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Abstract. This work is concerned with the study of the numer-
ical approximation for the nonlinear diffusion equation (um)t = uxx,
0 < x < 1, t > 0, with a singular boundary outfluxes ux(0, t) = u−p(0, t),
ux(1, t) = −u−q(1, t), t > 0. We use the finite differences method to
obtain a semidiscrete scheme of the above problem. First, we give appro-
priate conditions under which the semidiscrete solution quenches in a finite
time and estimate its semidiscrete quenching time. Then, we establish the
convergence of the semidiscrete quenching time. Finally, we illustrate our
analysis with some numerical experiments.
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1. Introduction

Consider the following nonlinear diffusion equation with singular boundary out-
fluxes :

(1.1)


(um)t = uxx, 0 < x < 1, t > 0,

ux(0, t) = u−p(0, t), ux(1, t) = −u−q(1, t), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where m, p and q are positive given constants, and the initial function u0 is a positive
smooth function satisfying the compatibility conditions

u′
0(0) = u−p

0 (0) and u′
0(1) = −u−q

0 (1).
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Since u0 satisfies these compatibility conditions, there exists a0 ∈ (0, 1) such that
u′
0 > 0 in [0, a0), u

′
0 < 0 in (a0, 1] and u′

0(a0) = 0. The concept of quenching was first
introduced by Kawarada [1] in 1975 and has since been extensively investigated by
many authors in recent decades (See [2, 3, 4, 5, 6, 7] and the references therein). But
in the literature, there are a few studies about quenching problems with a singular
boundary outflux (See [2, 6, 8]).

Definition 1.1. We say that the solution u of (1.1) quenches in a finite time if there
exists a finite time Tq such that min{u(x, t) : 0 ≤ x ≤ 1} > 0 for t ∈ [0, Tq), but

lim
t→Tq

min{u(x, t) : 0 ≤ x ≤ 1} = 0.

The time Tq is called the quenching time of the solution u.

B. Selcuk and N. Ozalp [6] prove that for m ≥ 2q/(q + 1), the solution of (1.1)
quenches in finite time at the boundary x = 1. They also show that the time de-
rivative blows up at the quenching time, which means that there exists sequence
(xn, tn) → (1, Tq) such that ut(xn, tn) → ∞ as n → ∞. Finally they establish re-
sults on quenching time and rate.
Problem (1.1) can be rewritten in the following form

(1.2)


ut =

1

m
u1−muxx, 0 < x < 1, t > 0,

ux(0, t) = u−p(0, t), ux(1, t) = −u−q(1, t), t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

The rest of the paper is organised as follows : in the next section, we present
a semidiscrete scheme of (1.2). In the section 3, we give some properties of the
semidiscrete scheme. In section 4, under appropriate conditions, we prove that the
semidiscrete solution quenches in a finite time and that this time converges to the
real one. Finally, in the last section, we give some numerical results.

2. Semidiscrete problem

Let I > 3 be an integer and define the grid xi = ih, i = 0, . . . , I, where h =
1

I
is the mesh parameter. We approximate the solution (u(x0, t), . . . , u(xI , t))

T of the
problem (1.2) by the solution Uh(t) = (U0(t), . . . , UI(t))

T of the following semidis-
crete scheme

dUi(t)

dt
=

1

m
U1−m
i (t)δ2Ui(t), i = 1, . . . , I − 1, t ∈ (0, Th),(2.1)

dU0(t)

dt
=

1

m
U1−m
0 (t)

(
δ2U0(t)−

2

h
U−p
0 (t)

)
, t ∈ (0, Th),(2.2)

dUI(t)

dt
=

1

m
U1−m
I (t)

(
δ2UI(t)−

2

h
U−q
I (t)

)
, t ∈ (0, Th),(2.3)

Ui(0) = φi > 0, i = 0, . . . , I,(2.4)
222
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where for t ∈ (0, Th),

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, i = 1, . . . , I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
,

and [0, Th), the maximal time interval on which Uh(t) satisfies ∥Uh(t)∥inf > 0 and
lim
t→Th

∥Uh(t)∥inf = 0, with ∥Uh(t)∥inf = min0≤i≤I Ui(t). We say that Uh(t) quenches

in finite time if Th is finite. In this case, Th stands for the quenching time of the
solution Uh(t).
Denote

δ2∗Ui(t) =


δ2Ui(t) if i = 1, . . . , I − 1,

δ2U0(t)−
2

h
U−p
0 (t) if i = 0,

δ2UI(t)−
2

h
U−q
I (t) if i = I.

