.4. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss and g : (X, ϱ1, ϱ2) → (Y, ξ1, ξ2)

be a mapping. Then AO(s,k)(g) ≤
∧

x∈X

∧
W∈2Y

(
RN

(s,k)
x (g−1(W )) −→ Ns

g(x)(W )
)
.

Proof. We can prove this theorem in the same way as the proof of Theorem 4.2. □

Definition 4.5. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss and g : (X, ϱ1, ϱ2) →
(Y, ξ1, ξ2) be a mapping. A unary L-predicate RC(s,k) ∈ L(Y X) is called L-completely
continuous, provide that

RC(s,k)(g) =
∧

W∈2Y

(
ξs(W ) −→ Rϱ(s,k)(g

−1(W ))
)
.
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Theorem 4.6. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss and g : (X, ϱ1, ϱ2) → (Y, ξ1, ξ2)

be a mapping. Then RC(s,k)(g) ≤
∧

x∈X

∧
W∈2Y

(
Ns

g(x)(W ) −→ RN
(s,k)
x (g−1(W ))

)
.

Proof. We can prove this theorem in the same way as the proof of Theorem 4.2. □

5. L-almost separation axioms and L-fuzzy mappings In L-fbss

Theorem 5.1. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss. If g : (X, ϱ1, ϱ2) −→ (Y, ξ1, ξ2)
is a bijective mapping and [AC(s,k)(g)] = ⊤, then

(1) RT
(s,k)
0 (Y, ξ1, ξ2) ≤ T0(X, ϱs),

(2) RT
(s,k)
1 (Y, ξ1, ξ2) ≤ T1(X, ϱs),

(3) RT
(s,k)
2 (Y, ξ1, ξ2) ≤ T2(X, ϱs).

Proof. (1) From Theorem 4.2 and [AC(s,k)(g)] = ⊤, we have

RT
(s,k)
0 (Y, ξ1, ξ2) =

∧
z ̸=w

( ∨
w/∈W

RN (s,k)
z (W ) ∨

∨
z/∈W

RN (s,k)
w (W )

)
=

∧
gg−1(z)̸=gg−1(w)

( ∨
gg−1(w)/∈W

RN
(s,k)
gg−1(z)(W )

∨
∨

gg−1(z)/∈W

RN
(s,k)
gg−1(w)(W )

)
≤

∧
g−1(z) ̸=g−1(w)

( ∨
g−1(w)/∈g−1(W )

Ns
g−1(z)(g

−1(W ))

∨
∨

g−1(z)/∈g−1(W )

Ns
g−1(w)(g

−1(W ))
)

=
∧
x ̸=y

( ∨
y/∈U

Ns
x(U) ∨

∨
x/∈U

Ns
y (U)

)
= T0(X, ϱs).

We can prove (2) and (3) in the same way as the proof of (1) above. □

Theorem 5.2. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss. If g : (X, ϱ1, ϱ2) −→ (Y, ξ1, ξ2)
is a bijective mapping and [AO(s,k)(g)] = ⊤, then

(1) RT
(s,k)
0 (X, ϱ1, ϱ2) ≤ T0(Y, ξs),

(2) RT
(s,k)
1 (X, ϱ1, ϱ2) ≤ T1(Y, ξs),

(3) RT
(s,k)
2 (X, ϱ1, ϱ2) ≤ T2(Y, ξs).
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Proof. (1) From Theorem 4.4 and [AO(s,k)(g)] = ⊤, we have

RT
(s,k)
0 (X, ϱ1, ϱ2) =

∧
x ̸=y

( ∨
y/∈O

RN (s,k)
x (O) ∨

∨
x/∈O

RN (s,k)
y (O)

)
=

∧
x ̸=y

( ∨
y/∈O

RN (s,k)
x (g−1g(O)) ∨

∨
x/∈O

RN (s,k)
y (g−1g(O))

)
≤

∧
x ̸=y

( ∨
y/∈O

Ns
g(x)(g(O)) ∨

∨
x/∈O

Ns
g(y)(g(O))

)
=

∧
g(x) ̸=g(y)

( ∨
g(y)/∈g(O)

Ns
g(x)(g(O)) ∨

∨
g(x)/∈g(O)

Ns
g(y)(g(O))

)
=

∧
z ̸=w

( ∨
w/∈H

Ns
z (H) ∨

∨
z/∈H

Ns
w(H)

)
= T0(Y, ξs).

We can prove (2) and (3) in the same way as the proof of (1) above. □

Theorem 5.3. Let (X, ϱ1, ϱ2), (Y, ξ1, ξ2) be two L-fbss. If g : (X, ϱ1, ϱ2) −→ (Y, ξ1, ξ2)
is an injective mapping and [RC(s,k)(g)] = ⊤, then

(1) T0(Y, ξs) ≤ RT
(s,k)
0 (X, ϱ1, ϱ2),

(2) T1(Y, ξs) ≤ RT
(s,k)
1 (X, ϱ1, ϱ2),

(3) T2(Y, ξs) ≤ RT
(s,k)
2 (X, ϱ1, ϱ2).

Proof. (1) From Theorem 4.2 and [RC(s,k)(g)] = ⊤, we have for every W ∈ 2Y and

x ∈ X, Ns
g(x)(W ) ≤ RN

(s,k)
x (g−1(W )). Therefore

RT
(s,k)
0 (X, ϱ1, ϱ2) =

∧
x ̸=y

( ∨
y/∈O

RN (s,k)
x (O) ∨

∨
x/∈O

RN (s,k)
y (O)

)
=

∧
x ̸=y

( ∨
y/∈O

RN (s,k)
x (g−1g(O)) ∨

∨
x/∈O

RN (s,k)
y (g−1g(O))

)
≥

∧
x ̸=y

( ∨
y/∈O

Ns
g(x)(g(O)) ∨

∨
x/∈O

Ns
g(y)(g(O))

)
=

∧
g(x) ̸=g(y)

( ∨
g(y)/∈g(O)

Ns
g(x)(g(O)) ∨

∨
g(x)/∈g(O)

Ns
g(y)(g(O))

)
=

∧
z ̸=w

( ∨
w/∈H

Ns
z (H) ∨

∨
z/∈H

Ns
w(H)

)
= T0(Y, ξs).

The proof of (2) and (3) is similar to (1) above. □

6. Conclusions

In the present paper, we prove that some results obtained in [1] need not be true,
by giving some counterexamples. Also, we study some types of L-fuzzy mappings
and the image of these kinds of L-fuzzifying bitopological spaces. In the future, we
can take these properties in applications of L-fuzzifying bitopological spaces.
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