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1. INTRODUCTION AND PRELIMINARIES

Lie (1842-1899 )introduced Lie algebras in the field of mathematics and was moti-
vated by his attempt to classify certain “smooth” subgroups of general linear groups.
These groups are now called Lie groups. By definition the tangent space at iden-
tity element of a Lie group gives us its Lie algebra. Sometimes it is easier and
manageable to consider a problem on Lie groups and reduce it to a problem on Lie
algebra. The application of Lie algebra is vast, among others, in different branches
of physics and mathematics, such as spectroscopy of molecules, atoms, hyperbolic
and stochastic differential equations. After the advent of the notion of fuzzy set
introduced by Zadeh [1], some useful and important notions have been introduced
and investigated. One of them is called a neutrosophic set, introduced by Smaran-
dache [2], which is now this set and its application in pure and applied mathematics
are active research fields for many researchers worldwide. Neutrosophic theory and
its applications have influenced almost all parts of pure and applied sciences and
also our outlook towards the real world and the way we analyse things and our ar-
gumentaion theory (See [3]). Moreover, the interested reader can see the influence
of neutrosophic theory in Decision making problems, graph theory, image analysis,
information theory, algebra, topology etc. in [4].

Recently, Das et al. [5] presented not only the properties of single-valued penta-
partitioned neutrosophic Lie algebra by focusing on single-valued pentapartitioned
neutrosophic set but also introduced and studied their related Lie ideals. It is worth
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mentioning that Abdullayev and Nesibova [6] and Akram et al. [7] studied neu-
trosophic Lie algebras and single-valued neutrosophic Lie algebras respectively and
obtained several fundamental properties. Also Parimala et al. [3] the notion of com-
plex neutrosophic Lie algebra and obtained several basic and interesting properties.
In the present paper, we further investigate some basic properties of the notion of
neutrosophic Lie subalgebras of a Lie algebra. We establish the Cartesian product of
neutrosophic Lie subalgebras and in particular, we obtain some results dealing with
the homomorphisms between the neutrosophic Lie subalgebras of a Lie algebra, and
also obtaining some other properties under the presence of these homomorphisms.
Now, we mention some notions which will be used in the sequal.

It is well-know that a Lie algebra is a vector space L over a field F' (it can be R or
C) on which £ x £ — L, denoted by ((,&) — [(,&], for (,€ € £ and [(, €] is called
Lie bracket satisfying the following conditions:

o [(,{] is bilinear,

e [¢(,{]=0forall (€L,

o 16 €),v) + [1€. 1), ¢ + 1%, ¢J, €] = 0 for all ¢, &, v € £ (Jacobi identity).
It is worth noticing that the multiplication in a Lie algebra is not associative, i.e.,
¢, €l,v] # [¢,[€,v]]. But it is true that [(,&] = —[£,¢], which means it is anti-
commutative. We call a subspace H of £ a Lie subalgebra, if it is closed under [-, -].
A subspace I of £ with the property [I,L] C I is called a Lie ideal of L. Observe
that any Lie ideal is a Lie subalgebra.
A complex mapping C' = (ue,ve,%e) : L — [0,1] x [0,1] x [0,1] is called a neu-
trosophic set in L if puc(C) +vo(€) + ¥e(¢) < 1 for all ¢ € L, where the mappings
e L —[0,1] and ¢ : L — [0, 1] denote the degree of truth-membership (namely
e (€)), the degree of indeterminancy-membership (namely v¢(¢)) and the degree of
non-membership (namely ¥¢(()) of each element ( € £ to C, respectively.

