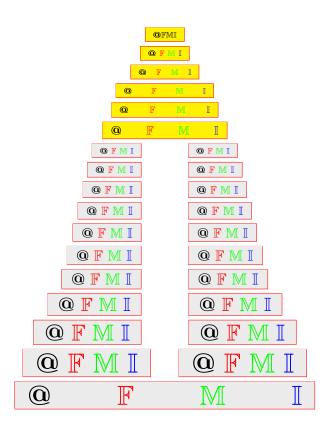
Annals of Fuzzy Mathematics and Informatics
Volume 27, No. 1, (February 2024) pp. 1–27
ISSN: 2093–9310 (print version)
ISSN: 2287–6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2024.27.1.1

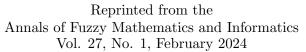
@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Γ -*KU*-algebras

J. I. BAEK, SAMY M. MOSTAFA, FATEMA F. KAREEM, S. H. HAN, K. HUR





Annals of Fuzzy Mathematics and Informatics Volume 27, No. 1, (February 2024) pp. 1–27 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2024.27.1.1

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Γ -*KU*-algebras

J. I. BAEK, SAMY M. MOSTAFA, FATEMA F. KAREEM, S. H. HAN, K. HUR

Received 9 October 2023; Revised 1 November 2023; Accepted 9 November 2023

ABSTRACT. In this paper, we introduce the concepts of positive implicative [resp. implicative and commutative] Γ -KU-algebras, and obtain their some properties (including characterizations) respectively and some relationships among them. Next, we propose the notions of positive implicative [resp. implicative and commutative] Γ -ideals of a Γ -KU-algebra, and deal with their some properties (including characterizations) respectively and some relationships among them. Finally, we define a topological Γ -KU-algebra and discuss its various topological structures.

2020 AMS Classification: 03G25, 06F35, 03E72, 08A35

Keywords: Γ -KU-algebra, Γ -KU-subalgebra, Γ -KU-ideal, Topological Γ -KU-algebra.

Corresponding Author: Samy M. Mostafa (samymostafa@yahoo.com), S. H. Han (shhan235@wku.ac.kr)

1. INTRODUCTION

In 1978, Iséki and Tanaka [1] introduced the notion of BCK-algebras as a generalization of *I*-algebras proposed by Imai and Iséki [2] in 1966. Iséki [3] defined BCI-algebras which is a proper subclass of BCK-algebras. Some researchers [4, 5, 6, 7, 8] studied properties of ideals which important role in BCK-algebras and BCI-algebras respectively. Furthermore, Dudek and Zhang [9] introduced a concept of BCC-algebras. Also, some researchers [10, 11, 12, 13] investigated topological structures on BCK-algebras and BCI-algebras respectively.

In 2009, Prabpayak and Leerawat [14] defined a KU-algebra as new logical algebras and studied properties ideals and congruences in KU-algebras. Also, They [15] dealt with isomorphisms in KU-algebras. After then, many researchers [16, 17, 18, 19, 20, 21, 22] investigated various properties in KU-algebras. Recently, Hur et al. [23] introduced the notion of square root fuzzy sets and obtained some properties

of square root fuzzy ideals of a *KU*-algebra. *KU*-algebras were studied by many mathematicians and applied to group theory, functional analysis, probability theory, topology, graph theory and computer science etc.

In 1981, Sen [24] proposed the notion of Γ -semigroups as a generalization of semigroups. Rao [25] introduced the concept of Γ -groups as generalization of groups and studied it various properties. Also, Rao [26] proposed the notion of Γ -semirings of a generalization of semirings. After then, Kaushik and Moin [27] investigated bi- Γ -ideals in a Γ -semiring, Rao and Venkateswarlu [28] studied some properties related to regular Γ -incline and field Γ -semiring.

In 2022, Saeid et al. [29] introduced the concept of Γ -BCK-algebras as a generalization of BCK-algebras and dealt with some properties of subalgebras, ideals, closed ideals, normal subalgebras and normal ideals in Γ -BCK-algebras and quotient Γ -BCK-algebras. After that time, Shi et al. [30] defined positive implicative [resp. implicative and commutative] Γ -BCK-algebras and positive implicative [resp. implicative and commutative] Γ -BCK-algebras and studied their some properties respectively and some relationships among them. Also, Shi et al. [31] defined a topological Γ -BCK-algebra and studied some of its topological structures.

It is the aim of our study to introduce the notion of Γ -KU-algebras as a generalization of KU-algebras, and define positive implicative [resp. implicative and commutative] Γ -KU-algebras and discuss their some properties (including characterizations) respectively and some relationships among them. Also, we define positive implicative [resp. implicative and commutative] Γ -ideals of a Γ -KU-algebra, and obtain their some properties (including characterizations) respectively and some relationships among them. Furthermore, we introduce the concept of topological Γ -KU-algebras and study its various topological structures.

2. Preliminaries

We recall some definitions needed in next sections. An algebra X = (X, *, 0) means a nonempty set X together with a binary operation * and a special element 0.

Definition 2.1 ([14]). An algebra X is called a *KU*-algebra, if it satisfies the following axioms: for any $x, y, z \in X$,

 $\begin{array}{l} (\mathrm{KU}_1) \ (x \ast y) \ast [(y \ast z)] \ast (x \ast z)] = 0, \\ (\mathrm{KU}_2) \ x \ast 0 = 0, \\ (\mathrm{KU}_3) \ 0 \ast x = x, \\ (\mathrm{KU}_4) \ x \ast y = 0 \ \text{and} \ y \ast x = 0 \ \text{imply} \ x = y. \end{array}$

In KU-algebra X, we define a binary operation \leq on X as follows: for any $x, y \in X$,

$$x \leq y$$
 if and only if $y * x = 0$.

Definition 2.2. Let X be a KU-algebra. Then X is said to be:

(i) KU-positive implicative [19], if (z * x) * (z * y) = z * (x * y) for any $x, y, z \in X$,

(ii) KU-commutative [20], if (y * x) * x = (x * y) * x for any $x, y \in X$,

(ii) KU-implicative [19], if x = (x * y) * x for any $x, y \in X$.

Definition 2.3 (See [14]). Let A be a nonempty set of a KU-algebra X. Then A is called a *subalgebra* of X, if $x * y \in A$ for any $x, y \in A$.

Definition 2.4. Let I be a nonempty set of a KU-algebra X. Then

(a) I is called an *ideal* of X [19], if it satisfies the following conditions: for any $x, y \in X$,

 $(\mathbf{I}_1) \ 0 \in I,$

(I₂) $x * y \in I$ and $x \in I$ imply $y \in I$.

(a) I is called an *ideal* (briefly, KUI) of X [14], if it satisfies the following conditions: for any $x, y, z \in X$,

- (KUI₁) $0 \in I$,
- (KUI₂) $x * (y * z) \in I$ and $y \in I$ imply $x * z \in I$.

Definition 2.5 ([18]). Let I be a nonempty set of a KU-algebra X. Then I is called a KU-positive implicative ideal (briefly, KUPII) of X, if it satisfies the following conditions: for any $x, y, z \in X$,

(KUI₁) $0 \in I$, (KUPII₂) $z * (x * y) \in I$ and $z * x \in I$ imply $z * y \in I$.

Definition 2.6 ([18]). Let *I* be a nonempty set of a *KU*-algebra *X*. Then *I* is called an *KU*-implicative ideal (briefly, *KU*II) of *X*, if it satisfies the following conditions: for any $x, y, z \in X$,

(KUI₁) $0 \in I$, (KUI₂) $(x * y) * (z * x) \in I$ and $z \in I$ imply $x \in I$.

Definition 2.7 ([18]). Let I be a nonempty set of a KU-algebra X. Then I is called a KU-commutative ideal (briefly, KUCI) of X, if it satisfies the following conditions: for any $x, y, z \in X$,

(KUI₁) $0 \in I$, (KUCI₂) $y * (z * x) \in I$ and $z \in I$ imply $[(x * y) * y] * x \in I$.

Definition 2.8 ([26]). Let X and Γ be two nonempty sets. Then X is called a Γ -semigroup, if there is a mapping $f: X \times \Gamma \times X \to X$, denoted by $f(x, \alpha, y) = x\alpha y$ for each $(x, \alpha, y) \in X \times \Gamma \times X$, such that it satisfies the following condition: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

(2.1) $x\alpha(y\beta z) = (x\alpha y)\beta z.$

3. Some properties of Γ -KU-algebras

In this section, we introduce the concept of Γ -*KU*-algebras and study some of its properties.

Definition 3.1. Let X be a set with a constant 0 and let Γ be a nonempty set. Then X is called a Γ -KU-algebra, if there is a mapping $f: X \times \Gamma \times X \to X$, denoted by $f(x, \alpha, y) = x\alpha y$ for each $(x, \alpha, y) \in X \times \Gamma \times X$, satisfying the following axioms: for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$,

 $\begin{aligned} (\Gamma \mathrm{KU}_1) & (x\alpha y)\beta[(y\alpha z)\beta(x\alpha z)] &= 0, \\ (\Gamma \mathrm{KU}_2) & 0\alpha x = x, \\ (\Gamma \mathrm{KU}_3) & x\alpha 0 = 0, \\ (\Gamma \mathrm{KU}_4) & x\alpha y = 0 = y\alpha x \text{ imply } x = y. \end{aligned}$

3

Remark 3.2. From (ΓKU_1) , (ΓKU_3) and (ΓKU_1) , (ΓKU_2) , we have

(3.1)
$$x\alpha x = 0, \ z\beta(x\alpha z) = 0 \text{ for any } x, \ z \in X \text{ and any } \alpha, \ \beta \in \Gamma.$$

We define a binary relation \leq on Γ -*KU*-algebra X as follows: for any $x, y \in X$ and each $\alpha \in \Gamma$,

$$(3.2) x \le y \Leftrightarrow y\alpha x = 0.$$

Then we obtain the following properties.

Proposition 3.3. Let X be a Γ -KU-algebra. Then the following inequalities hold: for any x, y, $z \in X$ and each α , $\beta \in \Gamma$,

(1) $(y\alpha z)\beta(x\alpha z) \leq x\alpha y$, (2) $0 \leq x$, (3) $x \leq y$ and $y \leq x$ imply x = y, (4) $x \leq x$, (5) $x\alpha y \leq y$.

It is clear that for a Γ -*KU*-algebra X and a fixed $\alpha \in \Gamma$, if we define the operation $* : X \times X \to X$ as follows: for any $x, y \in X$,

$$x * y = x \alpha y,$$

then (X, *, 0) is a KU-algebra and is denoted by X_{α} .

Example 3.4. (1) Let $X = \{0, 1, 2, 3\}$, let $\Gamma = \{\alpha, \beta, \gamma\}$ and let the ternary operation be defined by the table:

α	0	1	2	3	β	0	1	2	3	γ	0	1	2	3
0	0	1	2	3	0	0	1	2	3	0	0	1	2	3
1	0	0	2	2	1	0	0	2	3	1	0	0	3	3
2	0	0	0	0	2	0	0	0	0	2	0	0	0	0
3	0	0	0	0	3	0	0	0	0	3	0	1	2	0
						Та	able	e 3.1	[

Then we can easily check that X is Γ -KU-algebra. Also, X_{α} , X_{β} and X_{γ} can confirm KU-algebras.

(2) Let $X = \{0, 1, 2, 3, 4, 5\}$, let $\Gamma = \{\alpha, \beta, \gamma, \delta, \psi\}$ and let the ternary operation be defined by the table:

Then we can easily check that X is Γ -KU-algebra.

Proposition 3.5. Let X be a Γ -KI-algebra. Then the followings hold: for any $x, y, z \in X$ and each $\alpha \in \Gamma$,

- (1) $x \leq y$ implies $y\alpha z \leq x\alpha z$,
- (2) $x \leq y$ and $y \leq z$, then $x \leq z$.

Proof. (1) Suppose $x \leq y$. Then clearly, $y\alpha x = 0$ for each $\alpha \in \Gamma$. Thus by the axiom (ΓKU_1) , we have

 $(y\alpha x)\beta[(x\alpha z)\beta(y\alpha z)] = 0$, i.e., $0\beta[(x\alpha z)\beta(y\alpha z)] = 0$ for any $\alpha, \beta \in \Gamma$.

So by the axiom (ΓKU_2) , $(x\alpha z)\beta(y\alpha z) = 0$. Hence by (3.2), $y\alpha z \leq x\alpha z$.

