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Abstract. In daily life, when conventional sets are insufficient in han-
dling problems with multi-criterion, we use trapezoidal fuzzy multi-sets
to solve decision-making problems in a lot of areas. Therefore, we in-
troduce power aggregation operators on trapezoidal fuzzy multi-numbers
as a novel way. By doing this, we aimed to introduce new operators on
trapezoidal fuzzy multi-numbers which allow argument values to support
each other in the aggregation process. Then, we described the properties
of the operators and gave a formulation for the support function that is
used in the operators. Moreover, we introduced two algorithms to solve
multiple attribute group decision-making problems given with trapezoidal
fuzzy multi-numbers. Lastly, we applied the introduced algorithms to a
zero-waste problem to show the usage of the operators.
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1. Introduction

In 1965, the theory of fuzzy set was introduced by Zadeh [1] as an enlargement of
the classical concept of a set of ambiguous information. Following of introduction of
the theory, it was implemented in many areas. For example, Sahin et al. [2, 3] used
fuzzy logic to conduct a study on education in 2021 and 2022. In time, a new concept
of fuzzy set was introduced by Yager [4] which is called fuzzy multi-sets (fuzzy bags).
The notion presents a new generalization of fuzzy sets. In addition, it gives com-
plete information for some problems including situations in which each element has
different membership values. Miyamoto [5] and Sebastian and Ramakrishnan [6, 7]
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expanded and studied in detailly the Yager’s multi-sets and fuzzy multi-sets. Since
some situations have multiple possibility of the same or different membership values,
Uluçay et al. [8] developed TFM-numbers on the real number set R. They are expan-
sion of both fuzzy multi-sets and trapezoidal fuzzy numbers enabling the recurrent
occurrences of any element. Later, many studies have been conducted by scientists.
For example, Şahin et al. [9, 10] developed dice vector similarity measures and im-
proved hybrid vector similarity measures of TFM-numbers in 2019. Then, Uluçay
[11] introduced a new similarity function of TFM-numbers in 2020. In 2021, Deli
and Keles [12] proposed distance measures on TFM-numbers and their application
to multi-criteria decision-making problems. Then, Kesen and Deli [13] introduced
weighted Bonferroni harmonic mean operator on TFM-numbers in 2022. In 2023,
Şahin et al. [14] proposed a method by centroid point of TFM-numbers for multi-
criteria decision-making problems. Deli and Kesen [15] introduced the Bonferroni
geometric mean operator of TFM-numbers and they applied the operator to a multi-
criteria decision-making problem. Then, Bakbak and Uluçay [16] proposed a paper
related to the harmonic mean operator on intuitionistic TFM-numbers and they
gave its application to architecture. In addition, Uluçay and Şahin [17] introduced
some harmonic aggregation operators with TFM-numbers and their application of
the law. Further, Kesen and Deli [18] conducted a study on Archimedean norms on
TFM-numbers for multi-criteria decision-making problems. Lastly, Deli and Kesen
[19] proposed a paper on Bonferroni arithmetic mean operator of TFM-numbers and
gave an application to a multi-criteria decision-making problem.

By inspired Yager [20], in this work two aggregation operators are introduced:
TFMPWA operator and TFMPWG operator. In addition, we mention their or-
dered types which are called TFMPOWA operator and TFMPOWG operator. They
mainly cope with the information given with TFM-numbers. The main characteris-
tic of these operators is that weight vectors depend on the arguments and that allows
the values being aggregated to support and reinforce each other. In opposition to
most aggregation operators, given operators incorporate information regarding the
relationship between the values being combined. This is our main motivation for
preparing the paper. Readers can find many papers about prominent aggregation
operators in [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Technological developments resulting from the Industrial Revolution increasing
population and urbanization with innovations lead to differentiation of standards
and consumption habits. This situation causes depletion of natural resources and
climate change led to air, water, and soil pollution which threaten bios. Creating
waste, consuming natural resources, putting pressure on the soil, and using energy
and water, mean polluting the environment and creating additional costs for waste
management. To prevent these negative results, the material should not be accepted
as waste and It is compulsory to transition to an understanding that argues that it
should be transformed into useful products as much as possible. This understanding
is expressed as zero-waste. Zero-waste accepts the zero as a good potential resource
to benefit rather than a problem. This acceptance is influenced by the notion of
waste as a valuable resource requiring solutions for collection, separation, manage-
ment, and recovery which were seen as a burden for industries and societies because
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of its effect on global warming and resource depletion. What is targeted with Zero-
waste are preventing waste, more efficient resource usage, reducing the amount of
waste, the establishment of an effective collection system, and the recycling of waste
as a waste prevention approach that includes recycling. In the recycling and recovery
process of waste disposal without recycling causes serious resource losses both ma-
terial and energy. To leave a livable world to the next generations, we should adopt
the zero-waste principle within the framework of sustainable development principles.
Due to the importance of the topic, there are so many studies on zero-waste. For
instance in 2018, Durgun and Durgun [33] reviewed the relationship between renew-
able energy consumption and economic development. Then, Onder [34] conducted a
study related to circular economy as a new concept in the sustainable development
approach. Okorie et al. [35] proposed a review of current research and future trends
under digitization and the circular economy. Reike et al. [36], by focusing on history
and resource value retention options, studied some debates on circular economy. In
2022, Uluçay and Okumus [37] proposed a study on combined fuzzy mathematical
modeling and circular economy.

The organization of the paper is as follows: In the second section, we give some
essential terms which are necessary for the next sections. In the third section, we
introduce two aggregation techniques called TFMPWA operator and TFMPWG op-
erator. Then, we investigate their properties and give their some special cases. In
the section fourth, we introduce two algorithms to solve multiple attribute group
decision-making problems given with TFM-numbers. In section five, we give a se-
lection problem about to set a zero-waste factory which Turkiye government faced.
The problem is containing five alternatives (plastic waste factory, paper waste fac-
tory, battery waste factory, organic waste factory, and glass waste factory) and four
attributes (setup cost, human resource, adaptation period of public, and amount
of waste) to be considered by decision-makers. We give this problem to see how
effective introduced methods are. Then, in section six, we give a comparison table
to show the compatibility of existing methods.

The following is the list of abbreviations.
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Table 1. List of Abbreviations

PA power average
PG power geometric
TFM trapezoidal fuzzy multi
GTF generalized trapezoidal fuzzy
FWA fuzzy weighted average
FWG fuzzy weighted geometric
TFMG trapezoidal fuzzy multi geometric
TFMPG trapezoidal fuzzy multi power geometric
TFMPA trapezoidal fuzzy multi power average
TFMPWA trapezoidal fuzzy multi power weighted average
TFMPWG trapezoidal fuzzy multi power weighted geometric
TFMBHM trapezoidal fuzzy multi Bonferroni harmonic mean
TFMPOWA trapezoidal fuzzy multi power ordered weighted average
TFMPOWG trapezoidal fuzzy multi power ordered weighted geometric

2. Preliminaries

Here, we give some basic notions connected to fuzzy set, fuzzy number and fuzzy
multi-set which are needful for the rest of the paper.

Definition 2.1 ([1]). Let A be a non-empty set. A fuzzy set F on A is defined as:

F = {⟨x, µF (x)⟩ : x ∈ A},

where µF : A → [0, 1] for x ∈ A.

