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Abstract. In this paper, we introduce the concepts of positive im-
plicative [resp. implicative and commutative] Γ-KU -algebras, and obtain
their some properties (including characterizations) respectively and some
relationships among them. Next, we propose the notions of positive im-
plicative [resp. implicative and commutative] Γ-ideals of a Γ-KU -algebra,
and deal with their some properties (including characterizations) respec-
tively and some relationships among them. Finally, we define a topological
Γ-KU -algebra and discuss its various topological structures.
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1. Introduction

In 1978, Iséki and Tanaka [1] introduced the notion of BCK-algebras as a
generalization of I-algebras proposed by Imai and Iséki [2] in 1966. Iséki [3] de-
fined BCI-algebras which is a proper subclass of BCK-algebras. Some researchers
[4, 5, 6, 7, 8] studied properties of ideals which important role in BCK-algebras and
BCI-algebras respectively. Furthermore, Dudek and Zhang [9] introduced a con-
cept of BCC-algebras and discussed relationships between ideals and congruences
in BCC-algebras. Also, some researchers [10, 11, 12, 13] investigated topological
structures on BCK-algebras and BCI-algebras respectively.

In 2009, Prabpayak and Leerawat [14] defined a KU -algebra as new logical alge-
bras and studied properties ideals and congruences in KU -algebras. Also, They [15]
dealt with isomorphisms in KU -algebras. After then, many researchers [16, 17, 18,
19, 20, 21, 22] investigated various properties in KU -algebras. Recently, Hur et al.
[23] introduced the notion of square root fuzzy sets and obtained some properties
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of square root fuzzy ideals of a KU -algebra. KU -algebras were studied by many
mathematicians and applied to group theory, functional analysis, probability theory,
topology, graph theory and computer science etc.

In 1981, Sen [24] proposed the notion of Γ-semigroups as a generalization of
semigroups. Rao [25] introduced the concept of Γ-groups as generalization of groups
and studied it various properties. Also, Rao [26] proposed the notion of Γ-semirings
of a generalization of semirings. After then, Kaushik and Moin [27] investigated bi-
Γ-ideals in a Γ-semiring, Rao and Venkateswarlu [28] studied some properties related
to regular Γ-incline and field Γ-semiring.

In 2022, Saeid et al. [29] introduced the concept of Γ-BCK-algebras as a gen-
eralization of BCK-algebras and dealt with some properties of subalgebras, ideals,
closed ideals, normal subalgebras and normal ideals in Γ-BCK-algebras and quo-
tient Γ-BCK-algebras. After that time, Shi et al. [30] defined positive implicative
[resp. implicative and commutative] Γ-BCK-algebras and positive implicative [resp.
implicative and commutative] Γ-ideals of a Γ-BCK-algebra, and studied their some
properties respectively and some relationships among them. Also, Shi et al. [31]
defined a topological Γ-BCK-algebra and studied some of its topological structures.

It is the aim of our study to introduce the notion of Γ-KU -algebras as a gen-
eralization of KU -algebras, and define positive implicative [resp. implicative and
commutative] Γ-KU -algebras and discuss their some properties (including charac-
terizations) respectively and some relationships among them. Also, we define pos-
itive implicative [resp. implicative and commutative] Γ-ideals of a Γ-KU -algebra,
and obtain their some properties (including characterizations) respectively and some
relationships among them. Furthermore, we introduce the concept of topological Γ-
KU -algebras and study its various topological structures.

2. Preliminaries

We recall some definitions needed in next sections. An algebra X = (X, ∗, 0)
means a nonempty set X together with a binary operation ∗ and a special element
0.

Definition 2.1 ([14]). An algebra X is called a KU -algebra, if it satisfies the fol-
lowing axioms: for any x, y, z ∈ X,

(KU1) (x ∗ y) ∗ [(y ∗ z)] ∗ (x ∗ z)] = 0,
(KU2) x ∗ 0 = 0,
(KU3) 0 ∗ x = x,
(KU4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

In KU -algebra X, we define a binary operation ≤ on X as follows: for any
x, y ∈ X,

x ≤ y if and only if y ∗ x = 0.

Definition 2.2. Let X be a KU -algebra. Then X is said to be:
(i) KU -positive implicative [19], if (z ∗x)∗ (z ∗y) = z ∗ (x∗y) for any x, y, z ∈ X,
(ii) KU -commutative [20], if (y ∗ x) ∗ x = (x ∗ y) ∗ x for any x, y ∈ X,
(ii) KU -implicative [19], if x = (x ∗ y) ∗ x for any x, y ∈ X.
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Definition 2.3 (See [14]). Let A be a nonempty set of a KU -algebra X. Then A
is called a subalgebra of X, if x ∗ y ∈ A for any x, y ∈ A.

Definition 2.4. Let I be a nonempty set of a KU -algebra X. Then
(a) I is called an ideal of X [19], if it satisfies the following conditions: for any

x, y ∈ X,
(I1) 0 ∈ I,
(I2) x ∗ y ∈ I and x ∈ I imply y ∈ I.

(a) I is called an ideal (briefly, KUI) of X [14], if it satisfies the following condi-
tions: for any x, y, z ∈ X,

(KUI1) 0 ∈ I,
(KUI2) x ∗ (y ∗ z) ∈ I and y ∈ I imply x ∗ z ∈ I.

Definition 2.5 ([18]). Let I be a nonempty set of a KU -algebra X. Then I is called
a KU -positive implicative ideal (briefly, KUPII) of X, if it satisfies the following
conditions: for any x, y, z ∈ X,

(KUI1) 0 ∈ I,
(KUPII2) z ∗ (x ∗ y) ∈ I and z ∗ x ∈ I imply z ∗ y ∈ I.

Definition 2.6 ([18]). Let I be a nonempty set of a KU -algebra X. Then I is called
an KU -implicative ideal (briefly, KU II) of X, if it satisfies the following conditions:
for any x, y, z ∈ X,

(KUI1) 0 ∈ I,
(KUII2) (x ∗ y) ∗ (z ∗ x) ∈ I and z ∈ I imply x ∈ I.

Definition 2.7 ([18]). Let I be a nonempty set of a KU -algebra X. Then I is called
a KU -commutative ideal (briefly, KUCI) of X, if it satisfies the following conditions:
for any x, y, z ∈ X,

(KUI1) 0 ∈ I,
(KUCI2) y ∗ (z ∗ x) ∈ I and z ∈ I imply [(x ∗ y) ∗ y] ∗ x ∈ I.

Definition 2.8 ([26]). Let X and Γ be two nonempty sets. Then X is called a
Γ-semigroup, if there is a mapping f : X×Γ×X → X, denoted by f(x, α, y) = xαy
for each (x, α, y) ∈ X ×Γ×X, such that it satisfies the following condition: for any
x, y, z ∈ X and any α, β ∈ Γ,

(2.1) xα(yβz) = (xαy)βz.

3. Some properties of Γ-KU-algebras

In this section, we introduce the concept of Γ-KU -algebras and study some of its
properties.

Definition 3.1. Let X be a set with a constant 0 and let Γ be a nonempty set.
Then X is called a Γ-KU -algebra, if there is a mapping f : X×Γ×X → X, denoted
by f(x, α, y) = xαy for each (x, α, y) ∈ X × Γ×X, satisfying the following axioms:
for any x, y, z ∈ X and α, β ∈ Γ,

(ΓKU1) (xαy)β[(yαz)β(xαz)] = 0,
(ΓKU2) 0αx = x,
(ΓKU3) xα0 = 0,
(ΓKU4) xαy = 0 = yαx imply x = y.

3
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Remark 3.2. From (ΓKU1), (ΓKU3) and (ΓKU1), (ΓKU2), we have

(3.1) xαx = 0, zβ(xαz) = 0 for any x, z ∈ X and any α, β ∈ Γ.

We define a binary relation ≤ on Γ-KU -algebra X as follows: for any x, y ∈ X
and each α ∈ Γ,

(3.2) x ≤ y ⇔ yαx = 0.

Then we obtain the following properties.

Proposition 3.3. Let X be a Γ-KU -algebra. Then the following inequalities hold:
for any x, y, z ∈ X and each α, β ∈ Γ,

(1) (yαz)β(xαz) ≤ xαy,
(2) 0 ≤ x,
(3) x ≤ y and y ≤ x imply x = y,
(4) x ≤ x,
(5) xαy ≤ y.

It is clear that for a Γ-KU -algebra X and a fixed α ∈ Γ, if we define the operation
∗ : X ×X → X as follows: for any x, y ∈ X,

x ∗ y = xαy,

then (X, ∗, 0) is a KU -algebra and is denoted by Xα.

Example 3.4. (1) Let X = {0, 1, 2, 3}, let Γ = {α, β, γ} and let the ternary opera-
tion be defined by the table:

α 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 0 0 0
3 0 0 0 0

β 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 0 0 0
3 0 0 0 0

γ 0 1 2 3
0 0 1 2 3
1 0 0 3 3
2 0 0 0 0
3 0 1 2 0

Table 3.1

Then we can easily check thatX is Γ-KU -algebra. Also, Xα, Xβ andXγ can confirm
KU -algebras.

(2) Let X = {0, 1, 2, 3, 4, 5}, let Γ = {α, β, γ, δ, ψ} and let the ternary operation
be defined by the table:
Then we can easily check that X is Γ-KU -algebra.

Proposition 3.5. Let X be a Γ-KI-algebra. Then the followings hold: for any
x, y, z ∈ X and each α ∈ Γ,

(1) x ≤ y implies yαz ≤ xαz,
(2) x ≤ y and y ≤ z, then x ≤ z.

