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Ömer KİŞİ, Mustafa Yıldız

Received 20 June 2023; Revised 6 July 2023; Accepted 12 July 2023

Abstract. This paper expands upon existing theories regarding the
convergence of sequences in neutrosophic normed spaces (NNSs) by in-
troducing the concept of rough statistical convergence for difference se-
quences in NNSs. The study investigates novel notions, namely rough
convergence and rough statistical convergence, specifically in the context
of difference sequences in NNSs. Furthermore, the paper analyzes vari-
ous properties and characteristics of a mathematical construct denoted as
St(Θ,Ψ,Ω) − LIMr

∆tw , which is referred to as the r-statistical limit set of
the difference sequence (∆tw). The examination of these features aims to
deepen the understanding of the behavior and attributes associated with
the r-statistical limit set in the context of rough statistical convergence in
NNSs.
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1. Introduction

Fast [1] was the original proponent of statistical convergence for a sequence of
real numbers. Subsequently, the notion of statistical convergence became associated
with summability theory and has been extensively studied by researchers such as
Fridy [2] and others in various fields [3, 4, 5, 6, 7, 8]).

The pioneering work on the Theory of Fuzzy Sets (FSs) was introduced by Zadeh
[9], which had a profound impact across various scientific fields. This theory has
been widely employed to handle imprecise, vague and inexact data. However, FSs
alone may not always be sufficient to address the challenge of incomplete knowledge
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regarding membership degrees. To overcome this limitation, Atanassov [10] extended
the Theory of FSs by developing the theory of Interval-valued Fuzzy Sets (IFSs).
Another line of research explored by Kramosil and Michalek [11] is the study of Fuzzy
Metric Spaces (FMSs), which combine concepts from fuzzy logic and probabilistic
metric spaces. Kaleva and Seikkala [12] further investigated FMSs, examining the
distance between two points as a non-negative fuzzy number. George and Veeramani
[13] contributed to FMSs by providing certain qualifications. They also established
fundamental properties and proved significant theorems related to FMSs. FMSs
have found practical applications in decision-making, fixed point theory and medical
imaging, among others. Building upon FMSs, Park [14] generalized the concept and
introduced the notion of Interval-valued Fuzzy Metric Spaces (IFMSs). Park [14]
incorporated the use of t-norm and t-conorm, as proposed by George and Veeramani
[13], while describing IFMS and investigating its fundamental properties. Saadati
and Park [15] delved into the exploration of Intuitionistic Fuzzy Normed Spaces
(IFNSs) and initially examined their properties. For further background on IFNSs
and related topics, readers are encouraged to refer to the studies [16, 17, 18, 19].

Smarandache [20] conducted a scientific exploration into the concept of ”Neutro-
sophic sets” (NSs), which is a broader extension of Fuzzy Sets (FSs), Interval-valued
Fuzzy Sets (IFSs) and other similar frameworks. The purpose of this investigation
was to address the complexities arising from uncertainty when dealing with prac-
tical problems in our daily lives in a more precise manner. Decision-makers often
encounter hesitations when making choices and a binary approach (such as a simple
yes or no) may not always be sufficient. Furthermore, certain real-life events, such as
sports competitions and voting procedures, can yield outcomes that have three pos-
sible components. Taking all these factors into account, Smarandache applied the
principles of IFSs theory by introducing a new component called the indeterminacy
membership function. Consequently, an element in an NSs consists of a triplet com-
prising a truth-membership function (T), an indeterminacy-membership function (I)
and a falsity-membership function (F). A Neutrosophic set is defined as a set where
each component of the universe possesses degrees of T, F and I. These three func-
tions are independent of one another within the context of NSs. Consequently, the
term ”neutrosophy” indicates an impartial knowledge of thought, while ”neutral”
denotes the fundamental distinction between neutral, fuzzy, intuitive fuzzy sets and
logic.

In Interval-valued Fuzzy Sets (IFSs), uncertainty is based on the degree of belong-
ingness. However, in NSs, uncertainty is considered independently from the values
of T and F. Since there are no restrictions on the degrees of T, F, and I, NSs are
actually more general than IFSs.

Kirişci and Şimşek [21] introduced a novel concept called Neutrosophic metric
space (NMS) utilizing continuous t-norms and continuous t-conorms. This new
framework was thoroughly investigated, highlighting its notable characteristics.

The research conducted by Kirişci and Şimşek [22] delved into the study of Neu-
trosophic Normed Space (NNS) and statistical convergence in NNS. Their work
explored the applications of Neutrosophic Set Theory and Neutrosophic Logic in
various domains such as decision-making, robotics and summability theory. In the
study [23], the researchers explored the concept of neutrosophic norm in a soft linear
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space, introducing a novel framework known as the neutrosophic soft normed linear
space (NSNLS).

In Phu’s work [24], the author extensively explored the properties of the set
LIMrx, demonstrating its boundedness, closedness and convexity. This concept
holds significant importance and Phu thoroughly investigated its fundamental char-
acteristics. It is noteworthy that the concept of rough convergence arises organically
in the field of numerical analysis and finds intriguing applications therein.

Building upon the groundwork laid in [24], Phu delved deeper into the concept
of rough convergence within the framework of infinite-dimensional normed spaces in
[25]. By extending the scope of investigation to such spaces, the author expanded
our understanding of rough convergence and its implications in this broader con-
text. Following Phu’s definition [24], Aytar [26] investigated the concept of rough
statistical convergence.

Kizmaz [27] introduced the notion of a difference sequence, denoted as ∆y =
(∆yi) = (yi − yi+1), where (yi)i∈N represents a real sequence. This concept serves
as a foundational framework for the present study. Subsequently, Et [28], Et and
Çolak [29], Et and Nuray [30], Bektaş et al. [31], Et and Esi [32], Gümüş and Nuray
[33] and numerous others have examined various aspects and properties of difference
sequences. Demir and Gümüş [34] presented the concept of rough convergence for
difference sequences in a finite dimensional normed space. In another study, they
investigated the rough statistical convergence of difference sequences [35]. Further-
more, Antala et al. [36] proposed the concept of rough statistical convergence in
the context of intuitionistic fuzzy normed spaces (IFNSs). In recent years, signif-
icant advancements have been made in the field of rough convergence, motivating
our investigation into the concept of rough statistical convergence in intuitionistic
fuzzy normed spaces (IFNSs). IFNS is a well-established area of research, serving
as a valuable framework for modeling imprecision in real-life scenarios. In addition,
studies have been conducted in the field of rough convergence in NNS in recent years.

This study focuses on investigating the concept of rough statistical convergence
for difference sequences in NNS. To establish the necessary background, we begin
by reviewing relevant literature on difference sequences.

2. Preliminary

Triangular norms (t-norms), initially introduced by Menger [37], provide a gen-
eralization of the probability distribution with regards to the triangle inequality in
metric spaces. These t-norms play a crucial role in fuzzy operations, particularly in
terms of intersections. On the other hand, triangular conorms (t-conorms) serve as
the dual operations of t-norms and are fundamental for fuzzy unions. The utilization
of t-norms and t-conorms hold significant importance in various fuzzy operations.
We recall the concepts of rough convergence, rough statistical convergence, neutro-
sophic norm are as follows.

