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Abstract. The main aim of this paper is to integrate the relationships
among rough set theory and topology. We introduce the interior and clo-
sure operators with respect to an ideal defined on an approximation space,
generating an ideal approximation space. Some topological notions such
as the subspace, continuous functions, lower separation axioms, and con-
nectedness in ideal approximation spaces are defined and studied. Some
examples are given to confirm the implications.
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1. Introduction

Pawlak achieved the theory of rough sets for the first time in 1982 [1, 2]. This
theory is an extension of the set theory for the investigation of intelligent systems
identified by insufficient and incomplete information [3, 4, 5]. The upper and lower
approximation operators are introduced under an equivalence relation given in the
universe, which is not sufficient in some situations. From this time, many mathemati-
cians, logicians, and researchers were interested in studying the theory and the exten-
sions of the results and applications. These applications appear in wide fields such
as data mining, machine learning, and expert systems [6, 7, 8, 9, 10, 11, 12, 13, 14].
This theory depends on a certain topological structure. It should be noted that the
notion of a topological rough set is a very important generalisation of a rough set
since it narrows the gap between topological researchers and those who are attentive
to the application of topology theory.

Kuratowski [15] and Vaidyanathaswamy [16] introduced and investigated the no-
tion of an ideal on topological spaces. The concept of an ideal is fundamental in
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topological spaces and plays an important role in studying topological problems.
Jankovic and Hamlett [17] introduced further properties of ideals given on topolog-
ical spaces.
Studying the interaction between topology and generalised rough set theory applying
the notion of an ideal was the main target for many articles such as [11, 18, 19, 20].
Novel rough models called ”ideal approximation spaces” have been introduced. In
fact, these models enlarge the lower approximation and shrink the upper approx-
imation of subsets, which means they increase their accuracy values. Some re-
searchers followed this course of study and addressed some phenomena as presented
in [19, 21, 22, 23, 24] Moreover, extensions of topology have been applied to provide
new rough paradigms using certain topological structures and concepts like infra-
topology, supra-topology, maximal and minimal neighbourhoods to deal with rough
set notions and address some real-life problems [25, 26, 27, 28]. Recently, many
authors studied some topological notions such as closure spaces, separation axioms,
continuity, and connectedness in ideal approximation spaces [29, 30].
In this direction, we have dedicated this paper to generalise some topological con-
cepts given in [31] with respect to the ideal closure spaces defined in [32, 33] and
illustrates the relationship between them. This paper is organised as follows: In
Section 2, we give a review of closure spaces with all the definitions related to this
work. Section 3 is devoted to studying accumulation points, dense sets, and nowhere
dense sets with respect to these definitions, and we gave some examples. In Section
4, we introduce and study subspaces of such spaces under a subideal defined on the
given ideal. Separation axioms with respect to these ideal approximation spaces are
reformulated via relational concepts in Section 5. We reformulate and study con-
nectedness in these ideal approximation spaces in Section 6. Finally, some remarks
and a conclusion are given.

2. Preliminaries

A relation R from a universe X to a universe X (a relation on X) is a subset
of X × X. The formula (x, y) ∈ R is abbreviated as xRy and means that x is in
relation R with y. Also, the aftersets of x ∈ X is xR = {y : xRy} and the forersets
of x ∈ X is Rx = {y : yRx}.

Definition 2.1 ([31]). Let R be any binary relation on X. Then a set ⟨x⟩R is the
intersection of all aftersets containing x, i.e.,

⟨x⟩R =

{
∩x∈yR(yR) if ∃y : x ∈ yR,

ϕ otherwise.

Also, R ⟨x⟩ is the intersection of all foresets containing x, i.e.,

R ⟨x⟩ =
{

∩x∈yR(Ry) if ∃y : x ∈ Ry,
ϕ otherwise.

60



Abbas et al. /Ann. Fuzzy Math. Inform. 26 (2023), No. 1, 59–81

Definition 2.2 ([31]). Let R be binary relation on X. For any subset A of X, a

pair of lower and upper approximations, R
∼
(A) and

∼
R(A) are defined by:

R
∼
(A) = {x ∈ A : ⟨x⟩R ⊆ A},(2.1)

∼
R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩A ̸= ϕ}.(2.2)

Theorem 2.3 ([34]). The upper approximation defined by (2.2) has the following
properties:

(1)
∼
R(ϕ) = ϕ,

(2) R
∼
(A) ⊆ A ⊆

∼
R(A) for A ⊆ X,

(3)
∼
R(A ∪B) =

∼
R(A) ∪

∼
R(B) ∀A, B ⊆ X,

(4)
∼
R(

∼
R(A)) =

∼
R(A) ∀A ⊆ X,

(5)
∼
R(A) = (R

∼
(Ac))c ∀A ⊆ X, where Ac denotes the complement of A.

The operator
∼
R(A) on P (X) is called a closure operator and (X,

∼
R) is called a

closure space. Moreover, it induces a topology on X denoted by τR and defined by

τR = {A ⊆ X :
∼
R(Ac) = Ac}.

Definition 2.4 ([17]). Let X be a non-empty set. Then I ⊆ P (X) is called an ideal
on X, if it satisfies the following conditions:

(i) ϕ ∈ I,
(ii) A ∈ I and B ⊆ A imply B ∈ I,
(iii) A, B ∈ I imply A ∪B ∈ I.

Definition 2.5 ([32]). Let R be a binary relation on X and I be an ideal defined
on X and A ⊆ X. Then the lower and upper approximations of A by I, denoted by
R(A) and R(A), of A are defined as follows:

R(A) = {x ∈ A : ⟨x⟩R ∩Ac ∈ I},(2.3)

R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩A /∈ I}.(2.4)

Theorem 2.6 ([32]). The upper approximation defined by (2.4) has the following
properties: for any A, B ⊆ X,

(1) R(A) = (R(Ac))c,
(2) R(ϕ) = ϕ,
(3) R(A) ⊆ A ⊆ R(A),
(4) A ⊆ B implies R(A) ⊆ R(B),
(5) R(A ∩B) ⊆ R(A) ∩R(B),
(6) R(A ∪B) = R(A) ∪R(B),
(7) R(R(A)) = R(A).

Also, the operator R(A) on P (X) defined by (2.4), induced a topology on X
denoted by τ∗R and defined as τ∗R = {A ⊆ X : R(Ac) = Ac}.
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Definition 2.7 ([33]). Let R be a binary relation on X and I be an ideal on X and

A ⊆ X. Then the lower and upper approximations, R(A) and R(A) of A are defined
by:

R(A) = {x ∈ A : R ⟨x⟩R ∩Ac ∈ I},(2.5)

R(A) = A ∪ {x ∈ X : R ⟨x⟩R ∩A /∈ I},(2.6)

where

R ⟨x⟩R = R ⟨x⟩ ∩ ⟨x⟩R.(2.7)

Theorem 2.8 ([33]). The upper approximation defined by (2.6) has the following
properties: for any A, B ⊆ X,

(1) R(A) = (R(Ac))c,

(2) R(ϕ) = ϕ,

(3) R
∼
(A) ⊆ R(A) ⊆ R(A) ⊆ A ⊆ R(A) ⊆ R(A) ⊆

∼
R(A),

(4) A ⊆ B implies R(A) ⊆ R(B),

(5) R(A ∩B) ⊆ R(A) ∩R(B),

(6) R(A ∪B) = R(A) ∪R(B),

(7) R(R(A)) = R(A).

Also, the operator R(A) on P (X) defined by (2.6), induced a topology on X

denoted by τ∗∗R and defined as τ∗∗R = {A ⊆ X : R(Ac) = Ac}. It is clear that
τR ⊆ τ∗R ⊆ τ∗∗R .

Lemma 2.9 ([31, 35]). Let R be a binary relation on X.

(1) If x ∈< y > R, then < x > R ⊆< y > R.
(2) If x ∈ R < y > R, then R < x > R ⊆ R < y > R.

Definition 2.10 ([31]). Let R be a binary relation on X. Then a point x ∈ X
is called an accumulation point of A, if (⟨x⟩R − {x}) ∩ A ̸= ϕ. The set of all
accumulation points of A is denoted by d(A), i.e.,

d(A) = {x ∈ X : (< x > R− {x}) ∩A ̸= ϕ}.

Definition 2.11 ([31]). Let RY ⊆ R and Y ⊆ X. Then (Y,
∼
RY ) is called a closure

subspace of a closure space (X,
∼
R), if ⟨x⟩RY = ⟨x⟩R ∩ Y for all x ∈ Y.

3. Closure Spaces by relation via ideals

Lemma 3.1. Let (X,R, I) be an ideal approximation space. Then

(1) R(< x > R) =< x > R,
(2) R(R < x > R) = R < x > R.