Definition 1.1 ([6]). A neutrosophic set C' = (uc,ve, o) on L is called a neutro-
sophic Lie subalgebra, if the following conditions are satisfied:

e (¢ +€) = min{uc(C), nc(€)}
(1.1) (V¢,€€ L) | ve(C+¢€) >min{yc((), (&)} |,
Yo (¢ + &) <max{yc(C),Yc(§)}

pe(a€) > pe(Q)
(1.2) V(e LacF)| volag) =vc(C) |,
Ye(ag) < Ye(C)

pe([¢,€]) = min{uc(C), pc(€)}
(1.3) V¢, €€ L) | (¢, €]) = min{ye(¢),ve(€)}
Ye([¢,€]) < max{yc(C), e (6)}

Definition 1.2 ([6]). A neutrosophic set C' = (ue,ve,%c) on L is called a neutro-
sophic Lie ideal if it satisfies (1.1) and (1.2) and the following relations

pe((¢;€]) = pe(C)
(1.4) V¢, cel) | vel(¢.€) =)

Ye([¢5€]) < ve(()
160
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From (1.2), we have:

(1.5) pe(0) > pe(€),ve(0) > ve(€),¥e(0) < ¥e((),
(1.6) pe (=€) = pe(C);ve (=€) = e (), Yo (—¢) < ve(Q).
2.

NEUTROSOPHIC LIE IDEALS

Proposition 2.1 ([0]). Every neutrosophic Lie ideal is a neutrosophic Lie subalge-
bra.

The converse of Proposition 2.1 does not hold in general.

Example 2.2. Consider F' = R. Let £ = {(¢,&,v) : (,& v € R} be the set of
all 3-dimensional real vectors which forms a Lie algebra and define £ x £ — L by
[€,&] = ¢ x & where x is the usual cross product. We define a neutrosophic set
C = (ne,ve,%c) : L — [O, 1] X [0, 1] by
07 if¢(=€¢=v=0
uc(C,&V){Of) i CA£0,6=v =0
0 otherwise,
02 if¢(=¢=v=0
vo((, & v)=<0.1 if(#£0,{=v=0
0 otherwise,
0 if¢=¢=v=0
wc(g,@u):{o.?, if(#£0,{=v=0
1 otherwise.
Then C = (uc,ve, %) is a neutrosophic Lie subalgebra of £ but C = (ue,vo, ¥e)
is not a neutrosophic Lie ideal of £ since puc([(1,0,0)(1,1,1)]) = pe(0,—-1,1) =0 #
0.3 = pc(1,0,0).
Proposition 2.3. If C = (L, pc,vo,%e) is a neutrosophic Lie ideal of L, then,
pc(0) = sup puc(C), ve(0) = supye(C) and e (0) = inf e (().
cec CeL ceL

Proof. Tt is straightforward. O

Theorem 2.4. Let C = (L, uc, Yo, Vo) be a neutrosophic Lie ideal of L. Then for
each a, 3,6 € [0,1] with a < pe(0), 8 < v¢(0) and § > ¥c(0) and a4+ 5+6 < 1,
the (a, 8,0)-level subset Eé?"ﬁ’s) is a Lie ideal of L.

Proof. Let (,§ € E(Ca’ﬁ’é) and r € F. Then

pe(C+€) > min{uc(Q), pe(§)} > a,
Y (¢ +€) = min{yc((),7c(§)} = B,
Yo(C+ &) < max{yc(C),ve(§)} <9,
1o (r¢) = pe(C) = a,ve(r€) = ve(C) = B,¢e(rd) < ¢e(() < 6.
Thus ¢ + ¢ € L5579 and r¢ € £8P, So £ is a Lie subalgebra of £
Now let ( € L and £ € E(C?"ﬂ’é). Then we have

e ([6€]) 2 po(€) 2 a, 10((6,€]) = 10(§) = B, Ye(l(,€]) < del(§) < 6.
161
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Thus [¢,&] € E(C?’B’é). So E(C?’B’é) is a Lie ideal of L. O

Theorem 2.5. Let w be a fized element of L. If C = (L, pc,ve,Yc) is a neutro-
sophic Lie ideal of L, then the set

C¥ ={CeL:pc(C) = pcw),rc(C) =2 vc(Ww),ve(C) < ve(w)}
is a Lie ideal of L.
Proof. Let (,€ € C¥ and r € F. Then
pe(C+€) 2 min{uc (), pa(§)} =
Ye (¢ +€) = min{yc (), ve ()} 2 ve(w),
Yo(C+¢) < max{yc((),va(§)} <

pc(r¢) > pe(C) > po(w),ve(r¢) = vc(€) = ve(w), Yo (r() < e(() < Ye(w).
Thus (,&,7¢ € C¥. For every ¢ € L and £ € C¥, we have

o ([CE]) = pe(€) = pe(w), ve([C€]) = 10 (§) = vo(w), Ye(lCE]) < ve(f) < do(w).
It follows that [¢£] € C¥. So C¥ is a Lie ideal of L. O