Definition 2.1 ([24]). Consider a sequence w = (wk) of real numbers and a non-
negative real number r. We say that the sequence (wk) is rough convergent to

w0 ∈ R, denoted by wk
r→ w0, if it satisfies the following condition: for every ε > 0,

there exists a natural number kε ∈ N such that |wk − w0| < r+ε for all k ≥ kε.
85
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Definition 2.2 ([26]). Let w = (wk) be a sequence of real numbers and r be a non-
negative real number. A sequence (wk) is said to be rough statistically convergent

to w0 ∈ R, denoted by wk
r−st→ w0, if

∀ε > 0, d ({k ∈ N : |wk − w0| ≥ r + ε}) = 0.

Definition 2.3 ([26]). Let w = (wk) be a sequence of real numbers and r be a
non-negative real number. Then the set

st− LIMrw =
{
w0 ∈ R : wk

r→ w0

}
is known as the rough statistical limit set of w = (wk).

Definition 2.4 ([37]). Consider an operation ◦ : [0, 1] × [0, 1] → [0, 1]. Then ◦ is
called a continuous triangular norm (TN), if it satisfies the following conditions: for
any p, q, r, s ∈ [0, 1],

(i) p ◦ 1 = p,
(ii) if p ≤ r and q ≤ s, then p ◦ q ≤ r ◦ s,
(iii) ◦ is continuous,
(iv) ◦ is associative and commutative.

Definition 2.5 ([37]). Consider an operation • : [0, 1] × [0, 1] → [0, 1]. Then • is
called a continuous triangular conorm (TC), if it satisfies the following conditions:
for any p, q, r, s ∈ [0, 1],

(i) p • 0 = p,
(ii) if p ≤ r and q ≤ s, then p • q ≤ r • s,
(iii) • is continuous,
(iv) • is associative and commutative.

Definition 2.6 ([20]). Let X be a space of points (objects). A Neutrosophic Set
(NS) N on X is characterized by a truth-membership function Θ, an indeterminacy
membership function Ψ, and a falsity-membership function Ω, where Θ (u) ,Ψ(u)
and Ω (u) and real standard and non-standard subset of ]−0, 1+[ i.e., Θ,Ψ,Ω : X →
]−0, 1+[. Thus the NS N over X is defined as:

N = ⟨u,Θ(u) ,Ψ(u) ,Ω (u) : u ∈ X⟩ .
We will simply write neutrosophic set N as ⟨Θ,Ψ,Ω⟩. On the same of Θ (u) ,Ψ(u)
and Ω (u) there is no restriction and so −0 ≤ supΘ (u) + supΨ (u) + supΩ (u) ≤ 3+

for each u ∈ X. Here 1+ = 1+ ϵ, where 1 is its standard part and ϵ its non-standard
part. Also, −0 = 0− ϵ, where 0 is its standard part and ϵ its non-standard part.
From philosophical point of view, a NS takes the value from real standard or non-
standard subsets of ]−0, 1+[. But to practice in real scientific and engineering areas,
it is difficult to use NS with value from real standard or nonstandard subset of
]−0, 1+[. Hence, we consider the NS which takes the value from the subset of [0, 1].

Definition 2.7 ([39]). Let X be a linear space over R (R denotes the set of all real
numbers) and let ∗ be a continuous t-norm. A fuzzy subset N on X × R is called a
fuzzy norm on X, if for u, v ∈ X and c ∈ F ,

(N1) ∀λ ∈ R with λ ≤ 0, N (u, λ) = 0,
(N2) ∀λ ∈ R with λ > 0, N (u, λ) = 1 iff u = 0,
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(N3) λ ∈ R, λ > 0,

N (cu, λ) = N

(
u,

λ

|c|

)
, if c ̸= 0,

(N4) ∀λ, µ ∈ R, ∀u, v ∈ X,

N (u+ v, λ+ µ) ≥ N (u, λ) ∗N (v, µ) ,

(N5) limu→∞ N (u, λ) = 1.
The triplet (X,N ,∗) will be referred to as a fuzzy normed linear space.

Definition 2.8 ([38]). Let F be a vector space and let N = ⟨Θ,Ψ,Ω⟩ be a neutro-
sophic set on F × R. Then X = (F,N , ◦ ,•) is called a neutrosophic normed space
(NNS), if it satisfies the following conditions: for all u, v ∈ F and λ, µ > 0 and for
all σ ̸= 0,

(i) 0 ≤ Θ(u, λ) ≤ 1, 0 ≤ Ψ(u, λ) ≤ 1, 0 ≤ Ω (u, λ) ≤ 1,
(ii) Θ (u, λ) + Ψ (u, λ) + Ω (u, λ) ≤ 3,
(iii) Θ (u, λ) = 1 iff u = 0,

(iv) Θ (σu, λ) = Θ
(
u, λ

|σ|

)
,

(v) Θ (u, µ) ◦Θ(v, λ) ≤ Θ(u+ v, µ+ λ) ,
(vi) Θ (u, .) is non-decreasing continuous function,
(vii) limλ→∞ Θ(u, λ) = 1,
(viii) Ψ (u, λ) = 0 iff u = 0,

(ix) Ψ (σu, λ) = Ψ
(
u, λ

|σ|

)
,

(x) Ψ (u, µ) •Ψ(v, λ) ≥ Ψ(u+ v, µ+ λ) ,
(xi) Ψ (u, .) is non-decreasing continuous function,
(xii) limλ→∞ Ψ(u, λ) = 0,
(xiii) Ω (u, λ) = 0 iff u = 0,

(xiv) Ω (σu, λ) = Ω
(
u, λ

|σ|

)
,

(xv) Ω (u, µ) • Ω (v, λ) ≥ Ω (u+ v, µ+ λ) ,
(xvi) Ω (u, .) is non-decreasing continuous function,
(xvii) limλ→∞ Ω (u, λ) = 0,
(xviii) if λ ≤ 0, then Θ (u, λ) = 0,Ψ(u, λ) = 1 and Ω (u, λ) = 1.

In this case, N = ⟨Θ,Ψ,Ω⟩ is called a neutrosophic norm (NN) on F .

Definition 2.9 ([22]). Let X = (F,N , ◦ ,•) be an NNS, σ ∈ (0, 1) and λ > 0 and let
(xk) be a sequence in X = (F,N , ◦ ,•). Then (xk) is said to be Cauchy, if there is
a N ∈ N such that Θ (xk − xm, λ) > 1− σ, Ψ (xk − xm, λ) < σ, Ω (xk − xm, λ) < σ
for k, m ≥ N .

Definition 2.10 ([22]). A sequence (xm) is said to be statistically convergent to
ξ ∈ F w.r.t neutrosophic norm ⟨Θ,Ψ,Ω⟩, provided that for each λ > 0 and σ > 0,
the set

Pσ := {m ≤ n : Θ (xm − ξ, λ) ≤ 1− σ or Ψ (xm − ξ, λ) ≥ σ or Ω (xm − ξ, λ) ≥ σ}
has natural density zero. That is δ(Pσ) = 0 or

lim
n→∞

1

n
|{m ≤ n : Θ (xm − ξ, λ) ≤ 1− σ or Ψ (xm − ξ, λ) ≥ σ or Ω (xm − ξ, λ) ≥ σ}| = 0.
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It is demonstrated by SN -limxm = ξ.

Definition 2.11. Let (X, ∥.∥) be a normed linear space and (∆wk) be a difference
sequence in X. Then (∆w′) = (∆wkn

) is called a non-thin subsequence of (∆wk), if
δ ({kn : n ∈ N}) ̸= 0.

3. Main results

In this section, our focus is on exploring the notions of rough convergence and
rough statistical convergence for difference sequences in an NNS. Throughout the ar-
ticle, we will denote the NNS as X = (F,N , ◦ ,•) with neutrosophic norm ⟨Θ,Ψ,Ω⟩.
The investigation is carried out in the following manner.