3. Properties of the semidiscrete scheme

We give in this section some important results which will be used later. The
following lemma is a semidiscrete form of the maximum principle.

Lemma 3.1. Let ah(t), bh(t) ∈ C0([0, T ],RI+1), ah(t) ≥ 0 and Vh(t) ∈ C1([0, T ],RI+1)
such that

dVi(t)

dt
− ai(t)δ

2Vi(t) + bi(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ],(3.1)

Vi(0) ≥ 0, 0 ≤ i ≤ I.(3.2)

Then we have Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T ].

Proof. Define the vector Zh(t) = Vh(t)e
−λt, where λ is a real such that

bi(t) − λ > 0, 0 ≤ i ≤ I, t ∈ [0, T ]. Let m = min0≤i≤I, 0≤t≤T Zi(t). Since for
i ∈ {0, . . . , I}, Zi(t) is a continuous function, there exists t0 ∈ [0, T ] such that
m = Zi0(t0) for a certain i0 ∈ {0, · · · , I}. If t0 = 0, Zi(t) ≥ m = Vi0(0) ≥ 0, then
Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T ].
Else, it is easy to see that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,(3.3)

δ2Zi0(t0) ≥ 0.(3.4)

Using (3.1), we compute that

dZi0(t0)

dt
− ai0(t0)δ

2Zi0(t0) + (bi0(t0)− λ)Zi0(t0) ≥ 0.(3.5)

From (3.3)–(3.5), we deduce that (bi0(t0) − λ)Zi0(t0) ≥ 0, which implies that
m = Zi0(t0) ≥ 0 because bi0(t0) − λ > 0. Hence Vh(t) ≥ 0 for t ∈ [0, T ], and
we obtain the expected result. □

223
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Lemma 3.2. Let f ∈ C0(R,R). If Vh, Wh ∈ C1([0, T ],RI+1) and ah ∈ C0([0, T ],RI+1
+ )

are such that

dVi(t)

dt
− ai(t)δ

2Vi(t) + f(Vi(t)) <
dWi(t)

dt
− ai(t)δ

2Wi(t) + f(Wi(t)),(3.6)

0 ≤ i ≤ I, t ∈ (0, T ],

Vi(0) < Wi(0), 0 ≤ i ≤ I.(3.7)

Then we have Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ [0, T ].

Proof. Let us define the vector Zh(t) = Wh(t)− Vh(t). Let t0 be the first t ∈ (0, T ]
such that Zi(t) > 0 for t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain i0 ∈
{0, . . . , I}. It is not hard to see that

d

dt
Zi0(t0) = lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

δ2Zi0(t0) ≥ 0,

which implies that

d

dt
Zi0(t0)− ai0(t0)δ

2Zi0(t0) + f(Wi0(t0))− f(Vi0(t0)) ≤ 0,

but this inequality contradicts (3.6) and the proof is complete. □

The following lemma shows that the solution of the semidiscrete scheme is a
non-increasing function of t.

Lemma 3.3. Let Uh be a solution of (2.1)–(2.4) and the initial data at (2.4)
satisfies δ2∗φi ≤ 0, 0 ≤ i ≤ I. Then

dUi(t)

dt
≤ 0 for 0 ≤ i ≤ I, t ∈ [0, Th).

Proof. Take T0 < Th fixed. Let us define the vector Vh(t)

such that Vi(t) =
dUi(t)

dt
for 0 ≤ i ≤ I, t ∈ [0, T0]. We have

dVi(t)

dt
=

(
1−m

m
U−m
i (t)δ2Ui(t)

)
Vi(t) +

1

m
U1−m
i (t)δ2Vi(t), 1 ≤ i ≤ I − 1,(3.8)

dV0(t)

dt
=

(
1−m

m
U−m
0 (t)δ2U0(t)−

2(1−m− p)

mh
U−m−p
0 (t)

)
V0(t)+(3.9)

1

m
U1−m
0 (t)δ2V0(t)

dVI(t)

dt
=

(
1−m

m
U−m
I (t)δ2UI(t)−

2(1−m− q)

mh
U−m−q
I (t)

)
VI(t)+(3.10)

1

m
U1−m
I (t)δ2VI(t).

