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ABSTRACT. It has a comment on two patterns of generalizations of the
roughness of some fuzzy set. The authors in 2022, based on the minimal
neighborhoods of rough fuzzy sets, introduced a generalization of rough
fuzzy sets. This paper will be used maximal neighborhoods in defining
a new generalization of rough fuzzy sets in a pattern similar to this gen-
eralization introduced by the authors in 2022. Mainly, it is shown that
the new boundary region set computed using maximal neighborhoods does
not depend on that set computed using minimal neighborhoods as given
by the authors in 2022. As an application, it is shown that the connect-
edness of rough fuzzy topological spaces could be defined using maximal
neighborhoods. Still, this connectedness is not related to the connected-
ness expressed by the authors in 2022 using minimal neighborhoods.
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1. INTRODUCTION AND PRELIMINAEIES

P awtax basically defined the notion of the rough set in [1] based on an equiva-
lence relation R defined on a universal finite set X. Based on the resulting equiva-
lence classes, some objects are found in a vague area called the boundary region that
could not be determined by the set or its complement. The pair (X, R) was called
an approximation space. Many authors studied the roughness notion but based on
a more generalized relation on X cited in [2, 3, 4, 5, 6]. In [7], it was studied the
maximal right neighborhoods related to the arbitrary relation defined on X. Also, in
[8], it was studied the maximal left neighborhoods related to the arbitrary relation
defined on X, and both could be as a dual work to the other one. Many researchers
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made a wide research on rough sets and its application as given in [9, 10, 11, 12, 13].
The boundary region area became an essential role in artificial intelligence, granular
computing and decision analysis. The topology 7, generated in an approximation
space (X, R) ensuring some topological properties of rough sets were studied by some
authors cited in [14, 15]. In [16], the authors based on the minimal neighborhoods
made a generalization of the roughness notion for the fuzzy sets and consequently
for the crisp sets. Accompanying a fuzzy ideal ¢ ([17]) on a fuzzy approximation
space (X, R), is a generalization in defining the rough fuzzy sets as shown in [16]. It
was explained in [16] a generalization of the definitions of [1, 2, 4, 5, 6]. A clearer
form of the accuracy fuzzy set of roughness was given in [16]. Many applications of
rough sets are used in real life problems such as given in [18, 19, 20].

In this paper, we modified our Definitions in [16], to give a similar pattern of defi-
nitions but based on the maximal neighborhoods. About the accuracy of roughness,
we clarified the computations into a suitable form in the crisp case different from the
accuracy of roughness in the fuzzy case. The main result is that: Using the maximal
neighborhoods in defining the fuzzy roughness (in a pattern similar to that defined
in [16] we produced a new generalized form of fuzzy roughness. But the resulting
boundary region fuzzy set is not related to that found in [16]. While in the crisp
case, using minimal neighborhoods as defined in [16] produces a boundary region set
fewer than that produced if we used maximal neighborhoods as given in this paper.
Also, we explained even if constructed a fuzzy topological space and studied some
topological notions like fuzzy connectedness based on maximal neighborhoods, we
get that this fuzzy connectedness is not related to that fuzzy connectedness defined
in [16] by minimal neighborhoods. While in the crisp case, if (X, 7,,) is a connected
space as shown in [16], then it is a connected space which is defined by using maxi-
mal neighborhoods but not converse. The core of that difference between crisp case
and fuzzy case is coming from A N A° = ¢ may not be correct in the fuzzy case.
Thus, both A and A° may belong to the ideal £ and both may not belong to £.

Let X be a finite set of objects and I the closed unit interval [0,1]. Then I¥
denotes all fuzzy subsets of X and 2% denotes all crisp subsets (ordinary sets) of X.
For any A, p € IX, the complement A of \, the union AV u of X\ and u, and the
intersection A A\ p of X and p, are respectively defined as follows (See [21]): for each
z e X,

(@) = 1- @), (AV p)(@) = A@) V ), (AA p)(@) = M) A pla).