Proof. (1) Suppose x ≤ y. Then clearly, yαx = 0 for each α ∈ Γ. Thus by the axiom
(ΓKU1), we have

(yαx)β[(xαz)β(yαz)] = 0, i.e., 0β[(xαz)β(yαz)] = 0 for any α, β ∈ Γ.

So by the axiom (ΓKU2), (xαz)β(yαz) = 0. Hence by (3.2), yαz ≤ xαz.
4
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α 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 2 3 4 5
2 0 1 0 3 4 5
3 0 1 2 0 4 5
4 0 1 2 3 0 5
5 0 1 2 3 4 0

α 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 3 4 5 1
2 0 2 0 4 5 1
3 0 2 3 0 4 1
4 0 2 3 4 0 1
5 0 2 3 4 5 0

α 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 4 5 1 2
2 0 3 0 5 1 2
3 0 3 4 0 1 2
4 0 3 4 5 0 2
5 0 3 4 5 1 0

δ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 5 1 2 3
2 0 4 0 1 2 3
3 0 4 5 0 2 3
4 0 4 5 1 0 3
5 0 4 5 1 2 0

ψ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 1 2 3 4
2 0 5 0 2 3 4
3 0 5 1 0 3 4
4 0 5 1 2 0 4
5 0 5 1 2 3 0

Table 3.2

(2) Suppose x ≤ y and y ≤ z. Then by (1), zαx ≤ yαx. Since x ≤ y, yαx = 0.
Thus zαx ≤ 0. By Proposition 3.3 (2), 0 ≤ zαx. So by Proposition 3.3 (3), zαx = 0.
Hence x ≤ z. □

From Proposition 3.3 (3), (3.1) and Proposition 3.5 (2), it is obvious that (X,≤)
is a poset with the least element 0.

Proposition 3.6. Let X be a Γ-KU -algebra. Then the followings hold: for any
x, y, z ∈ X and each α, β ∈ Γ,

(3.3) zα(yβx) = yα(zβx).

Proof. From the axiom (ΓKU1), (0αz)β[(zαx)β(0αx)] = 0. Then by the axioms
(ΓKU2), zβ[(zαx)βx] = 0, i.e.,

(3.4) (zαx)βx ≤ z.

Thus by (3.4), Proposition 3.5 (1) and Proposition 3.3 (1), we have

(3.5) zα(yβx) ≤ [(zαx)βx]α(yβx) ≤ yα(zβx).

Since x, y, z are arbitrary, by interchanging y and z in the equality (3.5), we get

(3.6) yα(zβx) ≤ zα(yβx).

So the axiom (ΓKU4), the identity (3.3) holds. □

The followings are immediate consequences of Proposition 3.6.

Corollary 3.7. Let X be a Γ-KU -algebra. Then the followings hold: for any
x, y, z ∈ X and each α, β ∈ Γ,

(1) xαy ≤ z if and only if xαz ≤ y,
(2) (yαx)βx ≤ y.

The following is an immediate consequence of Theorem 3.3 (1) and Corollary 3.7
(1).

5
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Corollary 3.8. In a Γ-KU -algebra X, the followings hold: for any x, y, z ∈ X
and each α ∈ Γ,

(xαy)β(xαz) ≤ yαz, i.e., (yαz)β[(xαy)β(xαz)] = 0.

The following is an immediate consequence of Corollary 3.8.

Corollary 3.9. In a Γ-KU -algebra X, the followings hold: for any x, y, z ∈ X
and each α ∈ Γ,

x ≤ y implies zαx ≤ zαy.

We define a binary operation ∧ on a Γ-KU -algebra X as follows: for any x, y ∈ X
and any α, β ∈ Γ,

x ∧ y = (yαx)βx.

Then it is obvious that x∧y is a lower bound of {x, y} and x∧x = 0, x∧0 = 0 = 0αx.
However, x ∧ y ̸= y ∧ x in general.

Proposition 3.10. In a Γ-KU -algebra X, the followings hold: for any x, y ∈ X
and each α ∈ Γ,

(y ∧ x)αx = yαx.

Proof. Since y ∧ x ≤ y, by Proposition 3.5 (1), we have

(3.7) yαx ≤ (y ∧ x)αx.

On the other hand, by Corollary 3.7 (2), we get

(3.8) (y ∧ x)αx = [(xαy)βy]αx ≤ yαx.

Thus (y ∧ x)αx = yαx. □

We obtain a characterization of a Γ-KU -algebra.

Theorem 3.11. Let X be a set with a constant 0 and let Γ be a nonempty set.
Then X is a Γ-KU -algebra if and only if it satisfies axioms (ΓKU1), (ΓKU4) and
the following condition: for any x, y ∈ X and any α, β ∈ Γ,

(3.9) (yα0)βx = x.

Proof. (⇒): The proof is straightforward from the axioms (ΓKU2) and (ΓKU3).
(⇐): Suppose the necessary conditions hold, let x ∈ X and let α, β ∈ Γ. Then

from the axiom (ΓKU3), we get (xα0)β[(0α0)β(xα0)] = 0. On the other hand, by
(3.9), (xα0)β(xα0) = 0. Again by (3.9), xα0 = 0. Thus the axiom (ΓKU3) holds.
By combining (3.9) and the axiom (ΓKU3), 0αx = x. So the axiom (ΓKU2) holds.
Hence X is a Γ-KU -algebra. □

4. Special Γ-KU-algebras

In this section, we define some special Γ-KU -algebras, for example, positive im-
plicative [resp. implicative and commutative] Γ-KU -algebras and obtain some of
their properties (including characterizations) respectively and a relationship among
them.

6
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Definition 4.1. A Γ-KU -algebra X is said to be positive implicative, if it satisfies
the following axiom: for any x, y, z ∈ X and any α, β ∈ Γ,

(4.1) (zαx)β(zαy) = zβ(xαy).

It is obvious that ifX is a positive implicative Γ-KU -algebra, thenXα is a positive
implicative KU -algebra for each α ∈ Γ.

Example 4.2. Let X = {0, 1, 2, 3}, let Γ = {α, β} and let the ternary operation be
defined by the table:

α 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 0 2 0

β 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 0 0 3
3 0 0 2 0

Table 4.1

Then we can easily check that X is a positive implicative Γ-KU -algebra. Moreover,
we confirm that Xα and Xβ are positive implicative KU -algebras.

Proposition 4.3. In a Γ-KU -algebra X, the following holds: for any x, y ∈ X and
any α, β ∈ Γ,

(4.2) (xαy)β((yαx)βx) ≤ (((xαy)βy)αx)βx.

Proof. [(((xαy)βy)αx)βx]α[(xαy)β((yαx)βx)]
= (xαy)β[((((xαy)βy)αx)βx)α((yαx)βx)] [By the identity (3.3)]
≤ (xαy)β[((xαy)βy)α((yαx)βx)] [By Corollary 3.7 (2)]
≤ (xαy)β(xαy) [By Corollary 3.7 (2)]
= 0. [By (3.1)]

Then by Proposition 3.3 (2) and (3), we have

[(((xαy)βy)αx)βx]α[(xαy)β((yαx)βx)] = 0.

Thus the inequality (4.2) holds. □

We have a characterization of a positive implicative Γ-KU -algebra.

Theorem 4.4. Let X be a Γ-KU -algebra. Then the followings are equivalent:
(1) X is positive implicative,
(2) xαy = xα(xβy) for any x, y, z ∈ X and any α, β ∈ Γ.

Proof. (1) ⇒ (2): The proof follows from the axiom (ΓKU2), (3.1) and the identity
(4.1).

(2) ⇒ (1): Suppose the condition (2) holds, let x, y, z ∈ X and let α, β ∈ Γ.
Then we have

[zα(xβy)]α[(zβx)α(zβy)]
= [zα(xβy)]α[(zβx)α(zβ(zαy))] [By (2)]
≤ [zα(xβy)]α[xα(zβy)] [By Corollary 3.8]
= [zα(xβy)]α[zα(xβy)] [By Proposition 3.6]

7
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= 0. [By (3.1)]
Thus (zβx)α(zβy) ≤ zα(xβy). The proof of the converse inequality is easy. So
(zβx)α(zβy) = zα(xβy). Hence X is positive implicative. □

We give another characterization of a Γ-KU -algebra.

Theorem 4.5. Let X be a Γ-KU -algebra. Then the followings are equivalent: for
any x, y, z ∈ X and any α, β ∈ Γ,

(1) X is positive implicative,
(2) zα(xβy) = 0 implies (zαx)β(zαy) = 0,
(3) yα(yβx) = 0 implies yαx = 0.

Proof. (1) ⇒ (2): The proof is straightforward.
(2)⇒ (3): Suppose (2) holds and yα(yβx) = 0 for any x, y ∈ X and any α, β ∈ Γ.

Then we have
yαx = 0β(yαx) [By the axiom (ΓKU2)]

= (yαy)β(yαx) [By (3.1)]
= 0. [By (2)]

Thus (3) holds.
(3) ⇒ (1): Suppose (3) holds. For any x, y ∈ X and any α, β ∈ τ , let u =

yβ(yαx). Then we have
yα(yβ(uαx)) = yα(uβ(yαx)) [By Proposition 3.6]

= uα(yβ(yαx)) [By Proposition 3.6]
= (yβ(yαx))α(yβ(yαx))
= 0. [By (3.1)]

Thus by the hypothesis and (3.1), we get

0 = yβ(uαx) = yβ(yβ(yαx)αx)) = (yβ(yαx)β(yαx).