Set

K1 = max
1≤i≤I−1, 0≤t≤T0

{∣∣∣∣1−m

m
U−m
i (t)δ2Ui(t)

∣∣∣∣} ,

K2 = max
0≤t≤T0

{∣∣∣∣1−m

m
U−m
0 (t)δ2U0(t)

∣∣∣∣− 2(1−m− p)

mh
U−m−p
0 (t)

}
224
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and

K3 = max
0≤t≤T0

{∣∣∣∣1−m

m
U−m
I (t)δ2UI(t)

∣∣∣∣− 2(1−m− q)

mh
U−m−q
I (t)

}
.

Let K be a positive constant satisfying

K > max{K1,K2,K3}.

Denote Vh(t) = (V0(t), . . . , VI(t))
T and consider the vector Wh(t) = Vh(t)e

−Kt. Note
that Wh(0) ≤ 0 because Vh(0) ≤ 0.
Let t0 be the first t ∈ (0, T0] such that Wi(t) ≤ 0 for t ∈ [0, t0), but Wi0(t0) > 0 for
a certain i0 ∈ {0, . . . , I}. Without lost of generality, we suppose that i0 is such that
Wi0(t0) = max0≤i≤I{Wi(t0)}. Then we have

dWi0(t0)

dt
= lim

k→0

Wi0(t0)−Wi0(t0 − k)

k
≥ 0,(3.11)

δ2Wi0(t0) ≤ 0.(3.12)

From relations (3.8)–(3.10) and (3.12), we can easily show that

dWi0(t0)

dt
≤

(
1−m

m
U−m
i0

(t0)δ
2Ui0(t0)−K

)
Wi0(t0) < 0, 1 ≤ i0 ≤ I − 1,

dWi0(t0)

dt
≤

(
1−m

m
U−m
0 (t0)δ

2U0(t0)−
2(1−m− p)

mh
U−m−p
0 (t0)−K

)
W0(t0) < 0, i0 = 0,

dWi0(t0)

dt
≤

(
1−m

m
U−m
I (t0)δ

2UI(t0)−
2(1−m− q)

mh
U−m−q
I (t0)−K

)
WI(t0) < 0, i0 = I,

which is a contradiction with (3.11) and the lemma is completely proved. □

The lemma below reveals that for a positive initial data that satisfies the compati-
bility conditions, the semidiscrete solution can not be monotone on the space.

Lemma 3.4. Let Uh be a solution of (2.1)–(2.4) and the initial condition at (2.4)
verifies

φi < φi+1, 0 ≤ i ≤ k0 − 1,

φi > φi+1, k0 ≤ i ≤ I − 1,

where k0 ∈ {2, . . . , I − 2}. Then
(1) Ui(t) < Ui+1(t) for 0 ≤ i ≤ k0 − 2, t ∈ [0, Th),
(2) Ui(t) > Ui+1(t) for k0 + 1 ≤ i ≤ I − 1, t ∈ [0, Th).

Proof. (1) Define the functions Zi(t) = Ui(t) − Ui+1(t). Because φi − φi+1 < 0,
0 ≤ i ≤ k0 − 1, let t0 be the first t ∈ (0, Th) such that Zi(t) < 0 for t ∈ [0, t0),
0 ≤ i ≤ k0 − 1, but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , k0 − 1}. Without lost
of generality, we suppose that i0 is the smallest integer which satisfies the above
equality. It is not hard to see that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≥ 0,(3.13)

δ2Zi0(t0) < 0 if 1 ≤ i0 ≤ k0 − 2,(3.14)

