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Abstract. In this paper, we focus on ideals and prime ideals of CKL-
algebras and applications of prime ideals of CKL-algebras. Firstly, we
prove that any self-distributive L-algebra is a CKL-algebra. Conversely,
we give an example of CKL-algebras that is not a self-distributive L-
algebra. Furthermore, we give a generation formula of ideals on CKL-
algebras. Secondly, we give some equivalent descriptions of prime ideals
and its properties on CKL-algebras. We mainly prove that maximal ideals
are prime ideals on CKL-algebras. Next, we give a counterexample to
show that commutative L-algebras may be not residuated lattices, much
less MV -algebras. The results show that commutative L-algebras are a
true promotion of MV -algebras. Therefore, we study some properties of
commutative L-algebras.
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1. Introduction

The concept of L-algebras was introduced by Rump in [1], it is a quantum
structure that is closely related to non-classical logical algebras and quantum Yang-
Baxter equation solutions. In 2008, Rump [2] pointed that Hilbert algebras, (pseudo)
MV -algebras, BCK-algebras, and ℓ-group negative cones are all special cases of L-
algebras. Therefore, L-algebras are fundamental algebraic structures. As a result,
the research on L-algebras has become a hot topic in the field of logic algebra in
recent years, and it is attracting the attention of many domestic and foreign scholars
[3, 4]. For example, in 2019, Yali Wu ect. [5] proved that every lattice-ordered effect
algebras generates an L-algebra with the same orthogonal complement. In 2020,
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Yali Wu ect. [4] studied the relationship between L-algebras and Boolean algebras;
Rump and Zhang X introduced the relationship between L-effect algebras [6] (as a
class of L-algebras) and quantum sets; Jin Wang ect. studied the connection between
L-effect algebras and basic algebras [7].

As an important concept in the field of non-classical algebraic logic research, filters
theory plays a significant role in studying the completeness of various logical systems
[3, 5, 7, 8, 9]. Filters are also called a deduction system. From the logical point of
view, the filters correspond to some sets of formulas. Filters are also particularly
interesting because they are closely related to congruence relations. In 2008, Rump
proposed the definition of ideals on L-algebras, which ideals are called filters in the
general logic algebras, and discussed the relationship between ideals and congruences
[2]. In 2021, Ciungu study some classes of L-algebras and give characterizations of
commutative L-algebras and CKL-algebras. He also present L-algebras arising from
other structures, such as BCK-algebras, pseudo MV -algebras, pseudo BL-algebras,
pseudo-hoops and Hilbert algebras [3]. In 2022, Rump proved that the ideal lattice
of L-algebras is distributive [10]. He primarily studied the properties of prime ideals
and quotient algebras induced by prime ideals, and gave the definition of topological
space of L-algebras. Ciungu has proved that any commutative L-algebra is a BCK-
algebra and any CKL-algebra is aBCK-algebra. We prove that anyBCK-algebra is
a CKL-algebra. Therefore any commutative L-algebra is a CKL-algebra. We know
CKL-algebras may not commutative. Ciungu proved that CKL-algebras satisfying
the self-similarity is commutative. Therefore, in this paper we consider the study of
ideals and prime ideals on CKL-algebras and its applications. By studying ideals
on CKL-algebras, we prove that maximal ideals are prime ideals on CKL-algebras.
Next, we introduce special L-algebras (commutative L-algebras), which is a true
extension of MV -algebras. We study of ideals and prime ideals on commutative
L-algebras and its applications. Furthermore, the paper we study prime ideals and
spectrum space on commutative L-algebras. We also study the divisibility and
some properties of topological space on commutative L-algebras. By studying the
properties of topological space on commutative L-algebras, we prove that Spec(S)
is a T1-space if and only if every prime ideal is maximal.

This paper is organized as follows. In Section 3, we first give the generation
formula of ideals on CKL-algebras. Then we give a condition in which every L-
algebra is a join semi-lattice. In Section 4, we mainly discuss some properties of
prime ideals and maximal ideals on CKL-algebras. In addition, the equivalent
condition in which CKL-algebras becomes a chain is given. Similarly, we discuss
some properties of prime ideals and maximal ideals on commutative L-algebras. In
Section 5, some topological properties of the space of all prime ideals are studied.
Moreover, an equivalent condition is derived for every prime ideal of commutative
L-algebras to become a maximal ideal.

2. Preliminaries

In this section, we give some definitions and results for L-algebras [2].
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Definition 2.1 ([2]). Let S be a set with a binary operation →. An element 1 ∈ S
is said to be a logical unit, if for all s ∈ S,

(2.1) s → s = s → 1 = 1, 1 → s = s.

From Definition 2.1, logical unit 1 is unique.
If (S,→) with a logical unit 1 satisfies

(2.2) (s → t) → (s → w) = (t → s) → (t → w)

and

(2.3) s → t = t → s = 1 ⇒ s = t

for all s, t, w ∈ S, then (S,→, 1) is called an L-algebra.
If an L-algebra (S,→, 1) satisfies

(2.4) s → (t → s) = 1,

then it is said to be a KL-algebra.
A CKL-algebra is an L-algebra (S,→, 1) such that

(2.5) (s → (t → w)) → (t → (s → w)) = 1.

It follows that in any L-algebra S satisfying condition (2.5), we have

(2.6) s → (t → w) = t → (s → w)

for all s, t, w ∈ S.
Given an L-algebra (S,→, 1), a binary relation “≤” is defined by: for any s, t ∈ S,

s ≤ t iff s → t = 1.

The logical unit 1 is the greatest element of an L-algebra under partial order relation.

Example 2.2 ([11]). Let S = {0, e, f, g, h, 1} be a lattice with Hasse diagram as
Figure 1. Its implication operation → is defined as Table 1.

Table 1.
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→ 0 e f g h 1
0 1 1 1 1 1 1
e h 1 1 h 1 1
f g h 1 g h 1
g f f f 1 1 1
h e f f h 1 1
1 0 e f g h 1

1

h f

g e

0

Figure 1. Hasse Diagram of S

Then (S,→, 1) is an L-algebra.

Proposition 2.3 ([2]). Let S be an L-algebra. For all s, t, w ∈ S, we have
(1) s ≤ t ⇒ w → s ≤ w → t,
(2) s = t ⇔ s → w = t → w,
(3) if s, t ≤ w such that w → s = w → t, then s = t,
(4) if S satisfies condition (2.5), then

(2.7) s → ((s → t) → t) = 1,

(5) if S is a KL-algebra, then the following holds,

(2.8) s ≤ t ⇒ t → w ≤ s → w,

the converse is also true and condition (2.8) implies (2.4),
(6) ((s → t) → t) → ((s → t) → w) = t → w,
(7) if S is a KL-algebra satisfying condition (2.7), then

((s → t) → t) → t = s → t.

Definition 2.4 ([12]). Let (S,→, 1) be an L-algebra. If for all s, t, w ∈ S, the
following holds:

s → (t → w) = (s → t) → (s → w),

then S is said to be self-distributive.

Obviously, any self-distributive L-algebra is a CKL-algebra. Conversely, it is
not valid. In Example 2.2, we find that it is a CKL-algebra, but it is not a self-
distributive L-algebra. Indeed, h → (e → 0) = h → h = 1 = e → e = e → (h → 0),
while (h → e) → (h → 0) = f → e = h.
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Example 2.5. Let S = {1, e, f, g} be an L-algebra with Hasse diagram as Figure
2. Its implication operatation → is defined as Table 2.

Table 2.

