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ABSTRACT. In trapezoidal intuitionistic fuzzy multi numbers, an aggre-
gation operator performs the task of aggregate the described information
to generate a ranking of alternatives which are two critical tasks: a flexible
and superior tool for the first task and an effective tool for the second task
is aggregation operator. Therefore, in the study, we give new aggrega-
tion operators, based on Archimedean T-norm and T-conorm operations
which is called Archimedean norms operator for aggregating trapezoidal
intuitionistic fuzzy multi-information. Then, we develop a multi criteria
decision making method based on the given operators. Finally, the fea-
sibility and effectiveness of the method is demonstrated via a numerical
example.
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1. INTRODUCTION

Throughout our daily life including development of modern science and artificial
intelligence technology, more uncertain data processing problems urgently need to
be solved and uncertain values need to be modelled. Therefore, we always encounter
the uncertain values such as; good, very good, very very good, bad, very bad, hot,
very hot, very very hot, cold, very cold, very very cold, and so on. These linguistic
terms differ from individual to individual, from time to time and from environment
to environment, and it is very difficult to model and solve an event or problem under
uncertainty. For this, interval mathematics, probability theory, fuzzy set theory [1],
intuitionistic fuzzy set theory [2] with strong applications, different theories are



Deli and Karadol /Ann. Fuzzy Math. Inform. 27 (2024), No. 1, 81-102

presented. The most comprehensive of set theory is fuzzy set theory proposed by
Zadeh [1] in 1965. Fuzzy sets and especially fuzzy numbers which are a fuzzy set
on R real numbers have been studied increasingly by many authors to express more
abundant and flexible information than classical sets and fuzzy sets. For example:
Ban et al. [3] found nearest trapezoidal approximation and the nearest symmetric
trapezoidal approximation to a given fuzzy number, with respect to the average
Euclidean distance, preserving the value and ambiguity. Cheng [4] developed a
centroid-based distance method was suggested for ranking fuzzy numbers and Wang
et al. [5] showed incorrect and have led to some misapplications of the method and
updated the concept of centroid for fuzzy numbers. Wei and Chen [6] proposed a new
similarity measure between generalized fuzzy numbers by combining the concepts
of geometric distance, the perimeter and the height of generalized fuzzy numbers
for calculating the degree of similarity between generalized fuzzy numbers. The
proposed theory which contain uncertain information have gained much attention
from past and latter researchers for applications in various fields in [7, 8].

Since intuitionistic fuzzy sets proposed by Atanassov [2] are successful to handle
the uncertain situations of data in the decision making problems they have great
practical potential in a variety of areas. For example; Wang and Xin [9] gave the
axiom definition of distance measure between intuitionistic fuzzy sets. Luo and
Zhao [10] defined a new distance measure between intuitionistic fuzzy sets, which is
based on a matrix norm and a strictly increasing (or decreasing) binary function and
applied to pattern recognitions. Szmidt and Kacprzyk [11] showed how to calculate
distances for intuitionistic fuzzy sets not only from a mathematical point of view
but also of an intuitive appeal making use of all the relevant information. Park et

al. [12] proposed some measures applied to pattern recognitions. Liang and Shi
[13] proposed new similarity measures and proved the relationships between some
similarity measures. Garg [14] developed improved cosine similarity measure for

an intu- itionistic fuzzy sets by considering the inter- action between the pairs of
the membership degrees. based on the Hausdor metric, are suggested. Recently,
Lei et al. [15] defined two subtraction and division operations of intuitionistic fuzzy
numbers (IFNs), and develop a sequence of general integrals dealing with continuous
intuitionistic fuzzy data based on Archimedean t-conorm and t-norm. Xia et al. [16]
proposed some operations on intuitionistic fuzzy sets under Archimedean t-conorm
and t-norms, Also, intuitionistic fuzzy sets, including Archimedean t-conorm and
t-norm, gained attention of many researchers in [17, 18, 19, 10, 20, 21, 22/ 23, 24,

b b ) ) ) ]'

Recently, Ulugay et al. [31] defined trapezoidal fuzzy multi-number which are
more than one with the possibility of the same or the different membership func-
tions allowing the repeated occurrences of any element. Deli and Keleg [32] and Deli
and Keles [33] developed new methods to solve multi-criteria decision-making prob-
lems using trapezoidal fuzzy multi-numbers under distance measures and similarity
based on the concept of value and ambiguity of trapezoidal fuzzy multi-numbers.
Then, Sahin et al. [34] developed a novel approach based on multi-criteria decision
making(MCDM) trapezoidal fuzzy multi-number by defining Dice vector similarity
and weighted Dice vector similarity measure. Also, Sahin et al. [35] presented some
similarity measures for trapezoidal fuzzy multi numbers such as; Jaccard similarity
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measure, weighted Jacard similarity measure, Cosine similarity measure, weighted
cosine similarity measure, Hybrid vector similarity measure and weighted Hybrid
vector similarity measure. Also, Kesen and Deli [36, 37] initiated Archimedean T-
norm and T-conorm operations of trapezoidal fuzzy multi-numbers to aggregating
trapezoidal fuzzy multi-numbers. Moreover, Ulugay et al. [38] definedintuitionistic
trapezoidal fuzzy multi numbers which are more than one with the possibility of the
same or the different membership functions allowing the repeated occurrences of any
element under intuitionistic fuzzy numbers.

An aggregation operator performs the task of generate a ranking of alternatives
in uncertainly information and considering the increasing complexity of decision-
making situations, it is imperative to extend aggregation operators for fusing un-
certain information with the different forms of attribute values. As we know, no
studies about archimedean norms on intuitionistic trapezoidal fuzzy multi numbers
have been conducted until now. This study focuses on the development of intu-
itionistic fuzzy multi numbers and aims to design a managerial decision-making
solving method by generalized Kesen and Deli [36, 37]. Some operational principles
of intuitionistic fuzzy multi numbers on account of the Archimedean t-norm and t-
conorm are initiated, on which two intuitionistic fuzzy multi numbers operators are
established by taking various weight forms. Moreover, we explore the aggregation
operators’ idempotency, boundedness, and monotonicity, as well as analyze some
particular forms of these operators. Furthermore, these aggregation operators are
employed to design a method of deriving an overall performance from evaluation
of experts with intuitionistic fuzzy multi numbers. This paper is derived from the
second author’s master’s thesis [39]supervised by the first author.