Proof. (1) From Theorem 2.6 (3), it is obvious that R(⟨x⟩R) ⊆ ⟨x⟩R. Conversely,
we prove that < x > R ⊆ R(< x > R). Let y ∈ ⟨x⟩R. Then by Lemma 2.9 (1),
⟨y⟩R ⊆ ⟨x⟩R. Thus ⟨y⟩R∩(⟨x⟩R)c = ϕ. So ⟨y⟩R∩(⟨x⟩R)c ∈ I. Hence y ∈ R(⟨x⟩R).
Therefore ⟨x⟩R ⊆ R(⟨x⟩R).

(2) Similar to (1) by using Lemma 2.9 (2). □
62



Abbas et al. /Ann. Fuzzy Math. Inform. 26 (2023), No. 1, 59–81

Corollary 3.2. Let (X,R, I) be an ideal approximation space. Then

(1) R((< x > R)c) = (< x > R)c,

(2) R((R < x > R)c) = (R < x > R)c.

Proof. Straightforward by Theorem2.6 (1) and Theorem2.8 (1). □

Proposition 3.3. Let (X,R, I) be an ideal approximation space. For x ̸= y ∈ X,

(1) x ∈ R({y}) iff ⟨x⟩R ∩ {y} /∈ I and x /∈ R({y}) iff ⟨x⟩R ∩ {y} ∈ I,
(2) x ∈ R({y}) iff R ⟨x⟩R ∩ {y} /∈ I and x /∈ R({y}) iff R ⟨x⟩R ∩ {y} ∈ I.

Proof. (1) Let x ∈ R({y}). Then x ∈ ({y} ∪ {z ∈ X : ⟨z⟩R ∩ {y} /∈ I}). Thus
⟨x⟩R∩{y} /∈ I. Conversely, let ⟨x⟩R∩{y} /∈ I. Then by Definition 2.5, x ∈ R({y}).

The proof of the second part is similar.
(2) Similar to (1). □

Proposition 3.4. Let (X,R, I) be an ideal approximation space and < x > R ∈ I.
Then we have:

(1) R({x}) = {x} = R({x}),
(2) R({x}) = {x} = R({x}).

Proof. (1) Let ⟨x⟩R ∈ I. Then ⟨x⟩R ∩ ({x})c ∈ I. Thus x ∈ R({x}). So R({x}) =
{x}. Also, ⟨x⟩R ∈ I implies that ⟨x⟩R∩{y} ∈ I for all y ∈ X. Hence R({x}) = {x}.

(2) Similar to (1). □

Definition 3.5. Let (X,R, I) be an ideal approximation space and A ⊆ X. Then
a point x ∈ X is said to be:

(i) a ∗-ideal accumulation point of A, if (⟨x⟩R− {x}) ∩A /∈ I.

The set of all ∗-ideal accumulation points of A is denoted by d∗(A), i.e.,

d∗(A) = {x ∈ X : (⟨x⟩R− {x}) ∩A /∈ I}.
(ii) a ∗∗-ideal accumulation point of A, if (R ⟨x⟩R− {x}) ∩A /∈ I.

The set of all ∗∗-ideal accumulation points of A is denoted by d∗∗(A), i.e.,

d∗∗(A) = {x ∈ X : (R ⟨x⟩R− {x}) ∩A /∈ I}.
Lemma 3.6. Let (X,R, I) be an ideal approximation space and A ⊆ X. Then

(1) R(A) = A ∪ d∗(A),
(2) R(A) = A iff d∗(A) ⊆ A,

(3) R(A) = A ∪ d∗∗(A),

(4) R(A) = A iff d∗∗(A) ⊆ A.

Proof. (1) Let x ∈ R(A). Then x ∈ (A ∪ {y ∈ X : ⟨y⟩R ∩ A /∈ I}). Thus we have
either x ∈ A, i.e,

(3.1) x ∈ A ∪ d∗(A)

or x /∈ A. So x ∈ {y ∈ X : ⟨y⟩R ∩ A /∈ I}. In the latter case, we have (⟨x⟩R −
{x}) ∩A /∈ I. Hence x ∈ d∗(A), i.e,

(3.2) x ∈ A ∪ d∗(A)
63
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From (3.1) and (3.2), R(A) ⊆ A ∪ d∗(A). Conversely, let x ∈ A ∪ d∗(A). Then we
have either x ∈ A, i.e,

(3.3) x ∈ R(A)

or x /∈ A. Thus x ∈ d∗(A). So (⟨x⟩R− {x}) ∩A /∈ I. Hence x ∈ R(A), i.e,

(3.4) x ∈ R(A)

From (3.3) and (3.4), A ∪ d∗(A) ⊆ R(A). Therefore R(A) = A ∪ d∗(A).
(2) Let x /∈ A, i.e., x /∈ R(A). Then clearly, ⟨x⟩R∩A ∈ I. Thus (⟨x⟩R−{x})∩A ∈

I and x /∈ d∗(A). Conversely, let d∗(A) ⊆ A. Then by (1), d∗(A) ∪A = R(A) = A.
(3) Similar to (1).
(4) Similar to (2). □

Theorem 3.7. Let (X,R, I) be an ideal approximation space and x ∈ X,A ⊆ X.
If ⟨x⟩R ∩A ∈ I, then

(1) ⟨x⟩R ∩R(A) ∈ I,
(2) R ⟨x⟩R ∩R(A) ∈ I.

Proof. (1) Suppose ⟨x⟩R ∩A ∈ I. It is clear that (⟨x⟩R− {x}) ∩A ∈ I. Then x /∈
d∗(A). Thus ⟨x⟩R∩d∗(A) = ϕ. So ⟨x⟩R∩d∗(A) ∈ I. Hence ⟨x⟩R∩ (A∪d∗(A)) ∈ I.
Therefore ⟨x⟩R ∩R(A) ∈ I.

(2) Similar to (1). □

Lemma 3.8. Let (X,R, I) be an ideal approximation space and A,B ⊆ X. Then

(1) if A ⊆ B, then d∗(A) ⊆ d∗(B) and d∗∗(A) ⊆ d∗∗(B),
(2) d∗(A ∪B) = d∗(A) ∪ d∗(A) and d∗∗(A ∪B) = d∗∗(A) ∪ d∗∗(A),
(3) d∗(A ∩B) ⊆ d∗(A) ∩ d∗(A) and d∗∗(A ∩B) ⊆ d∗∗(A) ∩ d∗∗(A),
(4) d∗(A ∪ d∗(A)) ⊆ A ∪ d∗(A) and d∗∗(A ∪ d∗∗(A)) ⊆ A ∪ d∗∗(A).

Proof. (1) Suppose A ⊆ B and let x ∈ d∗(A). Then (⟨x⟩R − {x}) ∩ A /∈ I. Thus
(⟨x⟩R− {x}) ∩B /∈ I. So x ∈ d∗(B). The proof of the second part is similar.

(2) Since A ⊆ A ∪B and B ⊆ A ∪B, by (1), we have

d∗(A) ∪ d∗(B) ⊆ d∗(A ∪B).

Conversely, let x /∈ (d∗(A) ∪ d∗(B)). Then x /∈ d∗(A) and x /∈ d∗(B). Thus (⟨x⟩R−
{x}) ∩ A ∈ I and (⟨x⟩R − {x}) ∩ B ∈ I. So (⟨x⟩R − {x}) ∩ (A ∪ B) ∈ I. Hence
x ∈ d∗(A ∪B). The proof of the second part is similar.

(3) Similar to (2).
(4) Let x /∈ A ∪ d∗(A). It is obvious that x /∈ A and (⟨x⟩R − {x}) ∩ A ∈ I.

Then ⟨x⟩R ∩ A ∈ I. Thus x /∈ R(A). So x /∈ R(R(A)). Hence x /∈ d∗(R(A)) =
d∗(A ∪ d∗(A)). Therefore d∗(A ∪ d∗(A)) ⊆ A ∪ d∗(A). The proof of the second part
is similar. □

Corollary 3.9. Let (X,R, I) be any ideal approximation space and A ⊆ X. Then

d∗∗(A) ⊆ d∗(A) ⊆ d(A).

Proof. Let x /∈ d(A). Then (⟨x⟩R − {x}) ∩ A = ϕ. Thus (⟨x⟩R − {x}) ∩ A ∈ I. So
x /∈ d∗(A) and (R ⟨x⟩R−{x})∩A ∈ I, where R ⟨x⟩R ⊆< x > R. Hence x /∈ d∗∗(A).
Therefore d∗∗(A) ⊆ d∗(A) ⊆ d(A). □
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Remark 3.10. The following example shows that the converse of Corollary 3.9 is
not true in general.