δ2Zi0(t0) ≤ 0 if i0 = 0.(3.15)
225
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Using relations (2.1), (2.2), (3.14) and (3.15), we have

dZi0(t0)

dt
=

1

m
U1−m
i0

(t0)δ
2Zi0(t0) < 0 if 1 ≤ i0 ≤ k0 − 2,

dZi0(t0)

dt
=

1

m
U1−m
0 (t0)δ

2Z0(t0)−
2

mh
U1−m−p
0 (t0) < 0 if i0 = 0,

which contradict (3.13) and the desired result follows.
By an analogous argument, we prove the latter part of the lemma. □

Lemma 3.5. Assume p ≤ q. Let Uh be a solution of (2.1)–(2.4) and the initial
condition at (2.4) verifies

φI ≤ 1 and φi > φI−i, 0 ≤ i ≤ k0 + 1,

where k0 is defined in the previous Lemma. Then Ui(t) > UI−i(t) for
0 ≤ i ≤ k0, t ∈ [0, Th).

Proof. We set Zi(t) = Ui(t)−UI−i(t), 0 ≤ i ≤ k0 + 1. Let t0 be the first t ∈ (0, Th)
such that Zi(t) > 0 for t ∈ [0, t0), 0 ≤ i ≤ k0 + 1, but Zi0(t0) = 0 for a certain
i0 ∈ {0, . . . , k0 + 1}. Without lost of generality, we may suppose that i0 is the
greatest integer which satisfies the above equality. One can check that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,(3.16)

δ2Zi0(t0) > 0 if 0 ≤ i0 ≤ k0.(3.17)

From relations (2.1), (2.2) and using (3.17), we obtain by a simple computation

dZi0(t0)

dt
=

1

m
U1−m
i0

(t0)δ
2Zi0(t0) > 0 if 1 ≤ i0 ≤ k0,

dZi0(t0)

dt
=

1

m
U1−m
0 (t0)δ

2Z0(t0) +
2

mh
U1−m−q
I (t0)

(
1− Uq−p

I (t0)
)
> 0 if i0 = 0,

which contradict (3.16) and we conclude the proof. □

Remark 3.6. Under the assumptions of Lemmas (3.4) and (3.5),

min
0≤i≤I

Ui(t) = UI(t) for t ∈ [0, Th).

4. Convergence of the semidiscrete quenching time

In this section, we give suitable assumptions under which, the semidiscrete so-
lution quenches in finite time and its quenching time converges to the theoretical
one when the mesh size goes to zero. The next theorem shows that the semidiscrete
solution approximates the continuous one under condition (4.1).

Theorem 4.1. Assume that the problem (1.2) has a solution u ∈ C4,1([0, 1]× [0, T ])
and the initial condition at (2.4) satisfies

(4.1) ∥φh − uh(0)∥∞ = o(1) as h → 0,

where uh(t) =
(
u(x0, t), . . . , u(xI , t)

)T
. Then for h small enough, the semidiscrete

problem (2.1)–(2.4) has a unique solution Uh ∈ C1([0, T ],RI+1) such that

(4.2) max
0≤t≤T

∥Uh(t)− uh(t)∥∞ = O
(
∥φh − uh(0)∥∞ + h2

)
as h → 0.
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Proof. Let α > 0 be such that

(4.3) ∥u(·, t)∥inf ≥ α for t ∈ [0, T ].

Then the problem (2.1)–(2.4) has for each h, a unique solution Uh ∈ C1([0, Th),RI+1).
Let t(h) ≤ min{T, Th} be the greatest value of t > 0 such that

(4.4) ∥Uh(t)− uh(t)∥∞ < α/2, t ∈ (0, t(h)).

Note that, because of (4.1), t(h) > 0 for h small enough. Using the fact that
Ui(t) = u(xi, t)− (−Ui(t) + u(xi, t)), we get
∥Uh(t)∥inf ≥ ∥u(·, t)∥inf − ∥Uh(t)− uh(t)∥∞, t ∈ (0, t(h)), which implies that

(4.5) ∥Uh(t)∥inf ≥ α− α/2 = α/2, t ∈ (0, t(h)).