2. PRELIMINARIES

Definition 2.1 ([1]). Let X be a non-empty set. A fuzzy set F on X is defined as:

F={(z,pur(z)) :x € X},

where py @ X — [0,1] is a mapping.
Definition 2.2 ([10]). Let X be a non-empty set. A multi-fuzzy set G on X is
defined as:

G= {<xvﬂb($)nu%'(x)v "'v/ﬂG(x)v L)X E X}v
where pt : X — [0,1] is a mapping for all i € {1,2,..., p}.
Definition 2.3 ([31]). Let 0% € [0,1] i € {1,2,...,p} and a,b,c,d € R such
that @ < b < ¢ < d. Then a trapezoidal fuzzy multi-number (TFM-number)

A = {(a,b,c,d);nYy,n%, ...,k is a special fuzzy multi-set on the real number set
R, whose membership functions are defined as:

(xfa)nfé/(bfa) a<z<b

i . 77;1 b<z<e
Halw) = (d—x)ny/(d—c) c<z<d
0 otherwise

Note that the set of all TFM-number on R* will be denoted by G(R™).
83
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Definition 2.4 ([11]). A function 7 : [0,1] x [0,1] — [0, 1] is called a t-norm, if it
satisfies the following four conditions:

(i) 7(1,2) = x for all x € [0, 1],

(ii) 7(z,y) = 7(y, z) for all z, y € [0,1],

(iil) 7(x, 7(y, 2)) = 7(7(x,y), 2) for all z, y, z € [0,1],

(iv) if < 2’ and y < ¢/, then 7(z,y) < 7(2/,y’), where z, y, 2/, v’ € [0,1].

Definition 2.5 ([11]). A function s : [0,1] x [0,1] — [0,1] is called a ¢-conorm, if it
satisfies the following four conditions:

(i) s(0,2) =z for all z € [0, 1],

(i) s(z,y) = s(y,x) for all z, y € [0,1],

(iil) sz, s(y, 2z)) = s(s(z,y), z) for all z, y, z € [0,1],

(iv) if <2’ and y <y’ then s(z,y) < s(z’,y’), where z, y, z’, vy € [0,1].

Definition 2.6 ([41]). A t-norm function 7(x,y) is called an Archimedean t-norm,
if it is continuous and 7(z,z) < z for all x € (0,1). An Archimedean t-norm
is called a strict Archimedean t-norm, if it is strictly increasing in each variable
for z,y € (0,1). A t-conorm function s(z,y) is called Archimedean t-conorm if
it is continuous and s(x,x) > z for all z € (0,1). An Archimedean t-conorm is
called a strict Archimedean t-conorm, if it is strictly increasing in each variable for
x,y € (0,1).

In [42], a strict Archimedean t-norm s is expressed and Archimedean t-conorm T

is expressed via function h and g, respectively as: for all z, Y, T € [0, 1],
s(z,y) = ™" (h(z) + h(y)),
and
T(w,y) =g (9(2) +g(y)) with h(t) = g(1-1),

where ¢ is continuous Archimedean t-norm and strictly decreasing function such
that ¢ : [0,1] — [0,1] and g(1) = 0.

In [8, 43], according to specific forms of function g, some well-known t-conorms
and t-norms are given as follows.

(1) Let g1(t) = —Int. Then hi(t) = —In(1 —t), g7 *(t) = et h7 (t) =1 —e!
and Algebraic t-conorm and t-norm are obtained as follows:
sa=(z,y) =z +y—ay7(z,y) = 2y.

(2) Let g2(t) = In(25L). Then ho(t) = In(3=251),  g3'(t) = =25, hy'(t) =
1-— ﬁ and we can get Einstein t-conorm and t-norm:

Tty
14y’

1+ (1—2)(1—y)

se(z,y) T(2,y)

(3) Let gs(t) = ZW(M% ~ € (0,400). Then we have hs(t) = In(21=00=0)

T—t
g3 (t) = T hyt(t)=1— zr75—7 and Hamacher t-conorm and t-norm
are obtained as follows:
su(e,y) = THSEEW -y € (0, 400)
x
TH(T,Y) = WW’ 7 € (0,400).

);
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(4) Lot ga(t) = In(3=). 7 € (0,-+00). Then ha(t) = In(i=i=y): 93 *(1) =
y—1+el ’y+e

logy ©? , hy(t) =log5"@™ and get Frank t-conorm and t-norm:

sp(e,y) = 1—lny(1+ 00020 5 € (1, 4o0)
me(z,y) = In <1+%>7 v € (1, +00).

Definition 2.7 ([16, 41, 43]). Let A= (0,,0,), A= (py,,04,) and A2 = (p,,,04,)
be three intuitionistic fuzzy elements. Then the operations of intuitionistic fuzzy
elements based on Archimedean t-norm and Archimedean t-conorm is defined as:

(i) Ay @ Az = (s(pa,,p4,):7(04,,04,))
- (h*(hml) Fh(pa)) g a0,) + g<6A2>>),

(i) A} ® Ay = (T(pAl,pAl), 8(5;11’5/12))

- (9—1@(%) T gloa) LB, ) + h<6A2>>),

(i) AA = <h—1<Ah<pA>,g*1<Ag<6A)>,A >0,

(iv) AN = (7 Ng(py), A H(AR(5 1)), A > 0.
Especially, in [16, 41, 43, 44] the operational laws based on the function ¢ are given
as:

(1) for g1(t) = —log(t),
(i) A © Ay = (Pgl +pa, — PA1PA2,5A15A2),
(i) Ay ® Ay = (PAlpAgvaAl +o4, — 5A15A2>v
(i) A = (1 -1 —pA)’\,éj}‘,),)\ > 0,
(iv) A = (pg,l—(1—5A)A>,/\>0,

(2) for ga(t) = —log(25L),
. N N P 1+p 5\15~
(l) Al @A2 = (1prlpAA2 » TH(1= 5AA1)?1 54 ))7

T N PAPA G4, 104
i) A1 ® Ay = 12 12
(i) A @ Ay (1+(1PA1)(1PA2)’ 14+04,04, )’

N (14+py —(1—py)* 26%
(iii) AA = ((1+p,~3*+(12,~1)“ =5, )A+5A> A >0,

cN AN 20} (45, —(1=6,)>
(iv) 4 <<2 TRy (0 =04 >’A>O’

_ y+A—=)t

(3) for g3(t) = log(%), € (0, +00),
N N pAl+p;;2—p,41p,42—(1—7)p,41p,42 94,94,
1) Av@ Az = I=(T-)pa, Pa, P+ (@4, 04,0484, )0
YA A — PA PA, 04, 104,04, 04, —(1-7)04, 924,
(i) Ay @Az = (W+(1—7)(pA1+pA2 —Pa,PA, ); 1-(1-7)84,04, ’
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Gy g (+(=1pa)*—(0-ps)* Y840

(i) A4 = (<1+<v1)pA>f‘+<71><1ApA>M R e [ S L Ca I ) A >0,
SN AN P4 (4+(y=1)3 D> —(1=6,)>

(iv) 4% = (<1+<v—1)<1—pf))*+(w—1>m7 (1+(fy—1>6;,)f‘+<w—1>(1ié,~;)*)7A >0,

(4) for g4(t) = ln(;’,ill),v € (1, ),
N N 17p~1_ lfp\2_ 6\1_ 6\2_
(i) A @A, = (1—1n7(1+ 0 A-Uo 2 1>),ln7(1+(“;>(]‘41)>7x >1,

v—1

N < P A P 1—68 5 1—6 5
(i) Ay @Ay = (mﬁu”‘“‘?@"“‘—”, 1-In, (1+0—2=0G AH))),A > 1,

N 1—p s 5
(iii) A = (1 — Iny(1+ G5 iy (1 + W))/\ >0,A>1,

N N 1—6 5
(iv) A = <zn,y(1 + %) 1—In,(1+ %),A >0,A> 1.