So yαx ≤ yβ(yαx). On the other hand, from Proposition 3.6 and (3.1), it is obvious
that yβ(yαx) ≤ yαx.Hence yβ(yαx) = yαx. Therefore by Theorem 4.4,X is positive
implicative. □

Definition 4.6. A Γ-KU -algebra X is said to be commutative, if it satisfies the
following axiom:

(4.3) (yαx)βx = (xαy)βy, i.e., x∧y = y∧x for any x, y ∈ X and any α, β ∈ Γ.

We can easily see that if X is a commutative Γ-KU -algebra, then Xα is a com-
mutative kU -algebra for each α ∈ Γ.

Example 4.7. (1) Let X = {0, 1, 2, 3, 4}, let Γ = {α, β} and let the ternary opera-
tion be defined by the table:

α 0 1 2 3 4
0 0 1 2 3 4
1 0 0 1 1 3
2 0 1 0 3 4
3 0 0 0 0 1
4 0 0 0 0 0

β 0 1 2 3 4
0 0 1 2 3 4
1 0 0 1 1 3
2 0 1 0 3 4
3 0 0 0 0 1
4 0 0 0 0 0

Table 4.2
8
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Then clearly, X is a Γ-KU -algebra but (2α3)β3 = 3 ̸= 2 = (3α2)β2. Thus X is not
commutative.

(2) Let X = {0, 1, 2, 3}, let Γ = {α, β} and let the the ternary operation be
defined as the following table:

α 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 1 0 2
3 0 1 0 0

β 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

Table 4.3

Then we can easily check that X is commutative Γ-KU -algebra.

The following is an immediate consequence of the axiom (ΓKU4) and Definition
4.6.

Theorem 4.8. Let X be a Γ-KU -algebra. Then the followings are equivalent: for
any x, y ∈ X and any α, β ∈ Γ,

(1) X is commutative,
(2) (yαx)βx ≤ (xαy)βy,
(3) ((xαy)βy)α((yαx)βx) = 0.

We obtain a characterization of commutative Γ-BCK-algebras.

Theorem 4.9. Let X be a Γ-KU -algebra. Then the followings are equivalent: for
any x, y, z ∈ X and any α, β ∈ Γ,

(1) x ≤ z and yαz ≤ xαz imply x ≤ y,
(2) x, y ≤ z and yαz ≤ xαz imply x ≤ y,
(3) x ≤ y implies x = (xαy)βy,
(4) X is commutative,
(5) x ≤ y implies ((xαy)βy)αx = 0.

Proof. (1) ⇒ (2): The proof is clear.
(2) ⇒ (3): Suppose x ≤ y and let α, β ∈ Γ. Then by Corollary 3.7 (2), (xαy)βy ≤

x. Moreover, ((xαy)βy)αy ≤ xαy. Thus by the hypothesis, x ≤ (xαy)βy. So x =
(xαy)βy.

(3) ⇒ (4): Suppose the condition (3) holds, let x, y ∈ X and let α, β ∈ Γ. From
Corollary 3.7 (2), it is clear that (xαy)βy ≤ x. Then by the hypothesis, we have

(4.4) (xαy)βy = (((xαy)βy)αx)βx.

On the other hand, we get
[(yαx)βx]α[(xαy)βy]

= [(yαx)βx]α[(((xαy)βy)αx)βx] [By (4.4)]
= [((xαy)βy)αx]α[((yαx)βx)βx] [By Proposition 3.6]
≤ [((xαy)βy)αx]α(yβx) [Corollary 3.7 (2)]
≤ yα[(xαy)βy] [By Proposition 3.3 (1)]
= (xαy)α(yβy) [By Proposition 3.6]
= (xαy)α0 [By (3.1)]

9
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= 0 [By (ΓKU3)]
Thus (xαy)βy ≤ (yαx)βx. So by Theorem 4.8, X is commutative.

(4) ⇒ (1): Suppose the condition (4) holds, and suppose x ≤ z and yαz ≤ xαz
for any x, y, z ∈ X and each α ∈ Γ. Then clearly, zαx = 0 and (xαz)β(yαz) = 0
for any β ∈ Γ. Thus we have

yαx = yα(0βx) [By (ΓKU2)]
= yα[(zαx)βx] [Since zαx = 0]
= yα[(xαz)βz] [Since X is commutative]
= (xαz)β(yαz) [By Proposition 3.6]
= 0.

So x ≤ y. Hence (1) holds.
(3) ⇔ (5): The proof is obvious. □

The following is an immediate consequence of Theorem 4.9.

Theorem 4.10. Let X be a Γ-KU -algebra. Then followings are equivalent: ,
(1) X is commutative,
(2) xα(xβy) = yα(yβ(xα(xβy))) for any x, y ∈ X and any α, β ∈ Γ

For a Γ-KU -algebra X and each x ∈ X, the set

A(x) = {y ∈ X : y ≤ x}
is called an initial section of x.

Theorem 4.11. a Γ-KU -algebra X is commutative if and only if for any x, y ∈ X,

A(x) ∩A(y) = A(x ∧ y).

Proof. The proof follows from the property of ∧ and Theorem 4.8 (2). □

Definition 4.12. Let X be a Γ-KU -algebra. Then X is said to be implicative, if it
satisfies the following condition:

(4.5) x = (xαy)βx for any x, y ∈ X and any α, β ∈ Γ.

It is clear that if X is an implicative Γ-BCK-algebra, then Xα is an implicative
BCK-algebra fore each α ∈ Γ.

Example 4.13. (1) Let X = {0, 1, 2, 3}, let Γ = {α, β} and let the the ternary
operation be defined as the following table:

α 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 1 0 3
3 0 0 2 0

β 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 1 0 3
3 0 2 2 0

Table 4.4

Then clearly, X is an implicative Γ-KU -algebra.
(2) Let X = {0, 1, 2, 3, 4}, let Γ = {α, β} and let the the ternary operation be

defined as the following table:
Then X is a Γ-KU -algebra. But it is neither implicative nor commutative.

10
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α 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 1 4
2 0 1 0 0 4
3 0 0 0 0 4
4 0 0 0 0 0

β 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 1 4
2 0 1 0 3 4
3 0 0 1 0 4
4 0 0 0 0 0

Table 4.5

We obtain a relationship among implicativeness, commutativity and positive im-
plicativeness.

Theorem 4.14. Let X be a Γ-KU -algebra. Then X is implicative if and only if it
is commutative and positive implicative.

Proof. Suppose X is implicative, let x, y ∈ X and let α, β ∈ Γ. Then by Proposition
3.6, we have

xαy = [(xαy)βx]β(xαy) = xα(xβy).

Thus by Theorem 4.4, X is positive implicative. On the other hand, we get
(yαx)βx = (yαx)β((xαy)βx) [By the hypothesis]

≤ (xαy)βy. [By Proposition 3.3 (1)]
So by Theorem 4.8 (1), X is commutative.

Conversely, suppose the necessary conditions hold and let x, y ∈ X and α, β ∈ Γ.
Then we have

[(xαy)βx]αx = [xβ(xαy)]β(xαy) [Since X is commutative]
= [xβ(xαy)]β[xβ(xαy)] [By Theorem 4.4 (2)]
= 0. [By (3.1)]

Thus x ≤ (xαy)βx. On the other hand, by Proposition 3.3 (5), (xαy)βx ≤ x. So
by Proposition 3.3 (3), x = (xαy)βx. Hence X is implicative. This completes the
proof. □

Now we provide a sufficient condition of implicative Γ-KU -algebras.

Proposition 4.15. Let X be a Γ-KU -algebra. Suppose the following holds: for any
x, y ∈ X and any α, β ∈ Γ,

(4.6) (yαx)β[(yαx)βx] = (xαy)β[(xαy)βy].

Then X is implicative

Proof. Suppose the condition (4.6) holds, let x, y ∈ X and let α, β ∈ Γ. Then we
have

yαx = 0α[0β(yαx)] [By the axiom (ΓKU2)]
= [yβ(xαx)]α[(yβ(xαx))β(yαx)] [By the axiom (ΓKU3) and (3.1)]
= [xβ(yαx)]α[(xβ(yαx))β(yαx)] [By Proposition 3.6]
= (xβy)α[(xβy)β(yαx)] [Putting yαy = y]
= [xα(xβy)]α(xβy) [By the condition (2)]
= [xα(xβ(xαy))]α[xβ(xαy)] [Since y = xαy]
= (xαy)α[xβ(xαy)] [By Proposition 3.6 (6)]
= [xα(xβ(xαy))]αy [By the identity (3.1)]

11
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= (xαy)αy. [By Proposition 3.6 (6)]
Thus X is positive implicative. On the other hand, we have

xα(xβy) = [xα(xβy)]α(xβy) [By Proposition 3.6 (6)]
= [yα(yβx)]α(yβx) [By the condition (2)]
= yα(yβx). [By Proposition 3.6 (6)]

So X is commutative. Hence by Theorem 4.14, X is implicative. □

5. Some Γ-ideals of Γ-KU-algebras

In this section, we introduce the concepts of Γ-KU -ideals, positive implicative Γ-
KU -ideals, implicative Γ-KU -ideals and commutative Γ-KU -ideals in Γ-KU -algebras
and discuss some of their properties respectively and a relationship among them.

Definition 5.1. Let X be a Γ-KU -algebra and let A be a nonempty subset of X.
Then A is called a Γ- subalgebra of X, if it satisfies the following condition:

(5.1) xαy ∈ A for any x, y ∈ A and for each α ∈ Γ.

Example 5.2. Let X be the Γ-KU -algebra given in Example 3.2 (3), {0, 1, 2} is a
Γ-subalgebra of X.