Definition 3.1. A sequence ∆t = (∆tw) in X is said to be rough convergent to
η ∈ X w.r.t the norm ⟨Θ,Ψ,Ω⟩ for some non-negative real number r, provided that
there exist w0 ∈ N for each ξ > 0 and σ ∈ (0, 1) such that

Θ (∆tw − η; r + ξ) > 1− σ, Ψ(∆tw − η; r + ξ) < σ, Ω (∆tw − η; r + ξ) < σ

for all w ≥ w0. It is indicated by r⟨Θ,Ψ,Ω⟩ − limw→∞ ∆tw = η or ∆tw
r⟨Θ,Ψ,Ω⟩→ η.

Definition 3.2. A sequence ∆t = (∆tw) in X is said to be rough statistically
convergent to η ∈ X w.r.t the norm ⟨Θ,Ψ,Ω⟩ for some r ≥ 0, provided that for each
ξ > 0 and σ ∈ (0, 1),

δ ({w ∈ N : Θ (∆tw − η; r + ξ) ≤ 1− σ or Ψ (∆tw − η; r + ξ) ≥ σ
or Ω (∆tw − η; r + ξ) ≥ σ}) = 0.

It is denoted by r − St⟨Θ,Ψ,Ω⟩ − limw→∞ ∆tw = η or ∆tw
r−St⟨Θ,Ψ,Ω⟩→ η.

In the special case where r = 0, the concept of rough statistical convergence w.r.t
⟨Θ,Ψ,Ω⟩ is equivalent to statistical convergence w.r.t the norm ⟨Θ,Ψ,Ω⟩ in an NNS.

The r − St⟨Θ,Ψ,Ω⟩-limit of a difference sequence may be not unique in an NNS.
Therefore, we establish r − St⟨Θ,Ψ,Ω⟩-limit set of the sequence ∆t = (∆tw) as

St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw =

{
η : ∆tw

r−St⟨Θ,Ψ,Ω⟩→ η

}
.

In addition, a sequence ∆t = (∆tw) is r⟨Θ,Ψ,Ω⟩-convergent when LIM
r⟨Θ,Ψ,Ω⟩
∆tw

̸= ∅,
where

LIM
r⟨Θ,Ψ,Ω⟩
∆tw

=
{
η∗ ∈ X : ∆tw

r⟨Θ,Ψ,Ω⟩→ η∗
}
.

For unbounded sequence LIM
r⟨Θ,Ψ,Ω⟩
∆tw

is always empty. Whereas this sequence might
be rough statistically convergent, i.e., St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
̸= ∅. The subsequent

example describes this situation.

Example 3.3. Let (X , ∥.∥) be any real normed space. Give the operations ◦, • as
t-norm u ◦ v = uv, t-conorm u • v = u+ v − uv for all u, v ∈ [0, 1]. For m > ∥∆tw∥,

Θ (∆tw,m) = m
m+∥∆tw∥ , Ψ (∆tw,m) = ∥∆tw∥

m+∥∆tw∥ , Ω (∆tw,m) = ∥∆tw∥
m+∥∆tw∥

for all m > 0 and all ∆t = (∆tw) ∈ X . Then four-tuple X = (F,N , ◦ ,•) is an NNS.
Let

∆tw =

{
(−1)

w
if w ̸= p2

w if not,
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i.e.,
(∆tw) = (−1, 2, 3, 1, 5, 6, 7, 8,−1, ...) .

Then we obtain

δ ({w ∈ N : Θ (∆tw − η; r + ξ) ≤ 1− σ or Ψ (∆tw − η; r + ξ) ≥ σ
or Ω (∆tw − η; r + ξ) ≥ σ}) = 0

for every ξ > 0 and σ ∈ (0, 1). Also, we get

St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw =

{
∅ if r < 1
[1− r, r − 1] otherwise

and St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

= ∅ for all r ≥ 0. Thus the sequence is divergent in ordinary
sense since it is unbounded. Moreover, the sequence is not rough convergent in an
NNS X = (F,N , ◦ ,•) for any r.

In this section, we direct our attention towards the examination of rough sta-
tistically bounded difference sequences in an NNS. The investigation proceeds as
follows:

Definition 3.4. A sequence ∆t = (∆tw) in X is said to be rough statistically
bounded w.r.t. the norm ⟨Θ,Ψ,Ω⟩ for some r ≥ 0, provided that for every ξ > 0 and
σ ∈ (0, 1) , there is a real number T > 0 such that

δ ({w ∈ N : Θ (∆tw;T ) ≤ 1− σ or Ψ (∆tw;T ) ≥ σ or Ω (∆tw;T ) ≥ σ}) = 0.

Based on the aforementioned definitions, our investigation has yielded noteworthy
results concerning the rough statistical convergence of difference sequences in an
NNS.

Theorem 3.5. Consider X = (F,N , ◦ ,•) as an NNS. A sequence ∆t = (∆tw) in
X is statistically bounded iff St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
̸= ∅ for some r ≥ 0.

Proof. Necessary part: Consider the sequence ∆t = (∆tw) which is statistically
bounded in X . Then for all σ ∈ (0, 1) and some r ≥ 0, there is a real number T > 0
such that

δ ({w ∈ N : Θ (∆tw;T ) ≤ 1− σ or Ψ (∆tw;T ) ≥ σ or Ω (∆tw;T ) ≥ σ}) = 0.

Let P = {w ∈ N : Θ (∆tw;T ) ≤ 1− σ or Ψ (∆tw;T ) ≥ σ or Ω (∆tw;T ) ≥ σ} .
For w ∈ P c, we have Θ (∆tw;T ) > 1− σ, Ψ (∆tw;T ) < σ, Ψ (Ωtw;T ) < σ.
Also, we get

Θ (∆tw; r + T ) ≥ min {Θ(0; r) ,Θ(∆tw;T )}
= min {1,Θ(∆tw;T )}
> 1− σ,

Ψ(∆tw; r + T ) ≤ max {Ψ(0; r) ,Ψ(∆tw;T )}
= max {0,Ψ(∆tw;T )}
< σ

and
Ω (∆tw; r + T ) ≤ max {Ω (0; r) ,Ω (∆tw;T )}

= max {0,Ω (∆tw;T )}
< σ.

Then 0 ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

. As a result, St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

̸= ∅ for some r ≥ 0.
89
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Sufficient part: Assume that St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

̸= ∅ for some r ≥ 0. Then there
is a η ∈ X such that η ∈ St(Θ,Ψ,Ω)−LIMr

∆tw
. For each ξ > 0 and σ ∈ (0, 1) , we

obtain

δ ({w ∈ N : Θ (∆tw − η; r + ξ) ≤ 1− σ or Ψ (∆tw − η; r + ξ) ≥ σ
or Ω (∆tw − η; r + ξ) ≥ σ}) = 0.

Thus almost all ∆tw’s are included in some ball with center η which gives that
sequence ∆t = (∆tw) is statistically bounded in X . □

If ∆t′ =
(
∆twj

)
is a subsequence of ∆t = (∆tw) in an NNS X , then LIMr

∆tw
⊂LIMr

∆twj
.

However, it should be noted that this observation does not hold true in the case of
statistical convergence. To illustrate this, we provide the following example.