For any X\, p € IX, the order A < j between \ and p, and for each t € I, a constant
fuzzy set t in X are respectively defined by: for each x € X,

< e A@) < pla), H) = t.
For each A € I, the Infimum and the supremum of A are respectively given as:
inf A = /\ A(z) and sup A = \/ A(x).
reX zeX

Recall that the fuzzy difference between two fuzzy sets was defined ([22]) as:

- . _J0 if A<up,
(1.1) AAp) = { AA ¢ otherwise.
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A subset £ C IX is called a fuzzy ideal ([17]) on X, if it satisfies the following
conditions: for any u, v € IX,
(i) 0¥,
(ii) f v < p and p €4, then v € ¢,
(iii) if p € £ and v € £, then (uVv) € L.
Usually, we consider the proper fuzzy ideal ¢ (1 & £). Denote the fuzzy ideal ¢°
for a fuzzy ideal including only 0.

2. ROUGH FUZZY SETS

First of all, we recall the concept of the lower approximations and the upper ap-
proximations proposed by some researchers.

Pawlak [1]: Let R be an equivalence relation on X and let [z] g be the equivalence
class containing z. Then for any subset A of X, the lower approzimation R(A) and
the upper approximation R(A) are defined by:

RA)={zeX [zl CA}, RA) ={ze€X:[z]gNnA#a}

Yao [0]: Let R be a binary relation on X. Then for any subset A of X, the lower
approximation R(A) and the upper approzimation R(A) are defined by:

R(A)={zeX:2RC A}, RA)={zecX:2RNA# 2},
where R is called the after set of x defined by:
zR ={y € X : xRy}.
Moreover, Rx is called the fore set of x defined by:
Rz ={y € X : yRz}.

It is clear that Pawlak’s Definition is a special case of Yao’s Definition.

Allam [2]: Let R be a reflexive binary relation on X and let [p|R b the intersection
of all the after sets xR containing p € X. Then for any subset A of X, the lower
approzimation R(A) and the upper approrimation R(A) are defined by:

R(A)={zeX:[z]RC A}, RA) ={recX:[z]RNAH# T},
where [p|R is defined by:

pETR

] otherwise

(N zR ifJz:pe€ xR,
(2.1) [p|R {

and R[p] is defined by:

(N Rz if 3z :p € Rz,
(2.2) Rlp] = pERx
%} otherwise.
In this case, [p|R, R[p|] are called minimal right and minimal left neighborhoods of
peX.
It is obvious that Allam’s Definition is a refinement of both of Pawlak’s Definition
and Yao’s Definition.
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Kandil [4]: Let R be a reflexive relation on X and let £ be an ideal on X. Then
for any subset A of X, the lower approzimation R(A) and the upper approzimation
R(A) are defined by:

R(A)={z€A:[z]RNA°€l}, R(A)=AU{z € X : [g]RN A& (}.

It is clear that the definition of Kandil is a generalization of Allam’s Definition (if
¢ = ¢°, then both are equivalent).

Kozae [5]: Let R be a binary relation on X. Then for any subset A of X, the
lower approzimation R(A) and the upper approrimation R(A) are defined by:

R(A)={re€X: Rz]RC A}, R(A)={x € X: R[x]RNA+# o},

where R[z]|R is defined by R[z]R = [z]R N R[z].
It is a refinement of Allam’s Definition, and if R was taken reflexive and symmetric,
it will be a special case of Kandil’s Definition.

The previous definitions are given for the roughness of an approximation space
(X, R) in the ordinary case. Ibedou and Abbas [16] introduced a generalization of
all the definitions given in [1, 2, 4, 5, (] in the ordinary case (crisp case) and in the
fuzzy case as given down.

Definition 2.1 (See [16]). Let X be a finite set, R a fuzzy relation on X that has
at least one value R(x,y) > 0 for some x, y € X and ¢ a fuzzy ideal on X. Then
for any x € X, defined the fuzzy sets R, Rx € IX as follow: for each y € X,

2R(y) = R(x,y) and Rx(y) = R(y, ).
For any a € X, the fuzzy sets [a]|R, Rla] € I are defined by: for each z € X,
(2.3) [aR(x)= N aR(a) and Rla)(z)= [\ Ra(a).
R(z,a)>0 R(a,z)>0

Equation 2.3 defines the minimal right and the minimal left fuzzy neighborhoods of
ac X.
For any a € X, defined R[a|R : X — I as follows: for each z € X,

(2.4) R[a]R(z) = [a]R(z) A Rla](x).
For every = € X, defined \,, \* € IX of a fuzzy set A € IX by: for each z € X,
(V R[z]R(z))¢ if Rg]RAX &l and Rx]RANE L
zeX

(25) A(@) =4 1 if Rlz]RA N € (
0 if Rlx]RAX & £ and R[Z]RAXN €Y
V R[z]R(xz) if Rlz]RAXN& ¢ and R[z]RAX & ¢
« zeX
(2.6) X(2) =3 o if Rlz]RAX€E !
1 if R[z]RAX¢& L and R[z]R A X° € L.