Baek et al./Ann. Fuzzy Math. Inform. 27 (2024), No. 1, 1-27

_																						
α	0	1	2	3	4	5		α	0	1	2	3	4	L E	5	α	0	1	2	3	4	5
0	0	1	2	3	4	5		0	0	1	2	3	4	L E	5	0	0	1	2	3	4	5
1	0	0	2	3	4	5		1	0	0	3	4	. 5	j 1	L	1	0	0	4	5	1	2
2	0	1	0	3	4	5		2	0	2	0	4	5	5 1	L	2	0	3	0	5	1	2
3	0	1	2	0	4	5		3	0	2	3	0	4	L 1	L	3	0	3	4	0	1	2
4	0	1	2	3	0	5		4	0	2	3	4	. () 1	L	4	0	3	4	5	0	2
5	0	1	2	3	4	0		5	0	2	3	4	5	5 ()	5	0	3	4	5	1	0
			Γ	δ	0	1	2	3	4	5	٦٢	ψ	0	1	2	2 3	3 4	5				
			F	0	0	1	2	3	4	5	11	0	0	1	2	2 3	4	5				
				1	0	0	5	1	2	3		1	0	0	1	2	2 3	4				
				2	0	4	0	1	2	3		2	0	5	() 2	2 3	4				
				3	0	4	5	0	2	3		3	0	5	1	. () 3	4				
				4	0	4	5	1	0	3		4	0	5	1	2	2 0	4				
				5	0	4	5	1	2	0		5	0	5	1	2	2 3	0				
										Ta	abl	le 3	.2						_			

(2) Suppose $x \leq y$ and $y \leq z$. Then by (1), $z\alpha x \leq y\alpha x$. Since $x \leq y$, $y\alpha x = 0$. Thus $z\alpha x \leq 0$. By Proposition 3.3 (2), $0 \leq z\alpha x$. So by Proposition 3.3 (3), $z\alpha x = 0$. Hence $x \leq z$.

From Proposition 3.3 (3), (3.1) and Proposition 3.5 (2), it is obvious that (X, \leq) is a poset with the least element 0.

Proposition 3.6. Let X be a Γ -KU-algebra. Then the followings hold: for any $x, y, z \in X$ and each $\alpha, \beta \in \Gamma$,

(3.3)
$$z\alpha(y\beta x) = y\alpha(z\beta x).$$

Proof. From the axiom (ΓKU_1) , $(0\alpha z)\beta[(z\alpha x)\beta(0\alpha x)] = 0$. Then by the axioms (ΓKU_2) , $z\beta[(z\alpha x)\beta x] = 0$, i.e.,

$$(3.4) (z\alpha x)\beta x \le z.$$

Thus by (3.4), Proposition 3.5 (1) and Proposition 3.3 (1), we have

(3.5)
$$z\alpha(y\beta x) \le [(z\alpha x)\beta x]\alpha(y\beta x) \le y\alpha(z\beta x).$$

Since x, y, z are arbitrary, by interchanging y and z in the equality (3.5), we get

$$(3.6) y\alpha(z\beta x) \le z\alpha(y\beta x)$$

So the axiom (ΓKU_4) , the identity (3.3) holds.

The followings are immediate consequences of Proposition 3.6.

Corollary 3.7. Let X be a Γ -KU-algebra. Then the followings hold: for any $x, y, z \in X$ and each $\alpha, \beta \in \Gamma$,

(1) $x\alpha y \leq z$ if and only if $x\alpha z \leq y$, (2) $(y\alpha x)\beta x \leq y$.

The following is an immediate consequence of Theorem 3.3(1) and Corollary 3.7(1).

Corollary 3.8. In a Γ -KU-algebra X, the followings hold: for any $x, y, z \in X$ and each $\alpha \in \Gamma$,

$$(x\alpha y)\beta(x\alpha z) \leq y\alpha z, i.e., (y\alpha z)\beta[(x\alpha y)\beta(x\alpha z)] = 0.$$

The following is an immediate consequence of Corollary 3.8.

Corollary 3.9. In a Γ -KU-algebra X, the followings hold: for any $x, y, z \in X$ and each $\alpha \in \Gamma$,

$$x \leq y \text{ implies } z\alpha x \leq z\alpha y.$$

We define a binary operation \wedge on a Γ -*KU*-algebra X as follows: for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$,

$$x \wedge y = (y\alpha x)\beta x.$$

Then it is obvious that $x \wedge y$ is a lower bound of $\{x, y\}$ and $x \wedge x = 0$, $x \wedge 0 = 0 = 0\alpha x$. However, $x \wedge y \neq y \wedge x$ in general.

Proposition 3.10. In a Γ -KU-algebra X, the followings hold: for any $x, y \in X$ and each $\alpha \in \Gamma$,

$$(y \wedge x)\alpha x = y\alpha x.$$

Proof. Since $y \wedge x \leq y$, by Proposition 3.5 (1), we have

$$(3.7) y\alpha x \le (y \land x)\alpha x.$$

On the other hand, by Corollary 3.7(2), we get

(3.8)
$$(y \wedge x)\alpha x = [(x\alpha y)\beta y]\alpha x \le y\alpha x.$$

Thus $(y \wedge x)\alpha x = y\alpha x$.

We obtain a characterization of a Γ -KU-algebra.

Theorem 3.11. Let X be a set with a constant 0 and let Γ be a nonempty set. Then X is a Γ -KU-algebra if and only if it satisfies axioms (Γ KU₁), (Γ KU₄) and the following condition: for any x, $y \in X$ and any α , $\beta \in \Gamma$,

$$(3.9)\qquad (y\alpha 0)\beta x = x.$$

Proof. (\Rightarrow) : The proof is straightforward from the axioms (ΓKU_2) and (ΓKU_3).

(\Leftarrow): Suppose the necessary conditions hold, let $x \in X$ and let $\alpha, \beta \in \Gamma$. Then from the axiom (ΓKU_3), we get $(x\alpha 0)\beta[(0\alpha 0)\beta(x\alpha 0)] = 0$. On the other hand, by (3.9), $(x\alpha 0)\beta(x\alpha 0) = 0$. Again by (3.9), $x\alpha 0 = 0$. Thus the axiom (ΓKU_3) holds. By combining (3.9) and the axiom (ΓKU_3), $0\alpha x = x$. So the axiom (ΓKU_2) holds. Hence X is a Γ -KU-algebra.

4. Special Γ -KU-Algebras

In this section, we define some special Γ -KU-algebras, for example, positive implicative [resp. implicative and commutative] Γ -KU-algebras and obtain some of their properties (including characterizations) respectively and a relationship among them.

Definition 4.1. A Γ -*KU*-algebra X is said to be *positive implicative*, if it satisfies the following axiom: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

(4.1)
$$(z\alpha x)\beta(z\alpha y) = z\beta(x\alpha y).$$

It is obvious that if X is a positive implicative Γ -KU-algebra, then X_{α} is a positive implicative KU-algebra for each $\alpha \in \Gamma$.

Example 4.2. Let $X = \{0, 1, 2, 3\}$, let $\Gamma = \{\alpha, \beta\}$ and let the ternary operation be defined by the table:

α	0	1	2	3	β	0	1	2	3		
0	0	1	2	3	0	0	1	2	3		
1	0	0	2	3	1	0	0	2	3		
2	0	1	0	3	2	0	0	0	3		
3	0	0	2	0	3	0	0	2	0		
Table 4.1											

Then we can easily check that X is a positive implicative Γ -KU-algebra. Moreover, we confirm that X_{α} and X_{β} are positive implicative KU-algebras.

Proposition 4.3. In a Γ -KU-algebra X, the following holds: for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$,

(4.2)
$$(x\alpha y)\beta((y\alpha x)\beta x) \le (((x\alpha y)\beta y)\alpha x)\beta x.$$

Proof. $[(((x\alpha y)\beta y)\alpha x)\beta x]\alpha[(x\alpha y)\beta((y\alpha x)\beta x)]$ = $(x\alpha y)\beta[((((x\alpha y)\beta y)\alpha x)\beta x)\alpha((y\alpha x)\beta x)]$ [By the identity (3.3)] $\leq (x\alpha y)\beta[((x\alpha y)\beta y)\alpha((y\alpha x)\beta x)]$ [By Corollary 3.7 (2)] $\leq (x\alpha y)\beta(x\alpha y)$ [By Corollary 3.7 (2)] = 0. [By (3.1)] Then by Proposition 3.3 (2) and (3), we have

$$[(((x\alpha y)\beta y)\alpha x)\beta x]\alpha[(x\alpha y)\beta((y\alpha x)\beta x)] = 0.$$

Thus the inequality (4.2) holds.

We have a characterization of a positive implicative Γ -KU-algebra.

Theorem 4.4. Let X be a Γ -KU-algebra. Then the followings are equivalent: (1) X is positive implicative,

(2) $x\alpha y = x\alpha(x\beta y)$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$.

Proof. (1) \Rightarrow (2): The proof follows from the axiom (ΓKU_2), (3.1) and the identity (4.1).

(2) \Rightarrow (1): Suppose the condition (2) holds, let $x, y, z \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

 $[z\alpha(x\beta y)]\alpha[(z\beta x)\alpha(z\beta y)]$ = $[z\alpha(x\beta y)]\alpha[(z\beta x)\alpha(z\beta(z\alpha y))]$ [By (2)] $\leq [z\alpha(x\beta y)]\alpha[x\alpha(z\beta y)]$ [By Corollary 3.8] = $[z\alpha(x\beta y)]\alpha[z\alpha(x\beta y)]$ [By Proposition 3.6] = 0. [By (3.1)]

Thus $(z\beta x)\alpha(z\beta y) \leq z\alpha(x\beta y)$. The proof of the converse inequality is easy. So $(z\beta x)\alpha(z\beta y) = z\alpha(x\beta y)$. Hence X is positive implicative.

We give another characterization of a Γ -KU-algebra.

Theorem 4.5. Let X be a Γ -KU-algebra. Then the followings are equivalent: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

(1) X is positive implicative,

(2) $z\alpha(x\beta y) = 0$ implies $(z\alpha x)\beta(z\alpha y) = 0$,

(3) $y\alpha(y\beta x) = 0$ implies $y\alpha x = 0$.

Proof. $(1) \Rightarrow (2)$: The proof is straightforward.

(2) \Rightarrow (3): Suppose (2) holds and $y\alpha(y\beta x) = 0$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$. Then we have

> $y\alpha x = 0\beta(y\alpha x) \text{ [By the axiom (}\Gamma KU_2)\text{]}$ $= (y\alpha y)\beta(y\alpha x) \text{ [By (3.1)]}$ = 0. [By (2)]

Thus (3) holds.

(3) \Rightarrow (1): Suppose (3) holds. For any $x, y \in X$ and any $\alpha, \beta \in \tau$, let $u = y\beta(y\alpha x)$. Then we have

 $y\alpha(y\beta(u\alpha x)) = y\alpha(u\beta(y\alpha x)) \text{ [By Proposition 3.6]}$ $= u\alpha(y\beta(y\alpha x)) \text{ [By Proposition 3.6]}$ $= (y\beta(y\alpha x))\alpha(y\beta(y\alpha x))$ = 0. [By (3.1)]

Thus by the hypothesis and (3.1), we get

$$0 = y\beta(u\alpha x) = y\beta(y\beta(y\alpha x)\alpha x)) = (y\beta(y\alpha x)\beta(y\alpha x).$$

So $y\alpha x \leq y\beta(y\alpha x)$. On the other hand, from Proposition 3.6 and (3.1), it is obvious that $y\beta(y\alpha x) \leq y\alpha x$. Hence $y\beta(y\alpha x) = y\alpha x$. Therefore by Theorem 4.4, X is positive implicative.

Definition 4.6. A Γ -*KU*-algebra X is said to be *commutative*, if it satisfies the following axiom:

(4.3) $(y\alpha x)\beta x = (x\alpha y)\beta y$, i.e., $x \wedge y = y \wedge x$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$.

We can easily see that if X is a commutative Γ -KU-algebra, then X_{α} is a commutative kU-algebra for each $\alpha \in \Gamma$.

Example 4.7. (1) Let $X = \{0, 1, 2, 3, 4\}$, let $\Gamma = \{\alpha, \beta\}$ and let the ternary operation be defined by the table:

α	0	1	2	3	4	β	0	1	2	3	4
0	0	1	2	3	4	0	0	1	2	3	4
1	0	0	1	1	3	1	0	0	1	1	3
2	0	1	0	3	4	2	0	1	0	3	4
3	0	0	0	0	1	3	0	0	0	0	1
4	0	0	0	0	0	4	0	0	0	0	0
Table 4.2											

Then clearly, X is a Γ -KU-algebra but $(2\alpha 3)\beta 3 = 3 \neq 2 = (3\alpha 2)\beta 2$. Thus X is not commutative.