Definition 2.8 ([2]). Let X be a non-empty set. An intuitionistic fuzzy set IF on
X is defined as:

IF = {(z, pr(2), vir (2)) : € X},
where pr(x), vip(z) : X — [0,1] such that 0 < pp(z) + pr(z) < 1 for z € X.
Definition 2.9 ([38]). Let pi\‘,ég e [0,1] (¢« € {1,2,---,P}) and a,b,c,d € R
such that a < b < ¢ < d. Then a trapezoidal intuitionistic fuzzy multi-numbers

A — (Ll 2 P 1 52 P\ a1

(TTFM-numbers) A = ([a, b, ¢, d]; (pA,pA, e ,pA), (5A’ 52;’ e ,5A)> is a special in-
tuitionistic fuzzy multi-set on the real number set R, whose membership functions
and non-membership functions are defined, respectively as:

)i, a<a<b o, a<a <
i Pi‘p b<z<c i o, b<z<ec
() = . and vV%(x) = A i
DS e ccacd AT Coan oy
0, otherwise, 1, otherwise,

Note that the set of all TIFM-numbers on [0, 1] will be denoted by A.
. Let A7 BeA andv 7& 0, where A = <[a17 blvclvdl]; (p}dﬂpia ! \ 7p\§)a\(6}4‘\762‘45\' o a6§)>7
Bi - <[a2ab23023d2]; (plgap%w to apg)v (6}3”5237 T 762» Then A+Bv A- B> pYA and
A7 are respectively defined as follows:
(i) A+ B = ([a1+ag, b1 +ba, c1+ca, di +dal; (s(phy, p)s 5(0%, 0%)s - 5 5(0% p5))s
1 51 2 2 P P
(i) A+ B = ([a1az, bibe, crcz, didals (H(pY, )+ (P, P)),
(lll) ’YA = <[7a1a7b177617’7d1}; (1 - (1 - p}gl)'y7 1- (1 - p?&)’y)a 1- (1 - pg)’y)7
(037, (03)7, -+, (85)M) (v = 0),
(IV) AT = <[a’1}” b¥7 c’ly7d¥]7 ((pz)’}/’ (pi)’)’7 Ty (p§)7)7
(1-(1=6)"1-(1-63), 1= (1-35)) (v>0),

where s is s-norm and t is a t-norm.

86



Deli and Karadol /Ann. Fuzzy Math. Inform. 27 (2024), No. 1, 81-102

Definition 2.10 ([ ])' LetAj = <[a17b]7617d } (pA va P apﬁj) (6114 ’5A P ,65]»] €
I, be a collection of TIFM-numbers and let SA,, : A™ — A, if

SAw(AlaAQ;A?n e aAn) = ijA]

then SA,, is called a TIFM-number weighted arithmetic operator of dimension n,
where w = (w1, wa, w3, -+ ,wy,)T is the weight vector of A;,j € I,,, with w; € [0, 1]
and Z _,w; =1

Definition 2.11. Let A = ((a, b, ¢, d); (pii,p?Z17 e ,pg), (5112‘,512&, e ,6£)) be a TIFM
numbers. Then

(i) 1 score value of TIFM-number A based on [15, 10], denoted by Si(A), is
defined as:
P
_ d—a —|— c— (5l )?
(2.1) S1(A) = ( ) X -
R
(ii) 2 score value of TIFM-number A based on [173, 17], denoted by S5(A), is defined
as:
P )2 P2
=y dfa+cf e(pA —(33)
2.2 A
i=1 A
(iii) & score value of TIFM-number A based on Zhang [ , 48, 49, 50], denoted by
S3(A), is defined as:
(2.3)
~ s d—a+c— - 1 )
S3(A) = (7 X Z ( (52)2(5 arCSin(_A.))»
= (0% + (52
(iv) 4 score value of TIFM-number A based on [15, 51], denoted by S4(A), is

defined as:

P )2 (5%)2
= d—a+c—0b i \2 P2 e(pA) (6% 1
(24) Su(A) = (——5—) % Z ((py)° = (0%)°) + (e(pA)z_((;A)zH -3
=1
]-\‘et A = <(a7 ba G d)7 (p};‘,pi\l, ’ Paﬁi)? (511475124, o ;3’ 55» and
_ (ol 2 152
B = {(a, b,c,\cl)7 ('OijB’ e ,pB), (53, 63, e ,6B)> be two TIFM-numbers. Then
comparison of A and B is given as:
(1) S;(A) < S;(B), then A < B (j=1,2,3,4),
(2) Sj(A) = S;(B), then A= B (j=1,2,3,4).

Definition 2.12. Let 4; = ((as,b;, ci, d;); (pA ,pA o ,pA ), (6% A, ,5124 08 )
for i=1,2 be two TIFM-numbers. Then the operations of TIFM-numbers under
Archimedean t- norm and Archimedean t- conorm are defined as:
(i) the sum of A, and Ag, denoted by Ao AQ, is defined as:
AL @ Ay
87
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:<(s(a1,a2) s(b1,b2), 8(61762) s(d1, da)); s(py 7PA) s(p% 5P,

pAvp )’((A’A)(A’A (6§>6§)>

<( ( ( )+h1(a2)),h1_ (h1(b1) + h1(b2)),
LH(ha(er) + ha(ea)), hfl(hl(dl) + hi(d2)));

L (p 5P )) (R (p3 ) +ha(p3))s - Ay (ha () ) +1a(0h),

)

g1 (91085 ) + 91085 ), 91 (91(63) +91(63)) -+ 191 H(91(8% ) + 01(8% ),
(ii) the product of A; and AQ, denoted by A ® Az, is defined as:

Ay ® Ay
= ((7(a1, a2),7(b1, b2), 7(c1, €2), 7(d1, d2))); (7(py 7PA2) (0%, P%,)s
KRR R DRG R RESC ¥ 9)
= (91 " (91(p}) + 91 (0} )) 01 (gl(pA1)+g1(pA2)),--- c91 (1P ) +a1(0h),
(hy (R (85 ) +ha (84 ) bt (ha (83 ) +ha(63)), -+ byt (ha(8% ) +ha (85 ),
(iii) the scalar multiple of Ay, denoted by A, is deﬁned as:
M,