Definition 5.3. Let X be Γ-KU -algebra and let I be a nonempty set of X. Then
I is called a Γ- ideal (briefly, ΓI) of X, if it satisfies the following conditions: for any
x, y, z ∈ X and any α, β ∈ Γ,

(ΓI1) 0 ∈ I,
(ΓI2) if xαy ∈ I and x ∈ I, then y ∈ I.
An ideal I is said to be proper, if I ̸= X. It is obvious that X and {0} are ideals

of X. In particular, X is called a trivial Γ-ideal of X.

Example 5.4. (1) Consider the Γ-KU -algebra given in Example 3.4. Then {0, 2}
is a Γ-ideal but {0, 1} not a Γ-ideal of X.

(2) Let X be the commutative Γ-KU -algebra given in Example 4.7 (2). Then we
can easily see that X has only two ΓIs {0} and X.

The following is an immediate consequence of Definition 5.3.

Proposition 5.5. Let I be a ΓI of a Γ-KU -algebra X and let x ∈ I. If y ≤ x, then
y ∈ I.

Proposition 5.6. Every ΓI of a Γ-KU -algebra X is a Γ-subalgebra of X.

Proof. Let I be a ΓI of X and let x, y ∈ I, α ∈ Γ. Then by Proposition 3.6 and the
axiom (ΓKU3), yβ(xαy) = 0. Thus xαy ≤ y. So by Proposition 5.5, xαy ∈ I. Hence
I is a Γ-subalgebra of X. □

Definition 5.7. Let X be Γ-KU -algebra and let a, b ∈ X and α ∈ Γ. Then the
subset Aα(a, b) of X is defined as follows:

Aα(a, b) = {x ∈ X : bαx ≤ a}.
It is obvious that 0, a, b ∈ Aα(a, b).

Example 5.8. Let X be the Γ-BCK-algebra in Example 3.4. Then clearly,

Aα(1, 2) = X, Aβ(1, 2) = {0, 1, 2} = Aγ(1, 2).
12
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We have a characterization of ΓIs of a Γ-KU -algebra.

Theorem 5.9. Let I be a nonempty subset of a Γ-KU -algebra X. Then I is a ΓI
of X if and only if Aα(a, b) ⊂ I for any a, b ∈ I and each α ∈ Γ.

Proof. (⇒): Suppose I is a ΓI of X and let x ∈ Aα(a, b). Then clearly, bαx ≤ a.
Thus by Proposition 5.5, bαx ∈ I. Since b ∈ I and I is a ΓI of X, x ∈ I. So
Aα(a, b) ⊂ I.

(⇐): Suppose the necessary condition holds. Since I ̸= ∅, there is a ∈ I. Then
by (3.1), aα0 ≤ a. Thus 0 ∈ Aα(a, a). Since Aα(a, a) ⊂ I, 0 ∈ I. So the condition
(ΓI1) holds. Now let bβa ∈ I and b ∈ I. Then by Corollary 3.7 (2), (bβa)αx ≤ b.
Thus x ∈ Aα(bβa, b) ⊂ I. So the condition (ΓI2) holds. Hence I is a ΓI of X. □

The following is an immediate consequence of Theorem 5.9.

Corollary 5.10. I is a ΓI of a Γ-KU -algebra X if and only if for any a, b ∈ I and
any α, β ∈ Γ, (bβa)αx = 0 implies x ∈ I.

Definition 5.11. Let X be Γ-KU -algebra and let I be a nonempty set of X. Then
I is called a positive implicative Γ-KU -ideal (briefly, PIΓKUI) of X, if it satisfies
the following conditions: for any x, y, z ∈ X and any α, β ∈ Γ,

(ΓI1) 0 ∈ I,
(PIΓKUI2) if zα(xβy) ∈ I and zαx ∈ I, then zαy ∈ I.
It is obvious that X is a PIΓKUI of X.

Example 5.12. Let X be the Γ-BCK-algebra given in Example 4.13 (2). Then we
can easily check that {0, 1, 3} and {0, 1, 2, 3} are PIΓKUIs of X. Furthermore, {0},
{0, 2} and {0, 2, 4} are ΓIs but not PIΓKUIs of X.

Proposition 5.13. Every PIΓKUI of Γ-KU -algebra X is a ΓI of X but the converse
is not true.

Proof. Let I be a PIΓKUI of X. Suppose xαy ∈ I and x ∈ I for any x, y ∈ X
and each α ∈ Γ. Then clearly, 0β(xαy) ∈ I and 0αy ∈ I. Thus by (PIΓKUI2),
x = 0αx ∈ I. So I is a ΓI of X. See Example 5.12 for the converse. □

We have a characterization of positive implicative Γ-KU -ideals.

Theorem 5.14. Let I be a ΓKUI of a Γ-KU -algebra X. Then I is positive implica-
tive if and only if the set Aa = {x ∈ X : aαx ∈ I for each α ∈ Γ } is a ΓI of X for
each each a ∈ X.

Proof. Suppose I is positive implicative and xαy ∈ Aa, x ∈ Aa for each a ∈ X
and each α ∈ Γ. Then clearly, aβ(xαy) ∈ I and aαy ∈ I. Thus by the condition
(PIΓKUI2), aαx ∈ I. So x ∈ Aa. Hence Aa is a ΓI of X.

Now suppose the necessary condition holds, and zα(xβy) ∈ I and zαy ∈ I for
any x, y, z ∈ X and any α, β ∈ Γ. Then clearly, yαx ∈ Az and x ∈ Az. Thus by
the hypothesis, y ∈ Az. So zαy ∈ I. Hence I is positive implicative. □

The following is an immediate consequence of Theorem 5.14.

Corollary 5.15. If I is a PIΓKUI of a Γ-KU -algebra X, then for each each a ∈ X,
Aa is the least ΓI of X such that I ∪ {a} ⊂ Aa.

13
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We obtain a characterization of PIΓKUIs.

Theorem 5.16. Let I be a nonempty subset of a Γ-KU -algebra X. Then the fol-
lowings are equivalent:

(1) I is a PIΓKUI of X,
(2) I is a ΓI of X and yα(yβx) ∈ I implies yαx ∈ I for any x, y ∈ X and

α, β ∈ Γ,
(3) I is a ΓI of X and zα(yβx) ∈ I implies (zαy)β(zαx) ∈ I for any x, y, z ∈ X

and α, β ∈ Γ,
(4) 0 ∈ I, and zα[yβ(yαx)] ∈ I and z ∈ I imply yαx ∈ I for any x, y, z ∈ X

and α, β ∈ Γ.

Proof. (1)⇒(2): Suppose I is a PIΓKUI of X. Then by Proposition 5.13, I is a
ΓI of X. Now suppose yα(yβx) ∈ I for any x, y ∈ X and α, β ∈ Γ. From (3.1),
yαy = 0 ∈ I. Then by (PIΓKUI2), xαy ∈ I. Thus the condition (2) holds.

(2)⇒(3): Suppose the condition (2) holds and suppose zα(yβx) ∈ I for any
x, y, z ∈ X and α, β ∈ Γ. Then we have

zα[zα((zβy)αx)] = zβ[(zβy)α(zβx)] [By (3.3)]
≤ zα(yβx). [By Corollaries 3.8 and Corollaries 3.7 (2)]

Since I is a ΓI of X, by Proposition 5.5, zα[zα((zβy)αx)] ∈ I. By the condi-
tion (2), zα[(zβy)αx] ∈ I. On the other hand, by Proposition 3.6, zα[(zβy)αx] =
(zβy)α(zβx). Thus (zβy)α(zβx) ∈ I. So the condition (3) holds.

(3)⇒(4): Suppose the condition (3) holds. Then clearly, 0 ∈ I. Suppose zα[yβ(yαx)] ∈
I and z ∈ I for any x, y, z ∈ X and α, β ∈ Γ. Then by Proposition 3.6, we get

zα[yβ(yαx)] = yα[yβ(zαx)].

Thus yα[yβ(zαx)] ∈ I. On the other hand, from Proposition 3.6, (3.1) and the
condition (3), we have

zβ(yαx) = yβ(zαx) = (yαy)β(zαx) ∈ I.

Since I is a ΓI of X and z ∈ I, yαx ∈ I. So the condition (4) holds.
(4)⇒(1): Suppose the condition (4) holds. Suppose xαy ∈ I and x ∈ I for any

x, y ∈ X and each α ∈ Γ. Then by the axiom (ΓKU2), we get

xαy = xα[0α(0βy)].

Thus xα[(yα0)β0] ∈ I and x ∈ I. By the condition (4), 0βy ∈ I. By the axiom
(ΓKU2), 0βy = y. So y ∈ I. Hence I is a ΓI of X.

Now suppose zα(xβy) ∈ I and zαx ∈ I for any x, y, z ∈ X and any α, β ∈ Γ.
Then from Corollary 3.9 and Proposition 3.6, we have

(zαy)β[zα(zαx) ≤ yβ(zαx) = zβ(yαx).

Since zα(xβy) ∈ I, (zαy)β[zα(zαx) ∈ I. Since zαx ∈ I, by the condition (4),
yαx ∈ I. Thus I is a PIΓKUI of X. This completes the proof. □

Proposition 5.17. Let I and J be ΓIs of a Γ-KU -algebra X such that I ⊂ J . If I
is positive implicative, then so is J .

14
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Proof. Suppose zβ(xαy) ∈ J and zαx ∈ J for any x, y, z ∈ X and any α, β ∈ Γ.
Let u = zβ(xαy). Then from Proposition 3.6, (3.1) and the hypothesis, we have

zα[xβ(uαy)] = uα[zβ(xαy)] = 0 ∈ I.