(2) Let $X = \{0, 1, 2, 3\}$, let $\Gamma = \{\alpha, \beta\}$ and let the ternary operation be defined as the following table:

α	0	1	2	3		β	0	1	2	3	
0	0	1	2	3		0	0	1	2	3	
1	0	0	2	3		1	0	0	2	3	
2	0	1	0	2		2	0	1	0	3	
3	0	1	0	0		3	0	1	2	0	
Table 4.3											

Then we can easily check that X is commutative Γ -KU-algebra.

The following is an immediate consequence of the axiom (ΓKU_4) and Definition 4.6.

Theorem 4.8. Let X be a Γ -KU-algebra. Then the followings are equivalent: for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$,

(1) X is commutative,

(2) $(y\alpha x)\beta x \leq (x\alpha y)\beta y$,

(3) $((x\alpha y)\beta y)\alpha((y\alpha x)\beta x) = 0.$

We obtain a characterization of commutative Γ -BCK-algebras.

Theorem 4.9. Let X be a Γ -KU-algebra. Then the followings are equivalent: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

(1) $x \leq z$ and $y\alpha z \leq x\alpha z$ imply $x \leq y$,

(2) $x, y \leq z \text{ and } y\alpha z \leq x\alpha z \text{ imply } x \leq y$,

(3) $x \le y$ implies $x = (x\alpha y)\beta y$,

- (4) X is commutative,
- (5) $x \leq y$ implies $((x\alpha y)\beta y)\alpha x = 0$.

Proof. $(1) \Rightarrow (2)$: The proof is clear.

 $(2) \Rightarrow (3)$: Suppose $x \leq y$ and let α , $\beta \in \Gamma$. Then by Corollary 3.7 (2), $(x\alpha y)\beta y \leq x$. Moreover, $((x\alpha y)\beta y)\alpha y \leq x\alpha y$. Thus by the hypothesis, $x \leq (x\alpha y)\beta y$. So $x = (x\alpha y)\beta y$.

(3) \Rightarrow (4): Suppose the condition (3) holds, let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. From Corollary 3.7 (2), it is clear that $(x\alpha y)\beta y \leq x$. Then by the hypothesis, we have

(4.4)
$$(x\alpha y)\beta y = (((x\alpha y)\beta y)\alpha x)\beta x.$$

On the other hand, we get

$$\begin{split} & [(y\alpha x)\beta x]\alpha[(x\alpha y)\beta y] \\ &= [(y\alpha x)\beta x]\alpha[(((x\alpha y)\beta y)\alpha x)\beta x] \text{ [By (4.4)]} \\ &= [((x\alpha y)\beta y)\alpha x]\alpha[((y\alpha x)\beta x)\beta x] \text{ [By Proposition 3.6]} \\ &\leq [((x\alpha y)\beta y)\alpha x]\alpha(y\beta x) \text{ [Corollary 3.7 (2)]} \\ &\leq y\alpha[(x\alpha y)\beta y] \text{ [By Proposition 3.3 (1)]} \\ &= (x\alpha y)\alpha(y\beta y) \text{ [By Proposition 3.6]} \\ &= (x\alpha y)\alpha 0 \text{ [By (3.1)]} \end{split}$$

 $= 0 [By (\Gamma KU_3)]$

Thus $(x\alpha y)\beta y \leq (y\alpha x)\beta x$. So by Theorem 4.8, X is commutative.

(4) \Rightarrow (1): Suppose the condition (4) holds, and suppose $x \leq z$ and $y\alpha z \leq x\alpha z$ for any $x, y, z \in X$ and each $\alpha \in \Gamma$. Then clearly, $z\alpha x = 0$ and $(x\alpha z)\beta(y\alpha z) = 0$ for any $\beta \in \Gamma$. Thus we have

 $y\alpha x = y\alpha(0\beta x) [By (\Gamma KU_2)]$ = $y\alpha[(z\alpha x)\beta x] [Since \ z\alpha x = 0]$ = $y\alpha[(x\alpha z)\beta z] [Since \ X \text{ is commutative}]$ = $(x\alpha z)\beta(y\alpha z) [By Proposition 3.6]$ = 0.

So $x \leq y$. Hence (1) holds.

(3) \Leftrightarrow (5): The proof is obvious.

The following is an immediate consequence of Theorem 4.9.

Theorem 4.10. Let X be a Γ -KU-algebra. Then followings are equivalent: , (1) X is commutative,

(2) $x\alpha(x\beta y) = y\alpha(y\beta(x\alpha(x\beta y)))$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$

For a Γ -KU-algebra X and each $x \in X$, the set

$$A(x) = \{ y \in X : y \le x \}$$

is called an *initial section* of x.

Theorem 4.11. a Γ -KU-algebra X is commutative if and only if for any $x, y \in X$, $A(x) \cap A(y) = A(x \wedge y).$

Proof. The proof follows from the property of \wedge and Theorem 4.8 (2).

Definition 4.12. Let X be a Γ -KU-algebra. Then X is said to be *implicative*, if it satisfies the following condition:

(4.5) $x = (x\alpha y)\beta x$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$.

It is clear that if X is an implicative Γ -BCK-algebra, then X_{α} is an implicative BCK-algebra fore each $\alpha \in \Gamma$.

Example 4.13. (1) Let $X = \{0, 1, 2, 3\}$, let $\Gamma = \{\alpha, \beta\}$ and let the ternary operation be defined as the following table:

α	0	1	2	3		β	0	1	2	3	
0	0	1	2	3		0	0	1	2	3	
1	0	0	2	2		1	0	0	2	2	
2	0	1	0	3		2	0	1	0	3	
3	0	0	2	0		3	0	2	2	0	
Table 4.4											

Then clearly, X is an implicative Γ -KU-algebra.

(2) Let $X = \{0, 1, 2, 3, 4\}$, let $\Gamma = \{\alpha, \beta\}$ and let the ternary operation be defined as the following table:

Then X is a Γ -KU-algebra. But it is neither implicative nor commutative.

Baek et al./Ann. Fuzzy Math. Inform. 27 (2024), No. 1, 1-27

α	0	1	2	3	4	β	0	1	2	3	4
0	0	1	2	3	4	0	0	1	2	3	4
1	0	0	2	1	4	1	0	0	2	1	4
2	0	1	0	0	4	2	0	1	0	3	4
3	0	0	0	0	4	3	0	0	1	0	4
4	0	0	0	0	0	4	0	0	0	0	0
Table 4.5											

We obtain a relationship among implicativeness, commutativity and positive implicativeness.

Theorem 4.14. Let X be a Γ -KU-algebra. Then X is implicative if and only if it is commutative and positive implicative.

Proof. Suppose X is implicative, let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. Then by Proposition 3.6, we have

$$x\alpha y = [(x\alpha y)\beta x]\beta(x\alpha y) = x\alpha(x\beta y).$$

Thus by Theorem 4.4, X is positive implicative. On the other hand, we get $(y\alpha x)\beta x = (y\alpha x)\beta((x\alpha y)\beta x)$ [By the hypothesis]

 $\leq (x\alpha y)\beta y$. [By Proposition 3.3 (1)]

So by Theorem 4.8 (1), X is commutative.

Conversely, suppose the necessary conditions hold and let $x, y \in X$ and $\alpha, \beta \in \Gamma$. Then we have

> $[(x\alpha y)\beta x]\alpha x = [x\beta(x\alpha y)]\beta(x\alpha y) \text{ [Since } X \text{ is commutative]}$ $= [x\beta(x\alpha y)]\beta[x\beta(x\alpha y)] \text{ [By Theorem 4.4 (2)]}$ = 0. [By (3.1)]

Thus $x \leq (x\alpha y)\beta x$. On the other hand, by Proposition 3.3 (5), $(x\alpha y)\beta x \leq x$. So by Proposition 3.3 (3), $x = (x\alpha y)\beta x$. Hence X is implicative. This completes the proof.

Now we provide a sufficient condition of implicative Γ -KU-algebras.

Proposition 4.15. Let X be a Γ -KU-algebra. Suppose the following holds: for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$,

(4.6)
$$(y\alpha x)\beta[(y\alpha x)\beta x] = (x\alpha y)\beta[(x\alpha y)\beta y].$$

Then X is implicative

Proof. Suppose the condition (4.6) holds, let $x, y \in X$ and let $\alpha, \beta \in \Gamma$. Then we have

 $y\alpha x = 0\alpha[0\beta(y\alpha x)] \text{ [By the axiom } (\Gamma KU_2)]$ $= [y\beta(x\alpha x)]\alpha[(y\beta(x\alpha x))\beta(y\alpha x)] \text{ [By the axiom } (\Gamma KU_3) \text{ and } (3.1)]$ $= [x\beta(y\alpha x)]\alpha[(x\beta(y\alpha x))\beta(y\alpha x)] \text{ [By Proposition } 3.6]$ $= (x\beta y)\alpha[(x\beta y)\beta(y\alpha x)] \text{ [Putting } y\alpha y = y]$ $= [x\alpha(x\beta y)]\alpha(x\beta y) \text{ [By the condition } (2)]$ $= [x\alpha(x\beta(x\alpha y))]\alpha[x\beta(x\alpha y)] \text{ [Since } y = x\alpha y]$ $= (x\alpha y)\alpha[x\beta(x\alpha y)] \text{ [By Proposition } 3.6 (6)]$ $= [x\alpha(x\beta(x\alpha y))]\alpha y \text{ [By the identity } (3.1)]$ 11

 $= (x\alpha y)\alpha y.$ [By Proposition 3.6 (6)] Thus X is positive implicative. On the other hand, we have $x\alpha(x\beta y) = [x\alpha(x\beta y)]\alpha(x\beta y)$ [By Proposition 3.6 (6)] $= [y\alpha(y\beta x)]\alpha(y\beta x)$ [By the condition (2)] $= y\alpha(y\beta x).$ [By Proposition 3.6 (6)] So X is commutative. Hence by Theorem 4.14, X is implicative.

5. Some Γ -ideals of Γ -KU-algebras

In this section, we introduce the concepts of Γ -KU-ideals, positive implicative Γ -KU-ideals, implicative Γ -KU-ideals and commutative Γ -KU-ideals in Γ -KU-algebras and discuss some of their properties respectively and a relationship among them.

Definition 5.1. Let X be a Γ -KU-algebra and let A be a nonempty subset of X. Then A is called a Γ - subalgebra of X, if it satisfies the following condition:

(5.1) $x\alpha y \in A$ for any $x, y \in A$ and for each $\alpha \in \Gamma$.

Example 5.2. Let X be the Γ -KU-algebra given in Example 3.2 (3), $\{0, 1, 2\}$ is a Γ -subalgebra of X.

Definition 5.3. Let X be Γ -KU-algebra and let I be a nonempty set of X. Then I is called a Γ - *ideal* (briefly, Γ I) of X, if it satisfies the following conditions: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

 $(\Gamma I_1) \ 0 \in I,$

 (ΓI_2) if $x \alpha y \in I$ and $x \in I$, then $y \in I$.

An ideal I is said to be *proper*, if $I \neq X$. It is obvious that X and $\{0\}$ are ideals of X. In particular, X is called a *trivial* Γ -*ideal* of X.

Example 5.4. (1) Consider the Γ -*KU*-algebra given in Example 3.4. Then $\{0, 2\}$ is a Γ -ideal but $\{0, 1\}$ not a Γ -ideal of *X*.

(2) Let X be the commutative Γ -KU-algebra given in Example 4.7 (2). Then we can easily see that X has only two Γ Is $\{0\}$ and X.

The following is an immediate consequence of Definition 5.3.

Proposition 5.5. Let I be a ΓI of a Γ -KU-algebra X and let $x \in I$. If $y \leq x$, then $y \in I$.

Proposition 5.6. Every ΓI of a Γ -KU-algebra X is a Γ -subalgebra of X.

Proof. Let I be a Γ I of X and let $x, y \in I, \alpha \in \Gamma$. Then by Proposition 3.6 and the axiom $(\Gamma KU_3), y\beta(x\alpha y) = 0$. Thus $x\alpha y \leq y$. So by Proposition 5.5, $x\alpha y \in I$. Hence I is a Γ -subalgebra of X.