In the context of this definition, the following two definitions are given:

Definition 2.2 ([38]). t-norms are monotonic, commutative, and associative func-
tions t with two-valued mapping from [0, 1]× [0, 1] into [0, 1] and satisfying following
conditions: for each x ∈ [0, 1],

(i) t(0, 0) = 0, t(µX1 (x), 1) = t(1, µX1 (x)) = µX1 (x),
(ii) if µX1

(x) ≤ µX3
(x) and µX2

(x) ≤ µX4
(x), then t(µX1

(x), µX2
(x)) ≤ t(µX3

x), µX4
(x)),

(iii) t(µX1
(x), µX2

(x)) = t(µX2
(x), µX1

(x)),

(iv) t(µX1 (x), t(µX2 (x), µX3 (x))) = t(t(µX1 (x), µX2 )(x), µX3 (x)).

Definition 2.3 ([38]). s-norms are monotonic, commutative, and associative func-
tions s with two-placed mapping from [0, 1]× [0, 1] into [0, 1] and satisfying following
conditions: for each x ∈ [0, 1],

(i) s(1, 1) = 1, s(µX1
(x), 0) = s(0, µX1

(x)) = µX1
(x),

(ii) if µX1 (x) ≤ µX3 (x) and µX2 (x) ≤ µX4 (x), then s(µX1 (x), µX2 (x)) ≤ s(µX3 (x), µX4 (x)),
(iii) s(µX1

(x), µX2
(x)) = s(µX2

(x), µX1
(x)),

(iv) s(µX1
(x), s(µX2

(x), µX3
(x))) = s(s(µX1

(x), µX2
)(x), µX3

(x)).

For example; t2(µX1
(x), µX2

(x)) = µX1
(x)µX2

(x) is a t-norm and s2(µX1
(x), µX2

(x)) =
µX1(x) + µX2(x)− µX1(x)µX2(x) is a s-norm.

Definition 2.4 ([39]). Let ηT ∈ [0, 1] and ϵ1, ϵ2, ϵ3, ϵ4 ∈ R such that ϵ1 ≤ ϵ2 ≤ ϵ3 ≤
ϵ4. Then a GTF-number T = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); ηT ⟩ is a special fuzzy set on the real
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number set R. Its membership functions are defined as follows:

µT (x) =


(x− ϵ1)ηT /(ϵ2 − ϵ1) ϵ1 ≤ x < ϵ2

ηT ϵ2 ≤ x ≤ ϵ3
(ϵ4 − x)ηT /(ϵ4 − ϵ3) ϵ3 < x ≤ ϵ4

0 otherwise.

Definition 2.5 ([6]). Let X ̸= ∅. A fuzzy multi-set T on X is defined as

T = {⟨x, µ1
T (x), µ

2
T (x), · · · , µi

T (x), · · · ⟩ : x ∈ X},

where x ∈ X and µi
T : X → [0, 1] for all i ∈ {1, 2, · · · , p}.

In the paper, Im, In, Ip and It will be used instead of {1, 2, · · · ,m}, {1, 2, · · · , n},
{1, 2, · · · , p} and {1, 2, · · · , t} respectively.

Definition 2.6 ([8]). Let ηiT ∈ [0, 1] (i ∈ IP ) and ϵ1, ϵ2, ϵ3, ϵ4 ∈ R such that ϵ1 ≤
ϵ2 ≤ ϵ3 ≤ ϵ4. Then a TFM-number T = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); η1T , η2T , · · · , ηPT ⟩ is a special
fuzzy multi-set on the real number set R. Its membership functions are defined as
follows:

µi
T (x) =


(x− ϵ1)η

i
T /(ϵ2 − ϵ1) ϵ1 ≤ x < ϵ2
ηiT ϵ2 ≤ x ≤ ϵ3

(ϵ4 − x)ηiT /(ϵ4 − ϵ3) ϵ3 < x ≤ ϵ4
0 otherwise.

Definition 2.7 ([8]). Let T1 = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); η1T1
, η2T1

, · · · , ηPT1
⟩ and

T2 = ⟨(ρ1, ρ2, ρ3, ρ4); η1T2
, η2T2

, · · · , ηPT2
⟩ be two TFM-numbers and γ ̸= 0 be any real

number. Then

(i) T1⊕T2 = (ϵ1+ρ1, ϵ2+ρ2, ϵ3+ρ3, ϵ4+ρ4); s(η
1
T1
, η1T2

), s(η2T1
, η2T2

), · · · , s(ηpT1
, ηpT2

)⟩,
(ii)

T1 ⊗ T2 =

{ ⟨(ϵ1ρ1, ϵ2ρ2, ϵ3ρ3, ϵ4ρ4); t(η1T1
η1T2

), t(η2T1
, η2T2

), · · · , t(ηpT1
, ηpT2

)⟩ (ϵ4 > 0, ρ4 > 0)

⟨(ϵ1ρ4, ϵ2ρ3, ϵ3ρ2, ϵ4ρ1); t(η1T1
, η1T2

), t(η2T1
, η2T2

), · · · , t(ηpT1
, ηpT2

)⟩ (ϵ4 < 0, ρ4 > 0)

⟨(ϵ4ρ4, ϵ3ρ3, ϵ2ρ2, ϵ1ρ1); t(η1T1
, η1T2

), t(η2T1
, η2T2

), · · · , t(ηpT1
, ηpT2

)⟩ (ϵ4 < 0, ρ4 < 0),

(iii) γT1 = ⟨(γϵ1, γϵ2, γϵ3, γϵ4); 1−(1−η1T1
)γ , 1−(1−η2T1

)γ , · · · , 1−(1−ηpT1
)γ⟩(γ ≥ 0),

(iv) T γ
1 = ⟨(ϵγ1 , ϵ

γ
2 , ϵ

γ
3 , ϵ

γ
4); (η

1
T1
)γ , (η2T1

)γ , · · · , (ηPT1
)γ⟩(γ ≥ 0).

Here, t-norms and s-norms are mappings that are given in Definitions 2.2 and 2.3,
respectively.

Based on the complement of a fuzzy set given by Zimmermann [38], we can give
following property for TFM-numbers.

Definition 2.8. Let T = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); η1T , η2T , · · · , ηPT ⟩ be a TFM-number. Then
the complement of T , denoted by T c, is defined as follows:

T c = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); 1− η1T , 1− η2T , · · · , 1− ηPT ⟩

Note that if ϵ1 ≤ ρ1, ϵ2 ≤ ρ2, ϵ3 ≤ ρ3, ϵ4 ≤ ρ4, η
1
T1

≤ η1T2
, η2T1

≤ η2T2
,· · · ,ηPT1

≤ ηPT2

then, we said T1 ≤ T2.
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Definition 2.9 ([8]). Let T1 = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); η1T1
, η2T1

, · · · , ηPT1
⟩

and T2 = ⟨(ρ1, ρ2, ρ3, ρ4); η1T2
, η2T2

, · · · , ηPT2
⟩ be two TFM-numbers. Then the Ham-

ming distance between T1 and T2 is defined as follows:

d(T1, T2) =
1

8p

p∑
i=1

(|(1 + ηiT1
)ϵ1 − (1 + ηiT2

)ρ1|+ |(1 + ηiT1
)ϵ2 − (1 + ηiT2

)ρ2|

+ |(1 + ηiT1
)ϵ3 − (1 + ηiT2

)ρ3|+ |(1 + ηiT1
)ϵ4 − (1 + ηiT2

)ρ4|).