→ 1 e f g
1 1 e f g
e 1 1 f g
f 1 e 1 g
g 1 e f 1

1

e f h

Figure 2. Hasse Diagram of S

It is easy to check that S is a commutative L-algebra and S is a join semi-lattice.

Example 2.6 ([5]). Let S = {0, e, f, g, 1} be a lattice with Hasse diagram as Figure
3. Its implication operation → is defined as Table 3.

Table 3.

→ 0 e f g 1
0 1 1 1 1 1
e f 1 f 1 1
f e e 1 1 1
g 0 e f 1 1
1 0 e f g 1

1

g

e f

0

We can check that S is a self-distributive L-algebra.
33
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Figure 3. Hasse Diagram of S

Definition 2.7 ([10]). Let S be an L-algebra. If S satisfies the following conditions

(2.9) t ≤ s → t

and

(2.10) (s → t) → t = (t → s) → s,

then S is said to be commutative.

Definition 2.8 ([2]). Let (S,→, 1) be an L-algebra. We call J ⊆ S an ideal of S, if
it satisfies the following conditions for all s, t ∈ S,

(I0) 1 ∈ J ,
(I1) s, s → t ∈ J ⇒ t ∈ J ,
(I2) s ∈ J ⇒ (s → t) → t ∈ J ,
(I3) s ∈ J ⇒ t → s, t → (s → t) ∈ J .

Denote by Id(S) the set of all ideals of S. Id(S)∗ := Id(S)−S. Every morphism
on L-algebras h : S → T is said to be a homomorphism, if h(s → t) = h(s) → h(t)
for all s, t ∈ S. Determines an ideal kerh := {s ∈ S|h(s) = 1} of S, the kernel of h,
and S/kerh is isomorphic to the image Imh := h(s) of h.

Example 2.9. In Example 2.2, J1 = {1}, J2 = {h, 1}, J3 = {e, g, 1} and J4 = S
are ideals on S. In Example 2.6, J1 = {1}, J2 = {g, 1}, J3 = {e, g, 1}, J4 = {f, g, 1}
and J5 = S are ideals on S.

Remark 2.10. Let (S,→, 1) be an L-algebra and let J ∈ Id(S). If S satisfies
condition (2.6), then (I2) and (I3) can be omitted.

Theorem 2.11 ([12]). The lattice of ideals of an L-algebra is distributive.

In the following, we denote J → K := max{H|J ∩H ⊆ K}.

Definition 2.12 ([12]). Let S be an L-algebra. A proper ideal B is said to be prime
on S, if for every ideal J either J ⊆ B or J → B ⊆ B.

Denote by PId(S) the set of all prime ideals on S.

Example 2.13. In Example 2.2, J1 = {1} is a prime ideal on S. In Example 2.6,
J1 = {1}, J3 = {e, g, 1} and J4 = {f, g, 1} are prime ideals on S.

Recall that a BCK-algebra is an algebra (S,→, 1) of type (2, 0) satisfying the
following axioms for every s, t, w ∈ S,

(i) (s → t) → ((t → w) → (s → w)) = 1,
(ii) s → ((s → w) → w) = 1,
(iii) s → s = 1,
(iv) s → t = 1 and t → s = 1 imply s = t.
Any BCK-algebra S satisfies condition (2.6), that is, s → (t → w) = t → (s → w)

for any s, t, w ∈ S.

Theorem 2.14 ([3]). Let S be a set. If S is a CKL-algebra, then S is a BCK-
algebra.
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However, the inverse of Theorem 2.14 generally does not hold, and the following
example can illustrate it.

Example 2.15. Let S = {1, e, f, g} be a join semi-lattice with Hasse diagram as
Figure 4. Its implication operation → be defined as Table 4.

Table 4.

→ 1 e f g
1 1 e f g
e 1 1 e 1
f 1 f 1 1
g 1 f e 1

1

g

e f

Figure 4. Hasse Diagram of S

It can be seen that (S,→, 1) is a BCK-algebra. But S is not a CKL-algebra, since
(c → a) → (c → b) ̸= (a → c) → (a → b).

In the following, we study some properties of ideals and prime ideals on CKL-
algebras.

3. Ideals in CKL-algebras

The generation formula of ideals generally play a very important role in the study
of prime ideals. Due to the complexity of the definitions for ideals in L-algebras, it
is difficult to find the generated formula of ideals generated by a set. In this section,
we first give the generation formula of ideals on CKL-algebras. Next, we introduce
a binary operation ∨ on L-algebras, and the characterization such that L-algebras
becomes a join semi-lattice with ∨ is given.

Let S be an L-algebra. An ideal J of S is said to be proper, if J ̸= S. Next, we
give generating formula of ideals on CKL-algebras.

Theorem 3.1. Let S be a CKL-algebra and ∅ ̸= D ⊆ S. Then

⟨D⟩ = {s ∈ S|dn → (· · · → (d1 → s) · · · ) = 1 for some d1, d2, · · · , dn ∈ D}.

Proof. Assume that

E := {s ∈ S|dn → (· · · → (d1 → s) · · · ) = 1 for some d1, · · · , dn ∈ D}.
35
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We first prove that E ∈ Id(S). Obviously, 1 ∈ E. Let s ∈ E and s → t ∈ E. Then
there exist d1, · · · , dn ∈ D and g1, · · · , gm ∈ D such that

dn → (· · · → (d1 → s)...) = 1 and gm → (· · · → (g1 → (s → t)) · · · ) = 1.

Thus we have
1 = gm → (· · · → (g1 → (s → t)) · · · )
= gm → (· · · → (s → (g1 → t)) · · · )
= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
= s → (gm → (· · · → (g1 → t) · · · )).

So s ≤ gm → (· · · → (g1 → t) · · · ). By Proposition 2.3 (1), we get

1 = dn → (· · · → (d1 → s) · · · ) ≤ dn → (· · · → (d1 → (gm → (... → (g1 → t) · · · ))) · · · ).

Since 1 is the greatest element of S, we have

dn → (· · · → (d1 → (gm → (· · · → (g1 → t) · · · ))) · · · ) = 1.

Hence t ∈ E. Therefore E ∈ Id(S). Obviously, D ⊆ E.
We prove that E is the least ideal of S containing D. Let D ⊆ J ∈ Id(S). Assume

s ∈ E. Then there exist d1, · · · , dn ∈ D such that dn → (· · · → (d1 → s) · · · ) = 1 ∈
J . Since D ⊆ J and dn ∈ D, we have dn ∈ J . Thus by (I1), we have

dn−1 → (· · · → (d1 → s) · · · ) ∈ J.

Repeating the above argument, we conclude that s ∈ J . This shows that E ⊆ J . So
E is the least ideal of S containing D. □

From the above theorem, we can get the following corollary.

Corollary 3.2. Let S be a CKL-algebra and J ∈ Id(S). Then ⟨J ∪ {x}⟩ = {s ∈
S|xn → s ∈ J for some n ∈ N} and ⟨x⟩ = {s ∈ S|xn → s = 1 for some n ∈ N}.

