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Abstract. This paper deals with a new type of fuzzy separation axiom,
viz., fuzzy α-b-regular space by introducing fuzzy α-b-open set as a basic
tool. This newly defined class of sets is strictly larger than that of fuzzy
open set as well as fuzzy preopen set, fuzzy semiopen set, fuzzy α-open
set and fuzzy β-open set. Also, we introduce new type of fuzzy compact
space and a strong form of fuzzy T2-space. However, three different types
of functions are introduced and studied. Also the mutual relationships of
these functions are established. Lastly some applications of these functions
on the spaces introduced here are established.
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1. Introduction

Fuzzy α-open set was introduced in [1]. Using this concept as a basic tool, here
we introduce fuzzy α-b-open set. After introducing fuzzy continuous function in [2],
different types of fuzzy continuous-like functions were introduced and studied. Using
the concept of fuzzy regular closed set [3], here we introduce fuzzy α-b-r-continuous
function, fuzzy α-b-continuity, and fuzzy almost α-b-continuity. Fuzzy regular space
was introduced in [4]. Here we introduce fuzzy α-b-regular space, the class of which
is strictly larger than that of fuzzy regular space. It is shown that in this space fuzzy
open set and fuzzy α-b-open set coincide. Again fuzzy compact space was introduced
by Chang [2]. Here we introduce fuzzy α-b-compactness which is weaker than fuzzy
compactness. Also fuzzy α-b-T2-space was introduced, the class of which is strictly
larger than that of fuzzy T2-space [4].
Recently, new types of fuzzy sets, viz., fuzzy soft set and fuzzy octahedron set are
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introduced and studied. A new branch of fuzzy topology is developed using these
types of fuzzy sets. In this context we have to mention [5, 6, 7, 8, 9, 10].

2. Preliminaries

We recall the concepts related to fuzzy sets introduced by Zadeh [11]. A fuzzy set
A in a nonempty set X is a mapping from X into the closed interval I = [0, 1], i.e.,
A ∈ IX . The support of a fuzzy set A, denoted by suppA, is defined by suppA =
{x ∈ X : A(x) ̸= 0}. The fuzzy set with the singleton support {x} ⊆ X and the
value t (0 < t ≤ 1) will be denoted by xt. 0X and 1X are the constant fuzzy sets
taking values 0 and 1 respectively in X. The complement of a fuzzy set A in X,
denoted by 1X \A, is defined by (1X \A)(x) = 1−A(x) for each x ∈ X. For any two
fuzzy sets A, B in X, A ≤ B means A(x) ≤ B(x) for all x ∈ X, while AqB means
there exists x ∈ X such that A(x) + B(x) > 1 and A is said to be quasi-coincident
(q-coincident, for short) with B [12]. The negation of these two statements will be
denoted by A ̸≤ B and A ̸ qB respectively.

Throughout the paper, (X, τ) or simply by X we shall mean a fuzzy topological
space (fts, for short) in the sense of Chang [2]. For a fuzzy set A in a fts X, clA and
intA stand for the fuzzy closure and the fuzzy interior of A in X as follows [2]:

clA =
∧

{F : A ≤ F, F is a closed set in X},

intA =
∨

{G : G ≤ A, G is an open set in X}.

For a fts X, A ∈ IX is said to be fuzzy regular open [3] (resp. fuzzy semiopen
[3], fuzzy preopen [13], fuzzy α-open [1], fuzzy β-open [14]), if A = int(clA) (resp.
A ≤ cl(intA), A ≤ int(clA), A ≤ int(cl(intA)), A ≤ cl(int(clA))). The complement
of a fuzzy regular open (resp. fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy β-
open) set is called a fuzzy regular closed (resp. fuzzy semiclosed, fuzzy preclosed, fuzzy
α-closed, fuzzy β-closed) set. The smallest fuzzy semiclosed (resp., fuzzy preclosed,
fuzzy α-closed, fuzzy β-closed) set containing a fuzzy set A in X is called the fuzzy
semiclosure (resp fuzzy preclosure, fuzzy α-closure, fuzzy β-closure) of A, denoted
by sclA (resp. pclA, αclA, βclA). It is well-known that A is fuzzy semiclosed
(resp. fuzzy preclosed, fuzzy α-closed, fuzzy β-closed) in a fts X if and only if
A = sclA (resp. A = pclA, A = αclA, A = βclA). The collection of all fuzzy
regular open (resp. fuzzy semiopen, fuzzy preopen, fuzzy α-open, fuzzy β-open) sets
in X is denoted by FRO(X) (rssp., FSO(X), FPO(X), FαO(X), FβO(X)) and
the collection of all fuzzy regular closed (resp., fuzzy semiclosed, fuzzy preclosed,
fuzzy α-closed, fuzzy β-closed) sets in X is denoted by FRC(X) (rssp., FSC(X),
FPC(X), FαC(X), FβC(X)). For a fuzzy open set A in X, sclA = int(clA) [15].

3. Fuzzy α-b-open set : Some properties

In this section, we first introduce fuzzy α-b-open set and then establish the mutual
relationships of this newly defined set with the sets defined in [1, 3, 13, 14].

First we recall some definitions from [16] for ready references.

Definition 3.1 ([16]). Let (X, τ) be an fts and A ∈ IX . A fuzzy point xα in X is
said to be a fuzzy θ-semicluster point of A, if clUqA for all U ∈ FSO(X) with xαqU .
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The union of all fuzzy θ-semicluster points of A is called the fuzzy θ-semiclosure of
A and is denoted by θ-sclA. It is obvious that A is fuzzy θ-semiclosed in X if and
only if A = θ-sclA.

Definition 3.2 ([16]). Let (X, τ) be an fts and A ∈ IX . Then the r-kernel of A,
denoted by r-KerA, is defined as follows :

r-KerA =
∧
{U : U ∈ FRO(X), A ≤ U}.

Let us now introduce the following concept.