Definition 2.10 ([8]). T1 = ⟨(ϵ1, ϵ2, ϵ3, ϵ4); η1T1
, η2T1

, · · · , ηPT1
⟩ and

T2 = ⟨(ρ1, ρ2, ρ3, ρ4); η1T2
, η2T2

, · · · , ηPT2
⟩ be two TFM-numbers and d be Hamming

distance between two TFM-numbers. Then the comparison of T1 and T2 defined as
follows:

(i) if d(T1, r
+) < d(T2, r

+), then T1 is bigger than T2, symbolised by T1 ≻ T2,
(ii) if d(T1, r

+) = d(T2, r
+) and d(T1, r

−) < d(T2, r
−), then T2 is bigger than

T1, symbolised by T1 ≺ T2,
(iii) if d(T1, r

+) = d(T2, r
+) and d(T1, r

−) = d(T2, r
−), then T1 is similar to T2,

symbolised by T1 ≃ T2,

where r+A is positive ideal and r−A is negative ideal and defined as follows, respectively:

r+A = ⟨(a+, b+, c+, d+); (η1A)+, (η2A)+, · · · , (ηPA)+⟩ = ⟨(1, 1, 1, 1); 1, 1, · · · , 1⟩,

r−A = ⟨(a−, b−, c−, d−); (η1A)−, (η2A)−, · · · , (ηPA)−⟩ = ⟨(0, 0, 0, 0); 0, 0, · · · , 0⟩.

Definition 2.11 ([20]). Let Ri (i ∈ In) be a collection of non-negative real numbers.
To aggregate this collection, the PA operator is defined as follows:

PA(R1, R2, · · · , Rn) =

n∑
i=1

(1 + T (Ri))Ri

n∑
i=1

(1 + T (Ri))
,

where T (Ri) =
n∑

j=1,i̸=j

Sup(Ri, Rj).

Sup(Ri, Rj) is denoted as support from Ri to Rj and satisfies following properties:

(1) Sup(Ri, Rj) ∈ [0, 1],
(2) Sup(Ri, Rj) = Sup(Rj , Ri),
(3) Sup(Ri, Rj) ≥ Sup(Rx, Ry), if |Ri −Rj | < |Rx −Ry|.

Definition 2.12 ([26]). Let Ri (i ∈ In) be a collection of non-negative real numbers.
To aggregate this collection, the PG operator is defined as follows:

PG(R1, R2, · · · , Rn) =

n∏
i=1

R

1+T (Ri)
n∑

i=1
(1+T (Ri))

i ,

where T (Ri) =
n∑

j=1,i̸=j

Sup(Ri, Rj).

Sup(Ri, Rj) is denoted as support from Ri to Rj and satisfies following properties:

(1) Sup(Ri, Rj) ∈ [0, 1],
(2) Sup(Ri, Rj) = Sup(Rj , Ri),
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(3) Sup(Ri, Rj) ≥ Sup(Rx, Ry), if |Ri −Rj | < |Rx −Ry|.

3. Power aggregation operators on TFM-numbers

In this section, we developed two TFM-Aggregation operators based on power
aggregation operators for multi-criteria decision-making problems given with TFM
information.

Definition 3.1. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of

TFM-numbers and υ = (υ1, υ2, · · · , υn)T weight vector of Fi (i ∈ In), where υi ≥ 0

(i ∈ In) and
n∑

i=1

υi = 1. Then the TFMPWA operator is defined as follows:

(3.1) TFMPWA(F1, F2, · · · , Fn) =

n⊕
i=1

υi(1 + T (Fi))Fi

n∑
i=1

υi(1 + T (Fi))
,

where T (Fi) =
n∑

j=1,i̸=j

Sup(Fi, Fj), Sup(Fi, Fj) = 1 − d(Fi, Fj) and d(Fi, Fj) is

Hamming distance [8] between Fi and Fj .

Theorem 3.2. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of

TFM-numbers and υ = (υ1, υ2, · · · , υn)T weight vector of Fi (i ∈ In), where υi ≥ 0

(i ∈ In) and
n∑

i=1

υi = 1. Then the aggregated value by TFMPWA operator is a TFM-

number and computed as follows:

For simplicity, let υi(1+T (Fi))
n∑

i=1
υi(1+T (Fi))

= ςi.

(3.2)

TFMPWA(F1, F2, · · · , Fn) =

n⊕
i=1

ςiFi

= ς1F1 ⊕ ς2F2⊕, · · · ,⊕ςnFn

=
〈( n⊕

i=1

ςiϵi,

n⊕
i=1

ςiρi,

n⊕
i=1

ςiδi,

n⊕
i=1

ςiγi
)
;

1−
n∏

i=1

(1− η1Fi
)ςi , 1−

n∏
i=1

(1− η2Fi
)ςi , · · · , 1−

n∏
i=1

(1− ηPFi
)ςi

〉
,

where T (Fi) =
n∑

j=1,i̸=j

Sup(Fi, Fj).
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Proof. By using the mathematical induction on n and considering operational laws
in Definition 2.7, we can prove the theorem. We need to show that:
(3.3)

TFMPWA(F1, F2, · · · , Fn) =

n⊕
i=1

ςiFi

= ς1F1 ⊕ ς2F2⊕, · · · ,⊕ςnFn

=
〈( n⊕

i=1

ςiϵi,

n⊕
i=1

ςiρi,

n⊕
i=1

ςiδi,

n⊕
i=1

ςiγi
)
;

1−
n∏

i=1

(1− η1Fi
)ςi , 1−

n∏
i=1

(1− η2Fi
)ςi , · · · , 1−

n∏
i=1

(1− ηPFi
)ςi

〉
.

(i) Suppose n = 2. Then we have
TFMPWA(F1, F2)

=
2⊕

i=1

ςiFi

= ς1F1 ⊕ ς2F2

=
〈(
ς1ϵ1 + ς2ϵ2, ς1ρ1 + ς2ρ2, ς1δ1 + ς2δ2, ς1γ1 + ς2γ2

)
;

s(ς1η
1
F1
, ς2η

1
F2
), s(ς1η

2
F1
, ς2η

2
F2
)
〉

=
〈( 2⊕

i=1

ςiϵi,
2⊕

i=1

ςiρi,
2⊕

i=1

ςiδi,
2⊕

i=1

ςiγi
)
;

1−
2∏

i=1

(1− η1Fi
)ςi , 1−

2∏
i=1

(1− η2Fi
)ςi , · · · , 1−

2∏
i=1

(1− ηPFi
)ςi

〉
.

Thus the Equation (3.3) is right.
(ii) Suppose the Equation (3.3) is right for n = k, i.e.,

TFMPWA(F1, F2, ..., Fn)

=
k⊕

i=1

ςiFi

= ς1F1 ⊕ ς2F2 ⊕ ...⊕ ςkFk

=
〈( k⊕

i=1

ςiϵi,
k⊕

i=1

ςiρi,
k⊕

i=1

ςiδi,
k⊕

i=1

ςiγi
)
;

1−
k∏

i=1

(1− η1Fi
)ςi , 1−

k∏
i=1

(1− η2Fi
)ςi , · · · , 1−

k∏
i=1

(1− ηPFi
)ςi

〉
.