Corollary 2.6. If C = (L, uc,vc,%c) is a neutrosophic Lie ideal of L, then the

set C° = {¢ € L: uc(€) > 1e(0),7¢(¢) = vc(0),%c(C) < ¢e(0)} is a Lie ideal of
L.

Proof. Straightforward. a

Theorem 2.7. Let C = (uc, o, ¥c) be a neutrosophic Lie subalgebra of Lie algebra
L. Define a binary relation ~ on L by ¢ ~ £ if and only if pc(¢ — &) = uc(0),

Yo (€ — &) = v¢(0), va(C — &) = pe(0) for all ¢, € L. Then ~ is a congruence
relation on L.

Proof. We first prove that ~ is an equivalence relation. Let ¢ € £. Then puc((—() =
1c(0), ve (€ =€) = 7c(0) and Pc(C = ¢) = ¥c(0). Thus ¢ ~ (. Let (,§ € L. If
¢ ~¢& then pc(C— &) = puc(0), e (¢ =€) = 7c(0), ¥ (¢ — &) = ¥c(0). Thus

pc(€ = C) = pc(=(C =€) > uc(C — &) = pc(0),
Yo (§ = ¢) =vc(—=(( = &) = vc(C = &) =7c(0),
Yo (€ —C) =ve(=(¢ = §)) < (€ &) =1vc(0).

So &~ ¢ Let (,&,ve L ¢ ~¢and€ ~ v, then pc(¢ — &) = pe(0), pe(€ —
v) = pc(0), pe(C =€) = pc(0), pe(€ —v) = pc(0) and Yo(¢ - €) = ¥e(0),
Ye(€ —v) = 1c(0). Thus it follows that

pe(C—v) = po(C =&+ & —v) = min{uc(C = &), pc(§ —v)} = puc(0),
Yo (¢ —v) =vc(C —§+ & —v) > min{yc(¢ —§),vc(§ —v)} =vc(0),
Ye((—v) =ve(C =&+ € —v) <max{ye(C — &), Yol —v)} = ¥c(0).
So ¢ ~ v forall (,£,v € L. Hence ~ is an equivalence relation on L.
We now verify that ~ is a congruence relation on £. For this, we let { ~ £ and
& ~v. Then
pe(C =€) = pc(0), pc(€ —v) = pc(0),
Y (¢ = &) = pc(0),7¢(§ —v) = nc(0),
Ye((—§) = wc(o)iégc(ﬁ —v) =19c(0).

=
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Now, for (1,(2,&1,(2 € L, we have

pe (G +¢) — (& +&2)) pe (G — &)+ (G — &)
min{pc (1 — &1), pe(Ge — &2)}
pc(0),

Yo (G = &1) + (G2 = &2))
min{yc(¢1 — &1),ve (G2 — &2)}
7c(0),

Yo (G — &) + (G2 —&2))
max{Yc(C1 — &1), Yo (G —&2)}

Yo (€1 + G2) — (61 +&2))

Yo((G+ ) — (61 +&2))

Y (0),
pe(ads — aér) pe(a(Cr —&1))
pe (G — &)
NC(O)v
yo(aly — aby) Yo (¢ —&1))
(G1—&)
7c(0),
Yool — aby) Yoo — &)
Ye(G — &)
Yc(0),

pe([Cr, Gl = [€1,62]) pe([Cr =&, (G — &)

min{uc(Cr — &1), pe(Ge — &)}

pc(0),

e ([¢r =&, [G2 — &)

min{yc(¢1 — &1), 70 (2 — &2)}

7c(0),

Yo([G — &l [ — &)

max{c(C1 — &1),%c(C2 — §2)}

Ye(0).