Let R be a fuzzy equivalence relation on a set X and let A € IX. Then the lower
fuzzy set, the upper fuzzy set and the boundary fuzzy region of A, denoted by A, AT
and AP are respectively defined by:

(2.7) Ar=AA N and A=AV \*
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(2.8) A= \E A Ag.

The pair (X, R) is called a rough fuzzy approximation space, and Ar and A® are
called rough fuzzy sets of \.

For every rough fuzzy set A € IX, the accuracy fuzzy set a(\) € I of X is defined
as follows: for all z € X,

0 if \*=Tand A\ =0
(2.9) a(N)(a) —{ (A (@) = A@) v (A(@) = Ar(@))® i AR £ Ar
1 otherwise,

The accuracy value of the rough fuzzy set A is denoted by Inf(a(A)).

Now, we modify Equation 2.3 to use in defining a new type of roughness of
fuzzy sets and roughness of ordinary (crisp) sets. By the previous definitions of
rR, Rx € I, we can define the maximal fuzzy neighborhoods of any a € X.

For any a € X, the fuzzy sets [a]R, R[a] € IX are defined as follows: for each
z e X,

(2.10) [a]R(x) = \/ rR(a) and Rla](z) = \/ Rz(a).

R(x,a)>0 R(a,z)>0

Equation 2.10 defines the mazimal right and the maximal left fuzzy neighborhoods
of a € X.

In the crisp case, Equation 2.10 defines the maximal right and the maximal left
neighborhoods as used in [7, 8] of some element a € X, and moreover, Hosney and
Al-shami [3] introduced a generalization using the intersection of maximal right and
maximal left neighborhoods accompanied with a usual ideal on X.

Using Equation 2.10, we can define a new type of rough sets of an approximation
space (X, R) in the fuzzy case and the crisp case as follow.

Definition 2.2. Let ¢ be a fuzzy ideal defined on a fuzzy approximation space
(X, R). Then A, \*™* € IX of a fuzzy set A € IX are defined as follow: for every
T e X,

(V R[Z]R(z))° if RIZ]RAX ¢ £ and Rz]RANE £

zeX
(211) A(z) =4 1 if Rz]RAN €0

0 if RzJRA N €€ and R[z]RA N € £,

\V R[z]R(z) if Rz]RAX¢ £ and Rz]RAN & ¢

(212) A7(@)={ o if Rlz]RAN€ L

1 if Rz]JRANE L and R[z]RA N € 4,
where
(2.13) R[z]R = [z]R A R[z].

The roughness of the fuzzy set A € IX is defined by:
A=AA Xy and A= AV A",

Then ) is called the lower fuzzy set of A and X is called the upper fuzzy set of A. The
boundary region fuzzy set B(A) of A is defined by B(A) = A A A. The pair (X, R)
145
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is called a rough fuzzy approzimation space. For every rough fuzzy set A € IX, the
accuracy fuzzy set acc(\) of A € IX is defined by: for all z € X,

0 ifA=1 and A=0
oeeN(z) = | (Rlo) = X))V (o) =A@y iR LA
1 otherwise.

Moreover, only in the fuzzy case, the accuracy fuzzy set acc(M) is not equivalent to
the complement of the boundary region fuzzy set B(\), and moreover the accuracy
value of the rough fuzzy set A is given by Inf(acc())). But, in the crisp (ordinary)
case, the accuracy crisp set is equivalent to the complement of the boundary region
crisp set (B(A))¢, and moreover the accuracy value of a rough set A in the crisp case
is given by the fraction:

number of nonzero membership values of A

2.14 =
( ) number of nonzero membership values of A

This is the computation of the accuracy value of some rough set in the crisp case
according to Definition 2.2 and according to Definition 2.1 as well.

Definition 2.2 is a generalization of rough fuzzy sets in a similar way to that one
defined by the authors in [16]. In fact, this new definition in both of the fuzzy case
and the crisp case imply a new boundary region fuzzy set. In the fuzzy case, that
new boundary region fuzzy set not dependent with the boundary region set given
in [16]. To explain this main result about the difference between using the maximal
fuzzy neighborhoods as given here and using the minimal fuzzy neighborhoods as
given in [16], we completely analyze all the branches in both of Definition 2.1 and
Definition 2.2.