Definition 3.3. A fuzzy set A in an fts (X, τ) is said to be fuzzy α-b-open in X,
if A ≤ cl(αint(clA)). The complement of a fuzzy α-b-open set is said to be fuzzy
α-b-closed in X. The collection of all fuzzy α-b-open (resp. fuzzy α-b-closed) sets in
an fts X is denoted by FαbO(X) (resp. FαbC(X)).

Remark 3.4. The union of any two fuzzy α-b-open sets is also so. But intersection
of any two fuzzy α-b-open sets may not be so, as it seen from the following example.

Example 3.5. Let X = {a, b} and let τ = {0X , 1X , A}, where A(a) = 0.5, A(b) =
0.6. Then (X, τ) is an fts. Consider two fuzzy sets B, C in X defined by:

B(a) = 0.4, B(b) = 0.6, C(a) = 0.6, C(b) = 0.4.

Then clearly, B, C ∈ FαbO(X). Let D = B ∧ C. Then D(a) = D(b) = 0.4. Thus

cl(αint(clD)) = cl(αint(1X \A)) = cl0X = 0X ̸≥ D.

So D ̸∈ FαbO(X).

From Example 3.5, we can conclude that the set of all fuzzy α-b-open sets in an
fts X does not form a fuzzy topology.

Remark 3.6. It is clear from definitions that fuzzy open set, fuzzy semiopen set,
fuzzy preopen set, fuzzy α-open set, fuzzy β-open set implies fuzzy α-b-open set, but
the reverse implications are not necessarily true follow from the following example.

Example 3.7. Let X = {a, b} and let τ = {0X , 1X , A}, where A(a) = 0.5, A(b) =
0.4. Then (X, τ) is an fts. Here FαO(X) = {0X , 1X , U}, where A ̸ <U ̸≤ 1X \ A.
Consider a fuzzy set B in X defined by B(a) = B(b) = 0.5. Then clearly, B ̸∈ τ , B ̸∈
FPO(X), B ̸∈ FαO(X). But cl(αint(clB)) = 1X \A ≥ B. Thus B ∈ FαbO(X).

Next consider the fuzzy set C in X defined by C(a) = C(b) = 0.4. Then clearly,
C ̸∈ FSO(X), but C ∈ FαbO(X).

As τ ⊆ FαO(X), clearly fuzzy α-b-open set may not necessarily fuzzy β-open set.

Theorem 3.8. Let (X, τ) be an fts. Then the union of any collection of fuzzy
α-b-open sets in X is fuzzy α-b-open in X.

Proof. Let G = {Gα : α ∈ Λ} be any collection of fuzzy α-b-open sets in X and

let α ∈ Λ. Then clearly, Gα ≤ cl(αint(clGα)). Also, Gα ≤
∨
α∈Λ

Gα. Thus clGα ≤

cl(
∨
α∈Λ

Gα). So Gα ≤ cl(αint(clGα)) ≤ cl(αint(cl(
∨
α∈Λ

Gα))). Taking union on both

sides,
∨
α∈Λ

Gα ≤ cl(αint(cl(
∨
α∈Λ

Gα))). Hence
∨
α∈Λ

Gα is fuzzy α-b-open in X. □

69



Anjana Bhattacharyya/Ann. Fuzzy Math. Inform. 27 (2024), No. 1, 67–80

Definition 3.9. Let (X, τ) be an fts and A ∈ IX . Then fuzzy α-b-closure of A,
denoted by αbclA, is defined by

αbclA =
∧
{U ∈ IX : A ≤ U,U ∈ FαbC(X)}

and fuzzy α-b-interior of A, denoted by αbintA, is defined by

αbintA =
∨
{G ∈ IX : G ≤ A,G ∈ FαbO(X)}.

Note 3.10. By Remark 3.4, we can conclude that for any fuzzy set A in an fts X,
αbclA is fuzzy α-b-closed and αbintA is fuzzy α-b-open. Again, if A ∈ FαbC(X),
then A = αbclA and if A ∈ FαbO(X), then A = αbintA.

Result 3.11. Let (X, τ) be an fts. Then the following statements are true:
(1) for any fuzzy point xt in X and any U ∈ IX , xt ∈ αbclU implies that for any

V ∈ FαbO(X) with xtqV , V qU ,
(2) for any two fuzzy sets U, V , where V ∈ FαbO(X), if U ̸ qV, then αbclU ̸ qV .

Proof. (1) Let xt ∈ αbclU and V ∈ FαbO(X) with xtqV . Then xt ̸∈ 1X \ V ∈
FαbC(X). Thus U ̸≤ 1X \ V . So UqV .

(2) Assume that αbclUqV but U ̸ qV . Then there exists x ∈ X such that
(αbclU)(x) + V (x) > 1. Thus V (x) + t > 1, where t = (αbclU)(x). So xt ∈ αbclU ,
where xtqV, V ∈ FαbO(X). By (1), V qU . This is a contradiction. □

Result 3.12. Let (X, τ) be an fts and A ∈ IX . Then the following statements are
true:

(1) αbcl(1X \A) = 1X \ αbintA,
(2) 1X \ αbclA = αbint(1X \A).

Proof. (1) Let xt ∈ αbcl(1X \A). Assume that xt ̸∈ 1X \ αbintA. Then xtqαbintA.
Thus there exists U ∈ FαbO(X) with U ≤ A such that xtqU . Since xt ∈ αbcl(1X \
A), by Result 3.11 (1), Uq(1X \A). So Aq(1X \A). This is a contradiction. Hence

(3.1) αbcl(1X \A) ≤ 1X \ αbintA.

Conversely, let xt ∈ 1X \ αbintA. Then we have

1− αbintA(x) ≥ t ⇒ xt ̸ qαbintA ⇒ xt ̸ qU,

(3.2) where U ∈ FαbO(X) with U ≤ A.

Let V ∈ FαbC(X) with 1X \A ≤ V . Then 1X \ V ≤ A, where 1X \ V ∈ FαbO(X).
Thus by (3.2), we get

xt ̸ q(1X \ V ) ⇒ xt ∈ V ⇒ xt ∈ αbcl(1X \A).