Let eh(t) = Uh(t)− uh(t) be the discretization error. Using the Taylor’s expansion,
we have for t ∈ (0, t(h))

dei(t)

dt
− 1

m
U1−m
i (t)δ2ei(t) =

1−m

m
ξ−m
i (t)δ2u(xi, t)ei(t) +O(h2), 1 ≤ i ≤ I − 1,

de0(t)

dt
− 1

m
U1−m
0 (t)δ2e0(t) =

(
1−m

m
ξ−m
0 (t)δ2u(x0, t)−

2(1−m− p)

mh
θ−m−p
0 (t)

)
e0(t)

+O(h2),

deI(t)

dt
− 1

m
U1−m
I (t)δ2eI(t) =

(
1−m

m
ξ−m
I (t)δ2u(xI , t)−

2(1−m− q)

mh
θ−m−q
I (t)

)
eI(t)

+O(h2),

where ξi(t) is the intermediate value between Ui(t) and u(xi, t) for i ∈ {0, . . . , I}
and θ0(t) the one between U0(t) and u(x0, t). Since u ∈ C4,1([0, 1] × [0, t(h)]) and
the fact that relation (4.4) holds, there exist K and L positive constants such that

d

dt
ei(t)−

1

m
U1−m
i (t)δ2ei(t) ≤ K|ei(t)|+ Lh2, 1 ≤ i ≤ I − 1,

d

dt
ei(t)−

1

m
U1−m
i (t)δ2ei(t) ≤ K

h
|ei(t)|+ Lh2, i ∈ {0; I}.

On the other hand, we consider the function

Z(x, t) =
(
∥φh − uh(0)∥∞ +Mh2

)
e(Q+1)t+Rx2

,

and we denote by Z(xi, t) the discretization in space of Z(x, t). Since
∥Uh(t)∥inf > 0, t ∈ (0, t(h)), we obtain for suitable non-negative constants M, Q, R
that

d

dt
Z(xi, t)−

1

m
U1−m
i (t)δ2Z(xi, t) > K|Z(xi, t)|+ Lh2, 1 ≤ i ≤ I − 1,

d

dt
Z(xi, t)−

1

m
U1−m
i (t)δ2Z(xi, t) >

K

h
|Z(xi, t)|+ Lh2, i ∈ {0; I},

Z(xi, 0) > |ei(0)|.

It follows from Lemma 3.2 that

ei(t) < Zi(t), 0 ≤ i ≤ I, t ∈ (0, t(h)).
227
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By the same argument, we also prove that

−ei(t) < Z(xi, t), 0 ≤ i ≤ I, t ∈ (0, t(h)).

Which lead to

(4.6) ∥Uh(t)− uh(t)∥∞ ≤
(
∥φh − uh(0)∥∞ +Mh2

)
e(Q+1)t+R, t ∈ (0, t(h)).

Let us show now that t(h) = T . Suppose t(h) < T . From (4.4) and (4.6), we have

α

2
= ∥Uh(t(h))− uh(t(h))∥∞ ≤

(
∥Uh(0)− uh(0)∥∞ +Mh2

)
e(Q+1)T+R.

Since
(
∥Uh(0) − uh(0)∥∞ + Mh2

)
e(Q+1)T+R goes to zero as h tends to zero, we

deduce that α/2 ≤ 0, which is impossible. □

Lemma 4.2. Let Uh ∈ RI+1 such that Uh > 0. Then

δ2U−β
i ≥ −βU−β−1

i δ2Ui, 0 ≤ i ≤ I,

where β > 0.

Proof. We refer to [5]. □

Theorem 4.3. Let m ≥ 1 and the initial data φh at (2.4) satisfies δ2∗φI ̸= 0. Under
the assumptions of Lemmas (3.3), (3.4) and (3.5), the solution Uh of (2.1)–(2.4)
quenches in a finite time Th with the following estimation

Th ≤ 1

A

∥φh∥q+1
inf

q + 1
where A ∈

(
0;

δ2∗φI

−mφm−q−1
I

]
.(4.7)

Proof. Since [0, Th) is the maximal time interval on which ∥Uh(t)∥inf > 0, our goal
is to show that Th is finite and satisfies the inequality (4.7). For t ∈ [0, Th), let us
Introduce the vector Jh(t) defined as follows

JI(t) =
dUI(t)

dt
+AU−q

I , Ji(t) =
dUi(t)

dt
, 0 ≤ i ≤ I − 1.(4.8)

Notice that{
δ2∗φI ≤ −mAφm−q−1

I since A ∈
(
0;

δ2∗φI

−mφm−q−1
I

]
and δ2∗φi ≤ 0, 0 ≤ i ≤ I − 1 (assumption of Lemma (3.3)).