Example 3.6. Let (X , ∥.∥) be any real normed space. Give the operations ◦, • as
t-norm u ◦ v = uv, t-conorm u • v = u+ v − uv for all u, v ∈ [0, 1]. For m > ∥∆tw∥,

Θ (∆tw,m) = m
m+∥∆tw∥ , Ψ (∆tw,m) = ∥∆tw∥

m+∥∆tw∥ , Ω (∆tw,m) = ∥∆tw∥
m+∥∆tw∥ ,

for all m > 0 and all ∆t = (∆tw) ∈ X . Then the four-tuple X = (F,N , ◦ ,•) is an
NNS. Let

∆tw =

{
w when w ̸= p2

0 otherwise.

Then we have St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

= [−r, r] and
(
∆twj

)
= {1, 4, 9, ...} is a subse-

quence of (∆tw). Also, we obtain St⟨Θ,Ψ,Ω⟩−LIMr
∆twj

= ∅.

However, this holds true for non-thin subsequences of the rough statistically con-
vergent difference sequence in an NNS, as demonstrated by the following result.

Theorem 3.7. If ∆t′ =
(
∆twj

)
is a nonthin subsequence of ∆t = (∆tw) in an

NNS, then

St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw ⊂ St⟨Θ,Ψ,Ω⟩ − LIMr

∆twj
.

Proof. It is obvious and so we are omitting it. □

Theorem 3.8. Consider X = (F,N , ◦ ,•) as an NNS. Take t-norm as t (u, v) =
min (u, v) and t-conorm as s (u, v) = max (u, v). The set St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
of a

difference sequence ∆t = (∆tw) in X is a closed set.

Proof. We have nothing to prove as St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

= ∅. Let St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

̸=
∅ for some r ≥ 0 and consider ∆p = (∆pw) be a convergent difference sequence in
St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
w.r.t. the norm ⟨Θ,Ψ,Ω⟩ to p0 ∈ X . Then for each ξ > 0 and

σ ∈ (0, 1), there is a w1 ∈ N such that

Θ

(
∆pw − p0;

ξ

2

)
> 1− σ, Ψ

(
∆pw − p0;

ξ

2

)
< σ, Ω

(
∆pw − p0;

ξ

2

)
< σ

for all w ≥ w1.
Let us consider ∆ps ∈ St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
with s > w1 such that

(3.1)
δ
({

w ∈ N : Θ
(
∆tw −∆ps; r +

ξ
2

)
≤ 1− σ or Ψ

(
∆tw −∆ps; r +

ξ
2

)
≥ σ

or Ω
(
∆tw −∆ps; r +

ξ
2

)
≥ σ

})
= 0.
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For

j ∈
{
w ∈ N : Θ

(
∆tw −∆ps; r +

ξ
2

)
> 1− σ, Ψ

(
∆tw −∆ps; r +

ξ
2

)
< σ,

Ω
(
∆tw −∆ps; r +

ξ
2

)
< σ

}
,

we obtain

Θ

(
∆tj −∆ps; r +

ξ

2

)
> 1−σ, Ψ

(
∆tj −∆ps; r +

ξ

2

)
< σ, Ω

(
∆tj −∆ps; r +

ξ

2

)
< σ.

Then we obtain

Θ (∆tj − p0; r + ξ) ≥ min
{
Θ
(
∆tj −∆ps; r +

ξ
2

)
,Θ

(
∆ps − p0; r +

ξ
2

)}
> 1− σ,

Ψ(∆tj − p0; r + ξ) ≤ max
{
Ψ
(
∆tj −∆ps; r +

ξ
2

)
,Ψ

(
∆ps − p0; r +

ξ
2

)}
< σ

and

Ω (∆tj − p0; r + ξ) ≤ max
{
Ω
(
∆tj −∆ps; r +

ξ
2

)
,Ω

(
∆ps − p0; r +

ξ
2

)}
< σ.

Thus we have

j ∈ {w ∈ N : Θ (∆tw − p0; r + ξ) > 1− σ, Ψ(∆tw − p0; r + ξ) < σ,
Ω (∆tw − p0; r + ξ) < σ} .

Now, we get{
w ∈ N : Θ

(
∆tw −∆ps; r +

ξ
2

)
> 1− σ,Ψ

(
∆tw −∆ps; r +

ξ
2

)
< σ,

Ω
(
∆tw −∆ps; r +

ξ
2

)
< σ

}
⊆ {w ∈ N : Θ (∆tw − p0; r + ξ) > 1− σ,Ψ(∆tw − p0; r + ξ) < σ,
Ψ(∆tw − p0; r + ξ) < σ}

So we have

δ
({

w ∈ N : Θ
(
∆tw − p0; r +

ξ
2

)
≤ 1− σ or Ψ

(
∆tw − p0; r +

ξ
2

)
≥ σ

or Ω
(
∆tw − p0; r +

ξ
2

)
≥ σ

})
≤ δ

({
w ∈ N : Θ

(
∆tw −∆ps; r +

ξ
2

)
≤ 1− σ or Ψ

(
∆tw −∆ps; r +

ξ
2

)
≥ σ

or Ω
(
∆tw −∆ps; r +

ξ
2

)
≥ σ

})
.

Utilizing (3.1), we obtain

δ
({

w ∈ N : Θ
(
∆tw − p0; r +

ξ
2

)
≤ 1− σ,Ψ

(
∆tw − p0; r +

ξ
2

)
≥ σ,

Ω
(
∆tw − p0; r +

ξ
2

)
≥ σ

})
= 0.

As a result, p0 ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

. □

Now, we examine the convexity of the set St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

.

Theorem 3.9. Let ∆t = (∆tw) be a sequence in an NNS. Then rough statistical
limit set St⟨Θ,Ψ,Ω⟩−LIM∆tw w.r.t the norm ⟨Θ,Ψ,Ω⟩ is convex for some r ≥ 0.
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Proof. Take η1, η2 ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

. For the convexity of the set St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

,
we have to demonstrate that

[(1− α)η1 + αη2] ∈ St(Θ,Ψ) − LIMr
∆tw for some α ∈ (0, 1).

For each ξ > 0 and σ ∈ (0, 1), we consider

K1 =
{
w ∈ N : Θ

(
∆tw − η1;

r+ξ
2(1−α)

)
≤ 1− σ or

Ψ
(
∆tw − η1;

r+ξ
2(1−α)

)
≥ σ or Ω

(
∆tw − η1;

r+ξ
2(1−α)

)
≥ σ

}
,

K2 =
{
w ∈ N : Θ

(
∆tw − η2;

r+ξ
2α

)
≤ 1− σ or

Ψ
(
∆tw − η2;

r+ξ
2α

)
≥ σ or Ω

(
∆tw − η2;

r+ξ
2α

)
≥ σ

}
.