Now, we need to prove it is true for n = k+1 as well. Then from the Equation (3.2)
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for n = k + 1, we obtain the following:

TFMPWA(F1, F2, ..., Fk+1) =

k⊕
i=1

ςiFi + ςk+1Fk+1

= ς1F1 ⊕ ς2F2 ⊕ ...⊕ ςnFn ⊕ ςk+1Fk+1

=
〈( k⊕

i=1

ςiϵi + ςk+1ϵk+1,

k⊕
i=1

ςiρi + ςk+1ρk+1,

k⊕
i=1

ςiδi + ςk+1δk+1,

k⊕
i=1

ςiγi + ςk+1γk+1

)
;

s(1−
k∏

i=1

(1− η1Fi
)ςi , ςk+1η

1
Fk+1

),

s(1−
k∏

i=1

(1− η2Fi
)ςi , ςk+1η

2
Fk+1

), · · · ,

s(1−
k∏

i=1

(1− ηPFi
)ςi , ςk+1η

P
Fk+1

)
〉

=

k+1⊕
i=1

ςiFi.

Thus the Equation (3.2) holds for n = k + 1. So the Equation (3.2) holds for all
n. □

Note 3.3. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of TFM-

numbers. If υ = (1/n, 1/n, · · · , 1/n)T , then TFMPWA operator (3.1) converted into
a TFMPA operator:
(3.4)

TFMPA(F1, F2, · · · , Fn) =
((1 + T (F1))F1)⊕ ((1 + T (F2))F2)⊕, · · · ,⊕((1 + T (Fn))Fn)

n∑
i=1

(1 + T (Fi))
,

where T (Fi) =
n∑

j=1,i̸=j

Sup(Fi, Fj).

Proposition 3.4. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection

of TFM-numbers. TFMPWA operator has the following desirable properties:
(1) (Commutativity) if (Ḟ1, Ḟ2, · · · , Ḟn) is any permutation of (F1, F2, · · · , Fn),

then TFMPWA(F1, F2, · · · , Fn) = TFMPWA(Ḟ1, Ḟ2, · · · , Ḟn),
(2) (Idempotency) if Fi = F for all i, then TFMPWA(F1, F2, · · · , Fn) = F,
(3) (Boundedness) F− ≤ TFMPWA(F1, F2, · · · , Fn) ≤ F+,

where F+ = ⟨(max{ϵi}i∈In ,max{ρi}i∈In ,max{δi}i∈In ,max{γi}i∈In);
max{η1Fi

}i∈In ,max{η2Fi
}i∈In , · · · ,max{ηPFi

}i∈In⟩
and

F− = ⟨(min{ϵi}i∈In ,min{ρi}i∈In ,min{δi}i∈In ,min{γi}i∈In);
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min{η1Fi
}i∈In ,min{η2Fi

}i∈In , · · · ,min{ηPFi
}i∈In⟩.

Proof. (1) Suppose (Ḟ1, Ḟ2, · · · , Ḟn) is any permutation of (F1, F2, · · · , Fn). Then
we get

TFMPWA(F1, F2, · · · , Fn) =

n⊕
i=1

υi(1+T (Fi))Fi

n∑
i=1

υi(1+T (Fi))

=

n⊕
i=1

υi(1+T (Ḟi))Ḟi

n∑
i=1

υi(1+T (Ḟi))

= TFMPWA(Ḟ1, Ḟ2, · · · , Ḟn).
(2) Suppose Fi = F for all i. Then we get

TFMPWA(F1, F2, · · · , Fn) =

n⊕
i=1

υi(1+T (Fi))Fi

n∑
i=1

υi(1+T (Fi))

=

n⊕
i=1

υi(1+T (F ))F

n∑
i=1

υi(1+T (F ))

=
(1+T (F ))F

n∑
i=1

υi

(1+T (F ))
n∑

i=1
υi

= (1+T (F ))F
(1+T (F ))

= TFMPWA(F, F, · · · , F )
= F.

(3) Let’s denote

ϵb = max{ϵi}i∈In , ϵl = min{ϵi}i∈In ,

ρb = max{ρi}i∈In , ρl = min{ρi}i∈In ,

δb = max{δi}i∈In , δl = min{δi}i∈In ,

γb = max{γi}i∈In , γl = min{γi}i∈In .

Similarly,

η1Fb
= max{η1Fi

}i∈In , η
1
Fl

= min{η1Fi
}i∈In ,

η2Fb
= max{η2Fi

}i∈In , η
2
Fl

= min{η2Fi
}i∈In ,

...

ηPFb
= max{ηPFi

}i∈In , η
P
Fl

= min{ηPFi
}i∈In .

and let

F+ = ⟨(ϵb, ρb, δb, γb); η1Fb
, η2Fb

, · · · , ηPFb
⟩

and

F− = ⟨(ϵl, ρl, δl, γl); η1Fl
, η2Fl

, · · · , ηPFl
⟩.

Since ϵl ≤ ϵi ≤ ϵb, ρl ≤ ρi ≤ ρb, δl ≤ δi ≤ δb and γl ≤ γi ≤ γb,
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η1Fl
≤ η1Fi

≤ η1Fb
, η2Fl

≤ η2Fi
≤ η2Fb

,· · · ,ηPFl
≤ ηPFi

≤ ηPFb
,

we get

(3.5)

n⊕
i=1

υiϵl ≤
n⊕

i=1

υiϵi ≤
n⊕

i=1

υiϵb,

n⊕
i=1

υiρl ≤
n⊕

i=1

υiρi ≤
n⊕

i=1

υiρb,

n⊕
i=1

υiδl ≤
n⊕

i=1

υiδi ≤
n⊕

i=1

υiδb and

n⊕
i=1

υiγl ≤
n⊕

i=1

υiγi ≤
n⊕

i=1

υiγb.

On the other hand, we get
1−η1Fb

≤ 1−η1Fi
≤ 1−η1Fl

, 1−η2Fb
≤ 1−η2Fi

≤ 1−η2Fl
,· · · ,1−ηPFb

≤ 1−ηPFi
≤ 1−ηPFl

.
Then we have

(3.6)

1−
n∏

i=1

(1− η1Fl
)υi ≤ 1−

n∏
i=1

(1− η1Fi
)υi ≤ 1−

n∏
i=1

(1− η1Fb
)υi ,

1−
n∏

i=1

(1− η2Fl
)υi ≤ 1−

n∏
i=1

(1− η2Fi
)υi ≤ 1−

n∏
i=1

(1− η2Fb
)υi , · · · ,

1−
n∏

i=1

(1− ηPFl
)υi ≤ 1−

n∏
i=1

(1− ηPFi
)υi ≤ 1−

n∏
i=1

(1− ηPFb
)υi .

Thus from inequalities in (3.5) and (3.6), we get

F− ≤ TFMPWA(F1, F2, · · · , Fn) ≤ F+.

□

Definition 3.5. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of

TFM-numbers and υ = (υ1, υ2, · · · , υn)T weight vector of Fi (i ∈ In), where υi ≥ 0

(i ∈ In) and
n∑

i=1

υi = 1. Then the TFMPOWA operator is defined as follows:

TFMPOWA(F1, F2, · · · , Fn) =

n∑
i=1

υi(1 + T (Fσ(i)))Fσ(i)

n∑
i=1

υi(1 + T (Fσ(i)))
,

where Fσ(i) is the ith largest of the trapezoidal fuzzy sets (F1, F2, · · · , Fn) and υi is
the collection of weights such that
(3.7)

υi = f

(
Ri

TV

)
− f

(
Ri−1

TV

)
, Ri =

i∑
j=1

Vσ(j), TV =

n∑
i=1

Vσ(i), Vσ(i) = 1 + T (Fσ(i))

and T (Fσ(i)) denotes the support of the ith largest trapezoidal fuzzy variable Fσ(i)

by all the other trapezoidal fuzzy variables, i.e.,

(3.8) T (Fσ(i)) =

n∑
j=1,i̸=j

Sup(T (Fσ(i)), T (Fσ(j))),

where Sup(T (Fσ(i)), T (Fσ(j))) represents the support of j
th largest trapezoidal fuzzy

variable Fσ(i)) for the ith largest trapezoidal fuzzy variable Fσ(j)) and f : [0, 1] →
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[0, 1] is a basic unit interval monotonic function which satisfies the following prop-
erties:

(i) f(0) = 0,
(ii) f(1) = 1,
(iii) f(x) ≥ f(y), if x > y.