So we have

(3.3) 1X \ αbintA ≤ αbcl(1X \A).

Hence combining (3.1) and (3.3), we get the result.
(2) Writing 1X \A for A in (1), we get the proof. □

Let us now recall the following Lemma from [16] for ready references.
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Lemma 3.13 ([16]). Let (X, τ) be an fts and A ∈ IX . Then the following statements
hold:

(1) for any A ∈ FRO(X), θ-sclA = A,
(2) for any A ∈ FβO(X), clA = αclA,
(3) for any A ∈ FSO(X), clA = pclA,
(4) for any A ∈ τ, sclA = θ-sclA.

4. Fuzzy α-b-r-continuous function : Some characterizations

In this section, we first introduce fuzzy α-b-r-continuous function and characterize
it in several ways. Afterwards, two new types of functions, viz., fuzzy α-b-continuous
function and fuzzy almost α-b-continuous function are introduced. The mutual re-
lationships of these three functions are established here.

Definition 4.1. Let (X, τ) and (Y, τ1) be two fts’s. Then f : X → Y is called a
fuzzy α-b-r-continuous function, if f−1(A) ∈ FαbC(X) for all A ∈ FRO(Y ).

Theorem 4.2. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function.
Then the following statements are equivalent:

(1) f is fuzzy α-b-r-continuous,
(2) f−1(A) ∈ FαbO(X) for all A ∈ FRC(Y ),
(3) f(αbclτU) ≤ r-ker(f(U)) for all U ∈ IX ,
(4) αbclτ (f

−1(A)) ≤ f−1(r-ker(A)) for all A ∈ IY ,
(5) αbclτ (f

−1(R)) ≤ f−1(θ-sclτ1R)) for all R ∈ τ1,
(6) αbclτ (f

−1(R)) ≤ f−1(sclτ1R)) for all R ∈ τ1,
(7) αbclτ (f

−1(R)) ≤ f−1(intτ1(clτ1R)) for all R ∈ τ1,
(8) f−1(intτ1(clτ1A)) ∈ FαbC(X) for all A ∈ τ1,
(9) f−1(clτ1(intτ1F )) ∈ FαbO(X) for all F ∈ τ c1 ,
(10) f−1(clτ1U) ∈ FαbO(X) for all U ∈ FβO(Y ),
(11) f−1(clτ1U) ∈ FαbO(X) for all U ∈ FSO(Y ),
(12) f−1(intτ1(clτ1U)) ∈ FαbC(X) for all U ∈ FPO(Y ),
(13) f−1(αclτ1U) ∈ FαbO(X) for all U ∈ FβO(Y ),
(14) f−1(pclτ1U) ∈ FαbO(X) for all U ∈ FSO(Y ).

Proof. (1) ⇔ (2): Obvious.
(2) ⇒ (3): Let U ∈ IX and suppose yt is a fuzzy point in Y with yt ̸∈ r-ker(f(U)).

Then there exists V ∈ FRO(Y ) such that f(U) ≤ V and yt ̸∈ V, i.e., V (y) < t.
Thus ytq(1Y \ V ) ∈ FRC(Y ) and 1Y \ f(U) ≥ 1Y \ V . So f(U) ̸ q(1Y \ V ), i.e.,
U ̸ qf−1(1Y \V ). By (2), f−1(1Y \V ) = 1X\f−1(V ) ∈ FαbO(X). By Result 3.11 (2),
αbclτU ̸ q(1X \ f−1(V )). This implies that αbclτU ≤ f−1(V ), i.e., f(αbclτU) ≤ V
implies that 1Y \ f(αbclτU) ≥ 1Y \ V . Hence we have

1− f(αbclτU)(y) ≥ 1− V (y) > 1− t, i.e., t > f(αbclτU)(y), i.e., yt ̸∈ f(αbclτU).

Therefore f(αbclτU) ≤ r-ker(f(U)).
(3) ⇒ (4): Let A ∈ IY . Then f−1(A) ∈ IX . Thus by (3), we get

f(αbclτf
−1(A)) ≤r-ker(f(f−1(A))) ≤r-ker(A).

So αbclτ (f
−1(A)) ≤ f−1(r-ker(A)).
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(4) ⇒ (1): Let A ∈ FRO(Y ). By (4), αbclτ (f
−1(A)) ≤ f−1(r-ker(A)) = f−1(A).

But f−1(A) ≤ αbclτ (f
−1(A)). Thus f−1(A) = αbclτ (f

−1(A)). So f−1(A) ∈
FαbC(X). Hence f is a fuzzy α-b-r-continuous function.

(5) ⇔ (6): Follows from Lemma 3.13 (4).
(6) ⇔ (7): Obvious
(7) ⇒ (1): Let A ∈ FRO(Y ). Then by (7), we get

αbclτ (f
−1(A)) ≤ f−1(intτ1(clτ1A)) = f−1(A).

Thus f−1(A) ∈ FαbC(X). So f is a fuzzy α-b-r-continuous function.
(1)⇒ (7): LetA ∈ τ1. Then intτ1(clτ1A) ∈ FRO(Y ). Then by (1), f−1(intτ1(clτ1A)) ∈

FαbC(X). Thus we have

αbclτ (f
−1(A)) ≤ αbclτ (f

−1(intτ1(clτ1A)) = f−1(intτ1(clτ1A)).

(1)⇒ (8): LetA ∈ τ1. Then intτ1(clτ1A) ∈ FRO(Y ). Thus by (1), f−1(intτ1(clτ1A)) ∈
FαbC(X).