Remark 2.3. (1) Rlz]RAX > RZ|RANE L = RZ|RANE(
and RZ]RAN > R[Z]RAN €L = R[z]RAN & L.
Then we have

Aix () < Ai(2), AN (x) > N (x) for each z € X.

Thus we get
M) < Ag(z), M) > M (z) for each z € X.

So AB(z) < B()\)(z) for each z € X.
(2) R[Z]RAXN < R[z]RAN €L = Rz]RAN €(
and Rlz]RAXN < Rz]RANEL = R[z]RA)E L. The we get

Aix () = Ai(2) = 1, X () = A*(x) = 0 for each z € X.

Thus we have

AMz) = Ar(z) = XA = M(z) = X(z) for each z € X.
So)\B( ) = B(\)(z) for each z € X.
(3) Rlz]RAX > RZIRAXN €L = Rz]RAN ¢ (
but Rlz]RAXN > R[zZ]RANEL # R[x]RANE L.
Also, R[z]RAXN < R[z]RANEL = R[z]RANE Y
146
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but Rz]RAXN < R[zZ]RAXN ¢l # R[z]RAX & L.
Then we have

Aix () £ Ai(2), Ak () 2 Ai() and X () £ X (2), A" (z) 2 A*(z) for each x € X.
Thus we get

Mz) 2 Ar(z), AMz) £ Ar(z) and XN(z) 2 M\ (x), M) £ A\ () for each x € X,
So AB(z) £ B(\)(z) and AP (z) # B()\)(z) for each z € X.
(4) Rz]RAXN > R[z]RANZ L = R[zZ]RANE Y
but Rlz]RAX > R[z]RAN €l % R[z]RAN € L.
Also, R[z]RAN < Rz]RAN €l = R[z]RAN €/
but Rz]RAN < R[z]RANEZ L % R[z]RANEL.
Then we get

A () £ A (), N (x) 2 N (z) and Aux () € Ai(2), Ass(z) 2 Ai(2) for each x € X.
Thus we have

Az) 2 M (z), Nz) £ M (z) and A(x) # Ar(x), AM(x) £ Ap(x) for each x € X,
So AB(z) £ B(A )(m) and AP (x) # B(\)(x) for each z € X.
(5) If R[z]R € ¢, then R[z]R € ¢. Thus we have
IR
Ar(®

R[zZ]RAXNE L, RlzJRAN €L, Rlz]RAXE L, R[z]R AN € L.

So A(x) = )= Az) = \E(z) = A(z) for all z € X.

(6) If R[x]R € ¢, then R[z]RAX € £, R[z]RANC € L. Thus Ag(z) = \z) = A\%(x)
for all x € X.

(7) In the crisp case, we usually consider a proper crisp ideal, i.e., 1 = AV ¢ & £,
and then it could not be both of A € £ and A\° € £ but in the fuzzy case, we can find
both of A € £ and \° € ¢ while { is a proper fuzzy ideal. Then in the crisp case, may
be either A € £ or A\° € ¢, while in the fuzzy case, it could be satisfied both of A € ¢
and A\ € £. Only in the fuzzy case, it could be found both of A & ¢ and A\° & ¢ (not
satisfied in the crisp case from being X & /).

(8) If A € £, then \** = 0. Thus A\ = \.

(9) If A¢ € £, then A, = 1. Thus A = .

(10) In the crisp case, we see that the first branch in Equations 2.5, 2.11 goes to
zero and the first branch in Equations 2.6, 2.12 goes to one all time. Hence, Definition
2.1 using the minimal neighborhoods as used in [16] produces a boundary region set
fewer than that boundary region set using the maximal neighborhoods as produced in
Definition 2.2. Finally, in the crisp case, using the minimal neighborhoods produces
a fewer boundary region area than that produced using the maximal neighborhoods.
In the fuzzy case, there is no relation between the two generations because of the
first branch in Equations 2.5, 2.6, 2.11, 2.12.

Remark 2.4. If £ = ¢°, then (2) and (5) in Remark 2.3 are equivalent and could
not be found except R[x ]R =0 for z € X. Also, (6) in Remark 2.3 is satisfied only
if R[z]R =0 for z € X. Moreover, (8), (9) in Remark 2.3 will be trivial.