Definition 5.7. Let X be Γ -KU-algebra and let $a, b \in X$ and $\alpha \in \Gamma$. Then the subset $A_{\alpha}(a, b)$ of X is defined as follows:

$$A_{\alpha}(a,b) = \{ x \in X : b\alpha x \le a \}.$$

It is obvious that 0, $a, b \in A_{\alpha}(a, b)$.

Example 5.8. Let X be the Γ -BCK-algebra in Example 3.4. Then clearly,

$$A_{\alpha}(1,2) = X, \ A_{\beta}(1,2) = \{0,1,2\} = A_{\gamma}(1,2).$$

We have a characterization of Γ Is of a Γ -*KU*-algebra.

Theorem 5.9. Let I be a nonempty subset of a Γ -KU-algebra X. Then I is a Γ I of X if and only if $A_{\alpha}(a,b) \subset I$ for any $a, b \in I$ and each $\alpha \in \Gamma$.

Proof. (\Rightarrow): Suppose I is a Γ I of X and let $x \in A_{\alpha}(a, b)$. Then clearly, $b\alpha x \leq a$. Thus by Proposition 5.5, $b\alpha x \in I$. Since $b \in I$ and I is a Γ I of $X, x \in I$. So $A_{\alpha}(a, b) \subset I$.

(⇐): Suppose the necessary condition holds. Since $I \neq \emptyset$, there is $a \in I$. Then by (3.1), $a\alpha 0 \leq a$. Thus $0 \in A_{\alpha}(a, a)$. Since $A_{\alpha}(a, a) \subset I$, $0 \in I$. So the condition (ΓI_1) holds. Now let $b\beta a \in I$ and $b \in I$. Then by Corollary 3.7 (2), $(b\beta a)\alpha x \leq b$. Thus $x \in A_{\alpha}(b\beta a, b) \subset I$. So the condition (ΓI_2) holds. Hence I is a ΓI of X. \Box

The following is an immediate consequence of Theorem 5.9.

Corollary 5.10. *I* is a ΓI of a Γ -*KU*-algebra *X* if and only if for any *a*, $b \in I$ and any α , $\beta \in \Gamma$, $(b\beta a)\alpha x = 0$ implies $x \in I$.

Definition 5.11. Let X be Γ -KU-algebra and let I be a nonempty set of X. Then I is called a *positive implicative* Γ -KU-ideal (briefly, PII Γ KUI) of X, if it satisfies the following conditions: for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$,

 $(\Gamma I_1) \ 0 \in I,$

(PIFKUI₂) if $z\alpha(x\beta y) \in I$ and $z\alpha x \in I$, then $z\alpha y \in I$.

It is obvious that X is a PIFKUI of X.

Example 5.12. Let X be the Γ -BCK-algebra given in Example 4.13 (2). Then we can easily check that $\{0, 1, 3\}$ and $\{0, 1, 2, 3\}$ are PIITKUIS of X. Furthermore, $\{0\}$, $\{0, 2\}$ and $\{0, 2, 4\}$ are TIS but not PIITKUIS of X.

Proposition 5.13. Every $PI\Gamma KUI$ of Γ -KU-algebra X is a ΓI of X but the converse is not true.

Proof. Let I be a PIFKUI of X. Suppose $x\alpha y \in I$ and $x \in I$ for any $x, y \in X$ and each $\alpha \in \Gamma$. Then clearly, $0\beta(x\alpha y) \in I$ and $0\alpha y \in I$. Thus by (PIFKUI₂), $x = 0\alpha x \in I$. So I is a Γ I of X. See Example 5.12 for the converse.

We have a characterization of positive implicative Γ -KU-ideals.

Theorem 5.14. Let I be a ΓKUI of a Γ -KU-algebra X. Then I is positive implicative if and only if the set $A_a = \{x \in X : a\alpha x \in I \text{ for each } \alpha \in \Gamma \}$ is a ΓI of X for each each $a \in X$.

Proof. Suppose I is positive implicative and $x\alpha y \in A_a$, $x \in A_a$ for each $a \in X$ and each $\alpha \in \Gamma$. Then clearly, $a\beta(x\alpha y) \in I$ and $a\alpha y \in I$. Thus by the condition (PIFKUI₂), $a\alpha x \in I$. So $x \in A_a$. Hence A_a is a Γ I of X.

Now suppose the necessary condition holds, and $z\alpha(x\beta y) \in I$ and $z\alpha y \in I$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$. Then clearly, $y\alpha x \in A_z$ and $x \in A_z$. Thus by the hypothesis, $y \in A_z$. So $z\alpha y \in I$. Hence I is positive implicative. \Box

The following is an immediate consequence of Theorem 5.14.

Corollary 5.15. If I is a PITKUI of a Γ -KU-algebra X, then for each each $a \in X$, A_a is the least ΓI of X such that $I \cup \{a\} \subset A_a$.

We obtain a characterization of PIFKUIs.

Theorem 5.16. Let I be a nonempty subset of a Γ -KU-algebra X. Then the followings are equivalent:

(1) I is a $PI\Gamma KUI$ of X,

(2) I is a ΓI of X and $y\alpha(y\beta x) \in I$ implies $y\alpha x \in I$ for any $x, y \in X$ and $\alpha, \beta \in \Gamma$,

(3) I is a ΓI of X and $z\alpha(y\beta x) \in I$ implies $(z\alpha y)\beta(z\alpha x) \in I$ for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$,

(4) $0 \in I$, and $z\alpha[y\beta(y\alpha x)] \in I$ and $z \in I$ imply $y\alpha x \in I$ for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$.

Proof. (1) \Rightarrow (2): Suppose *I* is a PIFKUI of *X*. Then by Proposition 5.13, *I* is a Γ I of *X*. Now suppose $y\alpha(y\beta x) \in I$ for any $x, y \in X$ and $\alpha, \beta \in \Gamma$. From (3.1), $y\alpha y = 0 \in I$. Then by (PIFKUI₂), $x\alpha y \in I$. Thus the condition (2) holds.

 $(2) \Rightarrow (3)$: Suppose the condition (2) holds and suppose $z\alpha(y\beta x) \in I$ for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$. Then we have

 $z\alpha[z\alpha((z\beta y)\alpha x)] = z\beta[(z\beta y)\alpha(z\beta x)]$ [By (3.3)]

 $\leq z\alpha(y\beta x)$. [By Corollaries 3.8 and Corollaries 3.7 (2)] Since I is a Γ I of X, by Proposition 5.5, $z\alpha[z\alpha((z\beta y)\alpha x)] \in I$. By the condition (2), $z\alpha[(z\beta y)\alpha x] \in I$. On the other hand, by Proposition 3.6, $z\alpha[(z\beta y)\alpha x] = (z\beta y)\alpha(z\beta x)$. Thus $(z\beta y)\alpha(z\beta x) \in I$. So the condition (3) holds.

 $(3) \Rightarrow (4)$: Suppose the condition (3) holds. Then clearly, $0 \in I$. Suppose $z\alpha[y\beta(y\alpha x)] \in I$ and $z \in I$ for any $x, y, z \in X$ and $\alpha, \beta \in \Gamma$. Then by Proposition 3.6, we get

$$z\alpha[y\beta(y\alpha x)] = y\alpha[y\beta(z\alpha x)].$$

Thus $y\alpha[y\beta(z\alpha x)] \in I$. On the other hand, from Proposition 3.6, (3.1) and the condition (3), we have

$$z\beta(y\alpha x) = y\beta(z\alpha x) = (y\alpha y)\beta(z\alpha x) \in I.$$

Since I is a Γ I of X and $z \in I$, $y\alpha x \in I$. So the condition (4) holds.

 $(4) \Rightarrow (1)$: Suppose the condition (4) holds. Suppose $x \alpha y \in I$ and $x \in I$ for any $x, y \in X$ and each $\alpha \in \Gamma$. Then by the axiom (ΓKU_2), we get

$$x \alpha y = x \alpha [0 \alpha (0 \beta y)]$$

Thus $x\alpha[(y\alpha 0)\beta 0] \in I$ and $x \in I$. By the condition (4), $0\beta y \in I$. By the axiom (ΓKU_2), $0\beta y = y$. So $y \in I$. Hence I is a ΓI of X.

Now suppose $z\alpha(x\beta y) \in I$ and $z\alpha x \in I$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$. Then from Corollary 3.9 and Proposition 3.6, we have

$$(z\alpha y)\beta[z\alpha(z\alpha x) \le y\beta(z\alpha x) = z\beta(y\alpha x).$$

Since $z\alpha(x\beta y) \in I$, $(z\alpha y)\beta[z\alpha(z\alpha x) \in I$. Since $z\alpha x \in I$, by the condition (4), $y\alpha x \in I$. Thus I is a PIFKUI of X. This completes the proof.

Proposition 5.17. Let I and J be Γ Is of a Γ -KU-algebra X such that $I \subset J$. If I is positive implicative, then so is J.

Proof. Suppose $z\beta(x\alpha y) \in J$ and $z\alpha x \in J$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$. Let $u = z\beta(x\alpha y)$. Then from Proposition 3.6, (3.1) and the hypothesis, we have

 $z\alpha[x\beta(u\alpha y)] = u\alpha[z\beta(x\alpha y)] = 0 \in I.$

Since I is positive implicative, by Theorem 5.16 (3), we get

 $(z\alpha x)\beta[z\alpha(u\alpha y)] \in I.$

On the other hand, by Proposition 3.6, we have

$$(z\alpha x)\beta[z\alpha(u\alpha y)] = u\beta[(z\alpha x)\beta(z\alpha y) = [z\beta(x\alpha y)]\beta[(z\alpha x)\beta(z\alpha y)].$$

Thus $[z\beta(x\alpha y)]\beta[(z\alpha x)\beta(z\alpha y)] \in I$. Since $I \subset J$, $[z\beta(x\alpha y)]\beta[(z\alpha x)\beta(z\alpha y)] \in J$. Since $z\beta(x\alpha y) \in J$ and J is a ΓI of X, $(z\alpha x)\beta(z\alpha y) \in J$. So by Theorem 5.16 (3), J is positive implicative.

From the following Theorem, we can see that in Γ -KU-algebras, the zero Γ Is play important roles.

Theorem 5.18. Let X be a Γ -KU-algebra. Then the followings are equivalent:

- (1) X is positive implicative,
- (2) $\{0\}$ is a PITKUI of X,
- (3) every ΓI of X is positive implicative,
- (4) the set $A(a) = \{x \in X : x \leq a\}$ is a ΓI of X for each $a \in X$.

Proof. (1) \Rightarrow (2): Suppose X is positive implicative. It is obvious that {0} is a Γ I of X. Suppose $y\beta(y\alpha x) \in \{0\}$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$. Since X is positive implicative, by Theorem 4.4, $y\alpha x = y\alpha(y\beta x)$. Then by the hypothesis, $y\alpha x \in \{0\}$. Thus by Theorem 5.16 (2), {0} is a PIFKUI of X.

 $(2) \Rightarrow (3)$: The proof follows from Proposition 5.17.

(3) \Rightarrow (4): Suppose the condition (3) holds and $x\alpha y$, $y \in A(a)$ for each $a \in X$ and each $\alpha \in \Gamma$. Then clearly, $y\alpha x \leq a$ and $y \leq a$. Thus $a\beta(y\alpha x) = 0 \in \{0\}$ and $a\alpha y = 0 \in \{0\}$ for any $\beta \in \Gamma$. By the hypothesis, $\{0\}$ is positive implicative. So $a\alpha x \in \{0\}$, i.e., $a\alpha x = 0$, i.e., $x \leq a$. Hence $x \in A(a)$. Therefore A(a) is a Γ I of X.

 $(4) \Rightarrow (1)$: Suppose the condition (4) holds and $y\beta(y\alpha x) = 0$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$. Then clearly, $y\alpha x \leq y$, i.e., $y\alpha x \in A(y)$. By the condition (4), A(y)is a Γ I of X. It is obvious that $y \in A(y)$. Thus $x \in A(y)$. So $y\alpha x = 0$. Hence by Theorem 4.5, X id positive implicative. \Box

We have a characterization of a positive implicative Γ -KU-algebra by Γ Is.

Theorem 5.19. Let X be a Γ -KU-algebra. Then X is positive implicative if and only if A_a is a ΓI of X for each $\Gamma I I$ of X and each $a \in X$.

Proof. Suppose X is positive implicative, let I be any Γ I of X and let $a \in X$. Then by Theorem 5.18, I is a PIFKUI of X. Thus by Theorem 5.14, A_a is a Γ I of X.