Since I is positive implicative, by Theorem 5.16 (3), we get

(zαx)β[zα(uαy)] ∈ I.

On the other hand, by Proposition 3.6, we have

(zαx)β[zα(uαy)] = uβ[(zαx)β(zαy) = [zβ(xαy)]β[(zαx)β(zαy)].

Thus [zβ(xαy)]β[(zαx)β(zαy)] ∈ I. Since I ⊂ J, [zβ(xαy)]β[(zαx)β(zαy)] ∈ J.
Since zβ(xαy) ∈ J and J is a ΓI of X, (zαx)β(zαy) ∈ J. So by Theorem 5.16 (3),
J is positive implicative. □

From the following Theorem, we can see that in Γ-KU -algebras, the zero ΓIs play
important roles.

Theorem 5.18. Let X be a Γ-KU -algebra. Then the followings are equivalent:
(1) X is positive implicative,
(2) {0} is a PIΓKUI of X,
(3) every ΓI of X is positive implicative,
(4) the set A(a) = {x ∈ X : x ≤ a} is a ΓI of X for each a ∈ X.

Proof. (1)⇒(2): Suppose X is positive implicative. It is obvious that {0} is a ΓI of
X. Suppose yβ(yαx) ∈ {0} for any x, y ∈ X and any α, β ∈ Γ. Since X is positive
implicative, by Theorem 4.4, yαx = yα(yβx). Then by the hypothesis, yαx ∈ {0}.
Thus by Theorem 5.16 (2), {0} is a PIΓKUI of X.

(2)⇒(3): The proof follows from Proposition 5.17.
(3)⇒(4): Suppose the condition (3) holds and xαy, y ∈ A(a) for each a ∈ X

and each α ∈ Γ. Then clearly, yαx ≤ a and y ≤ a. Thus aβ(yαx) = 0 ∈ {0} and
aαy = 0 ∈ {0} for any β ∈ Γ. By the hypothesis, {0} is positive implicative. So
aαx ∈ {0}, i.e., aαx = 0, i.e., x ≤ a. Hence x ∈ A(a). Therefore A(a) is a ΓI of X.

(4)⇒(1): Suppose the condition (4) holds and yβ(yαx) = 0 for any x, y ∈ X and
any α, β ∈ Γ. Then clearly, yαx ≤ y, i.e., yαx ∈ A(y). By the condition (4), A(y)
is a ΓI of X. It is obvious that y ∈ A(y). Thus x ∈ A(y). So yαx = 0. Hence by
Theorem 4.5, X id positive implicative. □

We have a characterization of a positive implicative Γ-KU -algebra by ΓIs.

Theorem 5.19. Let X be a Γ-KU -algebra. Then X is positive implicative if and
only if Aa is a ΓI of X for each ΓI I of X and each a ∈ X.

Proof. Suppose X is positive implicative, let I be any ΓI of X and let a ∈ X. Then
by Theorem 5.18, I is a PIΓKUI of X. Thus by Theorem 5.14, Aa is a ΓI of X.

Conversely, suppose the necessary condition holds and let J be any ΓI of X.
Suppose zα(xβy) ∈ J and zαx ∈ J for any x, y, z ∈ X and any α, β ∈ Γ. Consider
the set Az = {u ∈ X : zαu ∈ J}. Then clearly, xβy ∈ Az and x ∈ Az. Since Az is
a ΓI of X, y ∈ Az. Thus zαy ∈ J. So J is positive implicative. Hence by Theorem
5.18, X is positive implicative. □
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Definition 5.20. Let X be Γ-KU -algebra and let I be a nonempty subset of X.
Then I is called an implicative Γ-KU -ideal (briefly, IΓKUI) of X, if it satisfies the
following conditions: for any x, y, z ∈ X and any α, β ∈ Γ,

(ΓI1) 0 ∈ I,
(IΓKUI2) if zα[(xβy)αx] ∈ I and z ∈ I, then x ∈ I.
For any Γ-KU -algebra X, it is obvious that X is always an IΓKUI of X which is

called the trivial implicative Γ-KU -ideal.
We can easily show that every ΓI of an implicative Γ-KU -algebraX is implicative.

Example 5.21. Let X be the Γ-KU -algebra given in Example 4.13 (2). Then we
can easily check that {0, 1, 2, 3} is an IΓKUI of X. Furthermore, {0} is a ΓI of X
but not implicative, since 0α[(1β2)α1)] ∈ {0} and 0 ∈ {0} but 1 ̸∈ {0}.

Proposition 5.22. Every IΓKUI is a ΓI but the converse is not true.

Proof. The proof is straightforward from Definitions 5.3 and 5.20. See Example
5.21) for the converse. □

Proposition 5.23. Every IΓKUI is positive implicative but the converse is not true.

Proof. Let I be an IΓKUI of a Γ-KU -algebra X and zα(yβx), zβy ∈ I for any
x, y zinX and any α, β ∈ Γ. Then we get

(zβy)α[zα(zβx)] ≤ yα(zβx) [By Corollary 3.7]
= zα(yβx). [Proposition 3.6]

Since zα(yβx) ∈ I, by Proposition 5.5, (zβy)α[zα(zβx)] ∈ I. Since zβy ∈ I and I
is a ΓI of X by Proposition 5.22, zα(zβx) ∈ I. On the other hand, we have

[zα(zβx)]α(zβx) = zα[(zα(zβx))αx] [By Proposition 3.6]
= zα(zβx) ∈ I. [By Proposition 3.10]

Thus 0β[(zα(zβx))α(zβx)] ∈ I. Since 0 ∈ I and I is implicative, zβx ∈ I. So I is
positive implicative.

In Example 5.12, {0, 1, 3} is positive implicative but not implicative. □

We obtain a condition for a ΓI to become a IΓKUI.

Theorem 5.24. Let I be a ΓI of a Γ-KU -algebra X. Then I is implicative if and
only if the following holds:

(5.2) (xαy)βx ∈ I implies x ∈ I for any x, y ∈ X and any α, β ∈ Γ.

Proof. Suppose I is implicative and (xαy)βx ∈ I for any x, y ∈ X and any α, β ∈ Γ.
It is obvious that 0β[(xαy)βx] ∈ I and 0 ∈ I. Then by the hypothesis, x ∈ I. Thus
(5.2) holds.

The proof of the converse is easy. □

Now we obtain a condition for a PIΓKUI to become a IΓKUI.

Theorem 5.25. Let I be a PIΓKUI of a Γ-KU -algebra X. Then I is implicative if
and only if the following holds:

(5.3) (xαy)βy ∈ I implies (yαx)βx ∈ I for any x, y ∈ X and any α, β ∈ Γ.
16
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Proof. Suppose I is implicative and (xαy)βy ∈ I for any x, y ∈ X and any α, β ∈ Γ.
Then by Corollary 3.7 (2), (yαx)βx ≤ y. Thus by Proposition 3.5 (1), xβy ≤
xβ[(yαx)βx]. Furthermore, we get

[xβ((yαx)βx)]α[(yαx)βx] ≤ (xβy)α[(yαx)βx]( [By Proposition 3.5 (1)]
= (yαx)β[(xαy)βx]. [By Proposition 3.6]
≤ (xαy)βy. [By Proposition 3.3] (1)]

Since I is a ΓI of X by the hypothesis and Proposition 5.22, we get

0β([xβ((yαx)βx)]α[(yαx)βx]) ∈ I.

Since 0 ∈ I, by the condition (IΓKUI2), yα(xβx) ∈ I. So (5.3) holds.
Conversely, suppose necessary condition (5.3) holds, and zβ[(xαy)βx] ∈ I and

z ∈ I Since I is positive implicative, by Proposition 5.13, I is a ΓI of X. Then
(xαy)βx ∈ I. By Proposition 3.6 (3), we have

(xβy)β[(xαy)βy] ≤ (xαy)βx) ∈ I.

Thus (xβy)β[(xαy)βy] ∈ I. Since I is positive implicative, by Theorem 5.16 (2),
(xαy)βy ∈ I. By the condition (5.3), we get

(5.4) (yαx)βx ∈ I.

Furthermore, from (3.1) and the axiom (ΓKU3), we have

zβ(yαx) ≤ yαx ≤ (yαx)βx ∈ I.

So zβ(yαx) ∈ I. Since z ∈ I and I is a ΓI of X, yαx ∈ I. By the condition (5.4),
x ∈ I. Hence I is implicative. □

We obtain a similar consequence to Proposition 5.17.

Proposition 5.26. If I is an IΓKUI of a Γ-KU -algebra X, then every ΓI containing
I is implicative.

Proof. Suppose I is implicative and let J be any ΓI of X such that I ⊂ J . From
Proposition 5.23, it is obvious that I is positive implicative. By Proposition 5.17,
J is positive implicative. To prove that I is implicative, it is sufficient to prove
that J satisfies the condition (5.3). Suppose (xβy)αy ∈ J for any x, y ∈ X and
any α, β ∈ Γ and let u = (xβy)αy. Then clearly, uα[(xβy)αy] = 0 ∈ I. Since I is
positive implicative, by Theorem 5.16 (3) and Proposition 3.6, we have

[uα(yβx)]α(uβx) = [yα(uβx)]α(uβx) ∈ I.

Since I is implicative, by the condition (5.3), [(uβx)αy]βy ∈ I. Since I ⊂ J ,
[(uβx)αy]βy ∈ J. On the other hand, by Corollary 3.7 (2), [(uβx)αy]βy ≤ uβx
and (xβy)αy ≤ x. Thus we get

[((uβx)αy)βy]α[(xβy)αy] ≤ (xβy)α[(uβx)αy] [By Proposition 3.3 (1)]
≤ (uβx)αx [By Proposition 3.5 (1)]
= [((xβy)αy)βx]αx [Since u = xα(xβy)]
≤ (xβy)αy ∈ J.