Proof. Let S be a CKL-algebra and J ∈ Id(S). Then by Theorem 3.1, we have
⟨J ∪ {x}⟩ = {s ∈ S|jn → (· · · → (j1 → (x → (... → (x → a) · · · ))) · · · ) = 1, ji ∈ J

and i = 1, 2, · · · , n for some n ∈ N}.
Thus jn ≤ jn−1 → (· · · → (j1 → (x → (· · · → (x → a) · · · ))) · · · ). Since jn ∈ J ∈
Id(S). So we have jn−1 → (· · · → (j1 → (x → (· · · → (x → a) · · · ))) · · · ) ∈ J .
Repeating the above argument, we conclude that x → (· · · → (x → a) · · · ) ∈ J .
Hence we can conclude that ⟨J ∪ {x}⟩ = {s ∈ S|xn → s ∈ J for some n ∈ N}.
Obviously, by Theorem 3.1, we have

⟨x⟩ = {s ∈ S|x → (· · · → (x → a) · · · ) = 1} = {s ∈ S|xn → s = 1 for some n ∈ N}.

□

Let S be an L-algebra. We defined binary operation ∨ by s∨ t = (s → t) → t for
any s, t ∈ S. In order to inscribe prime ideal with ∨, we give some properties of the
binary operation ∨ on L-algebras.

Proposition 3.3. Let S be an L-algebra. Then the following hold:
(1) if S is a CKL-algebra, then s∨ t is an upper bound of s and t for any s, t ∈ S,
(2) if S is a commutative L-algebra, then s ∨ t = t ∨ s for any s, t ∈ S.
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Proof. (1) Suppose S is a CKL-algebra. Then for any s, t, w ∈ S, we get

s → (t → w) = t → (s → w).

Thus we have
s → (s ∨ t) = s → ((s → t) → t)

= (s → t) → (s → t)

= 1,

i.e., s ≤ s ∨ t.
t → (s ∨ t) = t → ((s → t) → t)

= (s → t) → (t → t)

= (s → t) → 1

= 1,

i.e., t ≤ s ∨ t.
(2) Suppose S is a commutative L-algebra. Then for any s, t ∈ S, we get (s →

t) → t = (t → s) → s. Thus s ∨ t = t ∨ s. □

In what follows, an ordered set S is said to be a join semi-lattice, if every pair of
elements in S has a supremum.

Example 3.4. Let S = {1, e, f, g} be an L-algebra with Hasse diagram as Figure
5. Its implication operatation → be defined as Table 5.

Table 5.

→ 1 e f g
1 1 e f g
e 1 1 f g
f 1 e 1 g
g 1 e f 1

1

e f h

Figure 5. Hasse Diagram of S

It is easy to check that S is a commutative L-algebra and S is a join semi-lattice.

Remark 3.5. The Example 3.4 show that commutative L-algebras may not lattices.
Then it is not residuated lattices and thus it is not a MV -algebra. It is meaningful
to study commutative L-algebras.

The following proposition states the condition for L-algebras to be a join semi-
lattice.
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Proposition 3.6. If (S,→, 1) is a commutative L-algebra, then it is a join semi-
lattice.

Proof. Suppose S is a commutative L-algebra and we denote binary operation ∨ by
s∨ t = (s → t) → t for any s, t ∈ S. Then by the hypothesis and Proposition 3.3, we
have s ∨ t is an upper bound of s and t. Next, we shall show that s ∨ t is the least
upper bound of s and t. Suppose that s ≤ w and t ≤ w. Then s → w = t → w = 1.
By the hypothesis, we get

(3.1) w = 1 → w = (s → w) → w = (w → s) → s

and

(3.2) w = 1 → w = (t → w) → w = (w → t) → t

Using (3.1) and (3.2), we have

(3.3) w = (w → s) → s = (((w → t) → t) → s) → s.

Set v := (w → t) → t. Then from (3.3), w = (v → s) → s. Using (2.1) and (2.6),
we have 1 = (w → t) → 1 = (w → t) → (t → t) = t → ((w → t) → t). Thus
t ≤ (w → t) → t = v. By Proposition 2.3 (5), (t → s) → s ≤ (v → s) → s = w. So
t ∨ s ≤ w. Since S is a commutative L-algebra, we get s ∨ t = t ∨ s. Hence we have
s ∨ t ≤ w. Therefore we get s ∨ t is the least upper bound of s and t. □

Example 3.7. Let S = {1, e, f, g} be an L-algebra with Hasse diagram as Figure
6. Its implication operation → be defined as Table 6. Define s∨ t = (s → t) → t for
all s, t ∈ S.

Table 6.

→ 1 e f g
1 1 e f g
e 1 1 e e
f 1 1 1 e
g 1 1 e 1

1

e

f g

Figure 6. Hasse Diagram of S

Then S is a commutative L-algebra which is a join semi-lattice.
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However, the inverse of Proposition 3.6 generally does not hold, and the following
example can illustrate it.

Example 3.8. Let S = {1, e, f, g} be a join semi-lattice with Hasse diagram as
Figure 7. Its implication operation → be defined as Table 7. We define s∨ t = (s →
t) → t for any s, t ∈ S.

Table 7.

→ 1 e f g
1 1 e f g
e 1 1 f g
f 1 1 1 g
g 1 1 f 1

1

e

f g

Figure 7. Hasse Diagram of S

It can be seen that (S,→, 1) is an L-algebra. From Figure 7, we can see (S,≤) is a
join semi-lattice. But S is not commutative, since e ∨ f = 1 ̸= e = f ∨ e.

4. Prime ideals in CKL-algebras

In this section, some equivalent characterizations of prime ideals on CKL-algebras
are given. Some properties of prime ideals and maximal ideals on CKL-algebras are
studied. Moreover, we study some properties of prime ideals on commutative L-
algebras.

Proposition 4.1. Let S be an L-algebra. For any J,K ∈ Id(S), we denote M =
{H ∈ Id(S)|J ∩ H ⊆ K}. Then the set M has the greatest element m =

∨
{H ∈

Id(S)|J ∩H ⊆ K}.

Proof. Let J,K ∈ Id(S). Denote M = {H ∈ Id(S)|J ∩H ⊆ K} and m =
∨
{H ∈

Id(S)|J ∩H ⊆ K}. Clearly, for any H ∈ {H ∈ Id(S)|J ∩H ⊆ K}, we have H ⊆ m.
In what following, we prove that m ∈ M , that is m ∩ J ⊆ K. Note for any H ∈ M ,
we have J ∩H ⊆ K. Since lattice of ideals of an L-algebra S is distributive, then
m ∩ J =

∨
{H ∈ Id(S)|J ∩ H ⊆ K} ∩ J =

∨
{H ∩ J ∈ Id(S)|J ∩ H ⊆ K} ⊆ K.

Thus m ∈ M . So m = max{H ∈ Id(S)|J ∩H ⊆ K}. □
39
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Theorem 4.2. Let S be an L-algebra and B ∈ Id(S)∗. Then the following assertions
are equivalent:

(1) B ∈ PId(S),
(2) for all J,K ∈ Id(S), J ∩K ⊆ B implies J ⊆ B or K ⊆ B,
(3) for all s, t ∈ B, ⟨s⟩ ∩ ⟨t⟩ ⊆ B implies s ∈ B or t ∈ B.

Proof. (1)⇒ (2): For all J,K ∈ Id(S) and J ∩K ⊆ B, the following two cases are
discussed.

Case 1. Suppose J ⊆ B. Then (2) is true.
Case 2. Suppose J ⊈ B. Then J → B ⊆ B. Since J → B = max{H|J ∩H ⊆ B}

and J ∩K ⊆ B, K ∈ max{H|J ∩H ⊆ B}. Thus K ⊂ J → B ⊆ B. So K ⊆ B.
(2)⇒ (1): For all J ∈ Id(S), the following two cases are discussed.
Case 1. Suppose J ⊆ B. Then (1) is true.
Case 2. Suppose J ⊈ B. Then we need to prove that J → B ⊆ B. Let

K = J → B = max{H|J ∩H ⊆ B}. Then J ∩K ⊆ B. Thus by (2), we have J ⊆ B
or K ⊆ B. Since J ⊈ B, K = J → B ⊆ B. So (1) is true.