That is, (1 + G2 ~ & + &2, aly ~ a&y and [(1,G2] ~ [§1,82]. Thus ~ is indeed a
congruence relation on L. O

vo ([C1, Ga] — [€1,&2])

Yeo([Cry Ca] = [§1,62])

AN | AV 1 | AV | AN e | AV 1 /AN | R B AV | B | R AV
)
Q

Definition 2.8. Let £ be a nonempty set. Then we call a complex mapping C =
(pe,ve,ve) - Lx L —[0,1] % [0,1] x [0, 1] a neutrosophic relation on L, if uc (¢, €)+
Ye((,€) + e (¢ €) < 1forall (¢, &) € L x L.

Definition 2.9. Let C = (uc,ve,%c) and D = (up,vp,¥p) be neutrosophic
sets on a set L. If C = (ue,vc,¥e) is a neutrosophic relation on a set £, then
C = (ue,vo,¥e) is said to be a neutrosophic relation on D = (up,vp,¥p), if it
satisfies the following conditions: for all ;¢ € L,

pe(¢,€) < min{(up(¢), up(§)},

vc(¢,€) < min{(yp(¢),vp(§)},
Yo (¢, §) > max{yp(¢), ¥p(€)}-

Definition 2.10. Let C = (uco,ve,%¢) and D = (up,vp,¥p) be two neutrosophic
sets on a set L. Then the generalized Cartesian product C' x D is defined as

C x D = (ne,ve,vc) x (bp, Yo, ¥p) = (ke X D, Ye X YD, Ye X ¥p),
163
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where (uo < pp)((,§) = min{uc(C), pp()}, (vo x 1p)((,€) = min{yc(¢), 7o (£)}
and (Yo x ¢p)((,§) = max{vc(C), ¥ (§)}-

Note that the generalized Cartesian product C' x D is a neutrosophic set in £ X L,
if min{pc(¢), o (§)} + min{yc(¢), vp(§)} + max{vc(¢),¥n(§)} < 1.

Proposition 2.11. Let C = (ue,ye,%e) and D = (up,yp,¥p) be neutrosophic
sets on a set L. Then

(1) C x D is a neutrosophic relation on L,
(2) U(MC X ,UD,t) = U(/J’Cat) X U(/J’Dat)7 U(’YC X ’yDat) = U(707t) X U(’}/Dat)
and L(Yc X ¥p,t) = L(Yc,t) x L(Yp,t) for all t € [0,1].

Theorem 2.12. Let C' = (uc,ve,¥c) and D = (up,vp,¥p) be two neutrosophic
Lie subalgebras of a Lie algebras L. Then C x D is a neutrosophic Lie subalgebra of
Lx L.

Proof. Let ¢ = ((1,¢2) and £ = (§1,&2) € L x L and r € F. Then

(ne x pp)(C+€) (ne < 1p)((C1,G2) + (§1,62))
(ne x up)((C1 + &1, G2 +62))

= min(pc(G + &), up (G + &)

> min(min(pe (1), pe(&1)), min(up(G2), up(&2)))
= min(min(pc(¢1), kp(C2)), min(pc(&1), up(€2)))
= min((ue X pp)(¢1,¢2)), (pe X MD)(€17§2))

= min((ue X up)(C), (ne X up)(€)),

(ve x vp)(C+§) (ve x vp)((C1,¢2) + (51752);

(ve X yp)((G1 + &1, ¢+ &2)

= min(ye(C +&1), 70 (G +&2))

> min(min(yc(C1), 70( 1)), min(vp(C2), 7p(£2)))
= min(min(yc(C1), vp(¢2)), min(ve(§1), 7p(€2)))
= min((yc X 7p)(C1,¢2)), (e x p)( 1,52))

= min((yc X 7p)(¢), (ve X 7p)(§)),

(Yo x Yp)((+§) (Yo x p)((C1,¢2) + (&1,62))

(Yo x ¥p)((C1 + &1, +£2))

max (Yo (G +&1), ¥ (G + &2))

max(max(¢c(C1), Yo (1)), max(¥p(C2), ¥p(€2)))
max(max (¢ (C1), ¥p(¢2)), max(¥c(€1),¥p(€2)))

( )
( )

maXE(I/Jc X wD)E (2)), (o x ¥p)(&1,62))
)

L VAN |

max((e x ¥o)(O), (Ve X ¥0)(E)).

