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Abstract. We introduce an algebraic structure induced by a fuzzy
bi-partial order space on a complete residuated lattice. We establish that
the two families of f -stable and g-stable fuzzy sets are complete lattices
and that they are isomorphic. Additionally, we demonstrate that the com-
position map gf , when the two maps f and g are restricted to suitable
Alexandrov topologies, can be regarded as an interior operator, while the
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1. Introduction

Stone [1] established the isomorphism between a distributive lattice L and the
lattice of compact open subsets of P (L), where P (L) represents the collection of
all prime ideals of L. This result, known as Stone’s representation, provided a
profound insight into the structure of distributive lattices. Building upon Stone’s
representation, Urquhart [2] introduced topological representations for lattices by
incorporating a doubly ordered structure (≤1,≤2) along with two maps l and r
defined by

l(A) = {x ∈ X | (∀y ∈ X)(x ≤1 y ⇒ y ̸∈ A)},
r(A) = {x ∈ X | (∀y ∈ X)(x ≤2 y ⇒ y ̸∈ A)},

where A ⊆ X. Urquhart demonstrated that the dual space of a bounded lattice can
be viewed as a doubly ordered topological space.

The exploration of representation theorems has been a significant area of re-
search, encompassing various algebraic structures, algebras, and logical relational
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systems [3, 4, 5, 6]. These theorems have provided valuable insights into the con-
nections between algebraic structures and topological spaces. Moreover, they have
served as a foundation for the development of relational semantics for logic, which
forms an essential component of the theoretical underpinnings of computer science.

This paper delves into the exploration of an algebraic structure that arises from
the utilization of two maps f : LX → LX and g : LX → LX defined by

f(A)(x) =
∧

y∈X

[
e2X(x, y) → A(y)

]
and g(B)(x) =

∨
y∈X

[
B(y)⊙ e1X(y, x)

]
,

within the context of a fuzzy bi-partially ordered space. The underlying space, de-
noted as

(
X, e1X , e2X

)
, is based on a complete residuated lattice (L,∨,∧,⊙,→,⊥,⊤).

By shifting our focus from the doubly ordered space framework, characterized by
the presence of two maps l and r, to this alternative framework, we aim to uncover
new insights and implications.

In Theorem 3.6, we demonstrate that the families of f -stable and g-stable fuzzy
sets form complete lattices and establish their isomorphism.

To further explore the properties and behavior of f and g, we narrow our focus
to their restrictions within the framework of Alexandrov topologies. Specifically,
we consider the restricted maps f : τe1X → τe2X and g : τe2X → τe1X , where τeiX
represents the Alexandrov topology associated with the fuzzy partial ordering eiX .
This restriction allows us to analyze the influence of f and g within the context of
interior and closure operators. In Theorem 3.4, we establish that gf : τe1X → τe1X
operates as an interior operator, while fg : τe2X → τe2X operates as a closure operator.

2. Preliminaries

Definition 2.1 ([7, 8, 9, 10]). An algebra (L,∧,∨,⊙,→,⊥,⊤) is called a complete
residuated lattice if it satisfies the following conditions:
(L1) (L,≤,∨,∧,⊥,⊤) is a complete lattice with the greatest element ⊤ and the least
element ⊥,
(L2) (L,⊙,⊤) is a commutative monoid with identity ⊤,
(L3) the residuation property, i.e., x ⊙ y ≤ z if and only if x ≤ y → z for all
x, y, z ∈ L.

In this paper, we always assume that (L,∧,∨,⊙,→,⊥,⊤) is a complete residuated
lattice.

Lemma 2.2 ([7, 8, 9, 10]). Let x, y, z, w ∈ L and let {xi}i∈Γ, {yi}i∈Γ ⊆ L. Then
the followings hold.

(1) ⊤ → x = x, ⊥⊙ x = ⊥.
(2) If y ≤ z, then x⊙ y ≤ x⊙ z, x → y ≤ x → z and z → x ≤ y → x.
(3) x ≤ y if and only if x → y = ⊤.
(4) x → (

∧
i∈Γ yi) =

∧
i∈Γ(x → yi).

(5) (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(6) x⊙ (

∨
i∈Γ yi) =

∨
i∈Γ(x⊙ yi).