(4.9)

A straightforward calculation using (2.1)-(2.3) yields for t ∈ (0, Th)

dJi(t)

dt
− 1

m
U1−m
i (t)δ2Ji(t) =

1−m

m
U−m
i (t)δ2Ui(t)

dUi(t)

dt
, 1 ≤ i ≤ I − 1,(4.10)

dJ0(t)

dt
− 1

m
U1−m
0 (t)δ2J0(t) =

2p

mh
U−m−p
0 (t)

dU0(t)

dt
(4.11)

+
1−m

m
U−m
0 (t)

(
δ2U0(t)−

2

h
U−p
0 (t)

)
dU0(t)

dt
,
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dJI(t)

dt
− 1

m
U1−m
I (t)δ2JI(t) =

2q

mh
U−m−q
I (t)

dUI(t)

dt
(4.12)

+
1−m

m
U−m
I (t)

(
δ2UI(t)−

2

h
U−q
I (t)

)
dUI(t)

dt

− A

m
U1−m
I (t)δ2U−q

I (t)− qAU−q−1
I (t)

dUI(t)

dt

≤ 2q

mh
U−m−q
I (t)

dUI(t)

dt
+

1−m

m
U−m
I (t)

(
δ2UI(t)−

2

h
U−q
I (t)

)
dUI(t)

dt
(4.13)

+
2Aq

mh
U−m−2q
I (t).

We obtain inequality (4.13) by applying Lemma 4.2 to equality (4.12).

Now, using Lemma 3.3 and the fact that 1−m ≤ 0, we deduce from relations (4.10),
(4.11) and (4.13) that

dJi(t)

dt
− 1

m
U1−m
i (t)δ2Ji(t) ≤ 0, 0 ≤ i ≤ I − 1,

dJI(t)

dt
− 1

m
U1−m
I (t)δ2JI(t) ≤ 2q

mh
U−m−q
I (t)JI(t).

We observe from (4.9) that Ji(0) ≤ 0, 0 ≤ i ≤ I.
Applying Lemma 3.1, we obtain Jh(t) ≤ 0 for t ∈ [0, Th), which implies that

dUI(t)

dt
+AU−q

I (t) ≤ 0 for t ∈ [0, Th).

This estimate may be rewritten in the following manner

Uq
I (t)dUI(t) ≤ −Adt for t ∈ [0, Th).

Integrating the above inequality over (t, Th) to get

Th − t ≤ 1

A

Uq+1
I (t)

q + 1
.(4.14)

From Remark 3.6 and taking t = 0 in (4.14), we get the desired result. □

Remark 4.4. Using (4.14) and taking account Remark 3.6, we have

Th − t ≤ 1

A

Uq+1
i (t)

q + 1
for 0 ≤ i ≤ I, t ∈ [0, Th),

and there exists a constant C > 0 such that

Ui(t) ≥ C
(
Th − t

)1/(q+1)

for 0 ≤ i ≤ I, t ∈ [0, Th).

Theorem 4.5. Suppose that the solution u of (1.2) quenches in a finite time Tq

such that u ∈ C4,1([0, 1]× [0, Tq)) and the initial condition at (2.4) satisfies
∥φh−uh(0)∥∞ = o(1) as h → 0. Under the assumptions of Theorem 4.3, the solution
Uh of (2.1)–(2.4) quenches in a finite time Th and we have

lim
h→0

Th = Tq.
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Proof. Set ϵ > 0. There exists ρ such that

1

A

yq+1

(q + 1)
≤ ϵ

2
, 0 ≤ y ≤ ρ.(4.15)