Definition 3.6. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of

TFM-numbers and υ = (υ1, υ2, · · · , υn)T weight vector of Fi (i ∈ In), where υi ≥ 0

(i ∈ In) and
n∑

i=1

υi = 1. Then the aggregated value by the TFMPWG operator is

defined as follows:
(3.9)

TFMPWG(F1, F2, ..., Fn) =

n⊗
i=1

(Fi)

1
n−1

1− υi(1+T (Fi))
n∑

i=1
υi(1+T (Fi))



= F

1
n−1

1− υ1(1+T (F1))
n∑

i=1
υi(1+T (Fi))


1 ⊗ F

1
n−1

1− υ2(1+T (F2))
n∑

i=1
υi(1+T (Fi))


2 ⊗, · · · ,⊗F

1
n−1

1− υn(1+T (Fn))
n∑

i=1
υi(1+T (Fi))


n ,

where T (Fi) =
n∑

j=1,i̸=j

Sup(Fi, Fj) and Sup(Fi, Fj) = 1− d(Fi, Fj).

Theorem 3.7. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of

TFM-numbers and υ = (υ1, υ2, · · · , υn)T weight vector of Fi (i ∈ In), where υi ≥ 0

(i ∈ In) and
n∑

i=1

υi = 1. Then the aggregated value by the TFMPWG is a TFM-

number and computed as follows:

For simplicity, let 1
n−1

1− υi(1+T (Fi))
n∑

i=1
υi(1+T (Fi))

 = ζi

TFMPWG(F1, F2, · · · , Fn) =

n⊗
i=1

Fi
ζi

=⟨(
n⊗

i=1

ϵi
ζi ,

n⊗
i=1

ρi
ζi ,

n⊗
i=1

δi
ζi ,

n⊗
i=1

γi
ζi);

n⊗
i=1

η1Fi

ζi
,

n⊗
i=1

η2Fi

ζi
, · · · ,

n⊗
i=1

ηPFi

ζi⟩.

Proof. The proof can be done similar to Theorem 3.2. □

Note 3.8. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection of TFM-

numbers. If υ = (1/n, 1/n, · · · , 1/n)T , then the TFMPWG operator (3.9) converted
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into TFMPG operator:

TFMPG(F1, F2, · · · , Fn) = F

1
n−1

1− 1+T (F1)
n∑

i=1
(1+T (Fi))


1

⊗ F

1
n−1

1− 1+T (F2)
n∑

i=1
(1+T (Fi))


2 ⊗, · · · ,⊗F

1
n−1

1− 1+T (Fn)
n∑

i=1
(1+T (Fi))


n(3.10)

Proposition 3.9. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, · · · , ηPFi
⟩ (i ∈ In) be a collection

of TFM-numbers. TFMPWG operator has the following desirable properties:
(1) (Commutativity) if (Ḟ1, Ḟ2, · · · , Ḟn) is any permutation of (F1, F2, ..., Fn),

then TFMPWG(F1, F2, · · · , Fn) = TFMPWG(Ḟ1, Ḟ2, · · · , Ḟn),
(2) (Idempotency if Fi = F for all i, then TFMPWG(F1, F2, · · · , Fn) = F,
(3) (Boundedness) F− ≤ TFMPWG(F1, F2, · · · , Fn) ≤ F+,

where F+ = ⟨(max{ϵi}i∈In ,max{ρi}i∈In ,max{δi}i∈In ,max{γi}i∈In);
max{η1Fi

}i∈In ,max{η2Fi
}i∈In , · · · ,max{ηPFi

}i∈In⟩
and

F− = ⟨(min{ϵi}i∈In ,min{ρi}i∈In ,min{δi}i∈In ,min{γi}i∈In);
min{η1Fi

}i∈In ,min{η2Fi
}i∈In , · · · ,min{ηPFi

}i∈In⟩.

Proof. The proof can be done similar to Proposition 3.4. □

Definition 3.10. Let Fi = ⟨(ϵi, ρi, δi, γi); η1Fi
, η2Fi

, ..., ηPFi
⟩ (i ∈ In) be a collection of

TFM-numbers and υ = (υ1, υ2, · · · , υn)T weight vector of Fi (i ∈ In), where υi ≥ 0

(i ∈ In) and
n∑

i=1

υi = 1. Then the TFMPOWG operator is defined as follows:

(3.11) TFMPOWG(F1, F2, · · · , Fn) =

n∏
i=1

(Fσ(i)))

υi(1+T (Fσ(i)))

n∑
i=1

υi(1+T (Fσ(i)))

,

where υi (i ∈ In) is the collection of weights which satisfies conditions (3.7) and
(3.8).

Especially, if f(x) = x, then the TFMPOWA operator (3.11) converted into the
TFMPA operator (3.10).

4. Two approaches to multi-attribute group decision-making with
trapezoidal fuzzy multi information

In this section, by inspiring Xu [40], two approaches to solve multi-attribute group
decision-making problem introduced.

Let alternative’s set be Z = {Zi|i ∈ Im} and attributes’ set be G = {Gj |j ∈ In}.
The weight vector of attributes is υ = (υ1, υ2, · · · , υn) satisfying υj ≥ 0 (j ∈ In),
n∑

j=1

υj = 1. Moreover, let decision maker’s set be D = {Dk|(k ∈ It)} whose weight

vector τ = (τ1, τ2, · · · , τt) with τk ≥ 0 (k ∈ It),
t∑

k=1

τk = 1.
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Approach I

Step 1. Construct the decision matrix of each expert.

Step 2. Normalise each attribute value F
(k)
ij in the matrix Fk into a corresponding

element in the matrix R̃k = (r̃
(k)
ij )mxn such that

(4.1) (r̃
(k)
ij ) =

{
⟨(ϵij , ρij , δij , γij); η1Fij

, η2Fij
, · · · , ηkFij

⟩ for benefit attribute Gj

⟨(ϵij , ρij , δij , γij); 1− η1Fij
, 1− η2Fij

, · · · , 1− ηkFij
⟩ for cost attribute Gj .

Step 3. Support measure is calculated as follows:

(4.2) Sup(r̃
(k)
ij , r̃

(l)
ij ) = 1− d(r̃

(k)
ij , r̃

(l)
ij ), (l ∈ It).

Here d(r̃
(k)
ij , r̃

(l)
ij ) is calculated with Hamming distance in Definition 2.9 and utilize weights τ =

(τ1, τ2, ..., τt) of the decision makers Dk(k ∈ It) to find the weighted support T (r̃
(k)
ij ) of the trape-

zoidal fuzzy preference value (r̃
(k)
ij ) by other trapezoidal fuzzy preference value (r̃

(l)
ij ) (l ∈ It and

l ̸= k)

T (r̃
(k)
ij ) =

t∑
l=1,l ̸=k

τlSup(r̃
(k)
ij , r̃

(l)
ij )

and weights η
(k)
ij (k ∈ It) of the trapezoidal fuzzy preference value r̃

(k)
ij (k ∈ It) is calculated as

follows:

η
(k)
ij =

τk(1 + T (r
(k)
ij ))

t∑
k=1

τk(1 + T (r
(k)
ij ))

(k ∈ It),

where η
(k)
ij ≥ 0 (k ∈ It) and

t∑
k=1

η
(k)
ij = 1.