= (A7 (A (@), hy M (A (B0), hy H(ARa (€3)), by 1(>\h1(d ),
(91 I(Agl(ai)%gfl(/\gl(bi)),gfl(Agl(cl)), Y(g1(di));
hfl(khl(pi‘i)),hfl(khl(pﬁh)),-~-,h (Ahl(pAi))
(97 01 (4 1), 97 01 (63)). -+ g7 " (A (35 ),
(iv) the scalar power of Ay, denoted by A;\, is defined as:
2
= ((gr (/\gl(az)), . (Agl( i), 01" Ag(ci)), g1 (Ag1( i),
(( YW (@0), B (A (8)), (/\hl(cz)) hy' (A (di))):
(Agl(pA )9 (Agl(pA )91 (Agl(pAi))
(i NGNS (Ah1<6§i>>7~-~ B (08 )))).
Especially, under Archimedean t-norm and Archimedean t-conorm, the opera-
tional laws based on the function g are given as:

(1) for g1(t) = —log(t),
()Al@AQ ((a1 + a2 — arag, by + by — biba, c1 + c2 — c1c2,dr + do — dida);
Py, +P5, —Pa o, Pa, TPA, —PAL P,
P P P P P 5P
. . pA1+pA2_pApA>(6zl451147612461247’5.4 6A2)>
(ii) A1 ® Az = ((a1a2, b1b2, cic2, didz); (PA PAZaPAlpA o 7PA10A2),
1 1 1 51 52 2 2 %2
(6Aﬁ+6ﬁ_6Ap6Ap’5A + 6% 2—6A 5,4 R
\ 04, T05, = 04,03,)))
(iii) AA; = (1 — (1 —a))*, 1 — (1 = b)), 1 — (1 — )M, 1 — (1 —dy)P);
1 \A 2 \A
1_(1_péi)A’1—1(1:pA2i) ;\7 P\
. 1_(1_pAi) )’((5141) 7(51211,) U a((SAi) )>7 A >0,
(iV) Ai\ = <((ai)/\7(bi))\’(ci)&(di))\); (p}li)/\’(pii))\’.“ ,
P \A 13\ 2 \A P \A
(0 P (1= (105 1= (1= 03 )Y 1 (=68 D)) A >0,
(2) for go(t) = —log(%),
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1 1 2 2 P P
(1) A @A = <( ajtaz  bi+by  citcor  ditds ) Pa, TPA,  Pa, TP, P, TPA,
1 2 1+ajas’ 14b1by? 1+4cica’ 1+dida /? 1+p}2‘1p}2‘2 ) 1+p2Alp2A2’ ’ 1+p§1p§2’
151 2 2 P P
( f}l 42 T 61&215;‘2 2 6APl§AZ P )>
— — ) —_ —_ ) b _ _ )
THI=0} J(1=0% ) THI=93 J(1=03) THI=0% J(=o% )
Y A — aias b1bs cica dids .
(i) A1 @ A2 = {(Traa) Ty TFa—0) 05 THi—a)(=a)* TFi—d) (A=) )’
1001 PR P P
pA1pA2 PAIPA2 pAlpA2
LH(1=p} J0=p} )7 14+01=p3 )A=p% )7 7 1+(1—pf J—p] )
1 1 2 2 P | <P
( 04,104, 04, 104, 04,194,

T 51 2 52 e P 5P )>
1+5A16A2 ’ 1+5A15A2 ) ’ 1+6A16A2 ’
<((1+ai)A*(1*ai)'\ (I4b) = (1=b) (4 —(1—ci)?

(iii) AA;

(1+di)*7(17di)’\)

(Tra)  F(1=a)** (T T (Lb)™ (The) T (1—c)® (Trd) F(1-d)* )’
(+p3 )M =(=pf ) (1495 ) —(1-p% ) (145 )M —(1—p§ )
(Lo P H+A=p} ) (+p3 P+ )N U e P HI=pT N
2(63 ) 2(63 ) 2(65 )
((27(521)A+(5§3i)%’ (=67 )+ @3 )Y o (2—6§i)*+(0§i)*)>’
) AN — 2(ai)* 2(bi)* 2(ci)? 2(di)* .
(iv) A2 = (T e Tp o Tmepr@r T=d) @ )
20030 2005, 2(p5 )

@=L P ALY TR RN
((1+5}‘i)*—(1—5;i)* (63 )7 -(=03)*
(T40], P+ (I=6% )% (463 T +(1-03 )™
(3) for ga(t) = log(HE=0), 5 € (0,+00),

N A A _ /raitaz—araz—(1—y)araz bi+ba—bibo—(1—7)biby
(1) Al @ A2 - <( 17(177)51“12) ) 1—(1—7)b1b2 9
c1t+co—cica—(1—7)cica d1+d2—d1d2—(1—'y)d1d2).
17(17’\/)0102 ? 17(17’)/)d1d2 ?
Pa, TP, P4, P4, —(1=Vp% P, ph 05, —P5 P5,— (=105 %,
1—(1—=7)p% P} )
A1t Az

PP AN
(1467 ) —=(1-05 )* )
P (18T A +(1=88 )N

—
1=(1=7)p3 P, ’ ’
P P P P P P 151
PAlJFPAZ*PAIPA?*(l*’Y)PAlPAz ( A1%4,
P P — T T 5T 51
17(177)"2\1"2\2 PRy +(1 W)(5A1+6A2 5A16A2)7
5% 82 Lost
2A1 1422 2 52 PAl Azg P sP )>
— — ) ) — — b
y+(1 7)(§A1+6A2 6A16A2) y+(1 7)(6A1+6A2 6A 6A2)
YA A, — aiasz b1bo
(i) A1 © Ao = (G (es Fasmaras) T50=77 0053 =0153)
C1C2

1ds .

Y+(1—7)(c1+ca—cic2)? v+ (1—v)(di+d2—did2) )’
11 2 2
pAlpAz

pAlpAz ...
1 1 1 1 2 2 2 2
'y+(1—7)(pA}%+pﬁ2—pAlpA2)’ Wt(l—vl)(pm;rp?z—pAlpAzl)’ 1 ’
Pa,Pa, (5A1+542*5A15A2*(1*7)541542
1 1
2 72(1772)(p§1+p§27921p2;2)’ P 1_}’(1_71362‘11951&2 P 7P
05, 105,705,095, ~ (-5 &5 6A1+6A2—6A15A2—(1—7)6A16A2)>
2 52 P sP
=(1-)0% 5% 1T 1—(1—7)o% o% J
(iii) AA: = <( (A+(y=1)ai)*—(1—a;)* (A+(y=Db)*—(1-by)*
¢ WA+ (v=Da) (=1 (1=a;)} (I+(=1b) +(y=1)(1=b;)*?
(A+(y=1)e)> =(1—cy)* (+(y=1)d)*—(1-d)* );
T+0-De) +(-D-e) THG-Dd (-0 a-d)~ )’
(+(y—1)p} ) =(1—p} ) (+(y=1)p% )*=(1-p% )"
A+(y=1)p3 P +(=DA=p; )7 A+(=1)p3 P +(=D(A=p3 )7 7
(+(y=1)p} )*=(1—p7 )
A+(y=1)pg NP +(r=1)(A=p3 )’