(7) (x⊙ y) → z = x → (y → z) = y → (x → z) and y ≤ x → x⊙ y.
(8) (x → y)⊙ (z → w) ≤ (x⊙ z) → (y ⊙ w) and x → y ≤ (x⊙ z) → (y ⊙ z).
(9) (x → y)⊙ (y → z) ≤ x → z and (x → y)⊙ z ≤ x → (y ⊙ z).
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(10)
∧

i∈Γ(xi → yi) ≤
∨

i∈Γ xi →
∨

i∈Γ yi and
∧

i∈Γ(xi → yi) ≤
∧

i∈Γ xi →∧
i∈Γ yi.
(11) x → y ≤ (y → z) → (x → z) and x → y ≤ (z → x) → (z → y).

Definition 2.3 ([7, 8, 9, 10]). Let X be a set. Then a map eX : X ×X → L is said
to be:

(E1) reflexive if eX(x, x) = ⊤ for all x ∈ X,
(E2) transitive if eX(x, y)⊙ eX(y, z) ≤ eX(x, z) for all x, y, z ∈ X,
(E3) antisymmetric if eX(x, y) = eX(y, x) = ⊤, then x = y.
If eX satisfies (E1),(E2) and (E3), eX is called a fuzzy partial order. Let e1X and

e2X be fuzzy partial orders on X. Then
(
X, e1X , e2X

)
is called a fuzzy bi-partially

ordered space.

Define eLX : LX × LX → L by eLX (A,B) =
∧

x∈X [A(x) → B(x)]. Then eLX is
a fuzzy partial order by Lemma 2.2 (9).

Let τ ⊆ LX . Define a eτ : τ × τ → L by eτ (A,B) =
∧

x∈X(A(x) → B(x)). Then
eτ is a fuzzy partial order.

Let α ∈ L and A ∈ LX . Define three maps (αX → A), (αX ⊙ A), αX : X → L
by (αX → A)(x) = α → A(x), (αX ⊙A)(x) = α⊙A(x) and αX(x) = α.

Definition 2.4 ([7, 8, 9, 10]). Let τ ⊆ LX . Then τ is called an Alexandrov topology
on X, if it satisfies the following conditions:

(A1)
∨

i∈I Ai,
∧

i∈I Ai ∈ τ for all {Ai}i∈I ⊆ τ ,
(A2) αX → A,αX ⊙A ∈ τ for all α ∈ L and A ∈ τ .
The pair (X, τ) is called an Alexandrov topological space on X.

Theorem 2.5. Let (X, eX) be a fuzzy partially ordered space. Let

τeX =
{
A ∈ LX | A(x)⊙ eX(x, y) ≤ A(y) for all x, y ∈ X

}
.

Then the followings hold.
(1) τeX is an Alexandrov topology.
(2) For each A ∈ LX , A ∈ τeX if and only if

∨
x∈X [A(x)⊙ eX(x, y)] = A(y) for

all y ∈ X if and only if
∧

y∈X [eX(x, y) → A(y)] = A(x) for all x ∈ X.

Proof. (1) (A1) Let {Ai}i∈Γ ⊆ τeX . Then(∧
i∈Γ Ai

)
(x)⊙ eX(x, y) ≤

∧
i∈Γ [Ai(x)⊙ eX(x, y)]

≤
∧

i∈Γ Ai(y) [Since Ai ∈ τeX ]
=
(∧

i∈Γ Ai

)
(y)

and (∨
i∈Γ Ai

)
(x)⊙ eX(x, y) =

∨
i∈Γ [Ai(x)⊙ eX(x, y)] [By Lemma 2.2 (6)]

≤
∨

i∈Γ Ai(y) [Since Ai ∈ τeX ]
=
(∨

i∈Γ Ai

)
(y).

Thus
∧

i∈Γ Ai,
∨

i∈Γ ∈ τeX .
(A2) Let A ∈ τeX and α ∈ L. Then

[αX → A] (x)⊙ eX(x, y) = α → [A(x)⊙ eX(x, y)] [By Lemma 2.2 (9)]
≤ α → A(y) [Since A ∈ τeX ]
= [αX → A] (y)

49



Ju-mok Oh /Ann. Fuzzy Math. Inform. 26 (2023), No. 1, 47–57

and
[αX ⊙A] (x)⊙ eX(x, y) = α⊙ [A(x)⊙ eX(x, y)]

≤ α⊙A(y) [Since A ∈ τeX ]
= [αX ⊙A] (y).