Example 3.11. Let X = {a, b, c}, R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)} and
I = {ϕ, {a}, {c}, {a, c}}. Then ⟨a⟩R = {a, b, c}, ⟨b⟩R = {b, c}, ⟨c⟩R = {c}. Also,
R ⟨a⟩ = {a}, R ⟨b⟩ = {a, b}, R ⟨c⟩ = {a, b, c}. Thus R ⟨a⟩R = {a}, R ⟨b⟩R =
{b}, R ⟨c⟩R = {c}. Suppose A = {b, c}. Then we have

(< a > R− {a}) ∩A = {b, c} ≠ ϕ,

(< b > R− {b}) ∩A = {c} ≠ ϕ,

(< c > R− {c}) ∩A = ϕ.

Thus a ∈ d(A), b ∈ d(A), c /∈ d(A). So d(A) = {a, b}. On the other hand, we get

(< a > R− {a}) ∩A = {b, c} /∈ I,

(< b > R− {b}) ∩A = {c} ∈ I,

(< c > R− {c}) ∩A = ϕ ∈ I.
Then a ∈ d∗(A), b /∈ d∗(A) c /∈ d∗(A). Thus d∗(A) = {a}. Also, we have

(R < a > R− {a}) ∩A = ϕ ∈ I,

(R < b > R− {b}) ∩A = ϕ ∈ I,

(R < c > R− {c}) ∩A = ϕ ∈ I.
Then a /∈ d∗∗(A), b /∈ d∗∗(A), c /∈ d∗∗(A). Thus d∗∗(A) = ϕ. So d(A) ⊈ d∗(A) ⊈
d∗∗(A).

Definition 3.12. Let (X,R, I) be any ideal approximation space and A ⊆ X. Then
A is said to be:

(i) dense, if
∼
R(A) = X,

(ii) ∗-ideal dense, if R(A) = X,

(iii) ∗∗-ideal dense, if R(A) = X,

(iv) nowhere dense, if R
∼
(
∼
R(A)) = ϕ,

(v) ∗-ideal nowhere dense, if R
∼
(R(A)) = ϕ,

(vi) ∗∗-ideal nowhere dense, if R
∼
(R(A)) = ϕ.

Corollary 3.13. Let (X,R, I) be any ideal approximation space and A ⊆ X. Then

(1) ∗∗-ideal dense ⇒ ∗-ideal dense ⇒ dense,
(2) nowhere dense ⇒ ∗-ideal nowhere dense ⇒ ∗∗-ideal nowhere dense.

Proof. (1) Immediately by Theorem 2.8 (3).

(2) Suppose A is nowhere dense. Then R
∼
(
∼
R(A)) = ϕ. Thus R

∼
(R(A)) = ϕ and

R
∼
(R(A)) = ϕ. So A is ∗-ideal nowhere dense and ∗∗-ideal nowhere dense. □
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Example 3.14. (1) LetX = {a, b, c, d}, R = {(a, a), (a, b), (b, b), (b, c), (c, c), (d, d), (d, b)}, I =
{ϕ, {b}} and A = {b, c}. Then we have

⟨a⟩R = {a, b}, ⟨b⟩R = {b}, ⟨c⟩R = {c}, ⟨d⟩R = {b, d},

R ⟨a⟩ = {a}, R ⟨b⟩ = {b}, R ⟨c⟩ = {b, c}, R ⟨d⟩ = {d}.

Thus we get

R ⟨a⟩R = {a}, R ⟨b⟩R = {b}, R ⟨c⟩R = {c}, R ⟨d⟩R = {d}.

Suppose A = {b, c}. Then
∼
R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩ A ̸= ϕ} = X. Thus A is

dense. But {x ∈ X : ⟨x⟩R ∩ A /∈ I} = {c} and R(A) = {b, c} ≠ X. So A is not
∗-ideal dense. On the other hand, suppose I = {ϕ, {a}}. Then R(A) = X. Thus A

is ∗-ideal dense. But R(A) = A∪ {x ∈ X ‘ : R ⟨x⟩R∩A /∈ I} = A ̸= X. So A is not
∗∗-ideal dense.

(2) Let X = {a, b, c, d}, R = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, d), (c, a), (c, b), (c,
d), (d, d)}, I = {ϕ, {a}}}. Then we have

⟨a⟩R = {a, b}, ⟨b⟩R = {a, b}, ⟨c⟩R = {a, b, c}, ⟨d⟩R = {d},

R ⟨a⟩ = {a}, R ⟨b⟩ = {b, c}, R ⟨c⟩ = {b, c}, R ⟨d⟩ = {b, c, d}.

Thus we get

R ⟨a⟩R = {a}, R ⟨b⟩R = {b}, R ⟨c⟩R = {b, c}, R ⟨d⟩R = {d}.

Suppose A = {a}. Then R(A) = {a} and
∼
R(A) = {a, b, c}. Thus R

∼
(R(A)) = ϕ. So

A is ∗-ideal nowhere dense. But R
∼
(
∼
R(A)) = {a, b, c} ̸= ϕ. Hence A is not nowhere

dense. Also, suppose A = {b}. Then R(A) = {a, b, c} and R(A) = {b, c}. Thus
R
∼
(R(A)) = ϕ. So A is ∗∗-ideal nowhere dense. But R

∼
(R(A)) = {a, b, c} ≠ ϕ. So A

is not ∗-ideal nowhere dense.

Corollary 3.15. Let (X,R, I) be an ideal approximation space.

(1) If A is dense, then (
∼
R(A))c is nowhere dense.

(2) If A is ∗-dense, then (R(A))c is ∗-nowhere dense.

(3) If A is ∗∗-dense, then (R(A))c is ∗∗-nowhere dense .

Proof. (1) SupposeA is dense. Then
∼
R(A) = X. Thus (

∼
R(A))c = ϕ and

∼
R(

∼
R(A))c) =

ϕ. So R
∼
(
∼
R(

∼
R(A))c)) = ϕ. Hence (

∼
R(A))c is nowhere dense.

(2) Suppose A is ∗-dense. Then R(A) = X. Thus (R(A))c = ϕ. So R((R(A))c) = ϕ
and R

∼
(R((R(A))c)) = ϕ. Hence (R(A))c is ∗-nowhere dense.

(3) Similar to (2). □
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4. Ideal approximation subspace

Lemma 4.1. If I is an ideal on X and Y ⊆ X, then IY = {A ∩ Y : A ∈ I} is an
ideal on Y .

Proof. (i) It is obvious that ϕ ∈ IY .
(ii) Suppose B ⊆ A, A ∈ IY . Then there exists C ∈ I such that A = C ∩Y. Since

I is an ideal and B ⊆ C, B ∈ I. Thus B = B ∩ Y ∈ IY .
(iii) Suppose A, B ∈ IY . Then there exists C1, C2 ∈ I such that A = C1∩Y,B =

C2 ∩ Y . Thus A ∪B = (C1 ∪ C2) ∩A ∈ IY . So IY is an ideal on Y . □

Definition 4.2. Let Y ⊆ X,RY = R∩ (Y ×Y ) ⊆ R and IY ⊆ I. Then (Y,RY , IY )
is called an ideal closure subspace of an ideal closure space (X,R, I), if ⟨x⟩RY =
⟨x⟩R ∩ Y for all x ∈ Y.

Lemma 4.3. Let (Y,RY , IY ) be an ideal closure subspace of an ideal closure space
(X,R, I). Then ⟨x⟩RY = ⟨x⟩R ∩ Y for all x ∈ Y iff RY (A) = R(A) ∩ Y for all
A ⊆ Y.

Proof. Suppose ⟨x⟩RY = ⟨x⟩R ∩ Y for all x ∈ Y. We want to show that RY (A) =
R(A) ∩ Y for all A ⊆ Y. Then

R(A) ∩ Y = (A ∪ {x ∈ X : ⟨x⟩R ∩A /∈ I}) ∩ Y

= (A ∩ Y ) ∪ ({x ∈ Y : ⟨x⟩R ∩A /∈ I})
= A ∪ {x ∈ Y : ⟨x⟩RY ∩A /∈ IA}
= RY (A).

Conversely, suppose that RY (A) = R(A) ∩ Y for all A ⊆ Y. Then

RY (A) = A ∪ {x ∈ Y : ⟨x⟩RY ∩A /∈ IY }
= (A ∪ {x ∈ X : ⟨x⟩R ∩A /∈ I}) ∩ Y

= (A ∩ Y ) ∪ ({x ∈ Y : ⟨x⟩R ∩A /∈ I})
= A ∪ {x ∈ Y : (⟨x⟩R ∩ Y ) ∩A /∈ I}.

Thus we have ⟨x⟩RY = ⟨x⟩R ∩ Y for all x ∈ Y. □

Corollary 4.4. Let (X,R, I) be an ideal closure space and Y ⊆ X. Then (Y,RY , IY )
is an ideal closure subspace iff RY (A) = R(A) ∩ Y for all A ⊆ Y.