(8)⇒ (1): LetA ∈ FRO(Y ). ThenA ∈ τ1. Thus by (8), f
−1(A) = f−1(intτ1(clτ1A)) ∈

FαbC(X).
(2)⇒ (9): Let F ∈ τ c1 . Then clτ1intτ1F ∈ FRC(Y ). Thus by (2), f−1(clτ1(intτ1F )) ∈

FαbO(X).
(9) ⇒ (2): Let F ∈ FRC(Y ). Then by (9), f−1(F ) = f−1(clτ1(intτ1F )) ∈

FαbO(X).
(2) ⇒ (10): Let U ∈ FβO(Y ). Then U ≤ clτ1(intτ1(clτ1U)) ≤ clτ1U . Thus

clτ1U ≤ clτ1(clτ1(intτ1(clτ1U))) = clτ1(intτ1(clτ1U)) ≤ clτ1(clτ1U) = clτ1U.

So clτ1U = clτ1(intτ1(clτ1U)). Hence clτ1U ∈ FRC(Y ). Therefore by (2), f−1(clτ1U) ∈
FαbO(X).

(10) ⇒ (6): Since FSO(Y ) ⊆ FβO(Y ), by (10), f−1(clτ1U) ∈ FαbO(X) for all
U ∈ FSO(Y ).

(11) ⇒ (12): Let U ∈ FPO(Y ). Then U ≤ intτ1(clτ1U). We claim that
intτ1(clτ1U) ∈ FRO(Y ). Note that the following inequalities hold:

intτ1(clτ1U) ≤ intτ1(clτ1(intτ1(clτ1U))) ≤ intτ1(clτ1U).

Then intτ1(clτ1U) = intτ1(clτ1(intτ1(clτ1U))). Thus 1Y \ intτ1(clτ1U) ∈ FRC(Y ).
So 1Y \ intτ1(clτ1U) ∈ FSO(Y ). By (11), f−1(clτ1(1Y \ intτ1(clτ1U))) ∈ FαbO(X).
Hence we have

1X \ f−1(intτ1(intτ1(clτ1U))) = 1X \ f−1(intτ1(clτ1U)) ∈ FαbO(X).

Therefore f−1(intτ1(clτ1U)) ∈ FαbC(X).
(12) ⇒ (1): Let U ∈ FRO(Y ). Then U ∈ FPO(Y ). By (12), f−1(intτ1(clτ1U)) ∈

FαbC(X). Thus f−1(U) = f−1(intτ1(clτ1U)) ∈ FαbC(X). So (1) holds.
(10) ⇔ (13): The proof follows from Lemma 3.13 (2).
(11) ⇔ (14): The proof follow from Lemma 3.13 (3). □

Theorem 4.3. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function.
Consider the following statements:

(a) for each fuzzy point xt in X and each A ∈ FSO(Y ) with f(xt)qA, there
exists U ∈ FαbO(X) with xtqU , f(U) ≤ clτ1A,

(b) f(αbclτP ) ≤ θ-sclτ1(f(P )) for all P ∈ IX ,
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(c) for each fuzzy point xt in X and each A ∈ FSO(Y ) with f(xt) ∈ A, there
exists U ∈ FαbO(X) such that xt ∈ U and f(U) ≤ clτ1A,

(d) f−1(A) ≤ αbintτ (f
−1(clτ1A)) for all A ∈ FSO(Y ),

(e) αbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R)) for all R ∈ IY ,

(f) f is a fuzzy α-b-r-continuous function.
Then we have:

(1) (a), (b), (c), (d) and (e) are equivalent,
(2) (e) implies (f).

Proof. (1) (a) ⇒ (b): Let P ∈ IX and xt be any fuzzy point in X such that xt ∈
αbclτP and let G ∈ FSO(Y ) with f(xt)qG. By (a), there exists U ∈ FαbO(X) with
xtqU , f(U) ≤ clτ1G. As xt ∈ αbclτP , by Result 3.11 (1), UqP . Then f(U)qf(P ).
Thus f(P )qclτ1G. So f(xt) ∈ θ-sclτ1(f(P )). Hence f(αbclτP ) ≤ θ-sclτ1(f(P )).

(b)⇒ (e): Let R ∈ IY . Then f−1(R) ∈ IX . Thus by (b), we have
f(αbclτ (f

−1(R))) ≤ θ-sclτ1(f(f
−1(R))) ≤ θ-sclτ1R.

So αbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R).

(e) ⇒ (a): Let xt be any fuzzy point in X and A ∈ FSO(Y ) with f(xt)qA.
Since clτ1A ̸ q (1Y \ clτ1A), by definition, f(xt) ̸∈ θ-sclτ1(1Y \ clτ1A). Then xt ̸∈
f−1(θ-sclτ1(1Y \ clτ1A)). By (e), xt ̸∈ αbclτ (f

−1(1Y \ clτ1A)). Thus there exists
U ∈ FαbO(X) with xtqU such that U ̸ qf−1(1Y \ clτ1A). So f(U) ̸ q(1Y \ clτ1A).
Hence f(U) ≤ clτ1A.

(a) ⇒ (d): Let A ∈ FSO(Y ) and xt be any fuzzy point in X such that xtqf
−1(A).

Then f(xt)qA. By (a), there exists U ∈ FαbO(X) with xtqU such that f(U) ≤
clτ1A. Thus xtqU ≤ f−1(clτ1A). So xtqU = αbintτU ≤ αbintτ (f

−1(clτ1A)). Since
αbintτ (f

−1(clτ1A)) is the union of all fuzzy α-b-open sets inX contained in f−1(clτ1A),
xtqαbintτ (f

−1(clτ1A)). Hence f−1(A) ≤ αbintτ (f
−1(clτ1A)).

(d) ⇒ (a): Let xt be any fuzzy point in X and A ∈ FSO(Y ) with f(xt)qA. Then
by (d), xtqf

−1(A) ≤ αbintτ (f
−1(clτ1A)). Thus there exists U ∈ FαbO(X) with

xtqU such that U ≤ f−1(clτ1A). So f(U) ≤ clτ1A.
(c) ⇒ (d): Let A ∈ FSO(Y ) and xt be any fuzzy point in X such that xt ∈

f−1(A). Then f(xt) ∈ A. By (c), there exists U ∈ FαbO(X) with xt ∈ U such that
f(U) ≤ clτ1A. Thus U ≤ f−1(clτ1A). So xt ∈ U = αbintτU ≤ αbintτ (f

−1(clτ1A)).
Hence f−1(A) ≤ αbintτ (f

−1(clτ1A)).
(d) ⇒ (c): Let xt be any fuzzy point in X and A ∈ FSO(Y ) with f(xt) ∈ A.