Conversely, suppose the necessary condition holds and let J be any Γ I of X. Suppose $z\alpha(x\beta y) \in J$ and $z\alpha x \in J$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$. Consider the set $A_z = \{u \in X : z\alpha u \in J\}$. Then clearly, $x\beta y \in A_z$ and $x \in A_z$. Since A_z is a Γ I of $X, y \in A_z$. Thus $z\alpha y \in J$. So J is positive implicative. Hence by Theorem 5.18, X is positive implicative. **Definition 5.20.** Let X be Γ -KU-algebra and let I be a nonempty subset of X. Then I is called an *implicative* Γ -KU-ideal (briefly, I Γ KUI) of X, if it satisfies the following conditions: for any x, y, $z \in X$ and any α , $\beta \in \Gamma$,

 $(\Gamma \mathbf{I}_1) \ 0 \in I,$

 $(I\Gamma KUI_2)$ if $z\alpha[(x\beta y)\alpha x] \in I$ and $z \in I$, then $x \in I$.

For any Γ -KU-algebra X, it is obvious that X is always an IFKUI of X which is called the *trivial implicative* Γ -KU-ideal.

We can easily show that every Γ I of an implicative Γ -KU-algebra X is implicative.

Example 5.21. Let X be the Γ -KU-algebra given in Example 4.13 (2). Then we can easily check that $\{0, 1, 2, 3\}$ is an IFKUI of X. Furthermore, $\{0\}$ is a FI of X but not implicative, since $0\alpha[(1\beta 2)\alpha 1)] \in \{0\}$ and $0 \in \{0\}$ but $1 \notin \{0\}$.

Proposition 5.22. Every $\prod KUI$ is a $\prod I$ but the converse is not true.

Proof. The proof is straightforward from Definitions 5.3 and 5.20. See Example 5.21) for the converse. \Box

Proposition 5.23. Every ΠKUI is positive implicative but the converse is not true.

Proof. Let I be an IFKUI of a Γ -KU-algebra X and $z\alpha(y\beta x)$, $z\beta y \in I$ for any $x, y \ zinX$ and any $\alpha, \beta \in \Gamma$. Then we get

 $(z\beta y)\alpha[z\alpha(z\beta x)] \le y\alpha(z\beta x)$ [By Corollary 3.7]

$$= z\alpha(y\beta x)$$
. [Proposition 3.6]

Since $z\alpha(y\beta x) \in I$, by Proposition 5.5, $(z\beta y)\alpha[z\alpha(z\beta x)] \in I$. Since $z\beta y \in I$ and I is a ΓI of X by Proposition 5.22, $z\alpha(z\beta x) \in I$. On the other hand, we have

 $[z\alpha(z\beta x)]\alpha(z\beta x) = z\alpha[(z\alpha(z\beta x))\alpha x]$ [By Proposition 3.6]

 $= z\alpha(z\beta x) \in I.$ [By Proposition 3.10]

Thus $0\beta[(z\alpha(z\beta x))\alpha(z\beta x)] \in I$. Since $0 \in I$ and I is implicative, $z\beta x \in I$. So I is positive implicative.

In Example 5.12, $\{0, 1, 3\}$ is positive implicative but not implicative.

We obtain a condition for a ΓI to become a $I\Gamma KUI$.

Theorem 5.24. Let I be a ΓI of a Γ -KU-algebra X. Then I is implicative if and only if the following holds:

(5.2) $(x\alpha y)\beta x \in I \text{ implies } x \in I \text{ for any } x, y \in X \text{ and any } \alpha, \beta \in \Gamma.$

Proof. Suppose I is implicative and $(x\alpha y)\beta x \in I$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$. It is obvious that $0\beta[(x\alpha y)\beta x] \in I$ and $0 \in I$. Then by the hypothesis, $x \in I$. Thus (5.2) holds.

The proof of the converse is easy.

Now we obtain a condition for a $PI\Gamma KUI$ to become a $I\Gamma KUI$.

Theorem 5.25. Let I be a PI Γ KUI of a Γ -KU-algebra X. Then I is implicative if and only if the following holds:

(5.3) $(x\alpha y)\beta y \in I \text{ implies } (y\alpha x)\beta x \in I \text{ for any } x, y \in X \text{ and any } \alpha, \beta \in \Gamma.$

Proof. Suppose I is implicative and $(x\alpha y)\beta y \in I$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$. Then by Corollary 3.7 (2), $(y\alpha x)\beta x \leq y$. Thus by Proposition 3.5 (1), $x\beta y \leq x\beta[(y\alpha x)\beta x]$. Furthermore, we get

 $\begin{aligned} [x\beta((y\alpha x)\beta x)]\alpha[(y\alpha x)\beta x] &\leq (x\beta y)\alpha[(y\alpha x)\beta x](\text{ [By Proposition 3.5 (1)]} \\ &= (y\alpha x)\beta[(x\alpha y)\beta x]. \text{ [By Proposition 3.6]} \\ &\leq (x\alpha y)\beta y. \text{ [By Proposition 3.3] (1)]} \end{aligned}$

Since I is a Γ I of X by the hypothesis and Proposition 5.22, we get

$$0\beta([x\beta((y\alpha x)\beta x)]\alpha[(y\alpha x)\beta x]) \in I$$

Since $0 \in I$, by the condition (IFKUI₂), $y\alpha(x\beta x) \in I$. So (5.3) holds.

Conversely, suppose necessary condition (5.3) holds, and $z\beta[(x\alpha y)\beta x] \in I$ and $z \in I$ Since I is positive implicative, by Proposition 5.13, I is a Γ I of X. Then $(x\alpha y)\beta x \in I$. By Proposition 3.6 (3), we have

$$(x\beta y)\beta[(x\alpha y)\beta y] \le (x\alpha y)\beta x) \in I.$$

Thus $(x\beta y)\beta[(x\alpha y)\beta y] \in I$. Since I is positive implicative, by Theorem 5.16 (2), $(x\alpha y)\beta y \in I$. By the condition (5.3), we get

$$(5.4) (y\alpha x)\beta x \in I.$$

Furthermore, from (3.1) and the axiom (ΓKU_3) , we have

$$z\beta(y\alpha x) \le y\alpha x \le (y\alpha x)\beta x \in I.$$

So $z\beta(y\alpha x) \in I$. Since $z \in I$ and I is a ΓI of X, $y\alpha x \in I$. By the condition (5.4), $x \in I$. Hence I is implicative.

We obtain a similar consequence to Proposition 5.17.

Proposition 5.26. If I is an ΠKUI of a Γ -KU-algebra X, then every ΓI containing I is implicative.

Proof. Suppose I is implicative and let J be any Γ I of X such that $I \subset J$. From Proposition 5.23, it is obvious that I is positive implicative. By Proposition 5.17, J is positive implicative. To prove that I is implicative, it is sufficient to prove that J satisfies the condition (5.3). Suppose $(x\beta y)\alpha y \in J$ for any $x, y \in X$ and any $\alpha, \beta \in \Gamma$ and let $u = (x\beta y)\alpha y$. Then clearly, $u\alpha[(x\beta y)\alpha y] = 0 \in I$. Since I is positive implicative, by Theorem 5.16 (3) and Proposition 3.6, we have

$$[u\alpha(y\beta x)]\alpha(u\beta x) = [y\alpha(u\beta x)]\alpha(u\beta x) \in I.$$

Since I is implicative, by the condition (5.3), $[(u\beta x)\alpha y]\beta y \in I$. Since $I \subset J$, $[(u\beta x)\alpha y]\beta y \in J$. On the other hand, by Corollary 3.7 (2), $[(u\beta x)\alpha y]\beta y \leq u\beta x$ and $(x\beta y)\alpha y \leq x$. Thus we get

$$[((u\beta x)\alpha y)\beta y]\alpha[(x\beta y)\alpha y] \leq (x\beta y)\alpha[(u\beta x)\alpha y] \text{ [By Proposition 3.3 (1)]} \\ \leq (u\beta x)\alpha x \text{ [By Proposition 3.5 (1)]} \\ = [((x\beta y)\alpha y)\beta x]\alpha x \text{ [Since } u = x\alpha(x\beta y)] \\ \leq (x\beta y)\alpha y \in J. \\ \circ [((u\beta x)\alpha y)\beta y]\alpha[(x\beta y)\alpha y] \in J. \text{ Since } [(u\beta x)\alpha y]\beta y \in J, (x\beta y)\alpha y] \in J. \text{ Hence b}$$

So $[((u\beta x)\alpha y)\beta y]\alpha[(x\beta y)\alpha y] \in J$. Since $[(u\beta x)\alpha y]\beta y \in J$, $(x\beta y)\alpha y] \in J$. Hence by Theorem 5.25, J is implicative.

Now we obtain a similar consequence of Theorem 5.18.

Theorem 5.27. Let X be a Γ -KU-algebra. The the followings are equivalent:

- (1) {0} is implicative,
- (2) every ΓI of X is implicative,
- (3) A(a) is implicative for each $a \in X$,
- (4) X is implicative.

Proof. (1) \Leftrightarrow (2): The proof follows from Proposition 5.26.

- $(2) \Leftrightarrow (3)$: The prof is straightforward from Proposition 5.23 and Theorem 5.18.
- $(4) \Rightarrow (1)$: The proof is obvious.

 $(1) \Rightarrow (4)$: Suppose $\{0\}$ is implicative. Then by Proposition 5.23, $\{0\}$ is positive implicative. By Theorem 5.18, $A((x\beta y)\alpha x))$ is a Γ I of X for any $x, y, z \in X$. By the hypothesis, $A((x\beta y)\alpha x))$ is implicative. It is clear that $(x\beta y)\alpha x \in A((x\beta y)\alpha x))$. Thus $x \in A((x\beta y)\alpha x))$. So $(x\beta y)\alpha x \leq x$. Note that $x \leq (x\beta y)\alpha x$. Hence $x = (x\beta y)\alpha x$. Therefore X is implicative. \Box

Definition 5.28. Let X be Γ -KU-algebra and let I be a nonempty subset of X. Then I is called a *commutative* Γ -KU-ideal (briefly, C Γ KUI) of X, if it satisfies the following conditions: for any x, y, $z \in X$ and any α , $\beta \in \Gamma$,

 $(\Gamma \mathbf{I}_1) \ 0 \in I,$

(CГКUI₂) if $z\alpha(y\beta x)$, $z \in I$, then $[(x\alpha y)\beta y]\alpha x \in I$.

It is obvious that X is always a CFKUI of a Γ -KU-algebra X which is called the *trivial commutative* Γ -KU-ideal.

Example 5.29. Let X be the Γ -KU-algebra given in Example 4.13 (2). Then we can easily see that $\{0, 4\}$ is commutative but not positive implicative, $\{0, 1, 3\}$ is positive implicative but not commutative and $\{0, 1, 2, 3\}$ is implicative.

Proposition 5.30. Every $C\Gamma KUI$ of a Γ -KU-algebra X is a ΓI of X but the converse is not true.

Proof. Let I be any CFKUI of X and $y\alpha x \in I$ and $y \in I$ for any $x, y \in X$ and each $\beta \in \Gamma$. Then clearly, $y\alpha(0\beta x) \in I$ for each $\alpha \in \Gamma$. Since I is commutative, $x = [(x\alpha 0)\beta 0]\alpha x \in I$. Then I is a Γ I of X. See Example 5.29 for the converse. \Box

We have an equivalent condition of $C\Gamma KUIs$.

Theorem 5.31. Let X be a Γ -KU-algebra and let I be a Γ I of X. Then I is commutative if and only if it satisfies the following condition:

(5.5) $y\alpha x \in I \text{ implies } [(x\alpha y)\beta y]\alpha x \in I \text{ for any } x, y \in X \text{ any } \alpha, \beta \in \Gamma.$

Proof. Suppose I is commutative and $y\alpha x \in I$ for any $x, y \in X$ and each $\alpha \in \Gamma$. Then clearly, $0\beta(y\alpha x) \in I$ for any $\beta \in \Gamma$ and $0 \in I$. Thus by the condition (*C*TKUI₂), $[(x\alpha y)\beta y]\alpha x \in I$. So the condition (5.5) holds.

Conversely, suppose the condition (5.5) holds and $z\beta(y\alpha x)$, $z \in I$ for any $x, y, z \in X$ and any $\alpha, \beta \in \Gamma$. Since I is a Γ I of $X, y\alpha x \in I$. Then by the condition (5.5), $[(x\alpha y)\beta y]\alpha x \in I$. Thus I is commutative.

We obtain a similar consequence of Theorem 4.14 for Γ Is.