Proof. The proof is straightforward from Definition 4.2 and Lemma 4.3. □

The following Lemma show that the ideal closure subspace (Y,RY , IY ) is a topo-
logical space.

Lemma 4.5. An ideal closure subspace (Y,RY , IY ) of an ideal closure space (X,R, I)
is a topological space.
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Proof. We want only show that the closure operator RY is idempotent. Let A ⊆ Y.
Then

RY (RY (A)) = RY (R(A) ∩ Y )

= R(R(A) ∩ Y ) ∩ Y

⊆ R(R(A)) ∩R(Y ) ∩ Y

⊆ R(A) ∩ Y

⊆ RY (A).

Note that RY (A) ⊆ RY (RY (A)). Then RY (RY (A)) = RY (A). Thus RY is idempo-
tent. □

Theorem 4.6. Let (Y,RY , IY ) be an ideal closure subspace of an ideal closure space
(X,R, I) and A ⊆ Y. Then

(1) d∗Y (A) = d∗(A) ∩ Y,
(2) R(A) ∩ Y ⊆ RY (A) and R(A) ∩ Y ̸= RY (A).

Proof. (1) Let x ∈ d∗Y (A) for each x ∈ Y . Then (⟨x⟩RY − {x}) ∩ A /∈ IY . Thus
((< x > R − {x}) ∩ A) ∩ Y /∈ IY . So (⟨x⟩R − {x}) ∩ A /∈ I. Hence, x ∈ d∗(A) and
x ∈ d∗(A) ∩ Y, i.e.,

(4.1) d∗Y (A) ⊆ d∗(A) ∩ Y.

Conversely, let x ∈ d∗(A) ∩ Y. Then. x ∈ d∗(A). Thus (⟨x⟩R − {x}) ∩ A) /∈ I, i.e.,
((⟨x⟩R− {x}) ∩A) ∩ Y /∈ IY . So (⟨x⟩RY − {x}) ∩A /∈ IY . Hence x ∈ d∗Y (A), i.e.,

(4.2) d∗(A) ∩ Y ⊆ d∗Y (A).

Therefore from 4.1 and 4.2, we have d∗Y (A) = d∗(A) ∩ Y.
(2) Let x ∈ R(A)∩Y. Then x ∈ R(A). Thus ⟨x⟩R∩Ac ∈ I. So (⟨x⟩R∩Y )∩Ac) ∈

IY , i.e., ⟨x⟩RY ∩Ac ∈ IY . Hence x ∈ RY (A). Therefore R(A) ∩ Y ⊆ RY (A).
On the other hand, LetX = {a, b, c, d}, R = {(a, a), (a, c), (a, d), (b, b), (b, c), (c, c), (d, d)},

I = {ϕ, {a}, {d}, {a, d}}, Y = {a, b} and A = {a}. Then we have

⟨a⟩R = {a, c, d}, ⟨b⟩R = {b, c}, ⟨c⟩R = {c}, ⟨d⟩R = {d}.

Thus R(A) = {a : ⟨a⟩R ∩ {a}c ∈ I} = ϕ, RY = {(a, a), (b, b)} and IY = {ϕ, {a}}.
So ⟨a⟩RY = {a}, ⟨b⟩RY = {b}. Hence RY (A) = {a : ⟨a⟩RY ∩ {a}c ∈ IY } = {a}.
Hence R(A) ∩ Y ̸= RY (A). □

5. Lower separation axioms in ideal approximation spaces

Definition 5.1. (i) An approximation space (X,R) is called a T0-space, if ∀x ̸= y ∈
X, there exists A ⊆ X such that

x ∈ R
∼
(A), y /∈ A or y ∈ R

∼
(A), x /∈ A.

(ii) An ideal approximation space (X,R, I) is called a T ∗
0 -space, if ∀x ̸= y ∈ X

there exists A ⊆ X such that

x ∈ R(A), y /∈ A or y ∈ R(A), x /∈ A.
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(iii) An ideal approximation space (X,R, I) is called a T ∗∗
0 -space, if ∀x ̸= y ∈ X

there exists A ⊆ X such that

x ∈ R(A), y /∈ A or y ∈ R(A), x /∈ A.

Proposition 5.2. For an ideal approximation space (X,R, I), the following are
equivalent:

(1) X is a T ∗
0−space,

(2) R({x}) ̸= R({y}) for each x ̸= y ∈ X,
(3) (Y,RY , IY ) is a T ∗

0−space for each Y ⊆ X.

Proof. (1) ⇒ (2): Suppose (1) holds and let x ̸= y ∈ X. Then there exists A ⊆ X
such that x ∈ R(A), y /∈ A. Thus ⟨x⟩R ∩Ac ∈ I, y ∈ Ac. So ⟨x⟩R ∩ {y} ∈ I. Hence
by Proposition 3.3 (1), x /∈ R({y}). By the same way, we can prove that y /∈ R({x}).
Therefore R({x}) ̸= R({y}).

(2) ⇒ (3): Suppose (2) holds, and let Y ⊆ X and x ̸= y ∈ Y. Then x ̸= y ∈ X
and by (2), x /∈ R({y}) or y /∈ R({x}). Thus by Proposition 3.3 (1), ⟨x⟩R∩ {y} ∈ I
or ⟨y⟩R ∩ {x} ∈ I, i.e.,

x ∈ RY ({y}c), y /∈ {y}c or y ∈ RY ({x}c), x /∈ {x}c.
So (Y,RY , IY ) is a T ∗

0 -space.
(3) ⇒ (1): Suppose (3) holds and let x ̸= y ∈ X. Then there exists Y ⊆ X such

that x ̸= y ∈ Y. By (3), there exists A ⊆ Y such that

x ∈ RY (A), y /∈ A or y ∈ RY (A), x /∈ A.

Then ⟨x⟩RY ∩Ac ∈ IY , y /∈ Ac or ⟨y⟩RY ∩Ac ∈ IY , x /∈ Ac. Thus we get

⟨x⟩R ∩Ac ∈ I, y /∈ Ac or ⟨y⟩R ∩Ac ∈ I, x /∈ Ac.

So ⟨x⟩R ∩ {y} ∈ I or ⟨y⟩R ∩ {x} ∈ I. Hence we have

x ∈ R({y}c), y /∈ {y}c or y ∈ R({x}c), x /∈ {x}c.
Therefore X is a T ∗

0 -space. □

Corollary 5.3. For an approximation space (X,R), the following are equivalent:

(1) X is a T0-space,
(2) for each x ̸= y ∈ X, either x /∈ ⟨y⟩R or y /∈ ⟨x⟩R,

(3)
∼
R({x}) ̸=

∼
R({y}) for each x ̸= y ∈ X,

(4) (Y,RY ) is a T0-space for each Y ⊆ X.

Corollary 5.4. For an ideal approximation space (X,R, I), the following are equiv-
alent:

(1) X is a T ∗∗
0 -space,

(2) R({x}) ̸= R({y}) for each x ̸= y ∈ X.
(3) (Y,RY , IY ) is a T ∗∗

0 -space for each Y ⊆ X.

Definition 5.5. (i) An approximation space (X,R) is called a T1-space, if ∀x ̸= y ∈
X, there exists A, B ⊆ X such that

x ∈ R
∼
(A), y /∈ A and y ∈ R

∼
(B), x /∈ B.
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(ii) An ideal approximation space (X,R, I) is called a T ∗
1 -space, if ∀x ̸= y ∈ X,

there exists A, B ⊆ X such that

x ∈ R(A), y /∈ A and y ∈ R(B), x /∈ B.

(iii) An ideal approximation space (X,R, I) is called a T ∗∗
1 -space, if ∀x ̸= y ∈ X,

there exists A, B ⊆ X such that

x ∈ R(A), y /∈ A and y ∈ R(B), x /∈ B.

Proposition 5.6. For an ideal approximation space (X,R, I), the following are
equivalent:

(1) X is a T ∗
1 -space,

(2) R({x}) = {x} for each x ∈ X,
(3) d∗({x}) = ϕ for each x ∈ X,
(4) (Y,RY , IY ) is a T ∗

1 -space for each Y ⊆ X.

Proof. (1) ⇒ (2): Suppose (X,R, I) is T ∗
1 -space and let x ∈ X. Then for y ∈

X−{x}, x ̸= y and ∃A ⊆ X such that y ∈ R(A), x /∈ A. Thus ⟨y⟩R∩Ac ∈ I, x ∈ Ac.
So ⟨y⟩R ∩ {x} ∈ I, i.e., y /∈ R({x}). Hence

R({x}) = {x}.
(2) ⇒ (3): Suppose (2) holds and let x ∈ X. Then R({x}) = {x} ∪ d∗({x}) but

x /∈ d∗({x}). Thus
d∗({x}) = ϕ.