Since η1, η2 ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

, we get δ (K1) = δ (K2) = 0. For w ∈ Kc
1 ∩Kc

2,
we get

Θ (∆tw − [(1− α)η1 + αη2] ; r + ξ)

= Θ ((1− α) (∆tw − η1) + α (∆tw − η2) ; r + ξ)

≥ min
{
Θ
(
(1− α) (∆tw − η1) ;

r+ξ
2

)
,Θ

(
α (∆tw − η2) ;

r+ξ
2

)}
= min

{
Θ
(
∆tw − η1;

r+ξ
2(1−α)

)
,Θ

(
∆tw − η2,

r+ξ
2α

)}
> 1− σ,

Ψ(∆tw − [(1− α)η1 + αη2] ; r + ξ)

= Ψ ((1− α) (∆tw − η1) + α (∆tw − η2) ; r + ξ)

≤ max
{
Ψ
(
(1− α) (∆tw − η1) ;

r+ξ
2

)
,Ψ

(
α (∆tw − η2) ;

r+ξ
2

)}
= max

{
Ψ
(
∆tw − η1;

r+ξ
2(1−α)

)
,Ψ

(
∆tw − η2,

r+ξ
2α

)}
< σ

and
Ω (∆tw − [(1− α)η1 + αη2] ; r + ξ)

= Ω ((1− α) (∆tw − η1) + α (∆tw − η2) ; r + ξ)

≤ max
{
Ω
(
(1− α) (∆tw − η1) ;

r+ξ
2

)
,Ω

(
α (∆tw − η2) ;

r+ξ
2

)}
= max

{
Ω
(
∆tw − η1;

r+ξ
2(1−α)

)
,Ω

(
∆tw − η2,

r+ξ
2α

)}
< σ.
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Then we have

δ ({w ∈ N : Θ (∆tw − [(1− α)η1 + αη2] ; r + ξ) ≤ 1− σ or
Ψ (∆tw − [(1− α)η1 + αη2] ; r + ξ) ≥ σ or Ω (∆tw − [(1− α)η1 + αη2] ; r + ξ) ≥ σ})
= 0.

As a result, [(1− α)η1 + αη2] ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

, i.e., St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

is a
convex set. □

Theorem 3.10. A sequence ∆t = (∆tw) in an NNS X is r-statistically convergent
to η ∈ X w.r.t the norm ⟨Θ,Ψ,Ω⟩ for some r ≥ 0, if there is a sequence ∆p = (∆pw)
in X which is statistically convergent to η ∈ X w.r.t the norm ⟨Θ,Ψ,Ω⟩ and for
each σ ∈ (0, 1), we get Θ(∆tw −∆pw; r) > 1 − σ, Ψ(∆tw −∆pw; r) < σ and
Ω (∆tw −∆pw; r) < σ for all w ∈ N.

Proof. Let ξ > 0 and σ ∈ (0, 1). Consider ∆pw
St⟨Θ,Ψ,Ω⟩→ η and Θ (∆tw −∆pw; r) >

1 − σ and Ψ (∆tw −∆pw; r) < σ, Ω (∆tw −∆pw; r) < σ for all w ∈ N. For given
σ ∈ (0, 1), establish

K = {w ∈ N : Θ (∆pw − η; ξ) ≤ 1− σ or Ψ (∆pw − η; ξ) ≥ σ or Ω (∆pw − η; ξ) ≥ σ} ,

L = {w ∈ N : Θ (∆tw −∆pw; r) ≤ 1− σ or Ψ (∆tw −∆pw; r) ≥ σ
or Ω (∆tw −∆pw; r) ≥ σ} .

Obviously, δ(K) = 0 and δ(L) = 0. For w ∈ Kc ∩ Lc, we get

Θ (∆tw − η; r + ξ) ≥ min [Θ (∆tw −∆pw; r) ,Θ(∆pw − η; ξ)] > 1− σ,

Ψ(∆tw − η; r + ξ) ≤ max [Ψ (∆tw −∆pw; r) ,Ψ(∆pw − η; ξ)] < σ

and

Ω (∆tw − η; r + ξ) ≤ max [Ω (∆tw −∆pw; r) ,Ω (∆pw − η; ξ)] < σ.

Then

Θ (∆tw − η; r + ξ) > 1− σ, Ψ(∆tw − η; r + ξ) < σ, Ω (∆tw − η; r + ξ) < σ

for all w ∈ Kc ∩ Lc. This gives that

{w ∈ N : Θ (∆tw − η; r + ξ) ≤ 1− σ or Ψ (∆tw − η; r + ξ) ≥ σ
or Ω (∆tw − η; r + ξ) ≥ σ} ⊆ K ∪ L.

Thus

δ ({w ∈ N : Θ (∆tw − η; r + ξ) ≤ 1− σ or Ψ (∆tw − η; r + ξ) ≥ σ
or Ω (∆tw − η; r + ξ) ≥ σ}) ≤ δ(K) + δ(L).

So we get

δ ({w ∈ N : Θ (∆tw − η; r + ξ) ≤ 1− σ or Ψ (∆tw − η; r + ξ) ≥ σ
or Ω (∆tw − η; r + ξ) ≥ σ}) = 0.

As a result, we obtain ∆tw
r−St⟨Θ,Ψ,Ω⟩→ η. □

Theorem 3.11. Let ∆t = (∆tw) be a sequence in an NNS. Then there does not
exist elements u, v ∈ St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
for some r ≥ 0 and each σ ∈ (0, 1) such

that Θ(u− v; sr) ≤ 1− σ or Ψ(u− v; sr) ≥ σ or Ω(u− v; sr) ≥ σ for s > 2.
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Proof. We obtain this result by contradiction. Assume that there are elements
u, v ∈ St⟨Θ,Ψ,Ω⟩−LIMr

∆tw
such that

(3.2) Θ (u− v; sr) ≤ 1− σ or Ψ (u− v; sr) ≥ σ or Ω(u− v; sr) ≥ σ for s > 2.

As u, v ∈ St(Θ,Ψ,Ω)−LIMr
∆tw

, for given σ ∈ (0, 1) and all ξ > 0, we get δ(K) =
δ(L) = 0, where

K =
{
w ∈ N : Θ

(
∆tw − u; r + ξ

2

)
≤ 1− σ or Ψ

(
∆tw − u; r + ξ

2

)
≥ σ

or Ω
(
∆tw − u; r + ξ

2

)
≥ σ

}
and

L =
{
w ∈ N : Θ

(
∆tw − v; r + ξ

2

)
≤ 1− σ or Ψ

(
∆tw − v; r + ξ

2

)
≥ σ

or Ω
(
∆tw − v; r + ξ

2

)
≥ σ

}
.

For w ∈ Kc ∩ Lc, we obtain

Θ(u− v; 2r + ξ) ≥ min

{
Θ

(
∆tw − v; r +

ξ

2

)
,Θ

(
∆tw − u; r +

ξ

2

)}
> 1− σ,

Ψ(u− v; 2r + ξ) ≤ max

{
Ψ

(
∆tw − v; r +

ξ

2

)
,Ψ

(
∆tw − u; r +

ξ

2

)}
< σ

and

Ω(u− v; 2r + ξ) ≤ max

{
Ω

(
∆tw − v; r +

ξ

2

)
,Ω

(
∆tw − u; r +

ξ

2

)}
< σ.

Then we have

(3.3) Θ (u− v; 2r + ξ) > 1− σ, Ψ(u− v; 2r + ξ) < σ, Ω(u− v; 2r + ξ) < σ.

Thus from (3.3), we get

Θ(u− v; sr) > 1− σ, Ψ(u− v; sr) < σ, Ω(u− v; sr) < σ for s > 2

which is a contradiction to (3.2). So there are not elements u, v ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

such that Θ(u− v; sr) ≤ 1−σ or Ψ(u− v; sr) ≥ σ or Ω(u− v; sr) ≥ σ for s > 2. □

Now, we investigate statistical cluster point of a difference sequence in NNS and
obtain various results related to it.