Theorem 5.32. Let X be a Γ -KU-algebra and let I be a nonempty subset of X. Then I is implicative if and only if it is both commutative and positive implicative. *Proof.* Suppose I is implicative. Then by Proposition 5.23, I is positive implicative. It is sufficient to prove that I is commutative.

Suppose $y\alpha x \in I$ for any $x, y \in X$ and each $\alpha \in \Gamma$. From (3.1) and the axiom $(\Gamma KU_3), [(x\alpha y)\beta y]\alpha x \leq x$ for each $\beta \in \Gamma$. Then $y\alpha x \leq y\beta[((x\alpha y)\beta y)\alpha x]$. Let $u = [(x\alpha y)\beta y]\alpha x$. Then we have

$$\begin{aligned} (u\beta y)\alpha u &= [(((x\alpha y)\beta y)\alpha x)\beta y]\alpha [((x\alpha y)\beta y)\alpha x] \\ &\leq (x\alpha y)\alpha [((x\alpha y)\beta y)\alpha x] \\ &= [(x\alpha y)\beta y]\alpha [(x\alpha y)]\alpha x] \\ &\leq y\alpha x \in I. \end{aligned}$$

Thus $u\beta(y\alpha u) \in I$. Since I is implicative, by Theorem 5.24, $u \in I$, i.e., $[(x\alpha y)\beta y]\alpha x \in I$. So by Theorem 5.31, I is commutative.

Conversely, suppose the necessary condition holds and $(x\alpha y)\beta x \in I$ for any $x, y \in X$ and each $\alpha \in \Gamma$. It is obvious that

$$(x\alpha y)\beta[(x\alpha y)\beta y] \le (x\alpha y)\beta x \in I.$$

Then $(x\alpha y)\beta[(x\alpha y)\beta y] \in I$. Since I is positive implicative, by Theorem 5.16 (2), we have

$$(5.6) (x\alpha y)\beta y \in I.$$

Furthermore, by Propositions 3.3 (1) and 3.6, we have

$$y\beta x \le (x\alpha y)\beta x.$$

Since $(x\alpha y)\beta x \in I$, $y\beta x \in I$, i.e., $y\alpha x \in I$. Since I is commutative, by Theorem 5.31,

$$(5.7) \qquad \qquad [(x\alpha y)\beta y]\alpha x \in I.$$

Thus by (5.6) and (5.7), $x \in I$. So I is implicative.

We obtain a similar consequence of Proposition 5.17 for IFKUIs.

Proposition 5.33. Let I and J be $\Gamma KUIs$ of a Γ -KU-algebra X such that $I \subset J$. If I is commutative, then so is J.

Proof. Suppose I is commutative and $y\alpha x \in J$ for any $x, y \in X$ and each $\alpha \in \Gamma$. In order to show that J is commutative, it is sufficient to show that $[(x\alpha y)\beta y]\alpha x \in J$ by using Theorem 5.31. Let $u = y\alpha x$. Then we get

 $y\beta(u\alpha x) = u\beta(y\alpha x) = 0 \in I.$

Since I is commutative, by Theorem 5.31, we have

 $[((u\alpha x)\beta y)\alpha y]\beta(u\alpha x) \in I.$

By Proposition 3.6, we have

$$[((u\alpha x)\beta y)\alpha y]\beta(u\alpha x) = u\beta[(((u\alpha x)\beta y)\alpha y)\alpha x] \in I.$$

Since $I \subset J$, $u\beta[(((u\alpha x)\beta y)\alpha y)\alpha x] \in J$. Since J is a Γ I of X and $u \in J$, $[((u\alpha x)\beta y)\alpha y]\alpha x \in J$. On the other hand, from Proposition 3.3 (1), (1) and (ΓKU_3) , we get

$$[(((u\alpha x)\beta y)\alpha y)\alpha x]\beta[((x\alpha y)\beta y)\alpha x] \leq [(x\alpha y)\beta y]\alpha[((u\alpha x)\beta y)\alpha y]$$
$$\leq [(u\alpha x)\beta y]\alpha(x\beta y)$$
$$\leq x\beta(u\alpha x)$$
$$= u\beta(x\alpha x).$$

Thus $[(x\alpha y)\beta y]\alpha x \in J$. So by Theorem 5.31, J is implicative.

Finally, we obtain a characterization of commutative Γ -KU-algebras.

Theorem 5.34. Let X be a Γ -KU-algebra. The the followings are equivalent:

- (1) $\{0\}$ is commutative,
- (2) every ΓI of X is commutative,

(3) X is commutative.

Proof. (1) \Leftrightarrow (2): The proof is clear from Proposition 5.33.

(1) \Leftrightarrow (3): The proof follows from Theorem 4.9.

6. Topological structures on Γ -KU-algebras

We recall some terms and notations related for a general topology (See [32, 33]). For a subset A of a topological space (X, τ) , the closure and the interior of A are denoted by $cl_{\tau}(A)$, cl(A) or \overline{A} and $int_{\tau}(A)$, int(A) or A° . A subfamily \mathcal{B} of τ is called a base for τ , if for each $U \in \tau$ either $U = \emptyset$ or there is $\mathcal{B}' \subset \mathcal{B}$ such that $U = \bigcup \mathcal{B}'$. A subset A of X is called a *neighborhood* of $x \in X$, if there is $U \in \tau$ such that $x \in U \subset A$. The set of all neighborhoods of x write as $N_{\tau}(x)$ or N(x) and N(x) is called the *neighborhood filter* of $x \in X$. A subfamily $\mathcal{N}(x)$ of N(x) is called a fundamental system of neighborhoods of x, if for each $U \in N(x)$ there is $V \in \mathcal{N}(x)$ such that $V \subset U$. In fact, $\mathcal{N}(x)$ is a filter base of N(x). Moreover, it is well-known ([32]) that $N_{\tau}(x)$ satisfies the following properties:

(N₁) $x \in U$ for each $U \in N_{\tau}(x)$,

 (N_2) if $U \in N_\tau(x)$ and $U \subset V \subset X$, then $V \in N_\tau(x)$,

(N₃) if U_1 , $U_2 \in N_\tau(x)$, then $U_1 \cap U_2 \in N_\tau(x)$,

 (N_4) if $V \in N_\tau(x)$, there is $W \in N_\tau(x)$ such that $V \in N_\tau(x)$ for each $y \in W$.

Furthermore, it is well-known (Proposition 1.1.2, [32]) that for each $x \in X$ if $\mathcal{B}(x)$ be a set of subsets of X satisfying the properties $(N_1)-(N_4)$, then a unique topology on X such that $\mathcal{B}(x) = N_{\tau}(x)$, where

 $\tau = \{ V \subset X : \forall x \in V, \exists U \in \mathcal{B}(x) \text{ such that } U \subset V \}.$

Definition 6.1. Let X be a KU-algebra and let τ be a topology on X. Then X is called a *topological KU-algebra* (briefly, TKU-algebra), if $* : (X \times X, \tau \times \tau) \to (X, \tau)$ is continuous, i.e., for any $x, y \in X$ and each $W \in N(x * y)$ there are $U \in N(x)$ and $V \in N(y)$ such that $U * V \subset W$, where $U * V = \{x * y \in X : x \in U, y \in V\}$.

Definition 6.2. Let X be a Γ -KU-algebra and let τ be a topology on X. Then X is called a *topological* Γ -KU-algebra (briefly, $\Gamma\Gamma$ -KU-algebra), if a mapping f: $(X, \tau) \times \Gamma \times (X, \tau) \to (X, \tau)$ is continuous at each $(x, \alpha, y) \in X \times \Gamma \times X$, i.e., for each $\alpha \in \Gamma$, any $x, y \in X$ and each $W \in N(x\alpha y)$ there are $U \in N(x)$ and $V \in N(y)$ such that $U\alpha V \subset W$, where $U\alpha V \subset W = \{x\alpha y : x \in U, y \in V\}$.

It is clear that if X is a T Γ -KU-algebra, then X_{α} is a TKU-algebra for each $\alpha \in \Gamma$.

Example 6.3. (1) Let $X = \{0, 1, 2, 3, 4\}$ be the Γ -*KU*-algebra given in Example 4.13 (2). Consider the topology τ on X given by:

$$\tau = \{ \emptyset, \{4\}, \{0, 1, 2, 3\}, X \}.$$

Then we can easily check that (X, τ) is a TT-KU-algebra. Moreover, X_{α} and X_{β} are TKU-algebras.

(2) Let $X = \{0, 1, 2, 3\}$ be the Γ -KU-algebra given in Example 3.4 (1). Consider a topology τ on X given by:

 $\tau = \{ \emptyset, \{0\}, \{0, 1\}, \{0, 2, 3\}, X \}.$

Then we can easily see that (X, τ) is a T Γ -KU-algebra.

Proposition 6.4. Let X be a $T\Gamma$ -KU-algebra. If $\{0\}$ is open in X, then X is discrete.

Proof. Let $x \in X$ and let $\alpha \in \Gamma$. Then clearly, $x\alpha x = 0 \in \{0\} \in N(0)$. Thus there are $U, V \in N(x)$ such that $U\alpha V = \{0\}$. Let $W = U \cap V$. Then $W\alpha W \subset U\alpha V = \{0\}$. Thus $W\alpha W = \{0\}$. Since $x \in U \cap V$, $x \in W$. So $W = \{x\}$ and W is open in X. Hence X is discrete.

The following is an immediate consequence of Proposition 6.4.

Corollary 6.5. Let X be a $T\Gamma$ -KU-algebra. If $\{0\}$ is open in X_{α} for each $\alpha \in \Gamma$, then X_{α} is discrete.

Theorem 6.6. Let X be a $T\Gamma$ -KU-algebra. Then $\{0\}$ is closed in X if and only if X is Hausdorff.

Proof. Suppose $\{0\}$ is closed in X, let $x, y \in X$ such that $x \neq y$ and let $\alpha \in \Gamma$. Then $x\alpha y \neq 0$ or $y\alpha x \neq 0$, say $x\alpha y \neq 0$. Since $\{0\}$ is closed in X and $x\alpha y \neq 0$, $\{0\}^c$ is open in X and $x\alpha y \in \{0\}^c$. Thus $\{0\}^c \in N(x\alpha y)$. Since X is a T Γ -KU-algebra, by Definition 6.2, there are $U \in N(x)$ and $V \in N(y)$ such that $U\alpha V \subset \{0\}^c$. So $U \cap V = \emptyset$. Hence X is Hausdorff.

Conversely, suppose X is Haousdorff and let $x \in \{0\}^c$. Then $x \neq 0$. By the hypothesis, there are $U \in N(x)$ and $V \in N(0)$ such that $U \cap V = \emptyset$. Thus $0 \notin U$. So $U \subset \{0\}^c$. Hence $\{0\}^c$ is open in X. Therefore $\{0\}$ is closed in X. \Box

The following is an immediate consequence of Theorem 6.6.

Corollary 6.7. Let X be a $T\Gamma$ -KU-algebra. Then $\{0\}$ is closed in X_{α} if and only if X_{α} is Hausdorff for each $\alpha \in \Gamma$.

Proposition 6.8. Let X be a $T\Gamma$ -KU-algebra and let A be open in X. If A is a Γ -subalgebra of X, then A is a $T\Gamma$ -KU-algebra.

Proof. Let τ be the topology on X and let τ_A be the subspace topology on A with respect to τ . Let $x, y \in A$ and let $\alpha \in \Gamma$. Since A is a Γ -subalgebra of $X, x\alpha y \in A$. Let $W_A \in N_{\tau_A}(x\alpha y)$, where $N_{\tau_A}(x\alpha y)$ denotes the neighborhood of $x\alpha y$ in the subspace (A, τ_A) of (X, τ) . Then there is $W \in N(x\alpha y)$ such that $W_A = A \cap W$. Since X is a T Γ -KU-algebra, there are $U \in N(x)$ and $V \in N(y)$ such that $U\alpha V \subset W$. Thus $U_A = A \cap U \in N_{\tau_A}(x)$ and $V_A = A \cap V \in N_{\tau_A}(x)$. It is clear that

$$U_A \alpha V_A = (A \cap U) \alpha (A \cap V) \subset W$$
 and $U_A \alpha V_A \subset A$.

So $U_A \alpha V_A \subset A \cap W = W_A$. Hence A is a T Γ -KU-algebra.

Corollary 6.9. Let X be a $T\Gamma$ -KU-algebra and let A be open in X_{α} for each $\alpha \in \Gamma$. If A is a Γ -subalgebra of X_{α} , then A is a TKU-algebra.