Then by (d), xt ∈ f−1(A) ≤ αbintτ (f
−1(clτ1A)). Thus there exists U ∈ FαbO(X)

with xt ∈ U such that U ≤ f−1(clτ1A). So f(U) ≤ clτ1A.
(2) Suppose (e) holds and let A ∈ FRO(Y ). Then by (e), we get

αbclτ (f
−1(A)) ≤ f−1(θ-sclτ1A) = f−1(A).

Thus by Lemma 3.13 (1), f−1(A) ∈ FαbC(X). So f is a fuzzy α-b-r-continuous
function. □

Theorem 4.4. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function
satisfying αbclτ (f

−1(R)) ≤ f−1(θ-sclτ1R), for all R ∈ IY . Then the following
statements hold:

(1) αbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R) for all R ∈ FSO(Y )

(2) αbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R) for all R ∈ FPO(Y ),

(3) αbclτ (f
−1(R)) ≤ f−1(θ-sclτ1R) for all R ∈ FβO(Y ).
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Proof. Obvious. □

Definition 4.5. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function.
Then f is said to be fuzzy

(i) α-b-continuous, if f−1(A) ∈ FαbO(X) for all A ∈ τ1,
(ii) almost α-b-continuous, if f−1(A) ∈ FαbO(X) for all A ∈ FRO(Y ).

Let us now recall the following definition from [2] for ready references.

Definition 4.6 ([2]). Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a
function. Then f is said to be a fuzzy continuous function, if f−1(U) ∈ τ for all
U ∈ τ1.

Remark 4.7. It is clear from definitions that:
(1) fuzzy continuity ⇒ fuzzy α-b-continuity ⇒ fuzzy almost α-b-continuity, but

reverse implications are not necessarily true, in general, follow from the next exam-
ples,

(2) fuzzy α-b-r-continuity is an independent concept of fuzzy continuity, fuzzy
α-b-continuity and fuzzy almost α-b-continuity, follow from the next examples.

Example 4.8. Fuzzy continuity, fuzzy α-b-continuity and fuzzy almost α-b-continuity
̸⇒ fuzzy α-b-r-continuity.

Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , B}, where A(a) = A(b) =
0.5, B(a) = B(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity
function i : (X, τ1) → (X, τ2). Then clearly, i is fuzzy continuous and thus fuzzy
α-b-continuous as well as fuzzy almost α-b-continuous function. Now 1X \ B ∈
FRC(X, τ2). i

−1(1X \B) = 1X \B. Then we get

clτ1(αintτ1(clτ1(1X \B))) = A ̸≥ 1X \B ⇒ 1X \B ̸∈ FαbO(X, τ1).

Thus i is not a fuzzy α-b-r-continuous function.

Example 4.9. Fuzzy α-b-r-continuity, fuzzy α-b-continuity and fuzzy almost α-b-
continuity ̸⇒ fuzzy continuity.

Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A}, where A(a) = A(b) = 0.5.
Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function i : (X, τ1) →
(X, τ2). Since every fuzzy set in (X, τ1) is fuzzy α-b-open in (X, τ1), i is fuzzy α-b-
r-continuous, fuzzy α-b-continuous and fuzzy almost α-b-continuous. Since A ∈ τ2,
i−1(A) = A ̸∈ τ1. Then i is not a fuzzy continuous function.

Example 4.10. Fuzzy α-b-r-continuity, fuzzy almost α-b-continuity ̸⇒ fuzzy α-b-
continuity.

Lt X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X , C}, where A(a) = A(b) =
0.4, B(a) = B(b) = 0.5, C(a) = 0.5, C(b) = 0.6. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Now C ∈ τ2, i

−1(C) = C.
Then clτ1(αintτ1(clτ1C)) = B ̸≥ C. Thus C ̸∈ FαbO(X, τ1). So i is not fuzzy α-b-
continuous. Since 0X , 1X ∈ FRO(X, τ2) only, i is a fuzzy α-b-r-continuous function
and a fuzzy almost α-b-continuous function.

Example 4.11. Fuzzy α-b-r-continuity ̸⇒ fuzzy almost α-b-continuity.
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Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B}, where A(a) = 0.5, A(b) =
0.6, B(a) = 0.5, B(b) = 0.3. Then (X, τ1) and (X, τ2) are fts’s. Consider the iden-
tity function i : (X, τ1) → (X, τ2). Now B ∈ FRO(X, τ2), i−1(B) = B. Then
intτ1(αclτ1(intτ1B)) = 0X ≤ B. Thus B ∈ FαbC(X, τ1). So i is a fuzzy α-b-r-
continuous function. But clτ1(αintτ1(clτ1B)) = 0X ̸≥ B, i.e., B ̸∈ FαbO(X, τ1).
Hence i is not a fuzzy almost α-b-continuous function.

Definition 4.12 ([17]). An fts (X, τ) is said to be fuzzy extremally disconnected, if
the closure of every fuzzy open set in X is fuzzy open in X.

Theorem 4.13. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a function. If
(Y, τ1) is a fuzzy extremally disconnected space, then f is a fuzzy α-b-r-continuous
function if and only if f is a fuzzy almost α-b-continuous function.

Proof. First suppose that f is fuzzy α-b-r-continuous function and let U ∈ FRO(Y ).
Then U = intτ1(clτ1U). As Y is fuzzy extremally disconnected, clτ1U ∈ τ1. Thus
U = intτ1clτ1U = clτ1U = clτ1intτ1U . So U ∈ FRC(Y ). By the hypothesis,
f−1(U) ∈ FαbO(X). Hence f is a fuzzy almost α-b-continuous function.