(2)⇒ (3): Suppose (2) holds. Let s, t ∈ S be such that ⟨s⟩ ∩ ⟨t⟩ ⊆ B. Then
⟨s⟩ ⊆ B or ⟨t⟩ ⊆ B. Since s ∈ ⟨s⟩ and t ∈ ⟨t⟩, s ∈ B or t ∈ B.

(3)⇒ (2): Let for all J,K ∈ Id(S), J ∩ K ⊆ B. We need to prove J ⊆ B or
K ⊆ B. Assume that J ⊆ B. Then (2) holds. Assume that J ⊈ B. Then there
exists s ∈ J \B. Thus ⟨s⟩ ⊆ J . For any t ∈ K, ⟨t⟩ ⊆ K. So ⟨s⟩ ∩ ⟨t⟩ ⊆ J ∩K ⊆ B.
By (3), s ∈ B or t ∈ B. But s /∈ B. Hence t ∈ B. Hence K ⊆ B. Therefore (2) is
established. □

In the following we discussion of maximal ideals are prime ideals on CKL-
algebras.

Theorem 4.3. Let S be a CKL-algebra and J ∈ Id(S). Then for any e, f ∈ S, we
have

⟨e⟩ ∩ ⟨f⟩ ⊆ J ⇔ ⟨J ∪ {e}⟩ ∩ ⟨J ∪ {f}⟩ = J .

Proof. (⇐): Suppose ⟨J ∪ {e}⟩∩⟨J ∪ {f}⟩ = J for any e, f ∈ S. Since e ∈ ⟨J ∪ {e}⟩
and f ∈ ⟨J ∪ {f}⟩, we have ⟨e⟩ ⊆ ⟨J ∪ {e}⟩ and ⟨f⟩ ⊆ ⟨J ∪ {f}⟩. Then, it yields

⟨e⟩ ∩ ⟨f⟩ ⊆ ⟨J ∪ {e}⟩ ∩ ⟨J ∪ {f}⟩ = J.

Thus ⟨e⟩ ∩ ⟨f⟩ ⊆ J .
(⇒): Suppose ⟨e⟩ ∩ ⟨f⟩ ⊆ J . Obviously, J ⊆ ⟨J ∪ {e}⟩ ∩ ⟨J ∪ {f}⟩. Let s ∈

⟨J ∪ {e}⟩∩⟨J ∪ {f}⟩. Then s ∈ ⟨J ∪ {e}⟩ and s ∈ ⟨J ∪ {f}⟩. Since J ∈ Id(S), there
exist p, q ∈ N such that ep → s ∈ J and fq → s ∈ J by Corollary 3.2. Thus there
exist p1, p2 ∈ J such that ep → s = p1 and fq → s = p2. So we have

ep → (p1 → s) = p1 → (ep → s) = p1 → p1 = 1,

i.e., p1 → s ∈ ⟨e⟩. Similarly, p2 → s ∈ ⟨f⟩. Since

p1 → s ≤ p2 → (p1 → s) = p1 → (p2 → s) and p2 → s ≤ p1 → (p2 → s),

p1 → (p2 → s) ∈ ⟨e⟩ and p1 → (p2 → s) ∈ ⟨f⟩.

Hence p1 → (p2 → s) ∈ ⟨e⟩ ∩ ⟨f⟩ ⊆ J . Since p1, p2 ∈ J and J ∈ Id(S), we get s ∈ J .
Hence ⟨J ∪ {e}⟩ ∩ ⟨J ∪ {f}⟩ ⊆ J . Therefore ⟨J ∪ {e}⟩ ∩ ⟨J ∪ {f}⟩ = J . □
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Definition 4.4. Let S be an L-algebra. G ∈ Id(S) is said to be maximal on S, if
N ∈ Id(S) such that G ⊂ N ⊂ S, then N = G or N = S.

Example 4.5. In Example 2.2, J3 = {e, g, 1} is a maximal ideal on S.

Denote by MId(S) the set of all maximal ideals on S.

Theorem 4.6. Let S be a CKL-algebra. Then every maximal ideal is prime ideal.

Proof. Let S be a CKL-algebra and G ∈ MId(S). By Theorem 4.2, assume that
⟨s⟩ ∩ ⟨t⟩ ⊆ G for s, t ∈ S. Then by Theorem 4.3,

⟨G ∪ {s}⟩ ∩ ⟨G ∪ {t}⟩ = G.

Let s /∈ G and t /∈ G. By Definition 4.4, we get ⟨G ∪ {s}⟩ = S and ⟨G ∪ {t}⟩ = S.
Thus ⟨G ∪ {s}⟩ ∩ ⟨G ∪ {t}⟩ = S. Theorem 4.3 and G ̸= S yield that ⟨s⟩ ∩ ⟨t⟩ ⊈ G,
which is a contradiction. So s ∈ G or t ∈ G. Hence we have G ∈ PId(S). □

Proposition 4.7. Let S and T be two CKL-algebras and h : S → T a homomor-
phism such that h(S) ∈ Id(T ). If J ∈ PId(T ) and h−1(J) ̸= S, then h−1(J) ∈
PId(S).

Proof. We prove that h−1(J) ∈ Id(S). Since h(1) = 1 ∈ J , we get 1 ∈ h−1(J).
Let s, s → t ∈ h−1(J). Then h(s) ∈ J and h(s → t) = h(s) → h(t) ∈ J . Since
J ∈ Id(T ), we get h(t) ∈ J . Thus t ∈ h−1(J). So h−1(J) ∈ Id(S).

Next we verify h−1(J) ∈ PId(S). Let s, t ∈ S be such that ⟨s⟩ ∩ ⟨t⟩ ⊆ h−1(J).
Assume that a ∈ ⟨h(s)⟩∩⟨h(t)⟩. Then there exist p, q ∈ N such that h(s)q → a = 1 ∈
J and h(t)p → a = 1 ∈ J . Since h(s) ∈ h(S) and h(S) ∈ Id(T ), which implies that
a ∈ h(S). Thus a = h(b) for some b ∈ S. Moreover, h(sq → b) = h(tp → b) = 1 ∈ J ,
since h is a homomorphism. So we have

sq → b ∈ h−1(J) and tp → b ∈ h−1(J), i.e.,

b ∈
〈
h−1(J) ∪ {s}

〉
∩
〈
h−1(J) ∪ {t}

〉
.

Since ⟨s⟩ ∩ ⟨t⟩ ⊆ h−1(J), by Theorem 4.3, we get b ∈ h−1(J), i.e., a = h(b) ∈ J .
Hence ⟨h(s)⟩ ∩ ⟨h(t)⟩ ⊆ J . Since J ∈ PId(T ), we get that ⟨h(s)⟩ ⊆ J or ⟨h(t)⟩ ⊆ J .
Hence h(s) ∈ J or h(t) ∈ J . Therefore s ∈ h−1(J) or t ∈ h−1(J). By Theorem 4.2,
we can concludes that h−1(J) is a prime ideal of S □

Proposition 4.8. Let S be a CKL-algebra. Then Id(S) is a chain iff every proper
ideal of S is prime.