(3) ⇒ (4): Suppose (3) holds and let x ̸= y ∈ Y for each Y ⊆ X. Then clearly,
x ̸= y ∈ X. By (3), d∗Y ({x}) = d∗Y ({y}) = ϕ. By Theorem 4.6 (1), d∗({x}) =

d∗({y}) = ϕ. Thus RY ({x}) = {x} and RY ({y}) = {y}, i.e., RY ({x}c) = {x}c and
RY ({y}c) = {y}c. So there exist {x}c and {y}c ⊆ Y such that

y ∈ RY ({x}c), x /∈ {x}c and x ∈ RY ({y}c), y /∈ {y}c.
Hence (Y,RY , IY ) is a T ∗

1 -space.
(4) ⇒ (1): Suppose (4) holds and and let x ̸= y ∈ X. Then clearly, there exists

Y ⊆ X such that x ̸= y ∈ Y. By (4), there exist A, B ⊆ Y such that

x ∈ RY (A), y /∈ A) and y ∈ RY (A), x /∈ A.

Thus ⟨x⟩R ∩ {y} ∈ I and ⟨y⟩R ∩ {x} ∈ I. So we have

x ∈ R({y}c), y /∈ {y}c and y ∈ R({x}c), x /∈ {x}c).
Hence X is a T ∗

1 -space. □

Corollary 5.7. For an approximation space (X,R), the following are equivalent:

(1) X is a T1-space,
(2) for each x ̸= y ∈ X, x /∈ ⟨y⟩R and y /∈ ⟨x⟩R,

(3)
∼
R({x}) = {x} for each x ∈ X,

(4) d({x}) = ϕ for each x ∈ X,
(5) (Y,RY ) is a T1-space for each Y ⊆ X.

Corollary 5.8. For an ideal approximation space (X,R, I), the following are equiv-
alent:
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(1) X is a T ∗∗
1 -space,

(2) R({x}) = {x} for each x ∈ X,
(3) d∗∗({x}) = ϕ for each x ∈ X,
(4) (Y,RY , IY ) is a T ∗∗

1 -space for each Y ⊆ X.

Definition 5.9. (i) An approximation space (X,R) is called an R0-space, if it
satisfies the following condition: for any x ̸= y ∈ X,

∼
R({x}) =

∼
R({y}) or

∼
R({x}) ∩

∼
R({y}) = ϕ.

(ii) An ideal approximation space (X,R, I) is called an R∗
0-space, if it satisfies

the following condition: for any x ̸= y ∈ X,

R({x}) = R({y}) or R({x}) ∩R({y}) = ϕ.

(iii) An ideal approximation space (X,R, I) is called an R∗∗
0 -space, if it satisfies

the following condition: for any x ̸= y ∈ X,

R({x}) = R({y}) or R({x}) ∩R({y}) = ϕ.

Proposition 5.10. For an ideal approximation space (X,R, I), the following are
equivalent:

(1) X is an R∗
0-space,

(2) if x ∈ R({y}), then y ∈ R({x}) for all x ̸= y ∈ X.

Proof. (1) ⇒ (2): Suppose (1) holds, and et x and y be two distinct points in
(X,R, I). Then clearly, R({x}) = R({y}) or R({x}) ∩R({y}) = ϕ.

If R({x}) = R({y}), then y ∈ R({x}) and x ∈ R({y}).
If R({x}) ∩ R({y}) = ϕ, then {x} ∩ R({y}) = ϕ and {y} ∩ R({x}) = ϕ. Thus

x /∈ R({y}) and y /∈ R({x})). So x /∈ R({y}) and y /∈ R({x}). Hence in either case,
(2) holds.

(2) ⇒ (1): Suppose (2) holds and let x ̸= y ∈ X. The we have

either x ∈ R({y}) and y ∈ R({x}) or x /∈ R({y}) and y /∈ R({x}).

If x ∈ R({y}) and y ∈ R({x}), then

(5.1) R({x}) = R({y}).

If x /∈ R({y}) and y /∈ R({x}), then

(5.2) R({x}) ∩R({y}) = ϕ.

From (5.1) and (5.2), the proof is complete. □

Corollary 5.11. For an approximation space (X,R), the following are equivalent:

(1) X is an R0-space,
(2) if x ∈ ⟨y⟩R, then y ∈ ⟨x⟩R for all x ̸= y ∈ X.

Corollary 5.12. For an ideal approximation space (X,R, I), the following are equiv-
alent:

(1) X is an R∗∗
0 -space,

(2) if x ∈ R({y}), then y ∈ R({x}) for all x ̸= y ∈ X.
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Definition 5.13. (i) An approximation space (X,R) is called a T2-space, if ∀x ̸=
y ∈ X, there exist A, B ⊆ X such that

x ∈ R
∼
(A), y ∈ R

∼
(B) and A ∩B = ϕ.

(ii) An ideal approximation space (X,R, I) is called a T ∗
2 -space, if ∀x ̸= y ∈ X,

there exist A, B ⊆ X such that

x ∈ R(A), y ∈ R(B) and A ∩B = ϕ.

(iii) An ideal approximation space (X,R, I) is called a T ∗∗
2 -space, if ∀x ̸= y ∈ X,

there exist A, B ⊆ X such that

x ∈ R(A), y ∈ R(B) and A ∩B = ϕ.

Theorem 5.14. For an ideal approximation space (X,R, I), the following are equiv-
alent:

(1) X is a T ∗
2 -space,

(2) ∃A ⊆ X : x ∈ R(A), y ∈ (R(A))c for all x ̸= y ∈ X.

Proof. (1) ⇒ (2): Suppose X is a T ∗
2 -space and let ∀x ̸= y ∈ X. Then there exist

A, B ⊆ X such that x ∈ R(A), y ∈ R(B) and A∩B = ϕ. Thus ⟨y⟩R ∩Bc ∈ I and
A ⊆ Bc. So (⟨y⟩R − {x}) ∩ A ∈ I, i.e., y /∈ d∗(A). Hence R(B) ∩ d∗(A) = ϕ and
R(B) ∩A = ϕ, i.e., R(B) ∩R(A) = ϕ. Therefore x ∈ R(A), y ∈ R(B) ⊆ (R(A))c.

(2) ⇒ (1): Suppose (2) holds and let x ̸= y ∈ X. Then by (2), there exists
A ⊆ X such that x ∈ R(A), y ∈ (R(A))c. Let B = (R(A))c. Then B = R(Ac)
from Theorem 2.6 (1 and thus R(B) = R(R(Ac)) = R(Ac) = B. Also A ∩ B =
A ∩R(Ac) ⊆ A ∩Ac = ϕ. So X is a T ∗

2 -space. □

Corollary 5.15. For an approximation space (X,R), the following are equivalent:

(1) X is a T2-space,

(2) ∃A ⊆ X : x ∈ R
∼
(A), y ∈ (

∼
R(A))c for all x ̸= y ∈ X.

Corollary 5.16. For an ideal approximation space (X,R, I), the following are equiv-
alent:

(1) X is a T ∗∗
2 -space,

(2) ∃A ⊆ X : x ∈ R(A), y ∈ (R(A))c for all x ̸= y ∈ X.

Corollary 5.17. For an ideal approximation space (X,R, I), the following are holds:
(1) T1 = R0 + T0,
(2) T ∗

1 = R∗
0 + T ∗

0 ,
(3) T ∗∗

1 = R∗∗
0 + T ∗∗

0 .

Proof. Immediately derived from Definition 5.9, Proposition 5.2, 5.6 and Corollary
5.3, 5.4, 5.7 and 5.8. □

Remark 5.18. From Definition 5.1, 5.5 and 5.13 we have the following implication.
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Figure 1. Implication

We introduce the following examples to show that the implication is not reversible.
Also, examples show that R0 ⇎ T0, R0 ⇎ R∗

0, R
∗
0 ⇎ T ∗

0 , R
∗
0 ⇎ R∗∗

0 and R∗∗
0 ⇎ T ∗∗

0 .

Example 5.19. (1) Let X = {a, b, c}, R = {(a, a), (a, b), (b, b), (c, c)}. Then ⟨a⟩R =
{a, b}, ⟨b⟩R = {b}, ⟨c⟩R = {c}. Thus ⟨a⟩R ∩ {c} = ⟨b⟩R ∩ {a} = ⟨b⟩R ∩ {c} = ϕ.

So
∼
R({a}) ̸=

∼
R({b}) ̸=

∼
R({c}). Hence X is a T0-space. But (⟨a⟩R − {a}) ∩ {b} =

{b} ≠ ϕ. Then d({b}) ̸= ϕ. Thus X is not a T1-space. Also, b ∈ ⟨a⟩R but a /∈ ⟨b⟩R.
Thus X is not an R0-space.