Moreover, while it was proved that the definitions in [I, 2, 4, 5, 6] were special
cases of the definitions in [16], we notice that Definition 2.2, even under the suitable

restrictions, produces a boundary region not related to any of those boundary regions
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given by [2, 4, 5]. This is because these definitions in [2, 4, 5] were based on minimal
neighborhoods not maximal neighborhoods.

The following example produces different computations of roughness upon Defi-
nition 2.2 and Definition 2.1 of a fuzzy set A in an approximation space (X, R).

Example 2.5 (See Example 2.6, [16]). Let X = {a,b,c,d}, let A = {0.1,0.8,0.4,0.6}
be a fuzzy set in IX and let R be a fuzzy relation on X as shown down.

1 105]06]0.6
0906 1 1

Then we get [a]R = {1,0.6,1,1}, [))R = {1,0.6,1,1}, [|]R = {1,0.6,1,1}, [d]R =
{1,0.6,1,1} and

Rla] = {1,0.8,0.6,1}, R[b] = {1,0.8,1,1}, R[] = {1,0.8,1,1}, R[d] = {1,0.8,1,1}.

Thus we have
Rla]R = {1,0.6,0.6,1}, R[p|R = {1,0.6,1,1},
R[c]R = {1,0.6,1,1}, R[d]R = {1,0.6,1,1}.

Consider a fuzzy ideal £ on X such that v € ¢ & v < 0.4. Then \,, =
{0,0.4,0,0}, \* = {1,0.6,1,1}. Thus A = {0,0.4,0,0} and X = {1,0.8,1,1}. So
B(A) ={1,0.6,1,1}, acc(A\) = {0.1,0.6,0.4,0.4}, Inf(acc(N)) = 0.1.

While the computations in [16] give us A, = {0.8,0.8,0.4,0.5}, A* = {0.2,0.2,0.6,0.5}.
Then Ag = {0.1,0.8,0.4,0.5}, \® = {0.2,0.8,0.6,0.6}. Thus \®? = {0.2,0.2,0.6,0.5},
a(N) = {0.9,1,0.8,0.9}, Infa(\) = 0.8. Here, the boundary region fuzzy set \Z is
fewer than the boundary region fuzzy set B(\).

In case of v € £ & v < 0.5, we get A\ = {0,0.4,0,0}, \** = {1,0.6,1,1}.
Then A = {0,0.4,0,0} and A = {1,0.8,1,1}. Thus B(\) = {1,0.6,1,1}, acc(\) =
{0.1,0.6,0.4,0.4}, Inf(acc(N)) = 0.1.

While the computations in [16] give us A, = {1,0,1,1}, A* = 0. Then \? =
{0.1,0.8,0.4,0.6}, Ag = {0.1,0,0.4,0.6}. Thus AP = {0.1,0.8,0.4,0.4}. So a()\) =
{1,0.2,1,1} and Inf(a(\)) = 0.2. Here, the boundary region fuzzy set AZ is not
fewer than the boundary region fuzzy set B(A). This is because of:

RBIRAN ¢ ¢ and RRAX ¢ £. Then A (b) = 0.4. Thus A\(b) = 0.4. But
RBIRAXN €L and RDBIRAX & L. So \(b) = 0. Hence Ag(b) = 0. This is a case
similar to case (3) in Remark 2.3.

In case of v € £ < v < 0.6, we get that A\,, =0 =A**. Then A =0, A = \ =
{0.1,0.8,0.4,0.6}. Thus B(A) = A, acc(A) ={0.9,0.2,0.6,0.4}, Inf(acc(A)) = 0.2.

While the computations in [16] give us A, = T and A\* = 0. Then Ag = A = A%
Thus A\Z =0, a(\) = 1. So Inf(a(N)) = 1.

In the crisp case, we give the following examples.
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Example 2.6. Let R be a crisp relation on a set X = {a,b,¢,d} as shown down.

RHa\b\c\d
al|1]1]0]0
b|l0o|1]1]0
c|1]0]0|1
dl|o|1|1]0

Then we have
aR ={1,1,0,0}, bR = {0,1,1,0}, cR = {1,0,0,1}, dR = {0,1,1,0}
and
Ra = {1,0,1,0}, Rb={1,1,0,1}, Rc={0,1,0,1}, Rd = {0,0,1,0}.
Thus we get
[a]R = {1,1,0,1}, B]R = {1,1,1,0}, [¢]R = {0,1,1,0}, [dR = {1,0,0,1}
and
Rla] = {1,1,1,1}, R[b] = {1,1,0,1}, R[] = {1,0,1,0}, R[d] = {1,1,0,1}.
So we have
Rla]R = {1,1,0,1}, R[b]R = {1,1,0,0}, R[c|R = {0,0,1,0}, R[d]R = {1,0,0,1}.