(ne x pp)(a(Cr, C2))
(ne x pp)((alt, ala))
min(pc (e ), pp(adz))
min(pc(C1), #p(C2))
(ne % pp)(C1,C2)

(ke % 1p)(C),
164
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(ve x vp)(a(C1,¢2))
(ve x vp)((ad1, al2))
min(ye(ady), yp(ad2))
min(yc(¢1), 7o (¢2))
(ve x vp)(C1,¢C2)

(ve x vp)(¢),

(v x vp)(aC)

1 | I AV | B (O |

(Yo x p)(ag) (Y x ¥p)(a(Ci,¢2))
(Yo x ¥Yp)((ali, alz))
max(Yc (i), ¥p(als))
max(yc(C1), ¥p(2))
(Yo x ¥p)(C1,¢2)
(Yo x ¥p)(C),

| VAN | B (|

(ne x pp)([(C1,62), (£1,62)])

min(min(pe(C1), #p(C2)), min(pc (€1), pp(§2)))
min((puc X 11p)(C1,C2)), (ko X p )(51’52))
min((uc % wp)(C), (ke x up)(§)),

(ne x pp)([¢,€])

C
D

v

(ve x vp)([(¢1,¢2), (&1, &2)])
min(min(yc(¢1),vp(¢2)), min(ye (€1), 7o (€2)))
min((yo % vp)(C1,¢2)); (Yo X b )(51,52))
min((ye < vp)(¢), (e X 7p)(§)),

(ve x vp)([¢.€])

v

(Yo x ¥p)([(C1,¢2), (§1,62)])
max(max (o (C1), Yo (¢2)), max(Po(&1), ¥p(€2)))
max((c X ¥p)(C1,¢2)), (Yo X ¥p)(&1,€2))
max((c X ¥p)(C), (e X ¥p)(§))-

This shows that C' x D is a neutrosophic Lie subalgebra of £ x L. O

(e x ¢p)([¢, €])

I IA

Definition 2.13. Let £; and L5 be two Lie algebras over a field F'. Then a linear
transformation f : £1 — Lo is called a Lie homomorphism, if f([¢,€]) = [f({), f(§)]
holds for all (,& € L;.

For the Lie algebras £1 and Lo, it can be easily observed that if f: £1 — L5 is a Lie
homomorphism and C' is a neutrosophic Lie subalgebra of L5, then the neutrosophic
set f~1(C) of L, is also a neutrosophic Lie subalgebra.

Definition 2.14. Let £; and L5 be two Lie algebras. Then a Lie homomorphism
f: L1 — Lo is said to have a natural extension f : I** — I*2 defined by for all
C = (nc,ve,%c) € 17,6 € Lo, f(ue)(€) = sup{uc(C) : ¢ € f7HE} fWe)(§) =
inf{vc(¢) : ¢ € f7HE}-

Theorem 2.15. The homomorphic image of a neutrosophic Lie subalgebra is also
a neutrosophic Lie subalgebra of its co-domain.
165
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Proof. Let &1,& € Lo. Then {¢: ¢ € fH&+&)} D2 {Gi+C L€ fH (&) and & €
f71(&)}. Now, we have

flue) (& + &) sup{pc(¢): ¢ € f71(& + &)}

{nc(Ci+¢): G e fH &), G e (&)}
sup{min{puc (1), pe(C)} = ¢ € fH(61), G € 1 (&)}
min{sup{pc(¢1) : 1 € F71 (&)}, sup{uc(Ge) 1 G2 € F71(&)}}
min{ f(uc)(§1), f(pe)(§2)}-

For £ € L5 and a € F, we have
{¢:¢efHaQ)} 2{aC:Ce O}

Fluc)(@€) = sup{uc(a) : ¢ € 7€)}

> {pc(al): ¢ € f~1(a)}

> sup{uc(Q): ¢ € fHE)}

= fuc)(€).