(2) In (1), if I = {ϕ, {a}, {c}, {a, c}}, then ⟨a⟩R ∩ {c} =< b > R ∩ {a} =
⟨b⟩R ∩ {c} = ϕ ∈ I. Thus R({a}) ̸= R({b}) ̸= R({c}). So X is a T ∗

0 -space. But
(⟨a⟩R − {a}) ∩ {b} /∈ I. Then d∗({b}) ̸= ϕ. Thus X is not a T ∗

1 -space. Also,
a ∈ R({b}) but b /∈ R({a}). Then X is not an R∗

0-space.
(3) Let X = {a, b, c}, R = {(a, a), (a, b), (b, a), (b, b), (c, c)} and I = {ϕ, {c}}. Then

⟨a⟩R = {a, b}, ⟨b⟩R = {a, b}, ⟨c⟩R = {c}. Thus we have
(i) for a ̸= b, b ∈ ⟨a⟩R and a ∈ ⟨b⟩R,
(ii) for b ̸= c, b /∈ ⟨c⟩R and c /∈ ⟨b⟩R,
(iii) for a ̸= c, a /∈ ⟨c⟩R and c /∈ ⟨a⟩R.

So X is an R0-space. But b ∈ ⟨a⟩R and a ∈ ⟨b⟩R. Then X is not a T0-space.
(4) From (3), we have the following cases.
If a ̸= b, then ⟨a⟩R ∩ {b} /∈ I and ⟨b⟩R ∩ {a} /∈ I. Thus a ∈ R({b}) and b ∈

R({a}).
If b ̸= c, then ⟨b⟩R∩ {c} = ⟨c⟩R∩ {b} = ϕ ∈ I. Thus b /∈ R({c}) and c /∈ R({b}).
If a ̸= c, then ⟨a⟩R∩{c} = ⟨c⟩R∩{a} = ϕ ∈ I. Thus a /∈ R({c}) and c /∈ R({a}).

So X is an R∗
0-space. But R({a}) = R({b}) = {a, b}. Then X is not a T ∗

0 -space.
(5) From (3), (⟨b⟩R−{b})∩{a} = {a} ≠ ϕ. Then d({a}) ̸= ϕ. Thus X is not a T1-

space. But if I = {ϕ, {a}, {b}, {a, b}}, then ⟨b⟩R∩{a} ∈ I and ⟨c⟩R∩{a} = ϕ ∈ I.
Thus R({a}) = {a}, ⟨a⟩R ∩ {b} ∈ I and ⟨c⟩R ∩ {b} = ϕ ∈ I. So R({b}) = {b},
⟨b⟩R ∩ {c} ∈ I and ⟨a⟩R ∩ {c} = ϕ ∈ I. Hence R({c}) = {c}. Therefore X is a
T ∗
1 -space.
(6) From (5), X is T ∗

0 but is not T0.
(7) In (1), suppose I = {ϕ, {b}}. Then we have the following cases:
If a ̸= b, ⟨a⟩R ∩ {b} ∈ I and ⟨b⟩R ∩ {a} ∈ I, Then a /∈ R({b}) and b /∈ R({a}).
If b ̸= c, ⟨b⟩R ∩ {c} = ⟨c⟩R ∩ {b} = ϕ ∈ I, then b /∈ R({c}) and c /∈ R({b}).
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If a ̸= c, ⟨a⟩R ∩ {c} = ⟨c⟩R ∩ {a} = ϕ ∈ I then a /∈ R({c}) and c /∈ R({a}).

Thus X is an R∗
0-space. But b ∈ ⟨a⟩R and a /∈ ⟨b⟩R. Then X is not an R0-space.

(8) In (3), X is not an R0-space. But b ∈ R({a}) and a /∈ R({b}). Then X is not
an R∗

0-space.

Example 5.20. (1) Let X = {a, b, c}, R = {(a, a), (a, b), (b, a), (b, b), (c, c)} and
I = {ϕ, {b}}. Then ⟨a⟩R = {a, b}, ⟨b⟩R = {a, b}, ⟨c⟩R = {c}. Also, R ⟨a⟩ =
{a, b}, R ⟨b⟩ = {a, b}, R ⟨c⟩ = {c}. ThusR ⟨a⟩R = {a, b}, R ⟨b⟩R = {a, b}, R ⟨c⟩R =

{c}. So R ⟨a⟩R ∩ {b} ∈ I, R ⟨a⟩R ∩ {c} = R ⟨b⟩R ∩ {c} = ϕ ∈ I. Hence R({a}) ̸=
R({b}) ̸= R({c}). Therefore X is a T ∗∗

0 -space. But (R ⟨b⟩R− {b}) ∩ {a} /∈ I. Then
d∗({a}) ̸= ϕ. Thus X is not a T ∗∗

1 -space. Also, a ∈ R({b}) but b /∈ R({a}). Then X
is not an R∗∗

0 -space.
(2) In (1), suppose I = {ϕ, {c}}. Then we have the following cases.

For a ̸= b, R ⟨a⟩R ∩ {b} /∈ I and R ⟨b⟩R ∩ {a} /∈ I, then a ∈ R({b}) and

b ∈ R({a}).
For b ̸= c, R ⟨b⟩R∩{c} = R ⟨c⟩R∩{b} = ϕ ∈ I, then b /∈ R({c}) and c /∈ R({b}).
For a ̸= c, R ⟨a⟩R∩{c} = R ⟨c⟩R∩{a} = ϕ ∈ I, then a /∈ R({c}) and c /∈ R({a}).

Thus,X is anR∗∗
0 -space. ButR({a}) = R({b}) = {a, b}. ThenX is not a T ∗∗

0 −space.
(3) From (2), X is an R∗∗

0 -space. But ⟨b⟩R ∩ {c} /∈ I and ⟨c⟩R ∩ {b} ∈ I Then
b ∈ R({c}) but c /∈ R({b}). Thus X is not an R∗∗

0 -space.
(4) Let X = {a, b, c}, R = {(a, a), (a, b), (b, c), c, c)} and I = {ϕ, {c}}. Then

⟨a⟩R = {a, b}, ⟨b⟩R = {a, b}, ⟨c⟩R = {c}.Also, R ⟨a⟩ = {a}, R ⟨b⟩ = {b, c}, R ⟨c⟩ =
{b, c}. Thus R ⟨a⟩R = {a}, R ⟨b⟩R = {b}, R ⟨c⟩R = {c}. So we have

(i) R ⟨b⟩R ∩ {a} = R ⟨c⟩R ∩ {a} = ϕ ∈ I, i.e., R({a}) = {a}.
(ii) R ⟨a⟩R ∩ {b} = R ⟨c⟩R ∩ {b} = ϕ ∈ I, i.e., R({b}) = {b}.
(iii) R ⟨b⟩R ∩ {c} = R ⟨a⟩R ∩ {c} = ϕ ∈ I, i.e., R({c}) = {c}.

Hence X is a T ∗∗
1 -space. But ⟨b⟩R ∩ {a} = {a} /∈ I. Then R({a}) ̸= {a}. Thus X

is not a T ∗
1 -space.

(5) From (4), X is T ∗∗
0 . But R({a}) = R({b}) = {a, b}. ThenX is not a T ∗

0−space.
(6) LetX = {a, b, c}, R = {(a, a), (a, b), (b, a), (b, b), (b, c), (c, c)} and I = {ϕ, {c}}.

Then ⟨a⟩R = {a, b}, ⟨b⟩R = {a, b}, ⟨c⟩R = {c}. Also, R ⟨a⟩ = {a, b}, R ⟨b⟩ =
{b}, R ⟨c⟩ = {b, c}. Thus R ⟨a⟩R = {a, b}, R ⟨b⟩R = {b}, R ⟨c⟩R = {c}. So we have
the following cases.

(i) For a ̸= b, ⟨a⟩R ∩ {b} /∈ I and ⟨b⟩R ∩ {a} /∈ I, i.e., a ∈ R({b}) and
b ∈ R({a}).

(ii) For b ̸= c, ⟨b⟩R∩{c} = ⟨c⟩R∩{b} = ϕ ∈ I, i.e., b /∈ R({c}) and c /∈ R({b}).
(iii) For a ̸= c, ⟨a⟩R∩{c} = ⟨c⟩R∩{a} = ϕ ∈ I, i.e., a /∈ R({c}) and c /∈ R({a}).

Hence X is an R∗
0-space. But R ⟨a⟩R ∩ {b} /∈ I and R ⟨b⟩R ∩ {a} ∈ I. Then

a ∈ R({b}) but b /∈ R({a}). Thus X is not an R∗∗
0 -space.
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Example 5.21. (1) Let X be an infinite set and R = X × X. If If is an ideal of
finite subsets of X, then

R
∼
(A) =

{
A if Ac is finite,
ϕ otherwise.