(1) Consider a crisp ideal £ on X such that ¢ = {0, {0, 1,0,0},{0,0,1,0},{0,1,1,0}}.
Then for a crisp set A = {1,1,0,0} (Note that A € £ and A° & £), we compute Ay, A**
as follow:

Aee = {0,1,1,0}, A** = {1,1,0,1}.

Thus A = {0,1,0,0}, A = {1,1,0, 1} So B(\) = {1,0,0,1}, ace() = {0,1,1,0}.
Hence Inf(acc()\)) =1
While according to the computations in [16], we get

[a]R = {1,0,0,0}, [b]R ={0,1,0,0}, [¢]R ={0,1,1,0}, [d]R ={1,0,0,1}
and

R[a] ={1,0,0,0}, R[b] ={0,1,0,1}, R[c]={0,0,1,0}, R[d] ={0,1,0,1}.
Then we have
Rla]R ={1,0,0,0}, R[b]JR ={0,1,0,0}, R[c]R ={0,0,1,0}, R[d]R = {0,0,0,1}.
Thus A\ = {1,1,1,0}, \* = {1,0,0,0}. So Ag = A\ = X\ = {1,1,0,0}. Hence
AB =0, a(\) = 1. Therefore Inf(acc(N)) = 2 = 1.

(2) Consider the same ideal and a crisp set u = {0,0,1,0} € £. Then we compute

L, 1% as follow:

pix = {0,0,1,0} = p, p** =0.
Thus p =7t = p. So B(u) =0, ace(p) = 1. Hence Inf(acc(p)) = 1.

While according to the computations in [16], we have p, = {0,1,1,0}, p*
Then pr = p* = = {0,0,1,0}. Thus p® =0, a(u) = 1. So Inf(acc(p)) = 1.

(3) For a fuzzy ideal £ on X such that ¢ = {0,{0,0,1,0},{0,0,0,1},{0,0,1,1}}
and the crisp set A = {1,1,0,0}, we have A° € £. Then A\, = 1, \** = {1,1,0,1}.
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Thus A = {1,1,0,0} = X\, A = {1,1,0,1}. So B(\) = {0,0,0,1}, acc(\) =
{1,1,1,0}. Hence Inf(acc()\)) =2

While according to the computations in [16], we have A, = 1, \* = {1,1,0,0} = \.
Then Ag = Af =X ={1,1,0,0}. Thus A® =0, a(A) = 1. So Inf(acc(N)) =2 = 1.

Example 2.7. Let R be a crisp reflexive relation on a set X = {a, b, ¢,d} as shown
down.

RHa\b\c\d
a|1{0]0|0
bi|l1]|1]1]0
c|l0Ol0[1]0
dl|11]|]0]1

Then we have

[@R=1, P)JR=1, [JR={1,1,1,0}, [d]R = {1,1,0,1}
and
Rla] = {1,1,0,1}, R[] =1, R[] ={0,1,1,0}, R[d] = {1,1,0,1}.
Thus we get
R[a)R = {1,1,0,1}, R[)R =1, R[JR = {0,1,1,0}, R[d]R = {1,1,0,1}.

(1) Consider a crisp ideal £ on X such that ¢ = {0, {0,0,1,0},{0,0,0,1},{0,0,1,1}}.
Then for a crisp set A = {1,0,1,0} (Note that A & £ and A° & £), we compute A, A**
as follow:

Aix = 0. X ={1,1,0,1}.
Then A =0, A=1. So B(\) =1, acc(\) = 0. Hence Inf(acc(\)) = 0.
While according to the computations in [16], we get that

[a]R = {1,0,0,0}, [))R ={1,1,0,0}, [¢R ={0,0,1,0}, [d]R ={1,1,0,1}
and

Rla] ={1,1,0,1}, R[b] ={0,1,0,0}, R[c] ={0,1,1,0}, R[d] ={0,0,0,1}.
Then we have

R[a]R = {1,0,0,0}, R[b]R ={0,1,0,0}, R[c]R ={0,0,1,0}, R[dR = {0,0,0,1}.