Since u(x, t) quenches in a finite time Tq, there exists a time T0 < Tq such that
|T0 − Tq| < ϵ/2 and 0 < ∥u(x, t)∥inf ≤ ρ/2 for t ∈ [T0, Tq). Setting T1 = (T0 + Tq)/2,
it is not hard to see that ∥u(x, t)∥inf > 0 for t ∈ [0, T1]. From Theorem 4.1, we have
∥Uh(t)−uh(t)∥∞ ≤ ρ/2 for t ∈ [0, T1], which implies that ∥Uh(T1)−uh(T1)∥∞ ≤ ρ/2.
Applying the triangle inequality, we get

∥Uh(T1)∥inf ≤ ∥Uh(T1)− uh(T1)∥∞ + ∥uh(T1)∥inf ≤
ρ

2
+

ρ

2
= ρ.

From Theorem 4.3, Uh quenches in a finite time Th. We deduce from Remark 4.4
and relation (4.15) that

|Th − Tq| ≤ |Th − T1|+ |T1 − Tq| ≤
1

A

∥Uh(T1)∥q+1
inf

(q + 1)
+

ϵ

2
≤ ϵ,

and the proof is complete. □

5. Numerical experiments

Before doing simulation, we transform the semidiscrete problem (2.1)–(2.4) into

the following one by setting Vh =
1

Uh
:

dVi(t)

dt
= g(Vi(t)), i = 0, . . . , I, t ∈ (0, Th),(5.1)

Vi(0) = (φi)
−1, i = 0, . . . , I,(5.2)

where

g(Vi) =
V m+1
i

mh2

(
2

Vi
− 1

Vi+1
− 1

Vi−1

)
, i = 1, . . . , I − 1, t ∈ (0, Th),

g(V0) =
2V m+1

0

mh2

(
hV p

0 +
1

V0
− 1

V1

)
, t ∈ (0, Th),

g(VI) =
2V m+1

I

mh2

(
hV p

I +
1

VI
− 1

VI−1

)
, t ∈ (0, Th).

We know from ([9, 10]) that the solution Vh of (5.1)–(5.2) blows up at the quench-
ing time Th of Uh.

Hence, we estimate the numerical blow-up time of (2.1)–(2.4) by using the algo-
rithm proposed by C. Hirota and K. Ozawa [11]. Firstly, we transform the semidis-
crete scheme (5.1)-(5.2) by the arc length transformation technique into the following

230



Ganon et al. /Ann. Fuzzy Math. Inform. 26 (2023), No. 3, 221–235

form :

(5.3)


d

dℓ


t

V0

...

VI

 =
1√

1 +
∑I

i=0 g
2
i


1

g0
...

gI

 , 0 < ℓ < ∞,

t(0) = 0, Vi(0) = (φi)
−1 > 0, 0 ≤ i ≤ I,

where
”ℓ” is such that dℓ2 = dt2 +

∑I
i=0 dV

2
i and is called the arc length.

The variables t and Vi are fonctions of ℓ, and C. Hirota and K. Ozawa [11] proved
that

lim
ℓ→∞

t(ℓ) = Th and lim
ℓ→∞

∥Vh(ℓ)∥∞ = ∞.

Secondly, we introduce {vj} which is a sequence of the arc length and we apply
an ODE solver (DOP54) to (5.3) for each value of {vj}. In this way, we gener-
ate a linearly convergent sequence to the blow-up time, which sequence is finally
accelerated by the Aitken ∆2 method. The three tolerances parameters, AbsTol,
RelTol and InitialStep of the DOP54 (See [11, 12] for more details) are set as follows
AbsTol = RelTol = 1.d–15, InitialStep = 0, and the sequence of the arc length is
define by vj = 24 · 2j (j = 0, . . . , 10). In the following Tables, Th is the approximate
quenching time corresponding to meshes of I = 16, 32, 64, 128, 256, 512 ; and n, the
numbers of iterations required to obtain Th.

In accordance with the quenching condition of the continuous solution u, we take
in our simulations m ≥ 2q

q+1 , see [6].

Case 1 : φi = cos(π2 ∗ i ∗ h) + (π2 − 1) ∗ i ∗ h + (2 − π
2 ), 0 ≤ i ≤ I and

p = − ln(π2 − 1)/ ln(3− π
2 ).