89



Deli and Karadol /Ann. Fuzzy Math. Inform. 27 (2024), No. 1, 81-102

(65 ) 765 )
(D= S FO-DEL Y THO- DA )P +0-DE 7
v(tslji)A >0
Tro-na= P reneg )b A >0
) A y(an) (6>
(i) 47 = (T E—Dima ) oD@ THE- Db G- DG
e ~(di)> );
G- D)) T D)™ TFO-DI-d) (- Dd)> )’
() (oA ) Ny
FG-D-p, )P FO- DL TFG-D-A )P +O- DA
105 ) (+ (=10 ) —(1-5} )
T+ G-Da—pF )P +0- D0, )“((1+(7—1)5i~,z_)*+("/—1)(1—5},i)*’
(L (=193 ) (153 )* (1+(y-1)8% ) (185 )*
[ 1)52 )A+(w D62 )% " (1+(7*1)5§)*+(7*1)(1*5§,)k)>’ A>0,
(4) for ga(t) = In(J= 1), v e (Loo),
N 1—ay _ 1—ag _ 1—by _ 1—bo _
(i) Ay @ Ay = ((1—log, (1+ =20 220 4 —jog, (14 &—=D0 221
1—c 1—c 1—dy _ 1—dg _
1~ log, (1+ @2=DOR2D g goq (14 GEDGTRCD),
CRREIES R
1 —logy(1+ P ),
6 G e
1_109'7(1+ y—1 )?
CRC TN T )
1 —1log,(1+ 7 )7

5P

62 62
log%H—W)?... ,log,, (1+w))>’ N>,
. . 1 . :
(i) A1 © Ay = ((logy(1 + %,log 1+ (’Yl—}/)#7
‘11 °2_1 11 day _q
log,(1+ (77)# log (1 + W);

1 1 2 02~
log (1 + (lfy#) log,(1 + %)7

log,(1 4+ BA=nG ey 1-”51 o)
—52 1-62
A1) (y A2—1))

1751&_ A_ 1
(1—1097(1+(” LG ) g, (141G

)

s sk
Ay Ag _
—log,(1+ & Lo Y, > 1,
ees ) i 1=bi _1)A
(i) AA; = (1 — 5097(1 + W), 1 —logy(1+ %)7
1—5097(14'(@%),1—”97( ‘f’%));
1ok 102 N
1 —log,(1+ o =1 )1 - logy(1 + W),

pP
z—l i—1
1097(1 + (W(ﬁ) (logy(l + W),

mm%)f zwu%m A>0, 7> 1,

(iV) AZ\ = <(1097(1 + W) 1097(1 + %) lOg'y(l + %)

log, (1 + E250)) s log, (14 B0 g, (1 + %»
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1—51
i—1 i—1)
;logy (1 + %)7 (1 —log,(1+ WL
—52 5P
1—log,(1 —l—%), = —logy(l—i—%))),)\ >0, 7> 1.
3. TIFM AGGREGATION OPERATORS BASED ON ARCHIMEDEAN T-CONORM AND
T-NORM

" Ao l(r b o AN (L 2 ... P 1 52 .. sP L
Definition 3.1. Let A; = <(a“b“c“dl)’(pAi’pAi’ ,pAi),(512‘1_,512‘i7 ’6Ai)> (i =
1,2,---,n) be a collection of TIFM-numbers and w = (wy,ws, - ,w,)T be the
weight vector of the TIFM-numbers A;(i = 1,2,--- ,n). Then intuitionistic trape-
zoidal fuzzy multi weighted averaging operator of A; (i = 1,2,---,n) based on

Archimedean t-norm and Archimedeant-conorm, denoted by ']I‘]I]FMA(Al, A27 BRI An)7
is defined as:

n

TIFMA (A, As, -+, A,) = P (widy),

i=1
where w; indicates the importance degree of A; (i = 1,2,--- ,n) such that w; € [0,1]
and Y w; = 1.
i=1
Theorem 3.2. Let A; = ((a;, b;, ¢, d;); (plléi,pii, e 7pgi), (51141_751241_, e ,5§i)) (i=

1,2,--- ,n) be a collection of TIFM-numbers, A = ((a,b, ¢, d); (pg, pi\‘, e 7pfz), ((5114,(5122‘, e ,6§)>
be a TIFM-number and \, A1, Ao > 0. The aggregated value by using the ATS-IFWA

operator is also an IFV, and
(3.1)

T]HFMA(Al, Az, s AR =( Z w;h(a;)) Z w;h(b;) Z w;h(c;)) Z w;h
Zwl pA sz pA ,h_l(z wih(/{i))
1@%9(5;9),9—1(2 wig(83))s- 9 (O wig(sh)))
i=1 i=1 i=1

which has been investigated by Beliakov et al. [52], Xu and Yager [53], Wu and Cai
[54] and next we give a further study.
Definition 3.3. Let A; = (@i biycindi); (phy P2 oo 0 p5 ), (84,05 0% )) (i =
1,2,---,n) be a collection of TIFM-numbers and w = (wy, wa, ..., w )T Welght vector
of A; (i=1,2,--+,n) where w; >0 (i =1,2,--- ,n) and > w; = 1. If
i=1
TIFMA (A, Ay, -+, A,) = @ (widy)
i=1
then TIFMA is called an Archimedean t-conorm and t-norm based intuitionistic
trapezoidal fuzzy multi weighted averaging (TIFMA) operator.
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Theorem 3.4 ([39]). Let A; = ((as, bi, i, da); (p 0% -+ p% (85,63, 08)),

By = (i, bs, 5, di); (5 %o 205 )s (85 0% 50y 05 ) (i=1,2,...m)
be two collection of TIFM-numbers. If

a; < ag, by < biye; < &, d; < dy,

and

then
TIFMA(A;, As, ..., A,) < TIFMA(By, B, ..., By)

For any a,b € R, we will denote maz{a,b} and min{a,b} by a Vb and a A b
respectively.

X — (b o AN (L 2 .. P 1 §2 ... sPO\ (i _
Theorem 3.5. Let A; = ((a;,b;,¢;,d;); (pAi,pAi, iji), (541_75141_, ’5Ai)> (i =
1,2,---,n) be a collection of TFM-numbers. Let A~ and AT be given by (i =
172a"' 7n)
A™ < TIFMA(Ay, Ay, -+, A,) < AT,
where
<(\/ZL 1%V bzv\/z 1017\/ 1 di); ) i
(50, o5 ) (0% ) (78 )om(83, )ooo+ 765 ),
(VI 05V B3V 0V o) (Vi 0V eV ),
(NiZ1 03, N1 0%, 5 N2t 03)

AT = <(/\?:11 ai, i lb“/\z 1 Ciy iz 1d1 ) b,
(0 )08 ) o708 ), (5001, ), (63 ), (68 ),
A7 = (A= @i, Nz b, /\? 1 €y Nier dis (N p}qiv Niza P,zz;iv o N Pi)v
(Vz 15113 \/7, 15,29 L) Vz 15£ )>
If we choose the additive generator g in different forms, then some specific intu-
itionistic trapezoidal fuzzy aggregation operators can be obtained (See [55]).

and

Theorem 3.6. Let A; = ((a;,b;, ¢, d;); (pih,pii, e ,pi) (5114 ,5?4 e ,62)) (i=
1,2,---,n) be a collection of TIFM-numbers and w = (w1, wa, ..., w )T weight vector
of A; (i=1,2,---,n) wherew; >0 (i =1,2,---,n) and >, w; =1. If r > 0, then

=1
TIFMA (rAy,rAy, - -, 7Ay) = rTIFMA(Ay, Ay, - -, Ay).