Proof. (⇒): Suppose Id(S) is a chain. Let J ∈ Id(S)∗ and there exist e, f ∈ S
such that ⟨e⟩ ∩ ⟨f⟩ ⊆ J . Since ⟨e⟩ and ⟨f⟩ are ideals of S, by the hypothesis, we
have either ⟨e⟩ ⊆ ⟨f⟩ or ⟨f⟩ ⊆ ⟨e⟩. Then it concludes that e ∈ J or f ∈ J . Thus
J ∈ PId(S).

(⇐): Suppose every proper ideal of S is prime. Let J and K be any two proper
ideals of S. We verify J ⊆ K or K ⊆ J . Assume that J ⊈ K and K ⊈ J . Then there
exist j ∈ J −K and k ∈ K−J . Thus ⟨j⟩∩ ⟨k⟩ ⊆ J ∩K. Since S ̸= J ∩K ∈ PId(S),
we have ⟨j⟩ ⊆ J ∩K or ⟨k⟩ ⊆ J ∩K. So we have j ⊆ J ∩K or k ⊆ J ∩K, which is
a contradiction. Hence J ⊆ K or K ⊆ J . Therefore Id(S) is a chain. □
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In the following we focus on some properties of commutative L-algebras.

Proposition 4.9. Let (S,→, 1) be a commutative L-algebra. For any s, t, w ∈ S,
we have

(1) s → (t ∨ w) = (t → w) → (s → w),
(2) s ≤ t implies s ∨ t = t,
(3) w ≤ s and s → w ≤ t → w imply t ≤ s.

Proof. (1) Let s, t, w ∈ S. Then by Proposition 2.3(4), we have

s → (t ∨ w) = s → ((t → w) → w) = (t → w) → (s → w).

(2) Let s, t ∈ S be such that s ≤ t. Then s → t = 1. Thus t = 1 → t = (s →
t) → t = s ∨ t.

(3) Let s, t, w ∈ S be such that w ≤ s and s → w ≤ t → w. Then w → s = 1 and
(s → w) → (t → w) = 1. Thus we get

t → s = t → (1 → s)
= t → ((w → s) → s)
= t → ((s → w) → w)
= (s → w) → (t → w)
= 1.

So we have t ≤ s. □

Definition 4.10. Let S be an L-algebra. If there exists r ∈ S such that r ≤ s and
r ≤ t for all s, t ∈ S, then S is said to be down-directed.

The real unit interval [0, 1] = {s ∈ R|0 ≤ s ≤ 1}, and for all s, t ∈ [0, 1]. Let
s ⊕ t := min(1, s + t) and s′ := 1 − s. It is easy to see that ([0, 1],⊕,′ , 0) is an
MV -algebra. Then for any s, t, w ∈ (0, 1], we have:

(1) s⊕ (t⊕ w) = (s⊕ t)⊕ w,
(2) s⊕ t = t⊕ s,
(3 )(s′ ⊕ t)′ ⊕ t = (t′ ⊕ s)′ ⊕ s.

Example 4.11. Let S = (0, 1] ⊆ R. Its implication operation → is given by

(4.1) s → t :=

{
s′ ⊕ t for any s ∈ S − {1}
t s = 1,

where s ⊕ t := min(1, s + t) and s′ := 1 − s denotes the complement of s, for any
t ∈ S. It is easy to check that for any s, t ∈ S, we have:

(i) if s ∈ S, then 1 → s = s, s → 1 = 1, s → s = 1,
(ii) if s = 1, then we get

(s → t) → (s → w) = (1 → t) → (1 → w) = t → w

and
(t → s) → (t → w) = (t → 1) → (t → w) = 1 → (t → w) = t → w,

if s ̸= 1, then we have
(s → t) → (s → w) = (s′ ⊕ t)′ ⊕ (s′ ⊕ w)

= [(s′ ⊕ t)′ ⊕ s′]⊕ w
= [(t⊕ s′)′ ⊕ s′]⊕ w
= [(s⊕ t′)′ ⊕ t′]⊕ w
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= (s⊕ t′)′ ⊕ (t′ ⊕ w)
= (t′ ⊕ s)′ ⊕ (t′ ⊕ w)
= (t → s) → (t → w),

(iii) if s = 1, then we get

(s → t) → t = (1 → t) → t = t → t = 1

and
(t → s) → s = (t → 1) → 1 = 1 → 1 = 1,

if s ̸= 1, then (s → t) → t = (s′ ⊕ t)′ ⊕ t = (t′ ⊕ s)′ ⊕ s = (t → s) → s.
Then S is a commutative L-algebra.

Remark 4.12. The Example 4.11 shows that a commutative L-algebra can be
a lattice and thus be down-directed, but it is not an MV -algebra because it is
unbounded.

In what follows, we consider how this ∧-operation gives on commutative L-
algebras. Next, we go through definition of down-directed on L-algebras and give
∧-operation on commutative L-algebras.

Proposition 4.13. If S is a down-directed commutative L-algebra, then for any
s, t ∈ S, s∧ t := [(s → r)∨ (t → r)] → r is the greatest lower bound of s and t where
r ≤ s, t.

Proof. Suppose S is a down-directed commutative L-algebra and let r ≤ s, t. We
first prove that s ∧ t is a lower bound of s and t. Obviously, r ≤ s ∨ t. By the
hypothesis, we have s → r ≤ (s → r) ∨ (t → r). Then Proposition 2.3 (5),

[(s → r) ∨ (t → r)] → r ≤ (s → r) → r = s ∨ r = s.

We concludes that s∧ t ≤ s. Similarly, we get s∧ t ≤ t. Thus s∧ t is a lower bound
of s and t. Next we prove that s ∧ t is the greatest lower bound of s and t. Let
z ≤ s, t. Then by Proposition 2.3 (5), we have s → r ≤ z → r and t → r ≤ z → r.
Thus (s → r) ∨ (t → r) ≤ z → r. So we get

z ≤ z ∨ r = (z → r) → r ≤ [(s → r) ∨ (t → r)] → r = s ∧ t.

Hence s ∧ t is the greatest lower bound of s and t. □

Proposition 4.14. Let S be a commutative L-algebra. For any s, t, w ∈ S, we have
(1) s ∨ t → w = inf(s → w, t → w),
(2) (s → t) ∨ (t → s) = 1,

if S is a down-directed, then we have
(3) s → t ∧ w = (s → t) ∧ (s → w),
(4) s → s ∧ t = s → t,
(5) s ∧ t → w = (s → w) ∨ (t → w).

Proof. (1) We first prove that s ∨ t → w is a lower bound of s → w and t → w.
Since S is a commutative L-algebra, we have s, t ≤ s ∨ t. Then by Proposition 2.3
(5), we have

s ∨ t → w ≤ s → w and s ∨ t → w ≤ t → w.

Thus s∨ t → w is a lower bound for s → w and t → w. Next we prove that s∨ t → w
is the greatest lower bound of s → w and t → w. Let there exist r ∈ S be such
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that r ≤ s → w and t → w. Then by (2.6), s ≤ r → w and t ≤ r → w. Thus
s ∨ t ≤ r → w. So r ≤ s ∨ t → w. Hence s ∨ t → w is the greatest lower bound of
s → w and t → w.

(2) Let s, t, w ∈ S. Since S is a commutative L-algebra, we have

(s → t) ∨ (t → s) = ((s → t) → (t → s)) → (t → s)

= ((s → (s ∧ t)) → (t → (s ∧ t))) → (t → s)

= (t → (s → (s ∧ t)) → (s ∧ t)) → (t → s)

= (t → ((s ∧ t) → s) → s) → (t → s)

= (t → (1 → s)) → (t → s)

= (t → s) → (t → s)

= 1.