Step 4. Use the matrix R̃k and find the TFMPWA operator:

t∑
k=1

τk(1 + T (r̃
(k)
ij ))r̃

(k)
ij

t∑
k=1

τk(1 + T (r
(k)
ij ))

=

t∑
k=1

η
(k)
ij r̃

(k)
ij (i ∈ Im, j ∈ In)

or the TFMPWG operator:

t∏
k=1

(r̃
(k)
ij )

τk(1+T (r
(k)
ij

))

t∑
k=1

τk(1+T (r
(k)
ij

))

=
t∏

k=1

(r̃
(k)
ij )

η
(k)
ij (i ∈ Im, j ∈ In).

Step 5. By using the FWA operator, find the aggregation of all trapezoidal fuzzy preference

value r̃ij (j ∈ In):

r̃i = FWAυ =

n∑
j=1

υj r̃ij (i ∈ Im)

or FWG operator:

r̃i = FWGυ =
n∏

j=1

r̃
υj

ij (i ∈ Im)

Step 6. Find the Hamming distance between r̃i and positive ideal (or negative ideal) given in
Definition 2.10.

Step 7. Rank all the alternatives. If Hamming distance between r̃i and positive ideal taken
consideration, then the bigger result, the better alternative. If Hamming distance between r̃i and

negative ideal taken consideration, then the smaller result, the better alternative.

Approach II
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Step 1. Same as Approach I.

Step 2. Same as Approach I.

Step 3. Support measure is calculated as follows:

Sup(r̃
σ(k)
ij , r̃

σ(l)
ij ) = 1− d(r̃

(σ(k)
ij , r̃

(σ(l)
ij )

which remarks the support of lth largest trapezoidal fuzzy preference value rlij for the kth largest

trapezoidal fuzzy preference value r̃kij of r̃kij .

Step 4. Find the value of the support T (r̃
(k)
ij ) of the kth largest trapezoidal fuzzy preference

value r̃
(k)
ij (l ∈ It and l ̸= k)

T (r̃
σ(k)
ij ) =

t∑
l=1,l ̸=k

Sup(r̃
σ(k)
ij , r̃

σ(l)
ij )

and use equalities in (3.7) to find the weights υ
(k)
ij (k ∈ It) related to the kth largest trapezoidal

fuzzy preference value r̃
(k)
ij , where

υ
(k)
ij = f

Q
(k)
ij

TVij

− f

Q
(k−1)
ij

TVij

 ,

Q
(k)
ij =

k∑
l=1

η
σ(l)
ij , TVij =

t∑
l=1

η
σ(l)
ij , η

σ(l)
ij = 1 + T (r̃

σ(l)
ij ),

where υ
(k)
ij ≥ 0 (k ∈ It) and

t∑
k=1

υ
(k)
ij = 1.

Step 5. To convert all the individual decision matrices R̃k(k ∈ It) into the collective decision

matrix R̃ = (r̃ij)mxn,

Utilise TFMPOWA operator:

TFMPOWA =
t∑

k=1

υ
(k)
ij r̃

(k)
ij (i ∈ Im and j ∈ In)

or the TFMPOWG operator:

TFMPOWG =

t∏
k=1

(r̃
(k)
ij )

υ
(k)
ij (i ∈ Im and j ∈ In).

Step 6. Same as Approach I.

Step 7. Same asApproach I.

5. Application

Here, we give an illustrative example to show the efficiency of the proposed operators.

Table 2. TFM-numbers response to linguistic terms

Linguistic terms TFM-numbers

Absolutely high(AH) ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩
Very Very High(VVH) ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩
Very High(VH) ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩
High(H) ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩
Fairly high(FH) ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩
Medium(M) ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
Fairly low(FL) ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩
Low(L) ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
Very Low(VL) ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩
Very Very Low(VVL) ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩
Absolutely low(AL) ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩
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5.1. An Illustrative Example.

Example 5.1. In Turkiye, awareness of zero-waste has been growing recently as in other developing

countries. As a result of this growth, wastes created by people have been collected more than ever.

This issue triggers Turkish government to take action for recycling the collected wastes instead of
releasing them to nature. As the first step of the action, the Government wants to set a zero-waste

factory in the biggest city of the country, Istanbul. The government has five possible zero-waste

factories to be chosen and four attributes to consider. List of five possible alternatives as follows:
(1) Z1 (plastic waste),

(2) Z2 (paper waste),

(3) Z3 (battery waste),
(4) Z4 (organic waste),

(5) Z5 (glass waste).
The government will decide by considering the attributes given below:

(1) G1 is setup cost,

(2) G2 is human resource,
(3) G3 is adaptation period of public,

(4) G4 is amount of waste.

Their weight vector is (0.3,0.1,0.2,0.4).
Three decision makers Dk (k ∈ I3) will take part in decision process. Their weight vector is τ =

(0.4,0.3,0.3). Trapezoidal fuzzy decision matrices are shown in Tables 6, 7 and 8.

Step 1. We constructed decision matrices of each decision maker according to Table 2 [13]
linguistically (in Tables 3, 4 and 5) and numerically (in Tables 6, 7 and 8):

Table 3. Decision Matrix F1

G1 G2 G3 G4
Z1 VL FL FH VH
Z2 VVL L M H
Z3 AH VVH L AL
Z4 M VVL VVH M
Z5 VVH AH H L

Table 4. Decision Matrix F2

G1 G2 G3 G4
Z1 VVL FH AL VVL
Z2 VVH L FH VVH
Z3 AL AH VVL M
Z4 VH VL H L
Z5 FH FL M AH

Table 5. Decision Matrix F3

G1 G2 G3 G4
Z1 VVL FL L VL
Z2 H M M FH
Z3 AH VVL H AH
Z4 FH VL VVH L
Z5 VH AL AL M

Table 6. Decision Matrix F1
G1 G2 G3 G4

Z1 ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩
Z2 ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩
Z3 ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩
Z4 ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
Z5 ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩

Table 7. Decision Matrix F2
G1 G2 G3 G4

Z1 ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩
Z2 ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩
Z3 ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
Z4 ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩ ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
Z5 ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩
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Table 8. Decision Matrix F3
G1 G2 G3 G4

Z1 ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩
Z2 ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩
Z3 ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩
Z4 ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
Z5 ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩

Step 2. Since G1 and G3 are cost attributes, normalized decision matrix R̃k is constructed.