If the additive generator g is assigned different forms, then some specific intu-
itionistic fuzzy aggregation operators can be obtained (See [55]).
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Result 1 If g(t) = —logt, then the TIFMA operator reduces to the following:

TIFMA(A, Ag, -+, Ay,) —((@(wiai), é}l(wibi) @(wici), @(widi));
1- f[l(l —p4,) 1 - ﬁl(l —p3) 1= f[l(l =P,
1—ﬁ(1—51 wi ] — ﬁ1—52 wi, ~,1—ﬁ(1—5§i)w”>
=1 1=1 =1

:<(1—ﬁ(1—a2 wi 1—ﬁ 1—b;)i 1—]2[(1—@-)““71—12[(
=1 i=1 =1 i=1
1f[1(1 IRERE ﬁl1pA TR | f[l(lpA) ,

N GREN) GRRS GAR

Result 2 If g(t) = log(%%), then the TIFMA operator reduces to the following:

R | (e | (LRI LIS (CER AR V(RO
TIFMA(A;, Ag, - -+, A,) =((Z2 =l =l =l ,
1;[1(1 + a;) v+ 1:11(1 — a;)wi 131(1 +bi) i + 1;[1(1 — b)wi
M0 +e)™ — 10 —e)™ [T +d)= — 10— d)»
=1 1=1 , zfl 1=1 )7

3

(e + [T —egwe T +de o+ TT0 - d)»

3

s
II
.
Il
_

h
Il
—
-
Il

3

ph ) T+ % ) = T = p3)

=7
—
-
!

(I+p5 )" =

i=1 ¢ i=1 ¢ i=1 ¢ i=1
TLO e e+ T =pf e T+ p3 )+ TLA =23,
T+ )~ 10— o ) 2 [T (5} )"
ZTL 17:1 ’( 1= _
(Lo fla o e oy s [y
n 9 n P
2 [1 (8% )™ 2 1 (84 )™
i=1 ¢ N i=1
1:[1(2 _ 521)11)7 + 1:[1(51 7)1117 1:[1(2 _ 6P1)u)l + 1:[1(51:’1)11)7

which is called an Finstein TIFMA operator.
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Result 3 If g(t) = log(M), v € (0,+00), then the TIFMA operator reduces
to the following:

TIFMA(A;, Ag, - - -, Ay)

;(1 + (7 — Dag)™s — iﬁl(l — a;)v lelu 4 (y — 1))@ — El(l e
_<(if[1(1 + (v = Dag)™ + (v = 1) 11211(1 —ag)e iﬁl(l by — )b+ (y— 1) iﬁl(l T
;(1 + (7= 1))@ — iljl(l — ) ﬁ[lu +(y = 1)d;)vi — lel(l _ dy)w
ﬁ[l(l + (v = Deg)wi + (v = 1) i[l(l — ;)W | ii[l(l + (v = D)di)wi + (y— 1) zﬁl(l — dyyw
T1(1+ (=1 ) = T =} )™ F0+ 6103 - FLa -2 )
zﬁl(l + =Dy )"+ (v = 1) zﬁl(l — Py ’ ilfll(l = DA ) (1) i[l(l iy
Hase-nem e -0 fla-sf ) f10+6-va-sm+6-0 [l
gl iﬁll(éf\h ) G 2
o+ a-na-s e so-nil@) = Hora-na-s)m+6-nile

which is called a Hammer TIFMA operator.

Result 4 If ¢(¢) = log(;y,;ll), v € (1,400), then the TIFMA operator reduces to

the following;:

I s e
ITMA(A1, Ag, -+, Ap) =((1 = log, (1 + ﬂT) 1 —logy(1+ dT)
21_[1(71_‘31 D™ iﬁl(vl_di -
1 —logy(1+ po— ), 1 — log,(1+ — );
[T (' ~"% — 1y Ty 7 — 1y
1= logn (1 =) = log, (14 ),
[T (' % — 1y I1(7%% — 1=
L=logy (14 =——g——) 1+ =——7—),
[T — 1y [T (% — 1y
(1 =) (L S —)))
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which is called a Frank TIFMA operator.
We give following definition inspired by geometric mean.

Definition 3.7. Let Ai = <(ai7bivciadi); (plAapzA7 o apg) (5114 76124 y T 5P )> ( -
1,2,--- ,n) be a collection of TIFM-numbers and w = (wy, wa, ..., w )T Welght vector
of A; (i=1,2,---,n) such that > w; = 1. If

i=1

TIFMG (Ay, Ay, -+, Ay) = (X)(A:)™,
i=1

then TIFMG is called an Archimedean t-cornorm and t-norm based intuitionistic
trapezoidal fuzzy multi geometric (TIFMG) operator.

Ao— (B o dN-(L 2 ... P 152 ... 5P (5 —
Theorem 3.8. Let A; = <(al,bz,c“dz)\, (pAi,pAi, ,pAi) (5A ’5,4 , ’5Ai)> (i =
1,2) be a collection of TIFM-numbers, A = {(a,b, ¢, d); ('0,121"0,4’ o 7pA), (6112‘,(53‘, e ,6§)>
be a TIFM-number and A, A1, Ao > 0 .The aggregated value by using the TIFMA
operator is also an IFV, and The aggregated value by using the TIFMG operator is
also a TIFM-number and

THFMG(ALAQ’ Ce. 7An) — ®(Ai)wi

i=1

: _1 Zwlg 041 szg szg cz szg
Zwlg Pi,) szg 59 ,g’l(z wig(ph);
_1(2 wih((si‘h))vh_l(z wih(6%.)), - ’h_l(z wih(6;))))

Proof. The operator can be easily proven similar to the TIFMA operator. This is
why no need to prove TIFMG operator here again. g
If the additive generator g is assigned different forms then following intuitionistic

trapezoidal fuzzy aggregation operators can be obtained (See [55]).