So [((uβx)αy)βy]α[(xβy)αy] ∈ J. Since [(uβx)αy]βy ∈ J , (xβy)αy] ∈ J. Hence by
Theorem 5.25, J is implicative. □

Now we obtain a similar consequence of Theorem 5.18.
17
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Theorem 5.27. Let X be a Γ-KU -algebra. The the followings are equivalent:
(1) {0} is implicative,
(2) every ΓI of X is implicative,
(3) A(a) is implicative for each a ∈ X,
(4) X is implicative.

Proof. (1)⇔(2): The proof follows from Proposition 5.26.
(2)⇔(3): The prof is straightforward from Proposition 5.23 and Theorem 5.18.
(4)⇒(1): The proof is obvious.
(1)⇒(4): Suppose {0} is implicative. Then by Proposition 5.23, {0} is positive

implicative. By Theorem 5.18, A((xβy)αx)) is a ΓI of X for any x, y, z ∈ X. By
the hypothesis, A((xβy)αx)) is implicative. It is clear that (xβy)αx ∈ A((xβy)αx)).
Thus x ∈ A((xβy)αx)). So (xβy)αx ≤ x. Note that x ≤ (xβy)αx. Hence x =
(xβy)αx. Therefore X is implicative. □

Definition 5.28. Let X be Γ-KU -algebra and let I be a nonempty subset of X.
Then I is called a commutative Γ-KU -ideal (briefly, CΓKUI) of X, if it satisfies the
following conditions: for any x, y, z ∈ X and any α, β ∈ Γ,

(ΓI1) 0 ∈ I,
(CΓKUI2) if zα(yβx), z ∈ I, then [(xαy)βy]αx ∈ I.
It is obvious that X is always a CΓKUI of a Γ-KU -algebra X which is called the

trivial commutative Γ-KU -ideal.

Example 5.29. Let X be the Γ-KU -algebra given in Example 4.13 (2). Then we
can easily see that {0, 4} is commutative but not positive implicative, {0, 1, 3} is
positive implicative but not commutative and {0, 1, 2, 3} is implicative.

Proposition 5.30. Every CΓKUI of a Γ-KU -algebra X is a ΓI of X but the con-
verse is not true.

Proof. Let I be any CΓKUI of X and yαx ∈ I and y ∈ I for any x, y ∈ X and
each β ∈ Γ. Then clearly, yα(0βx) ∈ I for each α ∈ Γ. Since I is commutative,
x = [(xα0)β0]αx ∈ I. Then I is a ΓI of X. See Example 5.29 for the converse. □

We have an equivalent condition of CΓKUIs.

Theorem 5.31. Let X be a Γ-KU -algebra and let I be a ΓI of X. Then I is
commutative if and only if it satisfies the following condition:

(5.5) yαx ∈ I implies [(xαy)βy]αx ∈ I for any x, y ∈ X any α, β ∈ Γ.

Proof. Suppose I is commutative and yαx ∈ I for any x, y ∈ X and each α ∈ Γ.
Then clearly, 0β(yαx) ∈ I for any β ∈ Γ and 0 ∈ I. Thus by the condition (CΓKUI2),
[(xαy)βy]αx ∈ I. So the condition (5.5) holds.

Conversely, suppose the condition (5.5) holds and zβ(yαx), z ∈ I for any x, y, z ∈
X and any α, β ∈ Γ. Since I is a ΓI of X, yαx ∈ I. Then by the condition (5.5),
[(xαy)βy]αx ∈ I. Thus I is commutative. □

We obtain a similar consequence of Theorem 4.14 for ΓIs.

Theorem 5.32. Let X be a Γ-KU -algebra and let I be a nonempty subset of X.
Then I is implicative if and only if it is both commutative and positive implicative.

18
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Proof. Suppose I is implicative. Then by Proposition 5.23, I is positive implicative.
It is sufficient to prove that I is commutative.

Suppose yαx ∈ I for any x, y ∈ X and each α ∈ Γ. From (3.1) and the axiom
(ΓKU3), [(xαy)βy]αx ≤ x for each β ∈ Γ. Then yαx ≤ yβ[((xαy)βy)αx]. Let u =
[(xαy)βy]αx. Then we have

(uβy)αu = [(((xαy)βy)αx)βy]α[((xαy)βy)αx]
≤ (xαy)α[((xαy)βy)αx]
= [(xαy)βy]α[(xαy)]αx]
≤ yαx ∈ I.

Thus uβ(yαu) ∈ I. Since I is implicative, by Theorem 5.24, u ∈ I, i.e., [(xαy)βy]αx ∈
I. So by Theorem 5.31, I is commutative.

Conversely, suppose the necessary condition holds and (xαy)βx ∈ I for any x, y ∈
X and each α ∈ Γ. It is obvious that

(xαy)β[(xαy)βy] ≤ (xαy)βx ∈ I.

Then (xαy)β[(xαy)βy] ∈ I. Since I is positive implicative, by Theorem 5.16 (2), we
have

(5.6) (xαy)βy ∈ I.

Furthermore, by Propositions 3.3 (1) and 3.6, we have

yβx ≤ (xαy)βx.

Since (xαy)βx ∈ I, yβx ∈ I, i.e., yαx ∈ I. Since I is commutative, by Theorem
5.31,

(5.7) [(xαy)βy]αx ∈ I.

Thus by (5.6) and (5.7), x ∈ I. So I is implicative. □

We obtain a similar consequence of Proposition 5.17 for IΓKUIs.

Proposition 5.33. Let I and J be ΓKUIs of a Γ-KU -algebra X such that I ⊂ J.
If I is commutative, then so is J .

Proof. Suppose I is commutative and yαx ∈ J for any x, y ∈ X and each α ∈ Γ. In
order to show that J is commutative, it is sufficient to show that [(xαy)βy]αx ∈ J
by using Theorem 5.31. Let u = yαx. Then we get

yβ(uαx) = uβ(yαx) = 0 ∈ I.

Since I is commutative, by Theorem 5.31, we have

[((uαx)βy)αy]β(uαx) ∈ I.

By Proposition 3.6, we have

[((uαx)βy)αy]β(uαx) = uβ[(((uαx)βy)αy)αx] ∈ I.

Since I ⊂ J , uβ[(((uαx)βy)αy)αx] ∈ J. Since J is a ΓI ofX and u ∈ J, [((uαx)βy)αy]αx ∈
J. On the other hand, from Proposition 3.3 (1), (1) and (ΓKU3), we get

[(((uαx)βy)αy)αx]β[((xαy)βy)αx] ≤ [(xαy)βy]α[((uαx)βy)αy]
≤ [(uαx)βy]α(xβy)
≤ xβ(uαx)
= uβ(xαx).

19
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= 0 ∈ J.
Thus [(xαy)βy]αx ∈ J. So by Theorem 5.31, J is implicative. □

Finally, we obtain a characterization of commutative Γ-KU -algebras.

Theorem 5.34. Let X be a Γ-KU -algebra. The the followings are equivalent:
(1) {0} is commutative,
(2) every ΓI of X is commutative,
(3) X is commutative.

Proof. (1)⇔(2): The proof is clear from Proposition 5.33.
(1)⇔(3): The proof follows from Theorem 4.9. □

6. Topological structures on Γ-KU-algebras

We recall some terms and notations related for a general topology (See [32, 33]).
For a subset A of a topological space (X, τ), the closure and the interior of A are
denoted by clτ (A), cl(A) or Ā and intτ (A), int(A) or A◦. A subfamily B of τ is

called a base for τ , if for each U ∈ τ either U = ∅ or there is B′ ⊂ B such that
U =

⋃
B′
. A subset A of X is called a neighborhood of x ∈ X, if there is U ∈ τ

such that x ∈ U ⊂ A. The set of all neighborhoods of x write as Nτ (x) or N(x) and
N(x) is called the neighborhood filter of x ∈ X. A subfamily N (x) of N(x) is called
a fundamental system of neighborhoods of x, if for each U ∈ N(x) there is V ∈ N (x)
such that V ⊂ U. In fact, N (x) is a filter base of N(x). Moreover, it is well-known
([32]) that Nτ (x) satisfies the following properties:

(N1) x ∈ U for each U ∈ Nτ (x),
(N2) if U ∈ Nτ (x) and U ⊂ V ⊂ X, then V ∈ Nτ (x),
(N3) if U1, U2 ∈ Nτ (x), then U1 ∩ U2 ∈ Nτ (x),
(N4) if V ∈ Nτ (x), there is W ∈ Nτ (x) such that V ∈ Nτ (x) for each y ∈W.

Furthermore, it is well-known (Proposition 1.1.2, [32]) that for each x ∈ X if B(x)
be a set of subsets of X satisfying the properties (N1)–(N4), then a unique topology
on X such that B(x) = Nτ (x), where

τ = {V ⊂ X : ∀x ∈ V, ∃U ∈ B(x) such that U ⊂ V }.

Definition 6.1. Let X be a KU -algebra and let τ be a topology on X. Then X is
called a topological KU -algebra (briefly, TKU -algebra), if ∗ : (X×X, τ×τ) → (X, τ)
is continuous, i.e., for any x, y ∈ X and each W ∈ N(x ∗ y) there are U ∈ N(x) and
V ∈ N(y) such that U ∗ V ⊂W, where U ∗ V = {x ∗ y ∈ X : x ∈ U, y ∈ V }.