Tables 1-3 are obtained for various values of parameters m and q in the case 1.
Table 1. For m = 2.5, q = 3
I Th n
16 0.271 265 072 978 1897
32 0.268 864 903 153 3676
64 0.268 158 507 779 7136
128 0.267 961 338 713 13900
256 0.267 908 075 669 27536
512 0.267 893 994 001 60141

Table 2. For m = 4, q = 3
I Th n
16 0.483 811 738 426 2018
32 0.483 510 685 640 4081
64 0.483 434 668 354 8121
128 0.483 415 565 675 16052
256 0.483 410 776 155 32164
512 0.483 409 576 764 71987

Table 3. For m = 4, q = 4
I Th n
16 0.349 720 316 923 1527
32 0.347 514 613 795 3035
64 0.346 894 845 834 5988
128 0.346 728 719 634 11778
256 0.346 685 351 831 23461
512 0.346 674 207 714 51313
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Remark 5.1. We observe from the above tables that there is a relationship between
Th, m and q. In fact, when the parameter of the flux on the boundary xI = 1 is
a constant (q = 3) and that m increases from m = 2.5 to 4, the quenching time
also increases (from Th = 0.267 to 0.483) see Tables 1, 2. Whereas when m remains
constant (m = 4) and q increases (by q = 3 to 4), the quenching time diminishes
(from Th = 0.483 to 0.346) see Tables 2, 3.

Below, we give some plots in figures 1-3 to illustrate the evolution of Uh in the
case 1 for I = 256, m = 2.5, q = 3.

Figure 1. Evolution of the numerical solution Uh
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Figure 2. Evolution of Uh according
to the space at quenching time.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u

m
e

ri
c
a

l 
s
o

lu
ti
o

n
 U

h

Figure 3. Evolution of Uh according
to the time.

Case 2 : φi = −1.2 ∗ (i ∗ h)2 + i ∗ h+ 1, 0 ≤ i ≤ I and q = ln(1.4)/ ln(1.25).
We obtained tables 4-6 for various values of parameter p and m = 2 in the case 2.

Table 4. For m = 2, p = 0.5
I Th n
16 0.096 371 886 086 1776
32 0.095 364 023 857 3519
64 0.095 072 620 314 6924
128 0.094 992 159 745 13517
256 0.094 970 588 501 26456
512 0.094 964 918 356 52896

Table 5. For m = 2, p = 1
I Th n
16 0.096 371 525 733 1776
32 0.095 363 755 042 3519
64 0.095 072 372 870 6924
128 0.094 991 917 552 13518
256 0.094 970 347 616 26456
512 0.094 964 677 797 52896
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Table 6. For m = 2, p = 1.4
I Th n
16 0.096 371 212 474 1777
32 0.095 363 521 385 3520
64 0.095 072 157 799 6925
128 0.094 991 707 047 13518
256 0.094 970 138 248 26457
512 0.094 964 468 713 52898

Remark 5.2. Tables 4-6 reveal that the flux on the boundary x0 = 0 does not have
a significant effect on the quenching time.

Others illustrations are given in the below figures to show the evolution of the
numerical solution Uh for I = 256, m = 2, p = 0.5 according to the case 2.

Figure 4. Evolution of the numerical solution Uh.
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Figure 5. Evolution of Uh according
to the space at quenching time.
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Figure 6. Evolution of Uh according
to the time.

Remark 5.3. From figures 1-6, we observe that the evolution of the numerical
solution is in agreement with the theoretical results obtained.
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6. Conclusion

In this work, we have studied the numerical quenching of the solution of the
nonlinear diffusion equation with singular boundary outfluxes (1.1). We have used
the finite difference method to construct the semidiscrete problem (2.1)-(2.4) related
to the continuous problem. We have also proved that the semidiscrete solution
reproduces the qualitative and quenching properties of the continuous one. Better,
we have shown that, under some assumptions, the semidiscrete solution and its
quenching time converge respectively to the continuous solution and the theoretical
quenching time, when the mesh parameter goes to zero. Finally, some numerical
experiments have been presented to illustrate our analysis. we can extend this work
to a higher dimensional space.
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