Conversely, suppose f is a fuzzy almost α-b-continuous function and let U ∈
FRC(Y ). As Y is a fuzzy extremally disconnected space, U ∈ FRO(Y ). Then By
the hypothesis, f−1(U) ∈ FαbO(X). Thus f is a fuzzy α-b-r-continuous function.

□

Remark 4.14. Composition of two fuzzy α-b-r-continuous (resp. fuzzy α-b-continuous
and fuzzy almost α-b-continuous) functions need not be so, as it seen from the fol-
lowing examples.

Example 4.15. Let X = {a, b}, τ1 = {0X , 1X , A,B}, τ2 = {0X , 1X}, τ3 =
{0X , 1X , B}, where A(a) = A(b) = 0.5, B(a) = B(b) = 0.4. Then (X, τ1), (X, τ2)
and (X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2), i2 :
(X, τ2) → (X, τ3). Clearly, i1 and i2 are fuzzy α-b-r-continuous functions. Let
i3 = i2 ◦ i1. Now 1X \B ∈ FRC(X, τ3), i

−1
3 (1X \B) = 1X \B. Then we have

clτ1(αintτ1(clτ1(1X \B))) = A ̸≥ 1X \B.

Thus 1X \B ̸∈ FαbO(X, τ1). So i3 is not a fuzzy α-b-r-continuous function.

Example 4.16. LetX = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X}, τ3 = {0X , 1X , B},
where A(a) = 0.5, A(b) = 0.6, B(a) = 0.5, B(b) = 0.3. Then (X, τ1), (X, τ2) and
(X, τ3) are fts’s. Consider two identity functions i1 : (X, τ1) → (X, τ2) and i2 :
(X, τ2) → (X, τ3). Clearly, i1 and i2 are fuzzy α-b-continuous and thus fuzzy almost
α-b-continuous functions. Let i3 = i2 ◦ i1. Bow B ∈ τ3 as well as B ∈ FRO(X, τ3).
i−1
3 (B) = B. Now clτ1(αintτ1(clτ1B)) = 0X ̸≥ B ⇒ B ̸∈ FαbO(X, τ1) ⇒ i3 is not a
fuzzy α-b-continuous function and also a fuzzy almost α-b-continuous function.

5. Fuzzy α-b-regular, α-b-compact and α-b-T2-spaces

In this section, new types of separation axioms and compactness are introduced
and studied. Then the mutual relationships of these spaces with the spaces defined
in [2, 4] are established.
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Definition 5.1. An fts (X, τ) is called an α-b-regular space, if for each fuzzy point
xt in X and each fuzzy α-b-closed set F with xt ̸∈ F , there exist a fuzzy open set U
and a fuzzy α-b-open set V in X such that xtqU , F ≤ V and U ̸ qV .

Theorem 5.2. For an fts (X, τ), the following statements are equivalent:
(1) X is fuzzy α-b-regular,
(2) for each fuzzy point xt in X and each fuzzy α-b-open set U in X with xtqU ,

there exists a fuzzy open set V in X such that xtqV ≤ αbclV ≤ U ,
(3) for each fuzzy α-b-closed set F in X,

∧
{clV : F ≤ V, V ∈ FαbO(X)} = F ,

(4) for each fuzzy set G in X and each fuzzy α-b-open set U in X such that GqU ,
there exists a fuzzy open set V in X such that GqV and αbclV ≤ U .

Proof. (1)⇒(2): Let xt be a fuzzy point in X and let U be a fuzzy α-b-open set in
X with xtqU . Then xt ̸∈ 1X \ U ∈ FαbC(X). By (1), there exist a fuzzy open set
V and a fuzzy α-b-open set W in X such that xtqV , 1X \U ≤ W and V ̸ qW . Thus
xtqV ≤ 1X \W ≤ U. So xtqV ≤ αbclV ≤ αbcl(1X \W ) = 1X \W ≤ U .

(2)⇒(1): Let F be a fuzzy α-b-closed set in X and let xt be a fuzzy point in X
with xt ̸∈ F . Then xtq(1X \F ) ∈ FαbO(X). By (2), there exists a fuzzy open set V
in X such that xtqV ≤ αbclV ≤ 1X \F . Put U = 1X \ αbclV . Then U ∈ FαbO(X)
and xtqV , F ≤ U and U ̸ qV .

(2)⇒(3): Let F be fuzzy α-b-closed set in X. Then we get

F ≤
∧

{clV : F ≤ V, V ∈ FαbO(X)}.

Conversely, let xt ̸∈ F ∈ FαbC(X). Then F (x) < t. Thus xtq(1X \ F ), where
1X \ F ∈ FαbO(X). By (2), there exists a fuzzy open set U in X such that xtqU ≤
αbclU ≤ 1X \ F . Put V = 1X \ αbclU . Then F ≤ V and U ̸ qV. Thus xt ̸∈ clV. So∧
{clV : F ≤ V, V ∈ FαbO(X)} ≤ F . Hence

∧
{clV : F ≤ V, V ∈ FαbO(X)} = F.

(3)⇒(2): Let V be any fuzzy α-b-open set in X and let xt be any fuzzy point in
X with xtqV . Then V (x) + t > 1, i.e., xt ̸∈ (1X \ V ), where 1X \ V ∈ FαbC(X).
By (3), there exists G ∈ FαbO(X) such that 1X \ V ≤ G and xt ̸∈ clG. Thus there
exists a fuzzy open set U in X with xtqU such that U ̸ qG. So U ≤ 1X \ G ≤ V .
Hence xtqU ≤ αbclU ≤ αbcl(1X \G) = 1X \G ≤ V .