Definition 6.2. Let X be a Γ-KU -algebra and let τ be a topology on X. Then
X is called a topological Γ-KU -algebra (briefly, TΓ-KU -algebra), if a mapping f :
(X, τ) × Γ × (X, τ) → (X, τ) is continuous at each (x, α, y) ∈ X × Γ × X, i.e., for
each α ∈ Γ, any x, y ∈ X and each W ∈ N(xαy) there are U ∈ N(x) and V ∈ N(y)
such that UαV ⊂W , where UαV ⊂W = {xαy : x ∈ U, y ∈ V }.

It is clear that if X is a TΓ-KU -algebra, then Xα is a TKU -algebra for each
α ∈ Γ.
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Example 6.3. (1) Let X = {0, 1, 2, 3, 4} be the Γ-KU -algebra given in Example
4.13 (2). Consider the topology τ on X given by:

τ = {∅, {4}, {0, 1, 2, 3}, X}.
Then we can easily check that (X, τ) is a TΓ-KU -algebra. Moreover, Xα and Xβ

are TKU -algebras.
(2) Let X = {0, 1, 2, 3} be the Γ-KU -algebra given in Example 3.4 (1). Consider

a topology τ on X given by:

τ = {∅, {0}, {0, 1}, {0, 2, 3}, X}.
Then we can easily see that (X, τ) is a TΓ-KU -algebra.

Proposition 6.4. Let X be a TΓ-KU -algebra. If {0} is open in X, then X is
discrete.

Proof. Let x ∈ X and let α ∈ Γ. Then clearly, xαx = 0 ∈ {0} ∈ N(0). Thus there
are U, V ∈ N(x) such that UαV = {0}. LetW = U∩V . ThenWαW ⊂ UαV = {0}.
Thus WαW = {0}. Since x ∈ U ∩ V , x ∈ W . So W = {x} and W is open in X.
Hence X is discrete. □

The following is an immediate consequence of Proposition 6.4.

Corollary 6.5. Let X be a TΓ-KU -algebra. If {0} is open in Xα for each α ∈ Γ,
then Xα is discrete.

Theorem 6.6. Let X be a TΓ-KU -algebra. Then {0} is closed in X if and only if
X is Hausdorff.

Proof. Suppose {0} is closed in X, let x, y ∈ X such that x ̸= y and let α ∈ Γ.
Then xαy ̸= 0 or yαx ̸= 0, say xαy ̸= 0. Since {0} is closed in X and xαy ̸= 0, {0}c
is open in X and xαy ∈ {0}c. Thus {0}c ∈ N(xαy). Since X is a TΓ-KU -algebra,
by Definition 6.2, there are U ∈ N(x) and V ∈ N(y) such that UαV ⊂ {0}c. So
U ∩ V = ∅. Hence X is Hausdorff.

Conversely, suppose X is Haousdorff and let x ∈ {0}c. Then x ̸= 0. By the
hypothesis, there are U ∈ N(x) and V ∈ N(0) such that U ∩ V = ∅. Thus 0 ̸∈ U.
So U ⊂ {0}c. Hence {0}c is open in X. Therefore {0} is closed in X. □

The following is an immediate consequence of Theorem 6.6.

Corollary 6.7. Let X be a TΓ-KU -algebra. Then {0} is closed in Xα if and only
if Xα is Hausdorff for each α ∈ Γ.

Proposition 6.8. Let X be a TΓ-KU -algebra and let A be open in X. If A is a
Γ-subalgebra of X, then A is a TΓ-KU -algebra.

Proof. Let τ be the topology on X and let τ
A
be the subspace topology on A with

respect to τ . Let x, y ∈ A and let α ∈ Γ. Since A is a Γ-subalgebra of X, xαy ∈ A.
Let WA ∈ Nτ

A
(xαy), where Nτ

A
(xαy) denotes the neighborhood of xαy in the

subspace (A, τ
A
) of (X, τ). Then there isW ∈ N(xαy) such thatWA = A∩W. Since

X is a TΓ-KU -algebra, there are U ∈ N(x) and V ∈ N(y) such that UαV ⊂ W.
Thus UA = A ∩ U ∈ Nτ

A
(x) and VA = A ∩ V ∈ Nτ

A
(x). It is clear that

UAαVA = (A ∩ U)α(A ∩ V ) ⊂W and UAαVA ⊂ A.
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So UAαVA ⊂ A ∩W =WA. Hence A is a TΓ-KU -algebra. □

Corollary 6.9. Let X be a TΓ-KU -algebra and let A be open in Xα for each α ∈ Γ.
If A is a Γ-subalgebra of Xα, then A is a TKU -algebra.

Proposition 6.10. Let X be a TΓ-KU -algebra and let I be open in X. If I is a ΓI
of X, then I is closed in X.

Proof. Let x ∈ Ic and let α ∈ Γ. Since xαx = 0 ∈ I and I is open, I ∈ N(0). Since
X is a TΓ-KU -algebra, there is U ∈ N(x) such that UαU ⊂ I. Assume that U ̸⊂ Ic.
Then there is y ∈ X such that y ∈ U ∩ I. It is obvious that yαz ∈ UαU ⊂ I for each
z ∈ U. Since I is a ΓI of X and y ∈ I, z ∈ I. Thus U ⊂ I. This is a contradiction.
So U ⊂ Ic, i.e., Ic is open in X. Hence I is closed in X. □

Corollary 6.11. Let X be a TΓ-KU -algebra and let I be open in Xα for each α ∈ Γ.
If I is a ΓI of Xα, then I is closed in Xα.

Proposition 6.12. Let X be a TΓ-KU -algebra and let I be a ΓI of X. If 0 ∈ int(I),
then I is open in X.

Proof. Let x ∈ I and let α ∈ Γ. Since 0 ∈ int(I) and xαx = 0 ∈ I, there is
W ∈ N(0) = N(xαx) such that W ⊂ I. Since X is a TΓ-KU -algebra, there are
U, V ∈ N(x) such that UαV ⊂W ⊂ I. It is obvious that xαy ∈ UαV ⊂ I for each
y ∈ U. Since I is a ΓI of X and x ∈ I, y ∈ I. Then y ∈ I. Thus U ⊂ I. So I is open
in X. □

Corollary 6.13. Let X be a TΓ-KU -algebra and let I be a ΓI of Xα for each α ∈ Γ.
If 0 ∈ int(I), then I is open in Xα.

In Proposition 6.12, when 0 ̸= x ∈ int(I), I need not open in X (See Example
6.14).

Example 6.14. For a set Γ = {α, β}, let X = {0, 1, 2, 3} be a Γ-KU -algebra with
the ternary operation be defined by the table:

α 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 0 0 3
3 0 1 2 0

β 0 1 2 3
0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 2 1 0

Table 6.1

Consider a topology τ on X given by:

τ = {∅, {2}, {3}, {0, 1}, {2, 3}, {0, 1, 3}, X}.
Let I = {0, 3}. Then clearly, 3 ∈ int(I). But I /∈ τ.

Proposition 6.15. Let X be TΓ-KU -algebra. Then
⋂
N(0) = {0} and thus

⋂
N (0) =

{0}.

Proof. Assume that 0 ̸= x /∈
⋂
N(0). Then clearly, there is U ∈ N(0) such that

0 ∈ U but x /∈ U. Thus x /∈
⋂
N(0). This is a contradiction. So

⋂
N(0) = {0}. □
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Proposition 6.16. Let (X, τ) be a TΓ-KU -algebra and let B1, B2 be the families
of subsets of X given by:

B1 = {Uαx : x ∈ X, α ∈ Γ, U ∈ N (0)}, B2 = {xαU : x ∈ X, α ∈ Γ, U ∈ N (0)},

where Uαx = {uαx : u ∈ U} and xαU = {xαu : u ∈ U}. Then B1 and B2 are bases
for τ .

Proof. Let x ∈ X. Since 0 ∈ U ∈ N (0), 0αx = x. Then
⋃

B1 = X. Suppose
B1, B2 ∈ B1 and z ∈ B1∩B2. Then there are U1, U2 ∈ N (0) such that B1 = U1αx,
B2 = U2αx and B1∩B2 = (U1∩U2)αx. Since z ∈ B1∩B2, there is y ∈ U1∩U2. Since
U1, U2 ∈ N(0), U1 ∩ U2 ∈ N(0). So there is V ∈ N (0) such that y ∈ V ⊂ U1 ∩ U2.
Hence z = yαx ∈ V αx ∈ B1. Therefore B1 is a base for τ . Similarly, we can prove
that B2 is a base for τ . □

Now in order to give a filter base on X generating a topology on a Γ-KU -algebra,
let us define the subset U(a) of X generated by each a ∈ X and each subset U of X
as follows:

U(a) = {x ∈ X : xαa ∈ U, aαx ∈ U, α ∈ Γ}.

Proposition 6.17. Let X be a Γ-KU -algebra. Suppose B is a filter base on X
satisfying the following condition:

(1) for each u ∈ U ∈ B there is B ∈ B such that B(u) ⊂ U ,
(2) for each u ∈ U ∈ B and each α ∈ Γ if uαx = 0, then x ∈ U ,
(3) for each U ∈ B there is B ∈ B such that B(b) ⊂ U for each b ∈ B, i.e.,

B(B) ⊂ U.
Then there is a unique topology τ on X such that B = Nτ (0) and (X, τ) is a TΓ-
KU -algebra.

Proof. Let τ = {O ∈ P (X) : for each a ∈ O there is B ∈ B such that B(a) ⊂ O}.
Then we can easily prove that τ is a topology on X. To accomplish to the proof,
consider the following Claims.