Thus αX → A,αX ⊙A ∈ τeX . So τeX is an Alexandrov topology.
(2) Suppose A ∈ τeX . Then A(x) ⊙ eX(x, y) ≤ A(y) for all x, y ∈ X. Thus∨

x∈X [A(x)⊙ eX(x, y)] ≤ A(y) for all y ∈ X. On the other hand, we have∨
x∈X [A(x)⊙ eX(x, y)] ≥ A(y)⊙ eX(y, y) = A(y).

So
∨

x∈X [A(x)⊙ eX(x, y)] = A(y) for all y ∈ X.
Conversely, suppose

∨
x∈X [A(x)⊙ eX(x, y)] = A(y) for all y ∈ X. Then A(x) ⊙

eX(x, y) ≤ A(y) for all y ∈ X. Thus A ∈ τeX .
Now suppose A ∈ τeX . Then A(x) ⊙ eX(x, y) ≤ A(y) for all x, y ∈ X. By

residuation, A(x) ≤ eX(x, y) → A(y) for all x, y ∈ X. Thus we have

A(x) ≤
∧

y∈X [eX(x, y) → A(y)] for all x ∈ X.

On the other hand,
∧

y∈X [eX(x, y) → A(y)] ≤ eX(x, x) → A(x) = A(x). So∧
y∈X [eX(x, y) → A(y)] = A(x) for all x ∈ X.

Conversely, suppose
∧

y∈X [eX(x, y) → A(y)] = A(x) for all x ∈ X. Then A(x) ≤
eX(x, y) → A(y) for all x, y ∈ X. By residuation, eX(x, y) ⊙ A(x) ≤ A(y) for all
x, y ∈ X. Thus A ∈ τeX . □

3. Fuzzy concept lattices and fuzzy bi-partially ordered spaces

Definition 3.1. Let
(
X, e1X , e2X

)
be a fuzzy bi-partially ordered space. Define f :

LX → LX and g : LX → LX by: for each x ∈ X,

f(A)(x) =
∧

y∈X

[
e2X(x, y) → A(y)

]
and g(B)(x) =

∨
y∈X

[
B(y)⊙ e1X(y, x)

]
.

A fuzzy set A ∈ LX is called g-stable (resp. f -stable), if g(f(A)) = A (resp.
f(g(A)) = A).

The family of all g-stable (resp. f -stable) fuzzy sets will be denoted by G
(
LX
)

(resp. F
(
LX
)
).

Theorem 3.2. Let (X, e1X , e2X) be a fuzzy bi-partially ordered space. Let f and g be
the maps defined in Definition 3.1. Then the following hold.

(1) Let A,B ∈ LX . Then

eLX (A,B) ≤ eLX (f(A), f(B)) and eLX (A,B) ≤ eLX (g(A), g(B)).

In particular, if A ≤ B, then f(A) ≤ f(B) and g(A) ≤ g(B).
(2) Let A ∈ LX . Then g(A) ∈ τe1X , f(A) ∈ τe2X , f(A) ≤ A and g(A) ≥ A.

(3) If A ∈ τe1X , then gf(A) ≤ A. If A ∈ τe2X , then fg(A) ≥ A. Moreover, if

A ∈ τe1X ∩ τe2X , then gf(A) = A and fg(A) = A.

(4) G
(
LX
)
=
{
gf(A) | A ∈ LX

}
and F

(
LX
)
=
{
fg(A) | A ∈ LX

}
.

(5) If A ∈ τe1X , then f(A) ∈ F
(
LX
)
. Similarly, if A ∈ τe2X , then g(A) ∈ G

(
LX
)
.

(6) Let {Ai}i∈Γ ⊆ G
(
LX
)
, A ∈ G

(
LX
)
and α ∈ L. Then∨

i∈Γ

Ai, αX ⊙A ∈ G
(
LX
)
.
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(7) Let {Ai}i∈Γ ⊆ F
(
LX
)
, A ∈ F

(
LX
)
and α ∈ L. Then∧

i∈Γ

Ai, αX → A ∈ F
(
LX
)
.