Proposition 6.10. Let X be a $T\Gamma$ -KU-algebra and let I be open in X. If I is a ΓI of X, then I is closed in X.

Proof. Let $x \in I^c$ and let $\alpha \in \Gamma$. Since $x\alpha x = 0 \in I$ and I is open, $I \in N(0)$. Since X is a T Γ -KU-algebra, there is $U \in N(x)$ such that $U\alpha U \subset I$. Assume that $U \not\subset I^c$. Then there is $y \in X$ such that $y \in U \cap I$. It is obvious that $y\alpha z \in U\alpha U \subset I$ for each $z \in U$. Since I is a Γ I of X and $y \in I$, $z \in I$. Thus $U \subset I$. This is a contradiction. So $U \subset I^c$, i.e., I^c is open in X. Hence I is closed in X.

Corollary 6.11. Let X be a $T\Gamma$ -KU-algebra and let I be open in X_{α} for each $\alpha \in \Gamma$. If I is a ΓI of X_{α} , then I is closed in X_{α} .

Proposition 6.12. Let X be a $T\Gamma$ -KU-algebra and let I be a ΓI of X. If $0 \in int(I)$, then I is open in X.

Proof. Let $x \in I$ and let $\alpha \in \Gamma$. Since $0 \in int(I)$ and $x\alpha x = 0 \in I$, there is $W \in N(0) = N(x\alpha x)$ such that $W \subset I$. Since X is a T Γ -KU-algebra, there are U, $V \in N(x)$ such that $U\alpha V \subset W \subset I$. It is obvious that $x\alpha y \in U\alpha V \subset I$ for each $y \in U$. Since I is a Γ I of X and $x \in I$, $y \in I$. Then $y \in I$. Thus $U \subset I$. So I is open in X.

Corollary 6.13. Let X be a $T\Gamma$ -KU-algebra and let I be a ΓI of X_{α} for each $\alpha \in \Gamma$. If $0 \in int(I)$, then I is open in X_{α} .

In Proposition 6.12, when $0 \neq x \in int(I)$, I need not open in X (See Example 6.14).

Example 6.14. For a set $\Gamma = \{\alpha, \beta\}$, let $X = \{0, 1, 2, 3\}$ be a Γ -*KU*-algebra with the ternary operation be defined by the table:

α	0	1	2	3	β	0	1	2	3		
0	0	1	2	3	0	0	1	2	3		
1	0	0	2	2	1	0	0	1	3		
2	0	0	0	3	2	0	0	0	3		
3	0	1	2	0	3	0	2	1	0		
Table 6.1											

Consider a topology τ on X given by:

 $\tau = \{ \emptyset, \{2\}, \{3\}, \{0, 1\}, \{2, 3\}, \{0, 1, 3\}, X \}.$

Let $I = \{0, 3\}$. Then clearly, $3 \in int(I)$. But $I \notin \tau$.

Proposition 6.15. Let X be TT-KU-algebra. Then $\bigcap N(0) = \{0\}$ and thus $\bigcap \mathcal{N}(0) = \{0\}$.

Proof. Assume that $0 \neq x \notin \bigcap N(0)$. Then clearly, there is $U \in N(0)$ such that $0 \in U$ but $x \notin U$. Thus $x \notin \bigcap N(0)$. This is a contradiction. So $\bigcap N(0) = \{0\}$. \Box

Proposition 6.16. Let (X, τ) be a TT-KU-algebra and let \mathcal{B}_1 , \mathcal{B}_2 be the families of subsets of X given by:

 $\mathcal{B}_1 = \{ U\alpha x : x \in X, \ \alpha \in \Gamma, \ U \in \mathcal{N}(0) \}, \ \mathcal{B}_2 = \{ x\alpha U : x \in X, \ \alpha \in \Gamma, \ U \in \mathcal{N}(0) \},\$

where $U\alpha x = \{u\alpha x : u \in U\}$ and $x\alpha U = \{x\alpha u : u \in U\}$. Then \mathcal{B}_1 and \mathcal{B}_2 are bases for τ .

Proof. Let $x \in X$. Since $0 \in U \in \mathcal{N}(0)$, $0\alpha x = x$. Then $\bigcup \mathcal{B}_1 = X$. Suppose $B_1, B_2 \in \mathcal{B}_1$ and $z \in B_1 \cap B_2$. Then there are $U_1, U_2 \in \mathcal{N}(0)$ such that $B_1 = U_1 \alpha x$, $B_2 = U_2 \alpha x$ and $B_1 \cap B_2 = (U_1 \cap U_2) \alpha x$. Since $z \in B_1 \cap B_2$, there is $y \in U_1 \cap U_2$. Since $U_1, U_2 \in \mathcal{N}(0), U_1 \cap U_2 \in \mathcal{N}(0)$. So there is $V \in \mathcal{N}(0)$ such that $y \in V \subset U_1 \cap U_2$. Hence $z = y\alpha x \in V\alpha x \in \mathcal{B}_1$. Therefore \mathcal{B}_1 is a base for τ . Similarly, we can prove that \mathcal{B}_2 is a base for τ .

Now in order to give a filter base on X generating a topology on a Γ -KU-algebra, let us define the subset U(a) of X generated by each $a \in X$ and each subset U of X as follows:

$$U(a) = \{ x \in X : x \alpha a \in U, \ a \alpha x \in U, \ \alpha \in \Gamma \}.$$

Proposition 6.17. Let X be a Γ -KU-algebra. Suppose \mathcal{B} is a filter base on X satisfying the following condition:

(1) for each $u \in U \in \mathcal{B}$ there is $B \in \mathcal{B}$ such that $B(u) \subset U$,

(2) for each $u \in U \in \mathcal{B}$ and each $\alpha \in \Gamma$ if $u\alpha x = 0$, then $x \in U$,

(3) for each $U \in \mathcal{B}$ there is $B \in \mathcal{B}$ such that $B(b) \subset U$ for each $b \in B$, i.e., $B(B) \subset U$.

Then there is a unique topology τ on X such that $\mathcal{B} = \mathcal{N}_{\tau}(0)$ and (X, τ) is a TT-KU-algebra.

Proof. Let $\tau = \{ O \in P(X) : \text{for each } a \in O \text{ there is } B \in \mathcal{B} \text{ such that } B(a) \subset O \}$. Then we can easily prove that τ is a topology on X. To accomplish to the proof, consider the following Claims.

Claim 1: $B(a) \in \tau$. Let $x \in B(a)$. Then $x\alpha a$, $a\alpha x \in B$ for each $\alpha \in \Gamma$. Thus by the condition (1), there are B_1 , $B_2 \in \mathcal{B}$ such that $B_1(x\alpha a) \subset B$ and $B_2(a\alpha x) \subset B$. Since \mathcal{B} is a filter base on X, there is $U \in \mathcal{B}$ such that $U \in B_1 \cap B_2$. Let $x\alpha y$, $y\alpha x \in U$, i.e., $y \in U(x)$. By Proposition 3.3 (1), we have

$$(x\alpha a)\beta(y\alpha a) \leq y\alpha x, \ (y\alpha a)\beta(x\alpha a) \leq x\alpha y.$$

Then $(y\alpha x)\beta[(x\alpha a)\beta(y\alpha a)] = 0$, $(x\alpha y)\beta[(y\alpha a)\beta(x\alpha y)] = 0$. By the condition (2), $(x\alpha a)\beta(y\alpha a)$, $(y\alpha a)\beta(x\alpha y) \in U$. Thus we get

$$y\alpha a \in U(x\alpha a) \subset B_1(x\alpha a) \subset B.$$

So $y\alpha a \in B$. Similarly, we can show that $a\alpha y \in U$. Hence $y \in U(a)$, i.e., $U(x) \subset B(a)$. Therefore $B(a) \in \tau$.

Claim 2: $\mathcal{B} = \mathcal{N}_{\tau}(0)$. Let $A \in \mathcal{B}$ and let $x \in A$. Since X is a Γ -KU-algebra, by the axiom (Γ KU₃), $x\alpha 0 = 0$. By the condition (2), $0 \in A$. By the condition (1), there is $B \in \mathcal{B}$ such that $B(0) \subset A$. Then by Claim 1, $B(0) \in \tau$. Thus $A \in N_{\tau}(0)$. So $\mathcal{B} \subset N_{\tau}(0)$. Hence by the condition (3), $\mathcal{B} \subset \mathcal{N}_{\tau}(0)$. It can be easily proved that $\mathcal{N}_{\tau}(0) \subset \mathcal{B}$. Therefore $\mathcal{B} = \mathcal{N}_{\tau}(0)$. Claim 3: A mapping $f : (X, \tau) \times \Gamma \times (X, \tau) \to (X, \tau)$ is continuous at each $(x, \alpha, y) \in X \times \Gamma \times X$. Let $x, y \in X$, let $\alpha \in \Gamma$ and let $W \in N_{\tau}(x\alpha y)$. Since $x\alpha y \in W$, by the condition (1), there is $W' \in \mathcal{B}$ such that $W'(x\alpha y) \subset W$. Since $W' \in \mathcal{B}$, by the condition (3), there is $B \in \mathcal{B}$ such that $B(b) \subset W'$ for each $b \in W'$. Let U = B(x), V = B(y) and let $u \in U, v \in V$. Then we have

$$\begin{aligned} (x\alpha u)\beta[(u\alpha v)\beta(x\alpha y)] &= (u\alpha v)\beta[(x\alpha u)\beta(x\alpha y)] \text{ [By Proposition 3.6]} \\ &\leq (u\alpha v)\beta(u\alpha y) \text{ [By Corollary 3.8]} \\ &\leq v\alpha y. \text{ [By Corollary 3.8]} \end{aligned}$$

Thus $(\alpha y)\beta[(x\alpha u)\beta((u\alpha v)\beta(x\alpha y))] = 0$. Since $v\alpha y \in B$, by the condition (2), $(x\alpha u)\beta[(u\alpha v)\beta(x\alpha y)] \in B$. Similarly, we have $[(u\alpha v)\beta(x\alpha y)]\beta(x\alpha u) \in B$. So we get

$$(u\alpha v)\beta(x\alpha y)\in B(x\alpha u)\subset W^{'}, \text{i.e.}, \ (u\alpha v)\beta(x\alpha y)\in W^{'}.$$

Similarly, $(x\alpha y)\beta(u\alpha v) \in W'$. Hence we have

$$u\alpha v \in W'(x\alpha y)$$
, i.e., $U\alpha V = B(x)\alpha B(y) \subset W'(x\alpha y) \subset W$.

Therefore f is continuous. The proof of uniqueness for τ is easy. This completes the proof.

Example 6.18. (1) Let X be the Γ -KU-algebra and let \mathcal{I} be the collection of all Γ is of X. Let $x \in I \in \mathcal{I}$. Then clearly, $I(x) \subset I$. Thus \mathcal{I} satisfies the conditions (1) and (3) in Proposition 6.17. Let $y \in I \in \mathcal{I}$ and suppose $y\alpha x = 0$. Then $y\alpha x = 0 \in I$. Thus $x \in I$. So \mathcal{I} satisfies the condition (2) in Proposition 6.17. So \mathcal{I} forms a filter base of X satisfying all the conditions in Proposition 6.17. Hence (X, τ) is a (X, τ) is a $T\Gamma$ -KU-algebra, where τ is the topology on X generated by \mathcal{I} .

(2) Let $X = \{0, 1, 2, 3\}$ be the Γ -*KU*-algebra given in Example 4.7 (2). Consider the family \mathcal{B} of subsets of X given by:

$$\mathcal{B} = \{\{0,1\},\{0,2\},\{0,3\},\{0,1,2\},\{0,1,3\},\{0,2,3\}\}.$$

Then we can easily check that \mathcal{B} is a filter base on X. Moreover, we have

$$\{0,1\}(0) = \{0,1\}(1) = \{0,1\}, \ \{0,1\}(2) = \{2\}, \ \{0,1\}(3) = \{3\}, \\ \{0,2\}(0) = \{0,2\}(2) = \{0,2\}, \ \{0,2\}(1) = \{1\}, \ \{0,2\}(3) = \{3\}, \\ \{0,3\}(0) = \{0,3\}(3) = \{0,3\}, \ \{0,3\}(1) = \{1\}, \ \{0,3\}(2) = \{2\}, \\ \{0,1,2\}(0) = \{0,1,2\}(1) = \{0,1,2\}(2) = \{0,1,2\}, \ \{0,1,2\} = \{3\}, \\ \{0,1,3\}(0) = \{0,1,3\}(1) = \{0,1,3\}(3) = \{0,1,3\}, \ \{0,1,3\}(2) = \{2\}, \\ \{0,2,3\}(0) = \{0,2,3\}(2) = \{0,2,3\}(3) = \{0,2,3\}, \ \{0,2,3\}(1) = \{1\}, \\ \{0,2,3\}(1) = \{0,2,3\}(2) = \{0,2,3\}(3) = \{0,2,3\}, \ \{0,2,3\}(1) = \{1\}, \\ \{0,2,3\}(1) = \{0,2,3\}(2) = \{0,2,3\}(3) = \{0,2,3\}, \ \{0,2,3\}(1) = \{1\}, \\ \{0,2,3\}(1) = \{1\}, \ \{1\}, \$$

Thus \mathcal{B} is a filter base on X satisfying all the conditions in Proposition 6.17. So the topology τ on X generated by \mathcal{B} is given as follows:

$$\tau = \{ \emptyset, \{0,1\}, \{0,2\}, \{0,3\}, \{0,1,2\}, \{0,1,3\}, \{0,2,3\}, X \}.$$

Hence (X, τ) is a T Γ -KU-algebra.