The results are shown in Tables 9, 10 and 11:

Table 9. Decision Matrix R̃1
G1 G2 G3 G4

Z1 ⟨(0.10, 0.15, 0.15, 0.20); 0.8, 0.6, 0.5, 0.7⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.4, 0.9, 0.2, 0.6⟩ ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩
Z2 ⟨(0.05, 0.10, 0.15, 0.20); 0.8, 0.7, 0.6, 0.9⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.6, 0.5, 0.4, 0.2⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩
Z3 ⟨(0.70, 0.80, 0.90, 1.00); 0.3, 0.2, 0.1, 0.8⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.7, 0.6, 0.2, 0.9⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩
Z4 ⟨(0.25, 0.30, 0.35, 0.40); 0.6, 0.5, 0.4, 0.2⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.9, 0.3, 0.2, 0.1⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
Z5 ⟨(0.50, 0.60, 0.70, 0.80); 0.9, 0.3, 0.2, 0.1⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.2, 0.1, 0.7, 0.4⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩

Table 10. Decision Matrix R̃2
G1 G2 G3 G4

Z1 ⟨(0.05, 0.10, 0.15, 0.20); 0.8, 0.7, 0.6, 0.9⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.9, 0.8, 0.7, 0.6⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩
Z2 ⟨(0.50, 0.60, 0.70, 0.80); 0.9, 0.3, 0.2, 0.1⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.4, 0.9, 0.2, 0.6⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩
Z3 ⟨(0.01, 0.05, 0.10, 0.15); 0.9, 0.8, 0.7, 0.6⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.8, 0.7, 0.6, 0.9⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
Z4 ⟨(0.45, 0.55, 0.65, 0.75); 0.3, 0.2, 0.4, 0.7⟩ ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.2, 0.1, 0.7, 0.4⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
Z5 ⟨(0.30, 0.35, 0.40, 0.45); 0.4, 0.9, 0.2, 0.6⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.6, 0.5, 0.4, 0.2⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩

Table 11. Decision Matrix R̃3
G1 G2 G3 G4

Z1 ⟨(0.05, 0.10, 0.15, 0.20); 0.8, 0.7, 0.6, 0.9⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.7, 0.6, 0.2, 0.9⟩ ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩
Z2 ⟨(0.40, 0.45, 0.50, 0.55); 0.2, 0.1, 0.7, 0.4⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.6, 0.5, 0.4, 0.2⟩ ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩
Z3 ⟨(0.70, 0.80, 0.90, 1.00); 0.3, 0.2, 0.1, 0.8⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.2, 0.1, 0.7, 0.4⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩
Z4 ⟨(0.30, 0.35, 0.40, 0.45); 0.4, 0.9, 0.2, 0.6⟩ ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.9, 0.3, 0.2, 0.1⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
Z5 ⟨(0.45, 0.55, 0.65, 0.75); 0.3, 0.2, 0.4, 0.7⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.9, 0.8, 0.7, 0.6⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩

Step 3. Use equations (4.1) and (4.2) to find weight η
(k)
ij (i ∈ I5, j ∈ I4, k ∈ I3) related to

attribute values r̃
(k)
ij (i ∈ I5, j ∈ I4, k ∈ I3) which are given in the matrices η(k) = (η

(k)
ij )5x4

(k ∈ I3) and given in Tables 12, 13 and 14 respectively.

Table 12. Weight Matrix η(1)

G1 G2 G3 G4
Z1 0.385 0.389 0.384 0.372
Z2 0.383 0.389 0.387 0.392
Z3 0.399 0.403 0.391 0.391
Z4 0.388 0.385 0.389 0.382
Z5 0.388 0.367 0.387 0.394

Table 13. Weight Matrix η(2)

G1 G2 G3 G4
Z1 0.307 0.301 0.305 0.313
Z2 0.304 0.310 0.304 0.303
Z3 0.279 0.308 0.309 0.324
Z4 0.301 0.308 0.300 0.309
Z5 0.304 0.321 0.313 0.284

Table 14. Weight Matrix η(3)

G1 G2 G3 G4
Z1 0.307 0.310 0.312 0.315
Z2 0.314 0.301 0.309 0.306
Z3 0.321 0.289 0.300 0.285
Z4 0.311 0.308 0.311 0.309
Z5 0.308 0.312 0.300 0.322

Step 4. Use the TFMPWA and TFMPWG operators to find the aggregation of all individual

decision matrices into the collective decision matrix in Tables 15 and 16.
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Table 15. Decision Matrix R̃ (TFMPWA)
G1 G2 G3 G4

Z1 ⟨(0.069, 0.119, 0.150, 0.200); 0.800, 0.664, 0.564, 0.847⟩ ⟨(0.195, 0.245, 0.295, 0.345); 0.469, 0.489, 0.473, 0.472⟩ ⟨(0.149, 0.212, 0.246, 0.312); 0.720, 0.810, 0.407, 0.740⟩ ⟨(0.214, 0.283, 0.336, 0.405); 0.445, 0.582, 0.513, 0.243⟩
Z2 ⟨(0.148, 0.362, 0.427, 0.492); 0.750, 0.452, 0.549, 0.658⟩ ⟨(0.331, 0.230, 0.245, 0.330); 0.332, 0.432, 0.754, 0.428⟩ ⟨(0.189, 0.315, 0.365, 0.415); 0.547, 0.694, 0.345, 0.352⟩ ⟨(0.324, 0.465, 0.520, 0.593); 0.610, 0.727, 0.673, 0.702⟩
Z3 ⟨(0.507, 0.590, 0.676, 0.762); 0.594, 0.457, 0.338, 0.757⟩ ⟨(0.432, 0.517, 0.603, 0.688); 0.370, 0.662, 0.778, 0.642⟩ ⟨(0.175, 0.244, 0.275, 0.344); 0.645, 0.533, 0.519, 0.829⟩ ⟨(0.285, 0.345, 0.409, 0.473); 0.423, 0.537, 0.665, 0.544⟩
Z4 ⟨(0.326, 0.391, 0.456, 0.521); 0.463, 0.651, 0.344, 0.520⟩ ⟨(0.081, 0.131, 0.150, 0.200); 0.200, 0.363, 0.464, 0.229⟩ ⟨(0.460, 0.555, 0.630, 0.725); 0.813, 0.245, 0.404, 0.203⟩ ⟨(0.157, 0.238, 0.257, 0.338); 0.330, 0.440, 0.739, 0.493⟩
Z5 ⟨(0.424, 0.509, 0.593, 0.678); 0.686, 0.597, 0.268, 0.499⟩ ⟨(0.308, 0.374, 0.442, 0.510); 0.472, 0.615, 0.642, 0.371⟩ ⟨(0.236, 0.283, 0.333, 0.383); 0.655, 0.523, 0.627, 0.419⟩ ⟨(0.319, 0.403, 0.447, 0.531); 0.476, 0.586, 0.795, 0.464⟩

Table 16. Decision Matrix R̃ (TFMPWG)
G1 G2 G3 G4

Z1 ⟨(0.065, 0.117, 0.150, 0.200); 0.800, 0.660, 0.559, 0.817⟩ ⟨(0.185, 0.237, 0.288, 0.339); 0.452, 0.350, 0.304, 0.467⟩ ⟨(0.076, 0.162, 0.211, 0.284); 0.610, 0.765, 0.293, 0.681⟩ ⟨(0.141, 0.214, 0.259, 0.327); 0.319, 0.473, 0.499, 0.213⟩
Z2 ⟨(0.193, 0.276, 0.349, 0.418); 0.537, 0.294, 0.451, 0.358⟩ ⟨(0.132, 0.226, 0.237, 0.327); 0.327, 0.428, 0.734, 0.187⟩ ⟨(0.264, 0.314, 0.365, 0.415); 0.530, 0.598, 0.324, 0.279⟩ ⟨(0.392, 0.455, 0.517, 0.579); 0.390, 0.426, 0.545, 0.599⟩
Z3 ⟨(0.213, 0.369, 0.487, 0.588); 0.408, 0.295, 0.172, 0.738⟩ ⟨(0.285, 0.391, 0.485, 0.574); 0.222, 0.571, 0.679, 0.300⟩ ⟨(0.122, 0.206, 0.241, 0.318); 0.501, 0.367, 0.409, 0.706⟩ ⟨(0.095, 0.197, 0.281, 0.354); 0.273, 0.400, 0.514, 0.411⟩
Z4 ⟨(0.316, 0.378, 0.439, 0.501); 0.429, 0.456, 0.322, 0.410⟩ ⟨(0.077, 0.128, 0.150, 0.200); 0.200, 0.358, 0.459, 0.197⟩ ⟨(0.468, 0.550, 0.633, 0.715); 0.573, 0.216, 0.291, 0.152⟩ ⟨(0.142, 0.233, 0.248, 0.335); 0.335, 0.436, 0.717, 0.221⟩
Z5 ⟨(0.414, 0.496, 0.577, 0.658); 0.501, 0.370, 0.248, 0.314⟩ ⟨(0.114, 0.216, 0.301, 0.376); 0.319, 0.474, 0.394, 0.333⟩ ⟨(0.114, 0.205, 0.276, 0.337); 0.443, 0.309, 0.588, 0.364⟩ ⟨(0.233, 0.338, 0.367, 0.463); 0.419, 0.523, 0.754, 0.238⟩