Now suppose S is a down-directed.
(3) Let s, t, w ∈ S such that r ≤ t, w. Then by the hypothesis, we get

t ∧ w = ((t → r) ∨ (w → r)) → r.

Since r ≤ t, we have (t → r) → r = (r → t) → t = 1 → t = t. Similarly, we get
(w → r) → r = w. Thus we have

s → (t ∧ w) = s → [((t → r) ∨ (w → r)) → r]

= ((t → r) ∨ (w → r)) → (s → r)

= ((t → r) ∨ (s → r)) ∧ ((w → r) ∨ (s → r))

= (s → ((t → r) → r)) ∧ (s → ((w → r) → r))

= (s → t) ∧ (s → w).

(4) It is immediately we set t by s and w by t in (3), then

s → s ∧ t = (s → s) ∧ (s → t) = 1 ∧ (s → t) = s → t.

(5) We first prove that s∧t → w is a upper bound of s → w and t → w. Since S is
a down-directed, we get s∧t ≤ s, t. Then s∧t → w ≥ s → w and s∧t → w ≥ t → w,
where w ≤ s, t. Thus (s ∧ t) → w is a upper bound of s → w and t → w. Next we
prove that s ∧ t → w is the least upper bound of s → w and t → w. Let v ∈ S
be such that w ≤ v and s → w, t → w ≤ v. Then (s → w) ∨ (t → w) ≤ v, i.e.,
v → w ≤ ((s → w) ∨ (t → w)) → w. Thus (s ∧ t) → w ≤ (v → w) → w. Since
w ≤ v, we get w → v = 1. So v = 1 → v = (w → v) → v = (v → w) → w.
Hence s ∧ t → w ≤ v. Therefore s ∧ t → w is the least upper bound of s → w and
t → w. □

Lemma 4.15. Let S be a commutative L-algebra. For any e, f ∈ S, we have
(1) e ≤ f implies ⟨f⟩ ⊆ ⟨e⟩,
(2) ⟨e ∨ f⟩ = ⟨e⟩ ∩ ⟨f⟩.

Proof. (1) Suppose e ≤ f and let s ∈ ⟨f⟩. We need prove that s ∈ ⟨e⟩. Since e ≤ f ,
by (2.4), f → s ≤ e → s. Then f → (f → s) ≤ f → (e → s) ≤ e → (e → s),
i.e., f2 → s ≤ e2 → s. Repeating the above argument, we conclude that fn → s ≤
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en → s. Since fn → s = 1 and 1 is the greatest element of S, en → s = 1. Thus by
Corollary 3.2, s ∈ ⟨e⟩. So ⟨f⟩ ⊆ ⟨e⟩.

(2) Since e, f ≤ e ∨ f , ⟨e ∨ f⟩ ⊆ ⟨e⟩ and ⟨e ∨ f⟩ ⊆ ⟨f⟩ by (1). Then ⟨e ∨ f⟩ ⊆
⟨e⟩ ∩ ⟨f⟩. Conversely, let s ∈ ⟨e⟩ ∩ ⟨f⟩. Then s ∈ ⟨e⟩ and s ∈ ⟨f⟩. Thus en → s =
fn → s = 1. Since S is a commutative L-algebra, by Proposition 4.14, we have

(e ∨ f)n → s = (en → s) ∧ (fn → s) = 1 ∧ 1 = 1.

So s ∈ ⟨e ∨ f⟩ by Corollary 3.2. Hence ⟨e⟩ ∩ ⟨f⟩ ⊆ ⟨e ∨ f⟩. Therefore ⟨e ∨ f⟩ =
⟨e⟩ ∩ ⟨f⟩. □

Next we study the equivalence inscription of prime ideals and some properties on
commutative L-algebras.

Theorem 4.16. Let S be a commutative L-algebra and B ∈ Id(S)∗. Then the
following assertions are equivalent:

(1) B ∈ PId(S),
(2) s ∨ t ∈ B implies s ∈ B or t ∈ B for all s, t ∈ S.

Proof. (1)⇒(2): Suppose the condition (1) holds. By Theorem 4.2, we have J,K ∈
Id(S), J ∩K ⊆ B implies J ⊆ B or K ⊆ B. Let s, t ∈ S such that s ∨ t ∈ B. Then
⟨s⟩ ∩ ⟨t⟩ ⊆ B by Lemma 4.15 (2). Then ⟨s⟩ ⊆ B or ⟨t⟩ ⊆ B. Thus s ∈ B or t ∈ B
for all s, t ∈ S.

(2) ⇒(1): Suppose the condition (2) holds. Let J,K ∈ Id(S) such that J∩K ⊆ B.
Assume that J ⊈ B. Then there exists e ∈ S such that e ∈ J and e /∈ B. Let f be an
arbitrary element onK. Obviously, ⟨e⟩∩⟨f⟩ ⊆ J∩K ⊆ B. Thus ⟨e ∨ f⟩ ⊆ J∩K ⊆ B
by Lemma 4.15 (2). So e ∨ f ∈ B. Since e /∈ B, we have f ∈ B. Hence K ⊆ B.
Therefore by Theorem 4.2, we can get B ∈ PId(S). □

Proposition 4.17. Let S be a commutative L-algebra and J ∈ Id(S)∗. Then J ∈
PId(S) iff s → t ∈ J or t → s ∈ J for all s, t ∈ S.

Proof. (⇒): Suppose J ∈ PId(S). Since S is a commutative L-algebra. Then by
Proposition 4.14 (2), we have (s → t)∨ (t → s) = 1 ∈ J for all s, t ∈ S. Thus we get
either s → t ∈ J or t → s ∈ J by Theorem 4.16.

(⇐): Suppose s → t ∈ J or t → s ∈ J for all s, t ∈ S. Let s ∨ t ∈ J . We need
to prove that t ∈ J or s ∈ J . Assume that s → t ∈ J . Since J ∈ Id(S), s → t ∈ J
and (s → t) → t ∈ J . Then t ∈ J . Similarly, assume that t → s ∈ J . Then we get
s ∈ J . Thus J ∈ PId(S) by Theorem 4.16. □

From Proposition 4.17, we get the following.

Corollary 4.18. Let S be a commutative L-algebra and J ∈ PId(S). If K ∈ Id(S)∗

such that J ⊆ K, then K ∈ PId(S).

Theorem 4.19. Let S be a commutative L-algebra with |S| ≥ 2. Then the following
conditions are equivalent:

(1) Id(S)∗ ⊆ PId(S),
(2) {1} ∈ PId(S),
(3) S is a totally ordered set with respect to L-ordering.
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Proof. (1)⇒(2): It is obvious.
(2)⇒ (3): Suppose {1} ∈ PId(S) and {1} is prime. Then by Proposition 4.17,

we get that either s → t ∈ {1} or t → s ∈ {1} for any s, t ∈ S. Thus s → t = 1 or
t → s = 1. So s ≤ t or t ≤ s. Hence S is totally ordered.

(3)⇒(1): Suppose S is a totally ordered set with respect to L-ordering “ ≤ ”
and Suppose J ∈ Id(S)∗. Let there exist s, t ∈ S be such that s → t /∈ J . Since
J ∈ Id(S)∗. Then we have s → t ̸= 1. Thus s ≰ t. So t ≤ s. Hence for any s, t ∈ S,
we have s ≤ t or t ≤ w. Therefore s → t = 1 ∈ J or t → s = 1 ∈ J . By Proposition
4.17, we concludes that J ∈ PId(S). □

5. The space of prime ideals of commutative L-algebras

In this section, some topological properties about the space of all prime ideals on
commutative L-algebras are studied. A necessary and sufficient condition is derived
for a prime ideal of a commutative L-algebra to become maximal.