Definition 3.12. Let X = (F,N , ◦ ,•) be an NNS. Then λ ∈ X is called a rough
statistical cluster point of a sequence ∆t = (∆tw) in X w.r.t the norm ⟨Θ,Ψ,Ω⟩ for
some r ≥ 0, if for each ξ > 0 and σ ∈ (0, 1),

δ ({w ∈ N : Θ (∆tw − λ; r + ξ) > 1− σ,Ψ(∆tw − λ; r + ξ) < σ,
Ω (∆tw − λ; r + ξ) < σ}) > 0,

i.e.,
δ ({w ∈ N : Θ (∆tw − λ; r + ξ) > 1− σ,Ψ(∆tw − λ; r + ξ) < σ,

Ω (∆tw − λ; r + ξ) < σ}) ̸= 0.

In this case, λ is called a r− St⟨Θ,Ψ,Ω⟩-cluster point of a sequence ∆t = (∆tw) w.r.t
the norm ⟨Θ,Ψ,Ω⟩.
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Let Γr
⟨Θ,Ψ,Ω⟩(∆t) indicates the set of all r−St⟨Θ,Ψ,Ω⟩-cluster points w.r.t the norm

⟨Θ,Ψ,Ω⟩ of a sequence ∆t = (∆tw) in an NNS. If r = 0, then we obtain an ordinary
statistical cluster point w.r.t the norm ⟨Θ,Ψ,Ω⟩ in an NNS, i.e., Γr

⟨Θ,Ψ,Ω⟩(∆t) =

Γ⟨Θ,Ψ,Ω⟩(∆t).

Theorem 3.13. Let X = (F,N , ◦ ,•) be an NNS. Then, the set Γr
⟨Θ,Ψ,Ω⟩(∆t),

defined as the collection of all r − St⟨Θ,Ψ,Ω⟩-cluster points w.r.t the norm ⟨Θ,Ψ,Ω⟩
for any sequence ∆t = (∆tw), is closed for some r ≥ 0.

Proof. When Γr
⟨Θ,Ψ,Ω⟩(∆t) = ∅, then we have to prove nothing.

Suppose Γr
⟨Θ,Ψ,Ω⟩(∆t) ̸= ∅ and let ∆p = (∆pw) be a sequence in X such that

∆p ⊆ Γr
⟨Θ,Ψ,Ω⟩(∆t) and (∆pw)

⟨Θ,Ψ,Ω⟩→ p∗.

It is adequate to denote that p∗ ∈ Γr
⟨Θ,Ψ,Ω⟩(∆t). Since ∆pw

⟨Θ,Ψ,Ω⟩→ p∗, for each ξ > 0

and σ ∈ (0, 1), there is a wξ ∈ N such that for w ≥ wξ,

Θ

(
∆pw − p∗;

ξ

2

)
> 1− σ, Ψ

(
∆pw − p∗;

ξ

2

)
< σ, Ω

(
∆pw − p∗;

ξ

2

)
< σ.

Now select w0 ∈ N such that w0 ≥ wξ. Then we get

Θ

(
∆pw0

− p∗;
ξ

2

)
> 1− σ, Ψ

(
∆pw0

− p∗;
ξ

2

)
< σ, Ω

(
∆pw0

− p∗;
ξ

2

)
< σ.

Again as ∆p ⊆ Γr
(Θ,Ψ,Ω)(∆t), ∆pw0

∈ Γr
(Θ,Ψ,Ω)(∆t). Thus we have

(3.4)

δ
({

w ∈ N : Θ
(
∆tw −∆pw0

; r + ξ
2

)
> 1− σ,Ψ

(
∆tw −∆pw0

; r + ξ
2

)
< σ,

Ω
(
∆tw −∆pw0

; r + ξ
2

)
< σ

})
> 0.

Now let

j ∈
{
w ∈ N : Θ

(
∆tw −∆pw0 ; r +

ξ
2

)
> 1− σ,Ψ

(
∆tw −∆pw0 ; r +

ξ
2

)
< σ,

Ω
(
∆tw −∆pw0

; r + ξ
2

)
< σ

}
.

Then we get

Θ
(
∆tj −∆pw0

; r + ξ
2

)
> 1− σ,Ψ

(
∆tj −∆pw0

; r + ξ
2

)
< σ,

Ω
(
∆tj −∆pw0

; r + ξ
2

)
< σ.

Thus we have

Θ (∆tj − p∗; r + ξ) ≥ min
{
Θ
(
∆tj −∆pw0 ; r +

ξ
2

)
,Θ

(
∆pw0 − p∗; ξ

2

)}
> 1− σ,

Ψ(∆tj − p∗; r + ξ) ≤ max
{
Ψ
(
∆tj −∆pw0

; r + ξ
2

)
,Ψ

(
∆pw0

− p∗; ξ
2

)}
< σ

and

Ω (∆tj − p∗; r + ξ) ≤ max
{
Ω
(
∆tj −∆pw0 ; r +

ξ
2

)
,Ω

(
∆pw0 − p∗; ξ

2

)}
< σ.

95
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So we have

j ∈ {Θ(∆tw − p∗; r + ξ) > 1− σ,Ψ(∆tw − p∗; r + ξ) < σ,
Ω (∆tw − p∗; r + ξ) < σ} .

Hence we get{
w ∈ N : Θ

(
∆tw −∆pw0

; r + ξ
2

)
> 1− σ,Ψ

(
∆tw −∆pw0

; r + ξ
2

)
< σ,

Ω
(
∆tw −∆pw0 ; r +

ξ
2

)
< σ

}
⊆ {w ∈ N : Θ (∆tw − p∗; r + ξ) > 1− σ,Ψ(∆tw − p∗; r + ξ) < σ,

Ω (∆tw − p∗; r + ξ) < σ} .
On the other hand, we have
(3.5)

δ
({

w ∈ N : Θ
(
∆tw −∆pw0

; r + ξ
2

)
> 1 + σ,Ψ

(
∆tw −∆pw0

; r + ξ
2

)
< σ,

Ω
(
∆tw −∆pw0

; r + ξ
2

)
< σ

})
≤ δ ({w ∈ N : Θ (∆tw − p∗; r + ξ) > 1 + σ,Ψ(∆tw − p∗; r + ξ) < σ,

Ω (∆tw − p∗; r + ξ) < σ}) .
Using equation (3.4), we have determined that the set on the left-hand side of equa-
tion (3.5) possesses a natural density greater than zero.

δ ({w ∈ N : Θ (∆tw − p∗; r + ξ) > 1 + σ,Ψ(∆tw − p∗; r + ξ) < σ,
Ω (∆tw − p∗; r + ξ) < σ}) > 0.

As a result, p∗ ∈ Γr
⟨Θ,Ψ,Ω⟩(∆t). □

Theorem 3.14. Let Γ⟨Θ,Ψ,Ω⟩(∆t) be the set of all statistical cluster points w.r.t the
norm ⟨Θ,Ψ,Ω⟩ of a sequence ∆t = (∆tw) in an NNS X = (F,N , ◦ ,•) and r ≥ 0.
Then for an arbitrary λ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t) and σ ∈ (0, 1), we have Θ(γ − λ) > 1 + σ,
Ψ(γ − λ) < σ, Ω(γ − λ) < σ for all γ ∈ Γr

⟨Θ,Ψ,Ω⟩(∆t).

Proof. Let λ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t). Then for all ξ > 0 and σ ∈ (0, 1), we get

(3.6)
δ ({w ∈ N : Θ (∆tw − λ; ξ) > 1− σ,Ψ(∆tw − λ; ξ) < σ,

Ω (∆tw − λ; ξ) < σ}) > 0.