Thus ∀x ̸= y ∈ X, we have

x ∈ R
∼
({y}c) = {y}c, y /∈ {y}c and y ∈ R

∼
({x}c) = {x}c, x /∈ {x}c.

So X is a T1-space. But X is not a T2 space, since if x ∈ R
∼
(A), y ∈ R

∼
(B) and

A∩B = ϕ, then R
∼
(A)∩R

∼
(B) = ϕ and R

∼
(A) ⊆ (R

∼
(B))c which is impossible because

R
∼
(A) is infinite and (R

∼
(B))c is finite.

(2) In (1), we have

R(A) = R(A) =

{
A if Ac ∈ If ,
ϕ otherwise.

Then ∀x ̸= y ∈ X, we have

x ∈ R({y}c) = R({y}c) = {y}c, y /∈ {y}c and y ∈ R({x}c) = R({x}c) = {x}c, x /∈ {x}c.
Thus X is T ∗

1 and T ∗∗
1 . But X is neither T ∗

2 nor T ∗∗
2 .

(3) In Example 5.19 (1), if I = {ϕ, {a}, {b}, {a, b}}, then R({a}) = {a}, R({b}) =
{b} and R({c}) = {c}. Thus X is a T ∗

2 -space. But X is not a T2-space, since it is
not T1.

(4) In Example 5.20 (4), we have R({a}) = {a}, R({b}) = {b} and R({c}) = {c}.
Then X is a T ∗∗

2 -space. But, X is not a T ∗
2 -space, since it is not T ∗

1 .

Definition 5.22. Let (X,R1) and (Y,R2) are approximation spaces and let I be
an ideal on X. Then

(i) a function f : (X,R1) −→ (Y,R2) is said to be continuous, if R1
∼
(f−1(V )) ⊇

f−1(R2
∼
(V )), i.e.,

∼
R1(f

−1(V )) ⊆ f−1(
∼
R2(V )) for all V ∈ Y.

(ii) a function f : (X,R1, I) −→ (Y,R2) is said to be ∗-continuous (resp. ∗∗-
continuous), if R1(f

−1(V )) ⊇ f−1(R2
∼
(V )) (resp. R1(f

−1(V )) ⊇ f−1(R2
∼
(V ))), i.e.,

R1(f
−1(V )) ⊆ f−1(

∼
R2(V ) (resp. R1(f

−1(V )) ⊆ f−1(
∼
R2(V )) for all V ∈ Y.

Remark 5.23. From Theorem 2.8 (3), we have the following diagram:

Continuous =⇒ *-continuous =⇒ **-continuous.

Next example show that the implication in the diagram is not reversible.

Example 5.24. Let X = {a, b, c}, R1 = {(a, a), (a, b), (a, c), (b, b), (b, c)} and let
Y = {1, 2, 3}, R2 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. Then ⟨a⟩R1 = {a, b, c}, ⟨b⟩R1 =
{b, c}, ⟨c⟩R1 = {b, c}. Also, R1 ⟨a⟩ = {a}, R1 ⟨b⟩ = {a, b}, R1 ⟨c⟩ = ϕ. Thus

R1 ⟨a⟩R1 = {a}, R1 ⟨b⟩R1 = {b}, R1 ⟨c⟩R1 = ϕ.

On the other hand, ⟨1⟩R2 = {1, 2}, ⟨2⟩R2 = {1, 2}, ⟨3⟩R2 = {3}. Also, R2 ⟨1⟩ =
{1, 2}, R2 ⟨2⟩ = {1, 2}, R2 ⟨3⟩ = {3}. So

R2 ⟨1⟩R2 = {1, 2}, R2 ⟨2⟩R2 = {1, 2}, R2 ⟨3⟩R2 = {3}.
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Let f : (X,R1, I) −→ (Y,R2) be the mapping given by f(a) = f(b) = 1, f(c) = 3.
(1) Consider I = {ϕ, {b}, {c}, {b, c}}. Then we have

R1(f
−1({1})) = {a, b} ⊇ f−1(R2

∼
({1})) = ϕ,

R1(f
−1({2})) = ϕ ⊇ f−1(R2

∼
({2})) = ϕ,

R1(f
−1({3})) = {c} ⊇ f−1(R2

∼
({3})) = {c},

R1(f
−1({1, 2})) = {a, b} ⊇ f−1(R2

∼
({1, 2})) = {a, b},

R1(f
−1({1, 3})) = X ⊇ f−1(R2

∼
({1, 3})) = {c},

R1(f
−1({2, 3})) = {c} ⊇ f−1(R2

∼
({2, 3})) = {c}.

Thus f is ∗-continuous. But f is not continuous, since R1
∼
(f−1({3})) = ϕ ⊉

f−1(R2
∼
({3})) = {c}.

(2) Consider I = {ϕ, {a}}. Then we get

R1(f
−1({1})) = {a, b} ⊇ f−1(R2

∼
({1})) = ϕ,

R1(f
−1({2})) = ϕ ⊇ f−1(R2

∼
({2})) = ϕ,

R1(f
−1({3})) = {c} ⊇ f−1(R2

∼
({3})) = {c},

R1(f
−1({1, 2})) = {a, b} ⊇ f−1(R2

∼
({1, 2})) = {a, b},

R1(f
−1({1, 3})) = X ⊇ f−1(R2

∼
({1, 3})) = {c},

R1(f
−1({2, 3})) = {c} ⊇ f−1(R2

∼
({2, 3})) = {c}.

Thus f is ∗∗-continuous. But f is not ∗-continuous, since R1(f
−1({1, 2})) = ϕ ⊉

f−1(R2
∼
({1, 2})) = {a, b}.

Theorem 5.25. Let f : (X,R1) −→ (Y,R2) be an injective continuous function.
Then (X,R1, I) is a T ∗

i -space, if (Y,R2) is a Ti-space for i = 0, 1, 2.

Proof. Suppose (Y,R2) is a Ti-space for i = 0, 1, 2 and let x ̸= y in X. We
proof for i = 2. Since f is injective, f(x) ̸= f(y) in Y . Then by the hypothesis,
there exist V, W ⊆ Y such that f(x) ∈ R1

∼
(V ), f(y) ∈ R2

∼
(W ) and V ∩W = ϕ, i.e.,

x ∈ f−1(R2
∼
(V )), y ∈ f−1(R2

∼
(W )) and f−1(V )∩f−1(W ) = ϕ. Since f is continuous,

x ∈ R1
∼
(f−1(V )), y ∈ R2

∼
(f−1(W )). Thus x ∈ R1(f

−1(V )), y ∈ R1(f
−1(W )) i.e.,

there exist A = f−1(V ), B = f−1(W ) in X such that x ∈ R1(A), y ∈ R1(B) and
A ∩B = ϕ. So (X,R1, I) is a T ∗

2 -space. For i = 0, 1, the proofs are similar. □

Corollary 5.26. Let f : (X,R1) −→ (Y,R2) be an injective continuous function.
Then (X,R1, I) is a T ∗∗

i -space, if (Y,R2) is a Ti-space for i = 0, 1, 2.
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6. Connectedness in ideal approximation spaces

Definition 6.1. Let (X,R) be an approximation space. Then (i) A, B ⊆ X are

called separated sets, if
∼
R(A) ∩B = A ∩

∼
R(B) = ϕ,

(ii) Y ⊆ X is called a disconnected set, if there exist separated sets A B ⊆ X
such that Y ⊆ A ∪B. Y is said to be connected, if it is not disconnected.

(iii) (X,R) is called a disconnected space, if there exist separated sets A, B ⊆ X
such that A ∪ B = X. (X,R) is called a connected space, if it is not disconnected
space.

Definition 6.2. Let (X,R, I) be an ideal approximation space. Then (i) A, B ⊆ X
are called ∗-separated (resp. ∗∗-separated) sets, if R(A) ∩ B = A ∩ R(B) = ϕ (resp.

R(A) ∩B = A ∩R(B) = ϕ).
(ii) Y ⊆ X is called a ∗-disconnected (resp. ∗∗-disconnected) set, if there exist ∗-

separated (resp. ∗∗-separated) sets A, B ⊆ X such that Y ⊆ A∪B. Y is said to be
∗-connected (resp. ∗∗-connected), if it is not ∗-disconnected (resp. ∗∗-disconnected).

(iii) (X,R, I) is called a ∗-disconnected (resp. ∗∗-disconnected) space, if there ex-
ists ∗-separated (resp. ∗∗-separated) sets A, B ⊆ X such that A∪B = X. (X,R, I)
is called a ∗-connected (resp. ∗∗-connected) space, if it is not a ∗-disconnected (resp.
∗∗-disconnected) space.