Theorem 5.1. S be a commutative L-algebra. Then every maximal ideal is prime
ideal.

Proof. Let G ∈ MId(S). We prove that G ∈ PId(S). Let s, t ∈ G be such that
s ∨ t ∈ G. Then ⟨s ∨ t⟩ ⊆ G. By Lemma 4.15 (2), we have ⟨s ∨ t⟩ = ⟨s⟩ ∩ ⟨t⟩. Thus
⟨s⟩ ∩ ⟨t⟩ ⊆ G. So by Theorem 4.3, we have

⟨G ∪ {s}⟩ ∩ ⟨G ∪ {t}⟩ = G.

Since e /∈ G, we have e /∈ ⟨G ∪ {s}⟩ or e /∈ ⟨G ∪ {t}⟩. It follows that ⟨G ∪ {s}⟩ = G
or ⟨G ∪ {t}⟩ = G since G is maximal. Hence s ∈ G or t ∈ G. Therefore G ∈
PId(S). □

Theorem 5.2. Let S be a commutative L-algebra and e ∈ S. If J ∈ Id(S) such
that e /∈ J , then there exists B ∈ PId(S) such that e /∈ B and J ⊆ B.

Proof. Let e ∈ S and suppose J ∈ Id(S) such that e /∈ J . Denote K = {K ∈
Id(S)|e /∈ K and J ⊆ K}. Then K ̸= ∅ and K is a partially order set under
inclusion relation ⊆. Assume that {Ki|i ∈ I} is a chain in K . We can easily check
that e /∈

⋃
{Ki|i ∈ I} and J ⊆

⋃
{Ki|i ∈ I}. In what following, we prove that⋃

{Ki|i ∈ I} is a ideal of S. Denote K =
⋃
{Ki|i ∈ I}. Obviously, 1 ∈ K. For any

s, t ∈ S, s ∈ K and s → t ∈ K, there exists i ∈ I such that s ∈ Ki and there exists
j ∈ I such that s → t ∈ Kj . Since {Ki|i ∈ I} is a chain in K , we have Ki ⊆ Kj

or Kj ⊆ Ki. Assume that Ki ⊆ Kj . Then x ∈ Kj . Since Kj ∈ Id(S), we have
y ∈ Kj . Thus y ∈ K. For any s ∈ S, s ∈ K, there exists i ∈ I such that s ∈ Ki.
Since Ki ∈ Id(S), we have (s → t) → t ∈ Ki, t → s ∈ Ki and s → (t → s) ∈ Ki.
So (s → t) → t ∈ K, t → s ∈ K and s → (t → s) ∈ K. Hence K ∈ Id(S).
Therefore

⋃
{Ki|i ∈ I} ∈ K and thus it is the upper bound for this chain. By

Zorn’s Lemma, there exists a maximum element M in K . By Theorem 5.1, we get
M ∈ PId(S). □

From Theorem 5.2, we can directly obtain the following corollary.

Corollary 5.3. Let S be a commutative L-algebra and 1 ̸= e ∈ S. Then there exists
B ∈ PId(S) such that e /∈ B.
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Let S be a commutative L-algebra and Spec(S) denote the set of all prime ideals
of S. For any D ⊆ S, let R(D) = {B ∈ Spec(S)|D ⊈ B} and for any s ∈ S,
R(s) = R({s}). Then we have the following observations:

Lemma 5.4. Let S be a commutative L-algebra. For any s, t ∈ S, the followings
hold:

(1) R(s) ∩R(t) = R(s ∨ t),
(2) R(s) = ∅ ⇔ s = 1,
(3) if S is a down-directed, then R(s) ∪R(t) = R(s ∧ t).

Proof. (1) Let B ∈ Spec(S) be such that B ∈ R(s) ∩R(t). Then we have B ∈ R(s)
and B ∈ R(t). Thus s /∈ B and t /∈ B. Since B is prime, we get s ∨ t /∈ B. So
B ∈ R(s ∨ t). Hence R(s) ∩R(t) ⊆ R(s ∨ t).

Conversely, let B ∈ Spec(S) and let B ∈ R(s∨ t). Then s∨ t /∈ B. If s ∈ B, then
s ∨ t ∈ B because of s ≤ s ∨ t. Thus it yields that s /∈ B. So B ∈ R(s). Similarly,
we get B ∈ R(t). Hence B ∈ R(s) ∩ R(t). Therefore R(s ∨ t) ⊆ R(s) ∩ R(t). We
concludes that R(s) ∩R(t) = R(s ∨ t).

(2) It is clear, since {1} ⊆ B for all B ∈ Spec(S).
(3) Suppose S is a down-directed and let B ∈ Spec(S) be such that B ∈ R(s) ∪

R(t). Then B ∈ R(s) or B ∈ R(t). Thus s /∈ B or t /∈ B. If s ∧ t ∈ B, then s ∈ B
and t ∈ B. So s ∧ t /∈ B. Hence B ∈ R(s ∧ t). Therefore R(s) ∪R(t) ⊆ R(s ∧ t).

Conversely, let B ∈ Spec(S) be such that B ∈ R(s ∧ t). Then s ∧ t /∈ B.
Since S is a down-directed, we have s ∧ t = inf{s, t} by Proposition 4.13. Thus
s /∈ B and t /∈ B. So B ∈ R(s) ∪ R(t). Hence R(s ∧ t) ⊆ R(s) ∪ R(t). Therefore
R(s) ∪R(t) = R(s ∧ t). □

Proposition 5.5. Let S be a commutative L-algebra. Then
⋃
s∈S

R(s) = Spec(S).

Proof. Let B ∈ Spec(S). Since B ∈ Id(S)∗, there exists e ∈ S such that e /∈ B.
Then B ∈ R(e) ⊆

⋃
s∈S

R(s). Thus Spec(S) ⊆
⋃
s∈S

R(s). Clearly,
⋃
s∈S

R(s) ⊆ Spec(S).

So
⋃
s∈S

R(s) = Spec(S). □

By Proposition 5.5, it can be seen that {R(s)|s ∈ S} forms a covering of Spec(S).
Then {R(s)|s ∈ S} is a topology consisting of open bases on Spec(S), named hull-
kernel technology. In what follows, we will discuss some properties about this topol-
ogy.

Example 5.6. In Example 2.6, Spec(S) = {{1}, {e, g, 1}, {f, g, 1}}. R(0) = {B ∈
Spec(S)|0 /∈ B} is a hull-kernel technology on S.

Lemma 5.7. Let S be a commutative L-algebra. Then the followings hold:
(1) for any s ∈ S, R(⟨s⟩) = R(s),
(2) for any J,K ∈ Id(S), R(J) ∩R(K) = R(J ∩K).

Proof. (1) Let B ∈ Spec(S) be such that B ∈ R(⟨s⟩). Then ⟨s⟩ ⊈ B. Thus s /∈ B.
So B ∈ R(s). Hence R(⟨s⟩) ⊆ R(s).

Conversely, let B ∈ R(s). Then s /∈ B. Thus ⟨s⟩ ⊈ B. So B ∈ R(⟨s⟩). Hence
R(s) ⊆ R(⟨s⟩). Therefore R(⟨s⟩) = R(s).
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(2) Let B ∈ Spec(S) be an arbitrary prime ideal and let B ∈ R(J)∩R(K). Then
we get B ∈ R(J) and B ∈ R(K). Thus J ⊈ B and K ⊈ B. So there exist s ∈ J and
t ∈ J such that s /∈ B and t /∈ B. So s∨ t /∈ B. Since s ∈ J and t ∈ J , s∨ t ∈ J ∩K.
Hence J ∩K ⊈ B which means B ∈ R(J ∩K). Therefore R(J)∩R(K) ⊆ R(J ∩K).