(3)⇒(4): Let G be any fuzzy set in X and let U be any fuzzy α-b-open set in X
with GqU . Then there exists x ∈ X such that G(x)+U(x) > 1. Let G(x) = t. Then
xtqU ⇒ xt ̸∈ 1X \U , where 1X \U ∈ FαbC(X). By (3), there exists W ∈ FαbO(X)
such that 1X \ U ≤ W and xt ̸∈ clW. Thus (clW )(x) < t. So xtq(1X \ clW ). Let
V = 1X\clW . Then V is fuzzy open set inX and V (x)+t > 1. Thus V (x)+G(x) > 1.
So V qG and αbclV = αbcl(1X \ clW ) ≤ αbcl(1X \W ) = 1X \W ≤ U .

(4)⇒(2): Obvious. □

Note 5.3. It is clear from Theorem 5.2 that in a fuzzy α-b-regular space, every fuzzy
α-b-closed set is fuzzy closed and hence every fuzzy α-b-open set is fuzzy open. As
a result, in a fuzzy α-b-regular space, the collection of all fuzzy closed (resp., fuzzy
open) sets and fuzzy α-b-closed (resp., fuzzy α-b-open) sets coincide.

Definition 5.4. Let A be a fuzzy set in X. A collection U of fuzzy sets in X is
called a fuzzy cover of A, if sup{U(x) : U ∈ U} = 1 for each x ∈ suppA [18]. In
particular, if A = 1X , we get the definition of fuzzy cover of X [2].
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Definition 5.5. A fuzzy cover U of a fuzzy set A in X is said to have a finite
subcover U0, if U0 is a finite subcollection of U such that

⋃
U0 ≥ A, i.e., U0 is also a

fuzzy cover of A [18]. In particular, if A = 1X , we get
⋃

U0 = 1X [2].

Definition 5.6. A fuzzy set A in an fts (X, τ) is said to be fuzzy compact [18], if
every fuzzy covering U of A by fuzzy open sets in X has a finite subcovering U0 of
U . In particular, if A = 1X , we get the definition of fuzzy compact space [2].

Definition 5.7. An fts (X, τ) is said to be fuzzy s-closed [19] (resp. fuzzy nearly
compact [17]), if every fuzzy covering of X by fuzzy regular closed (resp. fuzzy
regular open) sets of X contains a finite subcovering.

Let us now introduce the following concept.

Definition 5.8. A fuzzy set A in an fts (X, τ) is called fuzzy α-b-compact, if ev-
ery fuzzy covering of A by fuzzy α-b-open sets of X has a finite subcovering. In
particular, if A = 1X , we get the definition of fuzzy α-b-compact space.

Remark 5.9. It is clear from above discussion that fuzzy α-b-compact space is fuzzy
compact. But the converse is not necessarily true follows from the next example.

Example 5.10. Let X = {a}, τ = {0X , 1X}. The clearly (X, τ) is a fuzzy compact
space. Here every fuzzy set is fuzzy α-b-open set in X. Consider the fuzzy cover
U = {Un(a) : n ∈ N}, where Un(a) = { n

n+1 : n ∈ N}. Then U is a fuzzy α-b-
open cover of X. But it does not have any subcovering of X. Thus X is not fuzzy
α-b-compact space.

Theorem 5.11. Every fuzzy α-b-closed set A in a fuzzy α-b-compact space X is
fuzzy α-b-compact.

Proof. Let A be a fuzzy α-b-closed set in a fuzzy α-b-compact space X and let U be
a fuzzy covering of A by fuzzy α-b-open sets in X. Then V = U

⋃
(1X \A) is a fuzzy

α-b-open covering of X. By the hypothesis, there exists a finite subcollection V0 of
V which also covers X. If V0 contains 1X \A, we omit it and get a finite subcovering
of A. Consequently, A is fuzzy α-b-compact. □

Let us now recall the following definition from [4] for ready references.

Definition 5.12 ([4]). Let (X, τ) be an fts. Then X is said to be a fuzzy T2-space,
if for each pair of distinct fuzzy points xα, yβ : when x ̸= y, there exist fuzzy open
sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1 and U1 ̸ qV1 and xαqU2, yβ ∈ V2 and
U2 ̸ qV2 ; when x = y, α < β (say), there exist fuzzy open sets U, V in X such that
xα ∈ U, yβqV and U ̸ qV .

Now we introduce the following concept.

Definition 5.13. Let (X, τ) be an fts. Then X is said to be a fuzzy α-b-T2-space, if
for each pair of distinct fuzzy points xα, yβ : when x ̸= y, there exist fuzzy α-b-open
sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1 and U1 ̸ qV1 and xαqU2, yβ ∈ V2 and
U2 ̸ qV2 ; when x = y, α < β (say), there exist fuzzy α-b-open sets U, V in X such
that xα ∈ U, yβqV and U ̸ qV .

Let us now recall the following definition from [4] for ready references.
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Definition 5.14 ([4]). An fts (X, τ) is said to be a fuzzy regular space, if for any
fuzzy point xt in X and any fuzzy closed set F in X with xt ̸∈ F , there exist fuzzy
open sets U, V in X such that xtqU, F ≤ V and U ̸ qV .

Remark 5.15. It is clear from Note 5.3 that fuzzy α-b-regular space is fuzzy reg-
ular and fuzzy T2-space is fuzzy α-b-T2-space. But the reverse implications are not
necessarily true, follow from the next example.

Example 5.16. Consider Example 5.10. It is clear that (X, τ) is fuzzy regular and
fuzzy α-b-T2-space (as every fuzzy set is fuzzy α-b-open set as well as fuzzy α-b-closed
set). Now consider the fuzzy point a0.4 and a fuzzy set A defined by A(a) = 0.3.
Then a0.4 ̸∈ A ∈ FαbC(X). But there do not exist any fuzzy open set U and a
fuzzy α-b-open set V in X such that a0.4qU,A ≤ V and U ̸ qV (because 1X is the
only fuzzy open set in X with a0.4q1X and 1XqV for all fuzzy set V ( ̸= 0X) in X).
Thus X is not fuzzy α-b-regular space.