Result 1 If g(t) = —logt, then the TIFMG operator reduces to following:

n

THFMG(A17A2,...’ = Hal ,H i) ’H(Ci)qu)H(di)wz');
= i=1

i=1 i=1 i=1
H H 1)w‘,,H(Pil)wlv
i=1 i=1 i=1
1-JJa =) =T[a =63 )", ot =T —d5 )™
i=1 i=1 i=1

Similarly, some new operators based on log(2:t) , g(t) = log(M)’ ~ € (0, +00),
g(t) = lOg(wt,l)ﬁ € (1,+00) can be given.
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4. AN APPROACH TO TRAPEZOIDAL FUZZY MULTI-ATTRIBUTE DECISION MAKING

For a decision making problem under intuitionistic trapezoidal fuzzy multi envi-
ronment, let X be set of alternatives and U be set of attributes. In order to evaluate
the performance of the alternative X; with regards to u; ,an expert is required to pro-
vide information that the alternative Xi satisfies the attribute u;. This information

can be expressed by ai; = ((asj, bij, cij, dij); (Péij ) Pilj T 7/35”)7 (5;%,52%, T 755”»
which denote the degrees that the alternative X; satisfies the attribute u; with the
condition that 0 < piij,pi”,...,pij < land 0 < 6éij753ij’”"55ij < 1. When

all the performances of the alternatives are provided, the intuitionistic trapezoidal
fuzzy multi decision matrix C' = (&;;)mazn can be constructed. To obtain the ranking
of the alternatives, the steps can be given as:

Step 1 Construct intuitionistic trapezoidal fuzzy multi decision matrix C' =
(eij)man based on Table 1:

TABLE 1. TIFM-numbers for linguistic terms [30]

Linguistic terms Linguistic values of TIFM-numbers

Absolutely low(AL) ((0.01,0.05,0.10,0.15); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.7))
Very Very Low(VVL)  ((0.05,0.10,0.15,0.20); (0.1,0.3,0.5,0.4), (0.2,0.3,0.4,0.1))
Very Low(VL) ((0.15,0.20,0.25,0.40); (0.2,0.3,0.5,0.4), (0.2,0.3,0.4,0.5))
Low(L) ((0.10,0.20,0.25,0.30); (0.1,0.3,0.3,0.4), (0.5,0.3,0.4,0.1))
Fairly low(FL) ((0.15,0.20,0.25,0.30); (0.1,0.5,0.2,0.4), (0.2,0.7,0.4,0.3)
Medium (M) ((0.25,0.30,0.35, 0.40); (0.1,0.3,0.7,0.4), (0.6,0.3,0.4,0.7))
Fairly high(FH) ((0.25,0.35,0.40,0.45); (0.1,0.3,0.2,0.5), (0.2,0.5,0.4,0.1))
High(H) ((0.40,0.45,0.50, 0.55); (0.1, 0.3,0.2,0.9), (0.2,0.5,0.3,0.1))
Very High(VH) ((0.45,0.55,0.65,0.75); (0.1,0.6,0.2,0.4), (0.6,0.3,0.4,0.1))
Very Very High(VVH) ((0.50,0.65,0.70,0.80); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.1))
Absolutely high(AH)  ((0.70,0.85,0.90,1.00; (0.1,0.3,0.3,0.4), (0.1,0.3,0.4,0.5))

Step 2 Transform the intuitionistic trapezoidal fuzzy multi decision matrix C' =
(Cij)maen into the normalized intuitionistic trapezoidal fuzzy multi decision matrix
K = (kij)man, where

ko — { ((aij, bij, cij, dij); (Péiﬁpi”v' . ,papij), (5541-]'753”7 e ,5§i])>, for benefit attribute w;;
" <(aij7 bija Cij, dlj)v (5&77 ) 534,;_7 P 755,;‘7‘ )7 (péu ) pgtij’ e 7p§ij)>a for cost attribute U

Step 3 Insert the weigted vector w = (w1, ws,...,wy) such that w; > 0 j =
n

(1,2,...,n) and Zl w; = 1. In here, w; is weigted of u; j = (1,2,--- ,n);
]:

Step 4 Obtain values b; (i = 1,2,---,m) for X; by the operators as:
bi = THFMA(O&M, (675 T ,Ozm) or bl = THFMG(O&M, (675 T ,Oéin)i = 1, 2, e, M
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Step 5 Calculate the score values S,(b;)(p=1,2,3,4) i = (1,2,--- ,m) and rank
the alternatives. The alternative with the highest score value is the best alternative.

Illustrative Example

Example 4.1. Assume that X = {&1, ko, T3, a4, 25} be production of five different
solar power plants depends on seasonal conditions. Then, we examine their perfor-
mance according to the criterias set U = {u; = wind speed, us = cloudiness, ug =
amount of solar radiation on the earth, us = surface angle of the panels}. In here, 4
different membership function was used for different season (spring, summer, au-
tumn, winter). The solutions were given as follows:

Step 1 We constructed intuitionistic trapezoidal fuzzy multi decision matrix C' =
(eij)man based on Table 1 as:

TABLE 2. The intuitionistic trapezoidal fuzzy multi decision matrix
C= (aij)mrn

U1
X ¢{(0.01,0.05,0.10,0.15); (0.1,0.3,0.2,0.4),(0.5,0.3,0.4,0.7))
X2 ((0.15,0.20,0.25,0.30); (0.1, 0.5,0.2,0.4), (0.2,0.7,0.4,0.3)
Xg ((0.25,0.30,0.35,0.40); (0.1,0.3,0.7,0.4), (0.6,0.3,0.4,0.7))
X4 ((0.45,0.55,0.65,0.75); (0.1,0.6,0.2,0.4), (0.6,0.3,0.4,0.1))
X5 ((0.10,0.20,0.25,0.30); (0.1,0.3,0.3,0.4), (0.5,0.3,0.4,0.1))
(2]
X1 ((0.15,0.20,0.25,0.40); (0.2,0.3,0.5,0.4), (0.2,0.3,0.4,0.5))
Xg ((0.05,0.10,0.15,0.20); (0.1,0.3,0.5,0.4), (0.2,0.3,0.4,0.1))
Xg ((0.05,0.10,0.15,0.20); (0.1, 0.3,0.5,0.4), (0.2,0.3,0.4,0.1))
X4 ((0.15,0.20,0.25,0.30); (0.1, 0.5,0.2,0.4), (0.2,0.7,0.4,0.3)
X5 ((0.01,0.05,0.10,0.15); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.7))
U3
X1 ((0.15,0.20,0.25,0.30); (0.1,0.5,0.2,0.4), (0.2,0.7,0.4,0.3)
X2 ((0.01,0.05,0.10,0.15); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.7))
Xg ((0.25,0.35,0.40,0.45); (0.1,0.3,0.2,0.5), (0.2,0.5,0.4,0.1))
X4 ((0.70,0.85,0.90,1.00); (0.1,0.3,0.3,0.4),(0.1,0.3,0.4,0.5))
X5 ((0.45,0.55,0.65,0.75); (0.1, 0.6,0.2,0.4), (0.6,0.3,0.4,0.1))
Uyg
X1 {((0.10,0.20,0.25,0.30); (0.1,0.3,0.3,0.4), (0.5,0.3,0.4,0.1))
X2 ((0.15,0.20,0.25,0.40); (0.2,0.3,0.5,0.4), (0.2,0.3,0.4,0.5))
Xg ((0.40,0.45,0.50, 0.55); (0.1,0.3,0.2,0.9), (0.2,0.5,0.3,0.1))
(( )i ( ) ( )
(( )i ( ) ( )