Now, we will demonstrate that if γ ∈ X has the following conditions:

Θ(γ − λ; r) > 1− σ, Ψ(γ − λ; r) < σ, Ω(γ − λ; r) < σ,

then γ ∈ Γr
⟨Θ,Ψ,Ω⟩(∆t). Let

j ∈ {w ∈ N : Θ (∆tw − λ; ξ) > 1− σ,Ψ(∆tw − λ; ξ) < σ,
Ω (∆tw − λ; ξ) < σ} .

Then Θ (∆tj − λ; ξ) > 1 − σ, Ψ(∆tj − λ; ξ) < σ, Ω (∆tj − λ; ξ) < σ. On the other
hand, we get

Θ (∆tj − γ; r + ξ) ≥ min {Θ(∆tj − λ; ξ) ,Θ(γ − λ; r)}
> 1− σ,

Ψ(∆tj − γ; r + ξ) ≤ max {Ψ(∆tj − λ; ξ) ,Ψ(γ − λ; r)}
< σ

96



KİŞİ and Yıldız/Ann. Fuzzy Math. Inform. 26 (2023), No. 1, 83–102

and
Ω
(
∆twj

− γ; r + ξ
)

≤ max
{
Ω
(
∆twj

− λ; ξ
)
,Ω(γ − λ; r)

}
< σ.

Thus we have

Θ (∆tj − γ; r + ξ) > 1− σ, Ψ(∆tj − γ; r + ξ) < σ, Ω (∆tj − γ; r + ξ) < σ.

So we obtain

j ∈ {w ∈ N : Θ (∆tw − γ; r + ξ) > 1− σ,Ψ(∆tw − γ; r + ξ) < σ,
Ω (∆tw − γ; r + ξ) < σ} .

Furthermore, the following inclusion holds:

{w ∈ N : Θ (∆tw − λ; ξ) > 1− σ,Ψ(∆tw − λ; ξ) < σ, Ω (∆tw − λ; ξ) < σ}
⊆ {w ∈ N : Θ (∆tw − γ; r + ξ) > 1− σ,Ψ(∆tw − γ; r + ξ) < σ,

Ω (∆tw − γ; r + ξ) < σ} .
Hence we get

δ ({w ∈ N : Θ (∆tw − λ; ξ) > 1− σ,Ψ(∆tw − λ; ξ) < σ, Ω (∆tw − λ; ξ) < σ})
≤ δ ({w ∈ N : Θ (∆tw − γ; r + ξ) > 1− σ,Ψ(∆tw − γ; r + ξ) < σ,

Ω (∆tw − γ; r + ξ) < σ}) .

By employing equation (3.6), we obtain

δ ({w ∈ N : Θ (∆tw − γ; r + ξ) > 1− σ,Ψ(∆tw − γ; r + ξ) < σ,
Ω (∆tw − γ; r + ξ) < σ}) > 0.

As a result, γ ∈ Γr
⟨Θ,Ψ,Ω⟩(∆t). □

Theorem 3.15. If

B(κ, σ, r) = {∆t ∈ X : Θ(∆t− κ; r) ≥ 1− σ,Ψ(∆t− κ; r) ≤ σ,Ω(∆t− κ; r) ≤ σ}

represents the closure of open ball

B(κ, σ, r) = {∆t ∈ X : Θ(∆t− κ; r) > 1− σ,Ψ(∆t− κ; r) < σ,Ω(∆t− κ; r) < σ}

for some r > 0, σ ∈ (0, 1) and a fixed κ ∈ X , then

Γr
⟨Θ,Ψ,Ω⟩(∆t) =

⋃
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r).

Proof. Let λ ∈
⋃

κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r). Then there is a κ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t) for some

r ≥ 0 and given σ ∈ (0, 1) such that Θ(κ−λ; r) > 1−σ, Ψ(κ−λ; r) < σ, Ω(κ−λ; r) <
σ. Fix ξ > 0. As κ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t), there is a set

K = {w ∈ X : Θ (∆tw − κ; ξ) > 1− σ and Ψ (∆tw − κ; ξ) < σ, Ω (∆tw − κ; ξ) < σ} ,

with δ(K) > 0. Now, for w ∈ K,

Θ (∆tw − λ; r + ξ) ≥ min {Θ(∆tw − κ; ξ) ,Θ(κ− λ; r)}
> 1− σ,

Ψ(∆tw − λ; r + ξ) ≤ max {Ψ(∆tw − κ; ξ) ,Ψ(κ− λ; r)}
< σ
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and
Ω (∆tw − λ; r + ξ) ≤ max {Ω (∆tw − κ; ξ) ,Ω(κ− λ; r)}

< σ.

This gives that

δ ({w ∈ N : Θ (∆tw − λ; r + ξ) > 1− σ and Ψ (∆tw − λ; r + ξ) < σ
Ω (∆tw − λ; r + ξ) < σ}) > 0.

Thus λ ∈ Γr
⟨Θ,Ψ,Ω⟩(∆t). As a result,

⋃
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r) ⊆ Γr
⟨Θ,Ψ,Ω⟩(∆t)(∆t).

Conversely, let λ ∈ Γr
⟨Θ,Ψ,Ω⟩(∆t). Then clearly, λ ∈

⋃
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r).

Assume that λ /∈
⋃

κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r), i.e., λ /∈ B(κ, σ, r) for all κ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t).

Then we have: for all κ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t),

Θ(λ− κ; r) ≤ 1− σ or Ψ(λ− κ; r) ≥ σ or Ω(λ− κ; r) ≥ σ.

Let κ ∈ Γ⟨Θ,Ψ,Ω⟩ (∆t). Then clearly, κ ∈ Γr
⟨Θ,Ψ,Ω⟩ (∆t). Thus by Theorem 3.14, we

get

Θ (λ− κ; r) > 1− σ, Ψ(λ− κ; r) < σ, Ω (λ− κ; r) < σ.

This is a contradiction to the supposition. So λ ∈
⋃

κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B (κ, σ, r). Hence

Γr
⟨Θ,Ψ,Ω⟩ (∆t) ⊆

⋃
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B (κ, σ, r). □

Theorem 3.16. Let ∆t = (∆tw) be a sequence in an NNS X = (F,N , ◦ ,•) . Then
for any σ ∈ (0, 1) ,

(1) if κ ∈ Γ⟨Θ,Ψ,Ω⟩ (∆t) , then St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

⊆ B (κ, σ, r),

(2) St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw

=
⋂

κ∈Γ⟨Θ,Ψ,Ω⟩(∆t) B(κ, σ, r)

=
{
γ ∈ X : Γ⟨Θ,Ψ,Ω⟩(∆t) ⊆ B(γ, σ, r)

}
.

Proof. (1) Suppose κ ∈ Γ⟨Θ,Ψ,Ω⟩ (∆t) and let γ ∈ St⟨Θ,Ψ,Ω⟩ −LIMr
∆tw

. Then for all
ξ > 0 and σ ∈ (0, 1), we establish the sets

K = {w ∈ N : Θ (∆tw − γ; r + ξ) > 1− σ, Ψ(∆tw − γ; r + ξ) < σ,
Ω (∆tw − γ; r + ξ) < σ}

with δ (Kc) = 0
and

L = {w ∈ N : Θ (∆tw − κ; ξ) > 1− σ and Ψ (∆tw − κ; ξ) < σ, Ω (∆tw − κ; ξ) < σ}

with δ(L) ̸= 0.
Then for each w ∈ K ∩ L, we have

Θ(γ − κ; r) ≥ min {Θ(∆tw − κ; ξ) ,Θ(∆tw − γ; r + ξ)}
> 1− σ,

Ψ(γ − κ; r) ≤ max {Ψ(∆tw − κ; ξ) ,Ψ(∆tw − γ; r + ξ)}
< σ
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and
Ω(γ − κ; r) ≤ max {Ω (∆tw − κ; ξ) ,Ω (∆tw − γ; r + ξ)}

< σ.