Consider two fuzzy points a0.4 and a0.5 in X. But there do not exist fuzzy open
sets U, V in X such that a0.4 ∈ U, a0.5qV and U ̸ qV . So X is not fuzzy T2-space.

6. Applications of fuzzy α-b-r-continuous, α-b-continuous and almost
α-b-continuous functions

In this section, the applications of the functions introduced in this paper are
established. First we recall the following definition from [20] for ready references.

Definition 6.1 ([20]). A function f : X → Y is said to be a fuzzy open function, if
f(U) is a fuzzy open set in Y for every fuzzy open set U in X.

Theorem 6.2. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a surjective,
fuzzy α-b-r-continuous function. If X is a fuzzy α-b-compact space, then Y is a fuzzy
s-closed space.

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy covering of Y by fuzzy regular closed sets
of Y . As f is a fuzzy α-b-r-continuous function, V = {f−1(Uα) : α ∈ Λ} covers X
by fuzzy α-b-open sets of X. As X is a fuzzy α-b-compact space, there exists a finite

subset Λ0 of Λ such that 1X =
∨

α∈Λ0

f−1(Uα). Then we have

1Y = f(
∨

α∈Λ0

f−1(Uα)) =
∨

α∈Λ0

f(f−1(Uα)) ≤
∨

α∈Λ0

Uα.

Thus Y is a fuzzy s-closed space. □

Theorem 6.3. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a fuzzy α-
b-continuous function. If A is fuzzy α-b-compact set relative to X, then the image
f(A) is fuzzy compact relative to Y .

Proof. Let A be fuzzy α-b-compact relative to X and U = {Uα : α ∈ Λ} be a

fuzzy covering of f(A) by fuzzy open sets of Y , i.e, f(A) ≤
∨
α∈Λ

Uα. Then A ≤

f−1(
∨
α∈Λ

Uα) =
∨
α∈Λ

f−1(Uα). Thus V = {f−1(Uα) : α ∈ Λ} is a fuzzy covering

of A by fuzzy α-b-open sets in X. As A is fuzzy α-b-compact set relative to X,
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there exists a finite subcollection V0 = {f−1(Uαi
) : 1 ≤ i ≤ n} of V such that

A ≤
n∨

i=1

f−1(Uαi). So f(A) ≤ f(

n∨
i=1

f−1(Uαi)) =

n∨
i=1

f(f−1(Uαi)) ≤
n∨

i=1

Uαi . Hence

U0 = {Uαi : 1 ≤ i ≤ n} is a finite subcovering of f(A). Therefore f(A) is fuzzy
compact relative to Y . □

Theorem 6.4. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a fuzzy almost
α-b-continuous function. If A is fuzzy α-b-compact relative to X, then the image
f(A) is fuzzy nearly compact relative to Y .

Proof. The proof is similar to that of Theorem 6.3. □

Theorem 6.5. Let (X, τ) and (Y, τ1) be two fts’s and f : X → Y be a injective, fuzzy
α-b-continuous function and Y is a fuzzy T2-space. Then X is a fuzzy α-b-T2-space.

Proof. Let xα and yβ be two distinct fuzzy points in X, where x ̸= y. As f is
injective, f(xα) ̸= f(yβ). As Y is a fuzzy T2-space, there exist fuzzy open sets
U1, U2, V1, V2 in Y such that f(xα) ∈ U1, f(yβ)qV1 and U1 ̸ qV1 and f(xα)qU2,
f(yβ) ∈ V2 and U2 ̸ qV2. Then xα ∈ f−1(U1), yβqf

−1(V1) and f−1(U1) ̸ qf−1(V1).
Assume that f−1(U1)qf

−1(V1). Then there exists z ∈ X such that

f−1(U1)(z) + f−1(V1)(z) > 1.

Thus U1(f(z)) + V1(f(z)) > 1. So U1qV1. This is a contradiction. Also, we have

xαqf
−1(U2), yβ ∈ f−1(V2) and f−1(U2) ̸ qf−1(V2),

where f−1(U1), f
−1(V1), f

−1(U2), f
−1(V2) ∈ FαbO(X, τ1).

Similarly, when x = y, α < β (say), there exist U1, U2 ∈ τ1 such that

f(xα) ∈ U1, f(yβ)qU2 and U1 ̸ qU2.

Then xα ∈ f−1(U1), yβqf
−1(U2) and f−1(U1) ̸ qf−1(U2), where f

−1(U1), f
−1(U2) ∈

FαbO(X, τ1). Thus X is a fuzzy α-b-T2-space. □

Theorem 6.6. If a bijective function h : X → Y is a fuzzy α-b-continuous, fuzzy
open function from a fuzzy α-b-regular space X onto an fts Y , then Y is fuzzy regular
space.

Proof. Let yα be a fuzzy point in Y and F , a fuzzy closed set in Y with yα ̸∈ F .
As h is bijective, there exists unique x ∈ X such that h(x) = y. Then h(xα) ̸∈ F.
As h is fuzzy α-b-continuous function, xα ̸∈ h−1(F ) ∈ FαbC(X). As X is fuzzy
α-b-regular space, there exist a fuzzy open set U and a fuzzy α-b-open set V in X
such that

xαqU, h
−1(F ) ≤ V and U ̸ qV.

Since X is fuzzy α-b-regular, by Note 5.3, V is also fuzzy open set in X. As h is fuzzy
open function, we have h(xα)qh(U), F ≤ h(V ) and h(U) ̸ qh(V ), where h(U), h(V )
are fuzzy open sets in Y. Thus Y is a fuzzy regular space. □
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7. Conclusions

In this paper we have introduced and characterized only fuzzy α-b-regularity,
fuzzy α-b-compactness and fuzzy α-b-T2 property. A thorough discussion on these
three spaces are done in a separate article which has already been communicated.

Acknowledgements. I express my sincere gratitude to the referees for their
valuable remark on this article.
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[8] G. Şenel, A new approach to Hausdorff space theory via the soft sets, Mathematical Problems

in Engineering 1–6, Doi:10.1155/2016/2196743.
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