)

)

X {(0.50,0.65,0.70,0.80); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.1
X5 {(0.05,0.10,0.15,0.20); (0.1,0.3,0.5,0.4), (0.2, 0.3, 0.4, 0.1

)

Y

Step 2 We transformed the intuitionistic trapezoidal fuzzy multi decision matrix
C = (¢ij)man into the normalized intuitionistic trapezoidal fuzzy multi decision
matrix K = (kij)man as:
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TABLE 3. The normalized intuitionistic trapezoidal fuzzy multi de-
cision matrix K = (kij)man

Uy
X: ((0.01,0.05,0.10,0.15); (0.1,0.3,0.2,0.4), (0.5, 0.3, 0.4, 0.7))
X, ((0.15,0.20,0.25,0.30); (0.1,0.5,0.2,0.4), (0.2,0.7,0.4,0.3)
X5 ((0.25,0.30,0.35,0.40); (0.1,0.3,0.7,0.4), (0.6,0.3, 0.4, 0.7))
X, ((0.45,0.55,0.65,0.75); (0.1,0.6,0.2,0.4), (0.6,0.3,0.4,0.1))
X5 ((0.10,0.20,0.25,0.30); (0.1,0.3,0.3,0.4), (0.5,0.3,0.4,0.1))

(2]

X1 ((0.15,0.20,0.25,0.40); (0.2,0.3,0.4,0.5), (0.2,0.3,0.5,0.4))
X, ((0.05,0.10,0.15,0.20); (0.2,0.3,0.4,0.1), (0.1,0.3,0.5,0.4))
X5 ((0.05,0.10,0.15,0.20); (0.2,0.3,0.4,0.1), (0.1,0.3,0.5,0.4))
X, ((0.15,0.20,0.25,0.30); (0.2,0.7,0.4,0.3), (0.1,0.5,0.2, 0.4))
X5 ((0.01,0.05,0.10,0.15); (0.5,0.3,0.4,0.7), (0.1,0.3,0.2,0.4))

us
X1 ((0.15,0.20,0.25,0.30); (0.1,0.5,0.2,0.4), (0.2,0.7,0.4,0.3)
X2 ((0.01,0.05,0.10,0.15); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.7))
Xg ((0.25,0.35,0.40,0.45); (0.1,0.3,0.2,0.5), (0.2,0.5,0.4,0.1))
X4 ((0.70,0.85,0.90, 1.00; (0.1,0.3,0.3,0.4), (0.1,0.3,0.4,0.5))
X5 ((0.45,0.55,0.65,0.75); (0.1, 0.6,0.2,0.4), (0.6,0.3,0.4,0.1))

Uyg

X, ((0.10,0.20,0.25,0.30); (0.1,0.3,0.3,0.4), (0.5,0.3, 0.4, 0.1))
X, ((0.15,0.20,0.25,0.40); (0.2,0.3,0.5,0.4), (0.2,0.3,0.4, 0.5))
X5 ((0.40,0.45,0.50,0.55); (0.1,0.3,0.2,0.9), (0.2,0.5,0.3,0.1))
X, {((0.50,0.65,0.70,0.80); (0.1,0.3,0.2,0.4), (0.5,0.3,0.4,0.1))
X5 ((0.05,0.10,0.15,0.20); (0.1,0.3,0.5,0.4), (0.2,0.3,0.4,0.1))

Step 3 We inserted the weigted vector w = (wy,ws,--- ,wy) such that w; > 0
j=(1,2,---,n)and > w; =1as: w=(04,0.3,0.2,0.1).
j=1

Step 4 We obtained values b; (i = 1,2,---,5) for X; by the TIFMA operators

as:

(4.1) bi = TIFMA (a1, vz, -+, i) = (EP) (wi © aij) i =1,2,--,5
j=1

(42) bz :THFMG(CVZ'MOQQ,'“ ,O[in) = (®)(Oéij)wi 1= 1,27"‘ ,5.
i=1

or
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TABLE 4. The values based on TIFMA

(0.0914,0.1431,0.1933,0.2777); (0.1312, 0.3456, 0.3144, 0.4000),

( )i
b (0.3162,0.3554, 0.4000, 0.4397))
b ((0.0939,0.1422, 0.1924, 0.2541); (0.1105, 0.3881, 0.3371, 0.4000),
2 (0.2402, 0.4210, 0.4000, 0.2690))
) ((0.2126,0.2740, 0.3247, 0.3754); (0.1000, 0.3000, 0.5307, 0.5164),
3 (0.3104, 0.3497, 0.3887,0.2178))
b ((0.4501,0.5814, 0.6628, 0.7941); (0.1000, 0.4941, 0.2211, 0.4000),
4 (0.3757,0.3484, 0.2155, 0.3492))
b ((0.1562,0.2403, 0.3113, 0.3880); (0.1000, 0.3741, 0.2764, 0.4000),
> (0.4732,0.3000, 0.4000, 0.1793))
TABLE 5. The values based on TIFMG
) ((0.0488,0.1149, 0.1733,0.2479); (0.1231, 0.3323, 0.2564, 0.4277),
! (0.2367,0.4091,0.4319,0.5116))
b ((0.0628,0.1231,0.1786, 0.2380); (0.1320, 0.3680, 0.2699, 0.2639),
2 (0.2456, 0.5012, 0.4000, 0.4835))
b ((0.1617,0.2317, 0.2889, 0.3434); (0.1231, 0.3000, 0.4064, 0.2993),
3 (0.3719, 0.3672,0.4231,0.4865))
) ((0.3573,0.4504, 0.5247,0.6073); (0.1231, 0.5104, 0.2670, 0.3669),
4 (0.3865, 0.3672, 0.3459,0.2915))
b ((0.0632,0.1507, 0.2185, 0.2811); (0.1621, 0.3446, 0.3174, 0.4731),
> (0.4022, 0.3000, 0.3459, 0.2031))

Step 5 We calculate the score values based on Table 4, Si(b;) i =
as: _

S1(by) = 0.2304

S1(ba) = 0.2094

Sy (b3) = 0.2214

S1(bs) = 0.2238

S1(bs) = 0.2974

and all the alternatives ranked as; b5 > by > by > b3 > bs.

Similarity, based on Table 5, we have
S1(by) = 0.2463

S1(by) = 0.2168
S1(b3) = 0.2277
Sl(by) = 0.1947

S1(bs) = 0.2882
and all the alternatives ranked as; b5 > b1 > b > by > by
99
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