Thus γ ∈ B(κ, σ, r). So St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw

⊆ B(κ, σ, r).
(2) From (1), we get

St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw ⊆

⋂
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r).

Let s ∈
⋂

κ∈Γ⟨Θ,Ψ,Ω⟩(∆t) B(κ, σ, r). Then we have: for all κ ∈ Γ⟨Θ,Ψ,Ω⟩(∆t),

Θ(s− κ; r) ≥ 1− σ, Ψ(s− κ; r) ≤ σ, Ω(s− κ; r) ≤ σ.

Thus Γ⟨Θ,Ψ,Ω⟩(∆t) ⊆ B(s, σ, r), i.e.,⋂
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r) ⊆
{
γ ∈ X : Γ⟨Θ,Ψ,Ω⟩(∆t) ⊆ B(γ, σ, r).

}
In addition, let s /∈ St⟨Θ,Ψ,Ω⟩ − LIMr

∆tw
. Then for ξ > 0, we obtain

δ ({w ∈ N : Θ (∆tw − s; r + ξ) ≤ 1− σ or Ψ (∆tw − s; r + ξ) ≥ σ
or Ω (∆tw − s; r + ξ) ≥ σ}) ̸= 0.

This gives that a statistical cluster point κ exists for the sequence ∆t = (∆tw) such
that

Θ(s− κ; r + ξ) ≤ 1− σ or Ψ(s− κ; r + ξ) ≥ σ or Ω(s− κ; r + ξ) ≥ σ.

Thus Γ⟨Θ,Ψ,Ω⟩(∆t) ⊊ B(s, σ, r) and s /∈
{
γ ∈ X : Γ⟨Θ,Ψ,Ω⟩(∆t) ⊆ B(γ, σ, r)

}
. So we

have {
γ ∈ X : Γ⟨Θ,Ψ,Ω⟩(∆t) ⊆ B(γ, σ, r)

}
⊆ St⟨Θ,Ψ,Ω⟩ − LIMr

∆tw .

Hence we get ⋂
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r) ⊆ St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw

Therefore we have

St⟨Θ,Ψ,Ω⟩−LIMr
∆tw =

⋂
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r) =
{
γ ∈ X : Γ⟨Θ,Ψ,Ω⟩(∆t) ⊆ B(γ, σ, r)

}
.

□

Theorem 3.17. Let ∆t = (∆tw) be a sequence in an NNS which is statistically
convergent to η ∈ X w.r.t the norm ⟨Θ,Ψ,Ω⟩. Then there exists σ ∈ (0, 1) such that

St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw = B(η, σ, r) for some r ≥ 0.

Proof. Take ξ > 0. Since ∆tw
St⟨Θ,Ψ,Ω⟩→ η, there is a set

K = {w ∈ N : Θ (∆tw − η; ξ) ≤ 1− σ or Ψ (∆tw − η; ξ) ≥ σ
or Ω (∆tw − η; ξ) ≥ σ} with δ(K) = 0.

Let

s ∈ B(η, σ, r) = {s ∈ X : Θ(s− η; ξ) ≥ 1− σ or Ψ(s− η; ξ) ≤ σ or Ω(s− η; ξ) ≤ σ}.
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Then for each w ∈ Kc, we get

Θ (∆tw − s; r + ξ) ≥ min {Θ(∆tw − η; ξ) ,Θ(s− η; r)}
> 1− σ,

Ψ(∆tw − s; r + ξ) ≤ max {Ψ(∆tw − η; ξ) ,Ψ(s− η; r)}
< σ

and
Ω (∆tw − s; r + ξ) ≤ max {Ω (∆tw − η; ξ) ,Ω(s− η; r)}

< σ.

Thus s ∈ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

, i.e., B(η, σ, r) ⊆ St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

. Note that

St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

⊆B(η, σ, r). As a result, we obtain St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

= B(η, σ, r)
for some r ≥ 0. □

Theorem 3.18. Let ∆t = (∆tw) be a sequence in an NNS. Then ∆t is statistically
convergent w.r.t the norm ⟨Θ,Ψ,Ω⟩ if and only if Γr

⟨Θ,Ψ,Ω⟩(∆t) = St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

for some r ≥ 0.

Proof. Necessary part: Suppose ∆tw
St⟨Θ,Ψ,Ω⟩→ η. Then Γr

⟨Θ,Ψ,Ω⟩(∆t) = {η}. Then

by Theorem 3.15, for some r ≥ 0 and σ ∈ (0, 1), Γr
⟨Θ,Ψ,Ω⟩(∆t) = B(η, σ, r). Thus

by Theorem 3.17, we obtain B(η, σ, r) = St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

. So Γr
⟨Θ,Ψ,Ω⟩(∆t) =

St⟨Θ,Ψ,Ω⟩−LIMr
∆tw

.
Sufficient part: Suppose the necessary condition holds. Then by Theorem 3.15

and Theorem 3.16 (2), we get⋃
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r) =
⋂

κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r).

This gives that either Γ⟨Θ,Ψ,Ω⟩(∆t) = ∅ for Γ⟨Θ,Ψ,Ω⟩(∆t) is a singleton set. Thus

St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw =

⋂
κ∈Γ⟨Θ,Ψ,Ω⟩(∆t)

B(κ, σ, r) = B(η, σ, r)

for some η ∈ Γ⟨Θ,Ψ,Ω⟩(∆t). So by Theorem 3.17, St⟨Θ,Ψ,Ω⟩ − LIMr
∆tw

= {η}. □

4. Conclusion

In this paper, we have extended the existing theories on sequence convergence
in NNSs by introducing the concept of rough statistical convergence for difference
sequences in NNSs. We have investigated novel notions of rough convergence and
rough statistical convergence, specifically focusing on the behavior of difference se-
quences in NNSs.

Moreover, we have thoroughly analyzed the properties and characteristics of a
mathematical construct denoted as St(Θ,Ψ,Ω) − LIMr

∆tw , which represents the r-
statistical limit set of the difference sequence (∆tw). Our examination of these
features has provided valuable insights into the behavior and attributes associated
with the r-statistical limit set in the context of rough statistical convergence in
NNSs.
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Two potential future applications stemming from the understanding of conver-
gence behavior in NNSs and their difference sequences are optimized decision-making
systems and analysis of data with inherent uncertainty.

The insights gained from this research can be leveraged to develop more efficient
decision-making systems that can handle complex and uncertain data in various
domains such as finance, healthcare and engineering.

By expanding the existing theories and introducing new concepts, our study con-
tributes to the deeper understanding of sequence convergence in NNSs. The findings
presented in this paper pave the way for further research and applications in the field
of NNSs, offering potential avenues for exploring the convergence behavior of differ-
ence sequences and advancing the theoretical framework in this area.

Additionally, the understanding of rough statistical convergence in NNSs can
contribute to the analysis and interpretation of data sets characterized by inher-
ent uncertainties, enabling more accurate predictions and informed decision-making
processes in fields such as data science, machine learning and artificial intelligence.
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[31] Ç. A. Bektaş, M. Et and R. Çolak, Generalized difference sequence spaces and their dual
spaces, J. Math. Anal. Appl. 292 (2) (2004) 423–432.
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