Thus A\ = {1,0,1,1}, A* = {1,0,0,0}. So Agx = A = X\ = {1,0,1,0}. Hence
AB =0, a(X) = 1. Therefore Inf(acc(N)) = 2 = 1.

(2) Consider the same ideal and a crisp set p = {0,1,1,1}, we compute fi., u**
as follow:

={0,0,1,0}, p** =T.
{

Then 7 = 1, p = {0,071,0}. ThU.b B(p) = {1,1,0,1}, ace() = {0,0,1,0}. So
Inf(acc(N)) = 1.
While according to the computations in [16], we have u* = {0,1,1,1}, p* =

{0,1,0,0}. Then pr = pf* = p = {0,1,1,1}. Thus u® = 0, a(u) 1. So
Inf(acc(/\)) =:2=1

Now, we consider the crisp relation in which every element is only related to itself.
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Example 2.8. Let R be a crisp reflexive relation on a set X = {a, b, ¢,d} as shown
down.

RHa\b\c\d
al|l1]0]0/0
b|0o|1[0]0
cll0Ol0[1]0
d|lojo]|0]|1

Then clearly, we get R[a]R = R[a]R = {1,0,0,0}, R[b|R = R[p]R = {0,1,0,0},
R[JR = R[¢]R = {0,0,1,0}, R[d]R = R[d|R = {0,0,0,1}.

Considering any crisp ideal £ on X. Then we get A = Agr and A = A? for any
A € 2%, Suppose / is defined by:

¢ ={0,{0,1,0,0},{0,0,1,0},{0,0,0,1},{0,1,1,0},{0,1,0,1},{0,0,1,1},{0,1,1,1}}.
Then for a crisp set A = {1,1,0,0}, we compute A, \** and A\, \* as follow:
Aix = A =1, A =X1*={1,0,0,0}.

Then A = Ag = A=\t =X\
For a crisp set u = {0,0,1, 1}, we compute fis, p** and p,, u* as follow:

Mxx = Uy = {0, 1,17 1}7 /J** = ,U* :6

Then y=pr =p= u® = 7i. Thus there is no difference between the two definitions
Definition 2.1 and Definition 2.2.

Remark 2.9. Based on Definition 2.2 and Definition 2.1 respectively, either in the
fuzzy case or in the crisp case, whenever R is a reflexive and transitive fuzzy relation
on X, we have

(A) =Xand (\) =X (Ar)r = Ar and (A)F =A%),

If R is considered to be a reflexive and transitive fuzzy relation on X, then a
fuzzy topology 7,

(2.15) Tp={uel® i p=p} = {pel™: p°=p}

(2.16) (r,={vel*:v=vg} = {rel*:v°= )"}

is generated on the rough fuzzy approximation space (X, R).

For a fuzzy set A in a rough fuzzy approximation space (X, R) where R is a reflex-
ive and transitive fuzzy relation, we can define, upon Definition 2.2 and Definition
2.1, respectively an interior fuzzy operator A" (intp ) and a closure fuzzy operator
A (clgA) on IX as follow:

(2.17) At = A X =X (intg\ = g, clgd = AT).

Then (X,7,) is called a rough fuzzy topological space. All topological properties
could be studied as in the usual fuzzy topological spaces.

As an application of this type of rough fuzzy topological spaces, we discuss rough
fuzzy connected spaces using both of the closure fuzzy operators defined in Equation
2.17 where R is reflexive and transitive fuzzy relation.
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3. CONNECTEDNESS IN ROUGH (FUZZY) TOPOLOGICAL SPACES

Here, we recall the definitions given in [16] for the connectedness in rough fuzzy
topological spaces, and the crisp case will be as restricted definitions for crisp subsets
A e 2X.

Definition 3.1 (See [16]). Let (X, R) be a rough fuzzy approximation space and
let ¢ be a fuzzy ideal on X.
(i) u, v € I are said to be rough fuzzy approzimation separated, if

clr(p) Av=pAclg(v) =0.

(i) n € IX is called a rough fuzzy approzimation disconnected set, if there exist
rough fuzzy approximation separated sets p, v € IX such that u Vv = 7. 1 is said
to be rough fuzzy approximation connected, if it is not rough fuzzy approximation
disconnected. In other words, if there are no rough fuzzy approximation separated
sets pu, v except p =0 or v =0.