Step 5. By using the decision information in Tables 15 and 16, TFMPWA-TFMPWG operators
and weight vector of the attributes υ= (0.3,0.1,0.2,0.4), we access to the overall preference values

of the alternatives. The aggregating results are presented in Tables 17 and 18.

Table 17. The overall preference values of the alternatives (TFMPWA)

Z1 ⟨(0.155, 0.216, 0.258, 0.319); 0.645, 0.645, 0.506, 0.635⟩
Z2 ⟨(0.245, 0.381, 0.438, 0.502); 0.629, 0.630, 0.598, 0.613⟩
Z3 ⟨(0.344, 0.416, 0.482, 0.555); 0.525, 0.529, 0.576, 0.697⟩
Z4 ⟨(0.263, 0.337, 0.383, 0.457); 0.509, 0.477, 0.564, 0.431⟩
Z5 ⟨(0.333, 0.408, 0.468, 0.543); 0.586, 0.581, 0.642, 0.458⟩

Table 18. The overall preference values of the alternatives (TFMPWG)

Z1 ⟨(0.101, 0.171, 0.213, 0.275); 0.495, 0.558, 0.442, 0.435⟩
Z2 ⟨(0.264, 0.339, 0.396, 0.464); 0.448, 0.408, 0.478, 0.392⟩
Z3 ⟨(0.142, 0.257, 0.339, 0.423); 0.341, 0.372, 0.364, 0.529⟩
Z4 ⟨(0.216, 0.301, 0.338, 0.418); 0.381, 0.376, 0.450, 0.244⟩
Z5 ⟨(0.223, 0.328, 0.389, 0.473); 0.435, 0.420, 0.482, 0.291⟩

Step 6. According to the results shown in Tables 17 and 18, Definitions 3.1 and 3.6, the order-

ing of the alternatives is shown below:

for TFMPWA

•

d(Z1, r
+) =

1

32
(|(1 + 0.645)0.155− (1 + 1)1|+ |(1 + 0.645)0.155− (1 + 1)1|

+ |(1 + 0.506)0.155− (1 + 1)1|+ |(1 + 0.635)0.155− (1 + 1)1|
+ |(1 + 0.645)0.216− (1 + 1)1|+ |(1 + 0.645)0.216− (1 + 1)1|
+ |(1 + 0.506)0.216− (1 + 1)1|+ |(1 + 0.635)0.216− (1 + 1)1|
+ |(1 + 0.645)0.258− (1 + 1)1|+ |(1 + 0.645)0.258− (1 + 1)1|
+ |(1 + 0.506)0.258− (1 + 1)1|+ |(1 + 0.635)0.258− (1 + 1)1|
+ |(1 + 0.645)0.319− (1 + 1)1|+ |(1 + 0.645)0.319− (1 + 1)1|
+ |(1 + 0.506)0.319− (1 + 1)1|+ |(1 + 0.635)0.319− (1 + 1)1|)
= 0.807

• d(Z2, r+) = 0.683
• d(Z3, r+) = 0.645

• d(Z4, r+) = 0.731
• d(Z5, r+) = 0.657

Then we get Z1 > Z4 > Z2 > Z5 > Z3 and the best alternative is Z1 that is, the government

should set plastic waste factory.

for TFMPWG

• d(Z1, r+) = 0.859
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• d(Z2, r+) = 0.738

• d(Z3, r+) = 0.797

• d(Z4, r+) = 0.783
• d(Z5, r+) = 0.751

Therefore we get Z1 > Z3 > Z4 > Z5 > Z2 and the best alternative is Z1, i.e., the government
should set plastic waste factory.

6. Comparison Table

Table 19. Some rankings in terms of different methods and proposed methods of Example 5.1

Methods Operator Ranking
Proposed Method 1 TFMPWA Z1 > Z4 > Z2 > Z5 > Z3

Proposed Method 2 TFMPWG Z1 > Z3 > Z4 > Z5 > Z2

Method of Uluçay et al. [8] TFMGv Z5 > Z3 > Z4 > Z1 > Z2

Method of Şahin et al. [9] Dv Z3 > Z5 > Z1 > Z4 > Z2

Method of Uluçay [11] Sv Z4 > Z3 > Z1 > Z5 > Z2

Method of Deli and Keleş [12] Si(Zi) Z5 > Z3 > Z4 > Z1 > Z2

Method of Kesen and Deli [13] TFMBHM
(1,1)
v Z1 > Z3 > Z5 > Z2 > Z4

In the Table 19, we gave a brief comparison of introduced operators with some existing operators

such as the weighted Bonferroni harmonic mean operator given by Kesen and Deli [13], distance

measure operator proposed by Deli and Keleş [12], TFM weighted geometric operator introduced by
Uluçay et al. [8], weighted dice vector similarity operator submitted by Şahin et al. [9] and vector

similarity operator given by Uluçay [11] based on Example 5.1 including a zero-waste problem

having five alternatives and four attributes and given under trapezoidal fuzzy multi-environment.
Zero-waste has been drawing attention all around the world for saving nature and decreasing the

destruction of the natural surroundings. This is the reason why we chose the zero-waste problem.

As for the operators we introduced, we used them efficiently on the problem. If the comparison table
is analyzed, results of the proposed aggregation methods present a new perspective to decision-

making process and are compatible with the existing methods. Therefore, decision-makers can

easily use the proposed methods to solve decision-making problems with multiple criteria.

7. Conclusion and Future Scope of Studies

In this article, we proposed TFMPWA operator and TFMPWG operator to find the solution of

a zero-waste decision-making problem. By using these operators, this article aimed to investigate
how to solve zero-waste group decision-making problem with multi-criterion by using trapezoidal

fuzzy multi-numbers and to access a solution of the problem. In the paper, a zero-waste problem

including five alternatives and four attributes was handled. In consideration of the given data in the
problem, introduced operators were efficiently utilized to have a solution. The results we obtained

may help to decision-makers to find the best alternative in a decision-making problem. In addition,
they are consistent with the existing methods. As seen in the application, the main advantage of
the operators is allowing the argument values to support each other in the aggregation process. As

for limitation, since the operators don’t contain parameters, decision-makers lack flexibility during

the decision-making process.
In the future, the operators will be applied to other zero-waste problems given with triangular

intuitionistic fuzzy multi-numbers, trapezoidal intuitionistic fuzzy multi-numbers, and trapezoidal
neutrosophic fuzzy multi-numbers. In addition, the operators will be extended to bipolar soft sets
and bipolar complex fuzzy sets and applications. in the daily life that are given under the bipolar

soft sets and the bipolar complex fuzzy sets will be given.
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