Conversely, we need to prove that R(J ∩K) ⊆ R(J)∩R(K). Let B ∈ R(J ∩K).
Then J ∩K /∈ B. Thus we get J /∈ B and K /∈ B, i.e., B ∈ R(J) and B ∈ R(K). So
we get B ∈ R(J)∩R(K). Hence R(J∩K) ⊆ R(J)∩R(K). Therefore R(J)∩R(K) =
R(J ∩K). □

Lemma 5.8. Let S be a commutative L-algebra, s ∈ S and J ∈ Id(S). Then s ∈ J
iff R(s) ⊆ R(J).

Proof. (⇒): Suppose s ∈ J and and let B ∈ Spec(S) such that B ∈ R(s). Then
s /∈ B. Thus J ⊈ B. So B ∈ R(J).

(⇐): Suppose R(s) ⊆ R(J). Assume that s /∈ J . Then there exists B ∈ Spec(S)
such that s /∈ B and J ⊆ B by Theorem 5.2. Thus B ∈ R(s) and B ⊈ R(J). So
R(s) ⊈ R(J), which is a contradiction. Hence s ∈ J . □

Proposition 5.9. Let S be a commutative L-algebra. Then for any s ∈ S, R(S) is
compact in Spec(S).

Proof. Let s ∈ S and let D ⊆ S be such that R(s) ⊆
⋃
t∈D

R(t). Assume that J = ⟨D⟩

and s /∈ J . Then there exists B ∈ PId(S) such that J ⊆ B and s /∈ J by Theorem
5.2. Thus B ∈ R(s) ⊆

⋃
t∈D

R(t). So t /∈ B for some t ∈ D, which is a contradiction,

because of t ∈ D ⊆ J ⊆ B. Hence s ∈ J . Therefore there exist d1, d2, ..., dn ∈ D
such that

dn → (· · · → (d1 → s) · · · ) = 1.

Let B ∈ R(s). Then s /∈ B. Assume that dj ∈ B for all j = 1, 2, · · · , n. Since
dn → (· · · → (d1 → s) · · · ) = 1 ∈ B and B ∈ Id(S), we get s ∈ B, which is a
contradiction. Then dj /∈ B for some j = 1, 2, · · · , n, i.e., B ∈ R(dj) for some dj .

Thus B ∈
⋃
j=1

R(dj). So R(s) ⊆
n⋃

j=1

R(dj), which is a finite subcover of R(s). Hence

R(s) is compact in Spec(S). Therefore for each s ∈ S, R(s) is a compact open subset
of Spec(S). □

Theorem 5.10. Let S be a down-directed commutative L-algebra and X be a com-
pact open subset of Spec(S). Then X = R(s) for some s ∈ S.

Proof. Let X be a compact open subset of Spec(S). Since X is open, we get X =⋃
d∈D

R(d) for some D ⊆ S. Since X is compact, there exist d1, d2, · · · , dn ∈ D such

that

X =
n⋃

j=1

R(dj) = R(
n∧

j=1

dj).

Then X = R(s) for some s ∈ S. □
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Corollary 5.11. For any down-directed commutative L-algebra S, the set {R(s)|s ∈
S} is an open base for the prime space Spec(S).

Theorem 5.12. Let S be a down-directed commutative L-algebra. Then Spec(S) is
a T0-space.

Proof. Let B,C ∈ PId(S). Without loss of generality assume that B ⊈ C. Choose
s ∈ S such that s ∈ B and s /∈ C. Then B /∈ R(s) and C ∈ R(s). Thus Spec(S) is
a T0-space. □

Based on the Theorem 5.12, we can directly obtain the following corollary.

Corollary 5.13. The map s 7→ R0(s) is an anti-homomorphism from S onto the
lattice of all compact open subsets on Spec(S).

For any D ⊆ S, denote F (D) = {B ∈ Spec(S)|D ⊆ B}. Then clearly F (D) =
Spec(S) − R(D). Thus F (D) is a closed set in Spec(S). Also every closed set in
Spec(S) is of the form F (D) for some D ⊆ S. So we have the following.

Proposition 5.14. The closure of any T ⊆ Spec(S) is given by T̄ = F (
⋂

B∈T

B).

Proof. Let T ⊆ Spec(S). Now we prove that F (
⋂

B∈T

B) is a closed set containing

T . Let C ∈ T . Then
⋂

B∈T

B ⊆ C. Thus C ∈ F (
⋂

B∈T

B). So F (
⋂

B∈T

B) is a closed

set containing T . Next we prove that F (
⋂

B∈T

B) is the smallest closed set containing

T . Let X be any closed set in Spec(S). Then X = F (D) for some D ⊆ S. Since
T ⊆ X = F (D), we have D ⊆ B for all B ∈ T . Thus D ⊆

⋂
B∈T

B. So F (
⋂

B∈T

B) ⊆

F (D) = X. Hence F (
⋂

B∈T

B) is the smallest closed set containing T . Therefore it

concludes that T̄ = F (
⋂

B∈T

B). □

Theorem 5.15. For any down-directed commutative L-algebra S, Spec(S) is a T1-
space iff every prime ideal is maximal.

Proof. (⇒): Suppose Spec(S) is a T1-space and let B ∈ PId(S). Assume that there
exists S ̸= C ∈ Id(S) such that B ⊆ C. Since Spec(S) is a T1-space, there exist
two basic open sets R(s) and R(t) such that B ∈ R(s)−R(t) and C ∈ R(t)−R(s).
Since B /∈ R(t), we have t ∈ B ⊂ C, which is a contradiction to that C ∈ R(t).
Then B ∈ MId(S).

(⇐): Suppose every prime ideal is maximal. Let B1 and B2 be two distinct
elements of Spec(S). Then by the hypothesis, B1, B2 ∈ MId(S). Thus B1 ⊈ B2

and B2 ⊈ B1. So there exist e, f ∈ S such that e ∈ B1−B2 and f ∈ B2−B1. Hence
B1 ∈ R(f)−R(e) and B2 ∈ R(e)−R(f). Therefore Spec(S) is a T1-space. □

6. Conclusion

In order to study some properties of prime ideals, we gave the generated formula
of ideals on CKL-algebras and we defined the ∨-operation on L-algebras. Next, we
studied the relationship between prime ideals and maximal ideals on CKL-algebras.
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Such as, we proved that maximal ideals is prime ideals on CKL-algebras. We gave a
counterexample to show that commutative L-algebras can be not residuated lattices,
much lessMV -algebras. In this paper, we introduced commutative L-algebras, which
is a true extension of MV -algebras. Furthermore, we studied prime ideals and gave
two equivalent characterizations of prime ideals on commutative L-algebras. Finally,
we studied some topological spaces composed by prime ideals on commutative L-
algebras. For example, we proved that Space(S) is a T0-space. When Space(S) is a
T1-space, prime ideals and maximal ideals coincide. In our future work, we generalize
the important conclusions of this paper, which studies prime and maximal ideals on
L-algebras, to pseudo L-algebras. In addition to extending those to EL-algebra, we
will discuss applications of prime ideals, such as the continuity of topological spaces,
and if the topological space is continuous, then we can further discuss its analytic
structure.
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