I, 6 € Lo, then {¢: ¢ € f7H(E1+€)} 2 {Gi+Ca: G1 € fM (&) and &2 € [H(E)).

Now, we have

f(pe)(Cir + (i)

vV

sup{uc(C) 1z € f71(& + &)}

{pe(G+G):¢ef M) e f (&)}

sup{min{uc(¢1), po(C)} = G € f7H &), G € f1(&)}
min{sup{pc (i) : G € f71 (&)} sup{uc(Ce) : ¢ € FH(&)}}
min{ f(uc)(&1), f(re)(€2)}-

Thus f(uc) is a fuzzy Lie algebra of Lo. In the same manner, we can prove that

f(¥e) is a fuzzy Lie subalgebra of Lo. So f(C) = (f(uc), f(¥¢)) is a neutrosophic
Lie subalgebra of L. d

VIV

Definition 2.16. Let C = (uc,ve,%c) and D = (up,vyp,¥p) be neutrosophic
subalgebras of £. Then C is said to be of the same type of D, if there exists f €
Aut(L) such that C'= Do f, that is, uc(¢) = po(f(€)), 7¢(€) = (£ (Q)), vc(C) =
Up(f(Q)) for all ¢ € L.

Theorem 2.17. Let C = (uc,ve,%e) and D = (up,vp,¥p) be two neutrosophic
subalgebras of L. Then C is a neutrosophic subalgebra having the same type of D if
and only if C' is isomorphic to D.

Proof. We only need to prove the necessity part because the sufficiency part is trivial.
Let C = (uc,vo, o) be a neutrosophic subalgebra having the same type of D. Then
there exists C' € Aut(L) such that puc(C) = up(v(C)), vc(€) = vp(¢(Q)), Yc(C) =
¥p(p(()) V¢ € L. Let f : C(L) — D(L) be a mapping defined by f(¢(¢)) = B(¢(¢))
for all ¢ € L, that is, f(uc(¢)) = un(p(Q)), f(vc(C)) = 1p(#(C)), f(¥c(C)) =
Yp(p(€)) V¢ € L. Then it is clear that f is surjective. Also, f is injective because if
f(pc(Q)) = f(pc(§)) for all ¢,§ € L, then up(¢(¢)) = up(v(§)) and thus pc(() =

1p(€). By the same token, we have f(4c()) = f(1c(€)) = vo(C) = ¥p(£) for all
¢ € L. Finally, f is a homomorphism because for (,¢ € L,

fluc(C+8)) = pp(e(C +£)) = pp(e) + »(£))
+

FOye(C+€)) =1(e(C +£)) = 1o (#(C) + #(£)),
166
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fhe(€+€)) = ¢p(e(C+€)) = ¥n(p(C) + ¢(£)),

flue(aQ)) = pp(p(ag)) = anp(p(C)),
f(re(ag)) = yp(p(ag)) = avp(p(C)),
fWe(aQ)) = vple(ag)) = avp(e(()),
fue([6:€])) = np(e([¢:€])) = up([v(C), ¢()]),
Fre((€,€]) = 1o (e([¢, €])) = 1o ([ (C), e(&))),
fWe((¢,€]) = ¥ple((6,€]) = ¥n([e(C), (§)])
Hence C = (uc,vco,¥e) is isomorphic to D = (up,vp,¥p) O

3. CONCLUSION

Presently, science and technology are featured with complex processes and phe-
nomena for which complete information is not always available. For such cases,
mathematical models are developed to handle various types of systems containing
elements of uncertainty. A large number of these models are based on an exten-
sion of the ordinary set theory such as bifuzzy sets and soft sets. In the present
paper, we have presented the basic properties on neutrosophic Lie subalgebra of a
Lie algebra. The obtained results probably can be applied in various fields such
as artificial intelligence, signal processing, multiagent systems, pattern recognition,
robotics, computer networks , genetic algorithms, neural networks, expert systems,
decision making, automata theory and medical diagnosis. In our opinion the future
study of Lie algebras can be extended with the study of (i) neutrosophic roughness
in Lie algebras and (ii) neutroosphic rough Lie algebras.
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