Lemma 6.19. Let X be a Γ -KU-algebra and let τ be the topology on X generated by \mathcal{B} , where \mathcal{B} is a filter base on satisfying all the conditions in Proposition 6.17. Then for each $B \in \mathcal{B}$ and each $a \in X$,

- (1) $B(a) \in N_{\tau}(a),$
- (2) $B(A) = \bigcup_{a \in A} B(a) \in N_{\tau}(A)$ for each $A \in P(X)$.

Proof. The proof is straightforward.

Proposition 6.20. Let X be a Γ -KU-algebra and let τ be the topology on X generated by \mathcal{B} , where \mathcal{B} is a filter base on X satisfying all the conditions in Proposition 6.17. Then for each $B \in \mathcal{B}$, $cl_{\tau}(A) = \bigcap_{B \in \mathcal{B}} B(A)$.

Proof. Let $x \in cl_{\tau}(A)$ and let $B \in \mathcal{B}$. By Lemma 6.19 (1), $B(x) \in N_{\tau}(x)$. Then $B(x) \cap A \neq \emptyset$. Thus there is $a \in A$ such that $a\alpha x$, $x\alpha a \in B$ for each $\alpha \in \Gamma$. So $x \in B(a) \subset B(A)$, i.e., $x \in \bigcap_{B \in \mathcal{B}} B(A)$. Hence $cl_{\tau}(A) \subset \bigcap_{B \in \mathcal{B}} B(A)$. Conversely, let $x \in \bigcap_{B \in \mathcal{B}} B(A)$. Then $x \in U(A)$ for each $U \in \mathcal{B}$. Thus there is $a \in A$ such that $x \in B(a)$, i.e., $x\alpha a$, $a\alpha x \in B$ for each $\alpha \in \Gamma$. So $a \in B(x)$, i.e., $B(x) \cap A \neq \emptyset$. Hence $x \in cl_{\tau}(A)$, i.e., $\bigcap_{B \in \mathcal{B}} B(A) \subset cl_{\tau}(A)$. Therefore $cl_{\tau}(A) = \bigcap_{B \in \mathcal{B}} B(A)$.

Corollary 6.21. Let (X, τ) be a $T\Gamma$ -KU-algebra, where \mathcal{B} is a filter base on X satisfying all the conditions in Proposition 6.17 and τ is the topology on X generated by \mathcal{B} . Then every $B \in \mathcal{B}$ is closed in X, i.e., \mathcal{B} is a collection of clopen subsets of X.

Proof. Let $B \in \mathcal{B}$. It is obvious that $B(B) \subset B$. Then by Proposition 6.20, $B \subset cl_{\tau}(B) = \bigcap_{U \in \mathcal{B}} U(B) \subset B(B) \subset B$. Thus $cl_{\tau}(B) = B$. So B is closed in X. From Proposition 6.17, it is clear that B is open in X. So B is clopen in X.

The following shows that every neighborhood of a compact set contains a neighborhood B(A) for some $B \in \mathcal{B}$

Proposition 6.22. Let A be a compact subset of a $T\Gamma$ -KU-algebra. If U is a neighborhood of A, then there is $B \in \mathcal{B}$ such that $A \subset B(A) \subset U$.

Proof. Suppose U is a neighborhood of A and let $a \in A$. Then there is $B_a \in \mathcal{B}$ such that $B_a \subset U$. Thus by the condition (3), there is $W_a \in \mathcal{B}$ such that $W_a(W_a) \subset B_a$. Since A is a compact subset of X and $A \subset \bigcup_{a \in A} W_a(a)$, there are $a_1, a_2, \cdots, a_n \in A$ such that

(6.1)
$$A \subset W_{a_1}(a_1) \cup W_{a_2}(a_2) \cup \cdots \cup W_{a_n}(a_n).$$

Now let $W = \bigcap_{i=1}^{n} W_{a_i}$ and let $a \in A$. Then by (6.1), there is $i \in \{1, 2, \dots, n\}$ such that $a \in W_{a_i}(a_i)$ Thus $a\alpha a_i$, $a_i\alpha a \in W_{a_i}$ for each $\alpha \in \Gamma$. Suppose $a\alpha y$, $y\alpha a \in W$ for each $y \in X$. By Proposition 3.3 (1). we have

(6.2) $(y\alpha a_i)\beta(a\alpha a_i) \leq a\alpha y \in W \text{ for each } \beta \in \Gamma.$

Then $(y\alpha a_i)\beta(a\alpha a_i) \in W$. Thus we get

$$y\alpha a_i \in W_{a_i}(a\alpha a_i) \subset W_{a_i}(W_{a_i}) \subset B_{a_i}$$

Similarly, $a_i \alpha y \in B_{a_i}$. So $y \in B_{a_i}(a_i) \subset U$ and $W(a) \subset U$. Hence $W(A) \subset U$.

The following is an immediate consequence of Proposition 6.22.

Corollary 6.23. Let A be a compact subset of a $T\Gamma$ -KU-algebra and let F is closed in X. If $A \cap F = \emptyset$, then there is $B \in \mathcal{B}$ such that $B(A) \cap B(F) = \emptyset$.

7. Conclusions

By proposing positive implicative [resp. implicative and commutative] Γ -KUalgebras, we obtained some of their properties respectively and a relationship among them (See Theorem 4.14). Also, by defining positive implicative [resp. implicative and commutative] Γ -KU-ideals of a Γ -KU-algebra, we studied their various properties respectively and a relationship among them (See Theorem 5.32). Moreover, we discussed some topological structures on a Γ -KU-algebra.

In the future, we will use our proposed Γ -KU-algebras to address quotient Γ -KUalgebras, homorphism problems, graph theory and Zariski topological structures. Furthermore, we want to study some ideals of a Γ -KU-algebra in the sense of the fuzzy set theory.

References

- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1) (1978) 1– 26.
- [2] Y. Imai and K. Iséki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy 42 (1966) 19–22.
- [3] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980) 125–130.
- [4] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 23 (1978) 1–26.
- [5] J. Meng, Ideals in BCK-algebras, Pure Appl. Math. 2 (1986) 68-76.
- [6] J. Meng, Commutative ideals in *BCK*-algebras, Pure Appl. Math. 9 (1991) 49–53.
- [7] J. Meng, On ideals in BCK-algebras, Math. Japon. 40 (1994) 143–154.
- [8] C. H. Hoo, Filters and ideals in BCI-algebras, Math. Japon. 36 (1991) 987–997.
- W. A. Dudek and X. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. Journal 48 (123) (1998) 21–29.
- [10] Dong Soo Lee and Dong Neun Ryu, Notes on topological BCK-algebras, Scientiae Mathematicae 1 (2) (1998) 231–235.
- [11] T. Roudabri and L. Torkzadeh, A topology on BCK-algebras via left and right stabilizers, Iranian Journal of Mathematical Sciences and Informatics 4 (2) (2009) 1–18.
- [12] Y. B. Jun, X. L. Xin and D. S. Lee, On topological BCI-algebras, Inform. Sci. 116 (1999) 253–261.
- [13] S. A. Ahn and S. H. Kwon, Topological properties in BCI-algebras, Comm. Korean Math. Soc. 23 (2) (2008) 169–1278.
- [14] C. Prabpayak and U. Leerawat, On ideals and conguences in KU-algebras, Scientia Magna 5 (1) (2009) 54–57.
- [15] C. Prabpayak and U. Leerawat, On Isomorphisms of KU-algebras, Scientia Magna 5 (3) (2009) 25–31.
- [16] Samy M. Mostafa, Mokhtar A. Abd-Elnaby and Moustafa M. M. Yousef, Fuzzy ideals of KU-algebras, International Mathematical Forum 6 (63) (2011) 3139–3149.
- [17] Naveed Yaqoob, Samy M. Mostafa, and Moin A. Ansari, On cubic KUideals of KU-algebras, ISRN Algebra 2013 (2013), Article ID 935905 10 pages, http://dx.doi.org/10.1155/2013/935905.
- [18] Samy M. Mostafa and Fatema F. Kareem, N-fold commutative KU-algebras, International Journal of Algebra 8 (6) (2014) 267–275.
- [19] Samy M. Mostafa, Abdelaziz E. Radwan, Fayza A. Ibrahem and Fatema F. Kareem, Topology spectrum of a KU-algebra, Journal of New Theory (8) (2015) 78–91.
- [20] Samy M. Mostafa, Abdelaziz E. Radwan, Fayza A. Ibrahem and Fatema F. Kareem, The graph of a commutative KU-algebra, Algebra Letters 2015 (1) (2015) 1–18.

- [21] Samy M. Mostafa, R. A. K. Omar and O. W. Abd El-Baseer, Sub implicative ideals of KU-Algebras, International Journal of Modern Science and Technology 2 (5) (2017) 105–116.
- [22] Ali N. A. Koam, Azeem Haider and Moin A. Ansari, Pseudo-metric on KU-algebras, Korean J. Math. 27 (1) (2019) 131–140, https://doi.org/10.11568/kjm.2019.27.1.131
- [23] Kul Hur, Jong Il Baek, Samy M. Mostafa, Ola W. Abd El-Baseer, Square root fuzzy subimplicative ideals of *KU*-algebras, To be published in AFMI.
- [24] M. K. Sen, On Γ-semigroup, Proc. of Inter. Con. of Alg. and its Appl. Decker Publi-caiton, New York (1981) 301–308.
- [25] M. Murali Krishna Rao, Γ-Group, Bulletin Int. Math. Virtual Inst. 10 (1) (2020) 51–58.
- [26] M. Murali Krishna Rao, Γ-semirings-I, Southeast Asian Bull. of Math. 19 (1) (1995) 49–54.
- [27] J. P. Kaushik and Moin Khan, On bi-Γ-ideal in Γ-Semirings, Int. J. Contemp. Math. Sciences 3 (26) (2008) 1255–1260.
- [28] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ-incline and field Γ-semiring, Novi Sad J. of Math. 45 (2) (2015) 155–171.
- [29] A. Borumand Saeid, M. Murali Krishna Rao and K. Rajendra Kumar, Γ-BCK-algebras, JMMRC 11 3 (2022) 133–145.
- [30] D. L. Shi, J. I. Baek, S. H. Han, M. Cheong, K. Hur, A study on Γ-BCK-algebras, To be accepted in AFMI.
- [31] D. L. Shi, J. I. Baek, M. Cheong, S. H. Han, Kul Hur, Topological structures on Γ -BCK-algebras, To be submitted.
- [32] N. Bourbaki, General Topology Part 1, Addison-Wesley Publishing Company 1966.
- [33] C. Wayne Patty, Foundations of Topology, PWS Publishing Company 1993. 347–354.

J. I. BAEK (jibaek@wku.ac.kr)

School of Big Data and Financial Statistics, Wonkwang University, Korea

<u>SAMY M. MOSTAFA</u> (samymostafa@yahoo.com)

Department of Mathematics, Faculty of Education, Ain Shams University Roxy, Cairo, Egypt

FATEMA F. KAREEM (fa_sa20072000@yahoo.com)

Department of Mathematics, Ibn-Al-Haitham College of Education University of Baghdad, Iraq

<u>S. H. HAN</u> (shhan235@wku.ac.kr) Department of Applied Mathematics, Wonkwang University, Korea

 $\underline{K. HUR}$ (kulhur@wku.ac.kr)

Department of Applied Mathematics, Wonkwang University, Korea