Remark 6.3. We have the following diagrams:

separated =⇒ *-separated =⇒ **-separated.

And then

**-connected =⇒ *-connected =⇒ connected.

Next examples show that the Implication in the diagrams is not reversible.

Example 6.4. LetX = {a, b, c, d}, R = {(a, a), (a, b), (b, b), (b, c), (c, c), (d, d), (d, b)}.
Then ⟨a⟩R = {a, b}, ⟨b⟩R = {b}, ⟨c⟩R = {c}, ⟨d⟩R = {b, d}. Also, R ⟨a⟩ =
{a}, R ⟨b⟩ = {b}, R ⟨c⟩ = {b, c}, R ⟨d⟩ = {d}. Thus R ⟨a⟩R = {a}, R ⟨b⟩R =
{b}, R ⟨c⟩R = {c}, R ⟨d⟩R = {d}.

(1) Consider I = {ϕ, {b}} and A = {a, c}, B = {b, d}. Then we have

∼
R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩A ̸= ϕ} = {a, c} and

∼
R(B) = {a, b, d},

R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩A /∈ I} = {a, c} and R(B) = {b, d}.

Thus R(A)∩B = A∩R(B) = ϕ but A∩
∼
R(B) = {a} ≠ ϕ. So A, B are ∗-separated

sets but are not separated sets.
(2) Consider I = {ϕ, {d}} and A = {b}, B = {a, d}. Then we get

R(A) = A ∪ {x ∈ X : ⟨x⟩R ∩A /∈ I} = {a, b, d} and R(B) = {a, d},

R(A) = A ∪ {x ∈ X : R ⟨x⟩R ∩A /∈ I} = {b} and R(B) = {a, d}.

Thus R(A)∩B = A∩R(B) = ϕ but R(A)∩B = {a} ≠ ϕ. So A, B are ∗∗-separated
sets but are not ∗-separated sets.
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Example 6.5. LetX = {a, b, c}, R = {(a, a), (a, b), (a, c), (b, b), (b, c)}. Then ⟨a⟩R =
{a, b, c}, ⟨b⟩R = {b, c}, ⟨c⟩R = {b, c}. Also, R ⟨a⟩ = {a}, R ⟨b⟩ = {a, b}, R ⟨c⟩ = ϕ.
Thus R ⟨a⟩R = {a}, R ⟨b⟩R = {b}, R ⟨c⟩R = ϕ.

(1) Consider I = {ϕ, {b}, {c}, {b, c}}. Then we have
∼
R({b}) =

∼
R({c}) =

∼
R({b, c}) =

∼
R({a, b}) =

∼
R({a, c}) = X,

∼
R({a}) = {a}.

Thus X is a connected space. But we get

X = {a} ∪ {b, c}, R({a}) ∩ {b, c} = {a} ∩R({b, c}) = ϕ.

So X is not a ∗-connected space.
(2) Consider I = {ϕ, {a}}. Then we get

R({b}) = R({c}) = R({b, c}) = R({a, b}) = R({a, c}) = X, R({a}) = {a}.
Thus X is a ∗-connected space. But we have

X = {a} ∪ {b, c}, R({a}) ∩ {b, c} = {a} ∩R({b, c}) = ϕ.

So X is not a ∗∗-connected space.

Proposition 6.6. Let (X,R, I) be an ideal approximation space. Then the following
are equivalent:

(1) X is ∗-connected,
(2) for each A, B ⊆ X with A∩B = ϕ, R(A) = A, R(B) = B and A∪B = X,

A = ϕ or B = ϕ,
(3) for each A, B ⊆ X with A∩B = ϕ, R(A) = A, R(B) = B and A∪B = X,

A = ϕ or B = ϕ.

Proof. (1) ⇒ (2): Suppose (1) holds and let A, B ⊆ X with R(A) = A, R(B) = B
such that A ∩B = ϕ and A ∪B = X. Then

R(A) ⊆ R(Bc) = (R(B))c = Bc,

R(B) ⊆ R(Ac) = (R(A))c = Ac.

Thus R(A) ∩ B = A ∩ R(B) = ϕ. So A, B are ∗-separated sets. Since A ∪ B = X,
A = ϕ or B = ϕ by (1).

(2) ⇒ (3) and (3) ⇒ (1) Clear. □

Corollary 6.7. Let (X,R) be an approximation space. Then, the following are
equivalent:

(1) X is connected,
(2) for each A, B ⊆ X with A∩B = ϕ, R

∼
(A) = A, R

∼
(B) = B and A∪B = X,

A = ϕ or B = ϕ,

(3) for each A, B ⊆ X with A∩B = ϕ,
∼
R(A) = A,

∼
R(B) = B and A∪B = X,

A = ϕ or B = ϕ.

Corollary 6.8. Let (X,R, I) be an ideal approximation space. Then, the following
are equivalent:

(1) X is ∗∗-ideal connected,
(2) for each A, B ⊆ X with A∩B = ϕ, R(A) = A, R(B) = B and A∪B = X,

A = ϕ or B = ϕ,
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(3) for each A, B ⊆ X with A∩B = ϕ, R(A) = A, R(B) = B and A∪B = X,
A = ϕ or B = ϕ.

Theorem 6.9. Let (X,R, I) be an ideal approximation space and M ⊆ X is ∗-
connected. If A, B ⊆ X are ∗-separated sets with M ⊆ A ∪ B, then either M ⊆ A
or M ⊆ B.

Proof. Suppose A, B are ∗-separated sets with M ⊆ A ∪B. Then we have

R(A) ∩B = A ∩R(B) = ϕ, M = (M ∩A) ∪ (M ∩B).

On the other hand, we get

R(M∩A)∩(M∩B) ⊆ R(M)∩R(A)∩(M∩B) = R(M)∩M∩R(A)∩B = M∩ϕ = ϕ,

R(M∩B)∩(M∩A) ⊆ R(M)∩R(B)∩(M∩A) = R(M)∩M∩R(B)∩A = M∩ϕ = ϕ.

Thus M ∩A and M ∩B are ∗-separated sets with M = (M ∩A)∪ (M ∩B). But M
is ∗-connected implies that M ⊆ A or M ⊆ B. □

Corollary 6.10. Let (X,R) be an ideal approximation space and M ⊆ X is con-
nected. If A, B ⊆ X are separated sets with M ⊆ A ∪ B, then either M ⊆ A or
M ⊆ B.

Corollary 6.11. Let (X,R, I) be an ideal approximation space and M ⊆ X is ∗∗-
ideal connected. If A, B ⊆ X are ∗∗-ideal separated sets with M ⊆ A ∪ B, then
either M ⊆ A or M ⊆ B.

Theorem 6.12. Let f : (X,R1, I) −→ (Y,R2) be an ∗-continuous function. Then
f(A) ⊆ Y is connected set, if A is ∗-connected in X.

Proof. Suppose A is ∗-connected in X. Assume that f(A) is disconnected. Then

there exist two separated sets U, V ⊆ Y with f(A) ⊆ U ∪ V, i.e.,
∼
R2(U) ∩ V =

U ∩
∼
R2(V ) = ϕ. Since f is ∗-continuous, A ⊆ f−1(U) ∪ f−1(V ). Thus we have

R1(f
−1(U)) ∩ f−1(V ) ⊆ f−1(

∼
R2(U)) ∩ f−1(V ) = f−1(

∼
R2(U) ∩ V ) = f−1(ϕ) = ϕ,

R1(f
−1(V )) ∩ f−1(U) ⊆ f−1(

∼
R2(V )) ∩ f−1(U) = f−1(

∼
R2(V ) ∩ U) = f−1(ϕ) = ϕ.

So f−1(U) and f−1(V ) are ∗-separated sets in X, i.e., A ⊆ f−1(U)∪f−1(V ). Hence
A is ∗−disconnected, which contradicts that A is ∗−connected. Therefore f(A) is a
connected set. □

Corollary 6.13. Let f : (X,R1, I) −→ (Y,R2) be a ∗∗-continuous function. Then
f(A) ⊆ Y is connected set, if A is ∗∗-connected in X.

7. Conclusions

Topology is an important branch whose concepts are used in a variety of real-world
applications. The generalisation of rough set theory depending on ideal concepts has
led to topological rough set approaches, which are used in several fields. The present
paper relied on generalising some definitions of closure space defined by [31] in ideal
approximation spaces. So accumulation points, subspaces, and lower separation
axioms of such spaces are defined and studied. Moreover, connectedness in these

79



Abbas et al. /Ann. Fuzzy Math. Inform. 26 (2023), No. 1, 59–81

spaces is defined, which enables us to make more generalisations and studies. The
obtained results are newly presented and could enrich topology theory. In a proposed
future work, a new generalisation of rough sets based on an ideal I will be introduced
on soft approximation spaces (See [36, 37, 38, 39]).
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