(iii) (X, R) is called a rough fuzzy approzimation disconnected space, if there exist
rough fuzzy approximation separated sets p, v € I such that p Vv = 1. A fuzzy
approximation space (X, R) is said to be rough fuzzy approximation connected, if it
is not rough fuzzy approximation disconnected.

The above definitions give us the connectedness of rough topological spaces also
if we used the crisp case.

Remark 3.2. Using the same definitions in [16] but paying attention for the closure
fuzzy operator A% = X = AV A** and \** is computed with Equation 2.10 not
Equation 2.3, we get another type of connectedness of rough fuzzy topological spaces
based on the maximal neighborhoods. Since we noticed that ) is not dependent on
A defined in [16], then any two rough fuzzy separated sets are not necessary rough
fuzzy separated in sense of [16], and also the converse is not true in general. That
is, a fuzzy set is disconnected in the new style do not imply that it is disconnected
in sense of [16], and the converse is not true in general. Moreover, (X, R) is rough
fuzzy connected in sense of [16] do not imply it is rough fuzzy connected in this type,
and the converse is not true in general.

In the following, we show the difference between the connectedness as given in
[16] and this connectedness explained in Remark 3.2.

Example 3.3 (See Example 3.3, [16]). Let X = {a,b,c,d}, let R be the reflexive
and transitive fuzzy relation defined by

R H a \ b \ c \ d
al|1]0/01]0
b0l1]01]0
cllOlO0O| 1 |0
d||00]01]|1

Then we have

[a]R = {1,0,0.1,0} [b]R = {0,1,0.1,0}, [dR = {1,1,1,1}, [d]R = {0,0,0.1,1}
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and
Rla] = {1,0,0,0}, R[b] = {0.1,1,1,0.1}, R[] = {0.1,0.1,1,0.1}, R[d] = {0.1,0.1,1,1}.

Then we get

Rla]R = {1,0,0.1,0}, R[b]R = {0,1,0.1,0},

R[c]R = {0.1,0.1,1,0.1}, R[d]R = {0,0,0.1,1}.
Define a fuzzy ideal £ on X such that v € £ < v < 0.3. Then for all fuzzy
sets ¢ = {a,b,¢c,d} € £, we can choose A\ = {a,b,0,0}, p = {0,0,¢,d}, where
a, b, ¢, d <0.3 such that A** =0, p** = 0. Thus we have

ACI :X:)\:{a7b70’0}’ '[_,[,Cl :ﬁ:/_j:{0707c,d}.

So X Ap=AAput =XAp=0. Hence ¢ = AV u = {a,b,c,d} is a rough fuzzy
disconnected set.

From the definitions of A**, u** as given in Equation 2.12, we already have \** =
0, p** =0 for any A\, p € £. But, for example, for a fuzzy set v = {0.5,0.5,0.6,0.6}
not included in the fuzzy ideal ¢, we can not find &, n with (£ V1) = v such that
€A =¢EAnT =0, because of:

R[z]R A€ ¢ ¢ and R[z]R NEC ¢ 4, Rlz]R An ¢l and R[z]R An° ¢ LVx e X,
Then & = n** = 1. Thus ¢% =y = 1. So &, n could not be as rough separated
fuzzy sets to make the set v a rough fuzzy disconnected set.

While as shown in [16], for any A € I, we have A* = 0. Then A = clg\ = X for
any A € I’X. Thus we can find ¢ = {0.5,0.5,0,0}, n = {0,0,.6,0.6} so that £ V 7y =
{0.5,0.5,0.6,0.6} = v is a rough fuzzy set for which clgE An=EAclgn=EAn=0.
So v is rough fuzzy disconnected set in sense of [16].

4. CONCLUSION

In this paper, we modified our Definition in [16] that was based on the mini-
mal neighborhoods, to give a new pattern of fuzzy roughness based on the maximal
neighborhoods. This new generalization of roughness is not depending on that gen-
eralization given in [16] , but at least the definitions in [16] are generalizations of
previous definitions as those given in [1, 2, 4, 5, 6]. The crisp boundary region of
this new roughness is larger than the crisp boundary region of that introduced in
[16]. While in the fuzzy cases, it is not related to that boundary region of roughness
as given in [16]. Also, we explained that if constructed a rough fuzzy topological
space and studied some topological notion like connectedness, we get that the new
type of connectedness is not related to that connectedness defined in [16], but in
the crisp case any connected space in sense of [10] is a connected space defined by
maximal neighborhoods as well. In future work, we will try to give a generalization
of rough fuzzy soft sets.
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