Claim 1: B(a) ∈ τ. Let x ∈ B(a). Then xαa, aαx ∈ B for each α ∈ Γ. Thus by
the condition (1), there are B1, B2 ∈ B such that B1(xαa) ⊂ B and B2(aαx) ⊂ B.
Since B is a filter base onX, there is U ∈ B such that U ∈ B1∩B2. Let xαy, yαx ∈ U,
i.e., y ∈ U(x). By Proposition 3.3 (1), we have

(xαa)β(yαa) ≤ yαx, (yαa)β(xαa) ≤ xαy.

Then (yαx)β[(xαa)β(yαa)] = 0, (xαy)β[(yαa)β(xαy)] = 0. By the condition (2),
(xαa)β(yαa), (yαa)β(xαy) ∈ U. Thus we get

yαa ∈ U(xαa) ⊂ B1(xαa) ⊂ B.

So yαa ∈ B. Similarly, we can show that aαy ∈ U. Hence y ∈ U(a), i.e., U(x) ⊂ B(a).
Therefore B(a) ∈ τ.

Claim 2: B = Nτ (0). Let A ∈ B and let x ∈ A. Since X is a Γ-KU -algebra, by
the axiom (ΓKU3), xα0 = 0. By the condition (2), 0 ∈ A. By the condition (1),
there is B ∈ B such that B(0) ⊂ A. Then by Claim 1, B(0) ∈ τ. Thus A ∈ Nτ (0).
So B ⊂ Nτ (0). Hence by the condition (3), B ⊂ Nτ (0). It can be easily proved that
Nτ (0) ⊂ B. Therefore B = Nτ (0).
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Claim 3: A mapping f : (X, τ) × Γ × (X, τ) → (X, τ) is continuous at each
(x, α, y) ∈ X × Γ × X. Let x, y ∈ X, let α ∈ Γ and let W ∈ Nτ (xαy). Since

xαy ∈ W , by the condition (1), there is W
′ ∈ B such that W

′
(xαy) ⊂ W. Since

W
′ ∈ B, by the condition (3), there is B ∈ B such that B(b) ⊂W

′
for each b ∈W

′
.

Let U = B(x), V = B(y) and let u ∈ U, v ∈ V. Then we have

(xαu)β[(uαv)β(xαy)] = (uαv)β[(xαu)β(xαy)] [By Proposition 3.6]
≤ (uαv)β(uαy) [By Corollary 3.8]
≤ vαy. [By Corollary 3.8]

Thus (αy)β[(xαu)β((uαv)β(xαy))] = 0. Since vαy ∈ B, by the condition (2),
(xαu)β[(uαv)β(xαy)] ∈ B. Similarly, we have [(uαv)β(xαy)]β(xαu) ∈ B. So we
get

(uαv)β(xαy) ∈ B(xαu) ⊂W
′
, i.e., (uαv)β(xαy) ∈W

′
.

Similarly, (xαy)β(uαv) ∈W
′
. Hence we have

uαv ∈W
′
(xαy), i.e., UαV = B(x)αB(y) ⊂W

′
(xαy) ⊂W.

Therefore f is continuous. The proof of uniqueness for τ is easy. This completes the
proof. □

Example 6.18. (1) Let X be the Γ-KU -algebra and let I be the collection of all
ΓIs of X. Let x ∈ I ∈ I. Then clearly, I(x) ⊂ I. Thus I satisfies the conditions (1)
and (3) in Proposition 6.17. Let y ∈ I ∈ I and suppose yαx = 0. Then yαx = 0 ∈ I.
Thus x ∈ I. So I satisfies the condition (2) in Proposition 6.17. So I forms a filter
base of X satisfying all the conditions in Proposition 6.17. Hence (X, τ) is a (X, τ)
is a TΓ-KU -algebra, where τ is the topology on X generated by I.

(2) Let X = {0, 1, 2, 3} be the Γ-KU -algebra given in Example 4.7 (2). Consider
the family B of subsets of X given by:

B = {{0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}}.

Then we can easily check that B is a filter base on X. Moreover, we have

{0, 1}(0) = {0, 1}(1) = {0, 1}, {0, 1}(2) = {2}, {0, 1}(3) = {3},

{0, 2}(0) = {0, 2}(2) = {0, 2}, {0, 2}(1) = {1}, {0, 2}(3) = {3},

{0, 3}(0) = {0, 3}(3) = {0, 3}, {0, 3}(1) = {1}, {0, 3}(2) = {2},

{0, 1, 2}(0) = {0, 1, 2}(1) = {0, 1, 2}(2) = {0, 1, 2}, {0, 1, 2} = {3},

{0, 1, 3}(0) = {0, 1, 3}(1) = {0, 1, 3}(3) = {0, 1, 3}, {0, 1, 3}(2) = {2},

{0, 2, 3}(0) = {0, 2, 3}(2) = {0, 2, 3}(3) = {0, 2, 3}, {0, 2, 3}(1) = {1}.
Thus B is a filter base on X satisfying all the conditions in Proposition 6.17. So the
topology τ on X generated by B is given as follows:

τ = {∅, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, X}.

Hence (X, τ) is a TΓ-KU -algebra.
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Lemma 6.19. Let X be a Γ-KU -algebra and let τ be the topology on X generated
by B, where B is a filter base on satisfying all the conditions in Proposition 6.17.
Then for each B ∈ B and each a ∈ X,

(1) B(a) ∈ Nτ (a),
(2) B(A) =

⋃
a∈AB(a) ∈ Nτ (A) for each A ∈ P (X).

Proof. The proof is straightforward. □

Proposition 6.20. Let X be a Γ-KU -algebra and let τ be the topology on X gener-
ated by B, where B is a filter base on X satisfying all the conditions in Proposition
6.17. Then for each B ∈ B, clτ (A) =

⋂
B∈B B(A).

Proof. Let x ∈ clτ (A) and let B ∈ B. By Lemma 6.19 (1), B(x) ∈ Nτ (x). Then
B(x) ∩ A ̸= ∅. Thus there is a ∈ A such that aαx, xαa ∈ B for each α ∈ Γ. So
x ∈ B(a) ⊂ B(A), i.e., x ∈

⋂
B∈B B(A). Hence clτ (A) ⊂

⋂
B∈B B(A). Conversely,

let x ∈
⋂

B∈B B(A). Then x ∈ U(A) for each U ∈ B. Thus there is a ∈ A such that
x ∈ B(a), i.e., xαa, aαx ∈ B for each α ∈ Γ. So a ∈ B(x), i.e., B(x)∩A ̸= ∅. Hence
x ∈ clτ (A), i.e.,

⋂
B∈B B(A) ⊂ clτ (A). Therefore clτ (A) =

⋂
B∈B B(A). □

Corollary 6.21. Let (X, τ) be a TΓ-KU -algebra, where B is a filter base on X
satisfying all the conditions in Proposition 6.17 and τ is the topology on X generated
by B. Then every B ∈ B is closed in X, i.e., B is a collection of clopen subsets of
X.

Proof. Let B ∈ B. It is obvious that B(B) ⊂ B. Then by Proposition 6.20, B ⊂
clτ (B) =

⋂
U∈B U(B) ⊂ B(B) ⊂ B. Thus clτ (B) = B. So B is closed in X. From

Proposition 6.17, it is clear that B is open in X. So B is clopen in X. □

The following shows that every neighborhood of a compact set contains a neigh-
borhood B(A) for some B ∈ B

Proposition 6.22. Let A be a compact subset of a TΓ-KU -algebra. If U is a
neighborhood of A, then there is B ∈ B such that A ⊂ B(A) ⊂ U.

Proof. Suppose U is a neighborhood of A and let a ∈ A. Then there is Ba ∈ B such
that Ba ⊂ U. Thus by the condition (3), there is Wa ∈ B such that Wa(Wa) ⊂ Ba.
Since A is a compact subset ofX and A ⊂

⋃
a∈AWa(a), there are a1, a2, · · · , an ∈ A

such that

(6.1) A ⊂Wa1(a1) ∪Wa2(a2) ∪ · · ·Wan(an).

Now let W =
⋂n

i=1Wai
and let a ∈ A. Then by (6.1), there is i ∈ {1, 2, · · · , n}

such that a ∈Wai(ai) Thus aαai, aiαa ∈Wai for each α ∈ Γ. Suppose aαy, yαa ∈
W for each y ∈ X. By Proposition 3.3 (1). we have

(6.2) (yαai)β(aαai) ≤ aαy ∈W for each β ∈ Γ.

Then (yαai)β(aαai) ∈W. Thus we get

yαai ∈Wai(aαai) ⊂Wai(Wai) ⊂ Bai .

Similarly, aiαy ∈ Bai
. So y ∈ Bai

(ai) ⊂ U and W (a) ⊂ U. Hence W (A) ⊂ U. □

The following is an immediate consequence of Proposition 6.22.
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Corollary 6.23. Let A be a compact subset of a TΓ-KU -algebra and let F is closed
in X. If A ∩ F = ∅, then there is B ∈ B such that B(A) ∩B(F ) = ∅.

7. Conclusions

By proposing positive implicative [resp. implicative and commutative] Γ-KU -
algebras, we obtained some of their properties respectively and a relationship among
them (See Theorem 4.14). Also, by defining positive implicative [resp. implicative
and commutative] Γ-KU -ideals of a Γ-KU -algebra, we studied their various proper-
ties respectively and a relationship among them (See Theorem 5.32). Moreover, we
discussed some topological structures on a Γ-KU -algebra.

In the future, we will use our proposed Γ-KU -algebras to address quotient Γ-KU -
algebras, homorphism problems, graph theory and Zariski topological structures.
Furthermore, we want to study some ideals of a Γ-KU -algebra in the sense of the
fuzzy set theory.
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