Proof. (1) Let A, B ∈ LX . Then we have
eLX (f(A), f(B))

=
∧

x∈X

[∧
y∈X

[
e2X(x, y) → A(y)

]
→
∧

y∈X

[
e2X(x, y) → B(y)

]]
≥
∧

x∈X

∧
y∈X

[[
e2X(x, y) → A(y)

]
→
[
e2X(x, y) → B(y)

]]
[By Lemma 2.2 (10)]

≥
∧

x∈X

∧
y∈X [A(y) → B(y)] [By Lemma 2.2 (11)]

= eLX (A,B)
and

eLX (g(A), g(B))

=
∧

x∈X

[∨
y∈X

[
A(y)⊙ e1X(y, x)

]
→
∨

y∈X

[
B(y)⊙ e1X(y, x)

]]
≥
∧

x∈X

∧
y∈X

[[
A(y)⊙ e1X(y, x)

]
→
[
B(y)⊙ e1X(y, x)

]]
[By Lemma 2.2 (11)]

≥
∧

y∈X

∧
y∈X [A(y) → B(y)] [By Lemma 2.2 (8)]

= eLX (A,B).
Now suppose A ≤ B. Then by Lemma 2.2 (3), ⊤ = eLX (A,B). Thus

⊤ = eLX (f(A), f(B)) and ⊤ = eLX (g(A), g(B)).

So f(A) ≤ f(B) and g(A) ≤ g(B).
(2) Let A ∈ LX and let x, y, z ∈ X. Then we get

f(A)(x)⊙ e2X(x, y)⊙ e2X(y, z) ≤ f(A)(x)⊙ e2X(x, z)
=
∧

y∈X

[
e2X(x, y) → A(y)

]
⊙ e2X(x, z)

≤
[
e2X(x, z) → A(z)

]
⊙ e2X(x, z)

≤ A(z).

Thus by residuation, we have

f(A)(x)⊙ e2X(x, y) ≤
∧
z∈X

[
e2X(y, z) → A(z)

]
= f(A)(y).

So f(A) ∈ τe2X .
Also, we have

g(A)(x)⊙ e1X(x, z) =
∨

y∈X

[
(A(y)⊙ e1X(y, x)

]
⊙ e1X(x, z)

≤
∨

y∈X

[
A(y)⊙ e1X(y, z)

]
[By Lemma 2.2 (6) and (E2)]

= g(A)(z).

Then g(A) ∈ τe1X .
On the other hand, we get

f(A)(x) =
∧

y∈X

[
e2X(x, y) → A(y)

]
≤
[
e2X(x, x) → A(x)

]
= A(x),

g(A)(x) =
∨

y∈X

[
A(y)⊙ e1X(y, x)

]
≥
[
A(x)⊙ e1X(x, x)

]
= A(x).

Then we have f(A) ≤ A and A ≤ g(A).
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(3) Suppose A ∈ τe1X and let x ∈ X. Then

gf(A)(x) =
∨

y∈X

[
f(A)(y)⊙ e1X(y, x)

]
=
∨

y∈X

[∧
w∈X

[
e2X(y, w) → A(w)

]
⊙ e1X(y, x)

]
≤
∨

y∈X

[[
e2X(y, y) → A(y)

]
⊙ e1X(y, x)

]
=
∨

y∈X

[
A(y)⊙ e1X(y, x)

]
= A(x) [By Theorem 2.5 (2)].

Thus gf(A) ≤ A.
Suppose A ∈ τe2X and let x ∈ X. Then

fg(A)(x) =
∧

y∈X

[
e2X(x, y) →

∨
w∈X

[
A(w)⊙ e1X(w, y)

]]
≥
∧

y∈X

[
e2X(x, y) →

[
A(y)⊙ e1X(y, y)

]]
[By Lemma 2.2 (2)]

=
∧

y∈X

[
e2X(x, y) → A(y)

]
= A(x) [By Theorem 2.5 (2)].

Thus A ≤ fg(A).
Suppose A ∈ τe1X ∩ τe2X and let x ∈ X. Then

gf(A)(x) =
∨

y∈X

[∧
w∈X

[
e2X(y, w) → A(w)

]
⊙ e1X(y, x)

]
=
∨

y∈X

[
A(y)⊙ e1X(y, x)

]
[Since A ∈ τe2X ]

= A(x) [Since A ∈ τe1X ]

and
fg(A)(x) =

∧
y∈X

[
e2X(x, y) →

∨
w∈X

[
A(w)⊙ e1X(w, y)

]]
=
∧

y∈X

[
e2X(x, y) → A(y)

]
[Since A ∈ τe1X ]

= A(x) [Since A ∈ τe2X ].

Thus gf(A) = A = fg(A).
(4) Let G1

(
LX
)
=
{
gf(A) | A ∈ LX

}
. We prove that G

(
LX
)
= G1

(
LX
)
.

Claim 1: G
(
LX
)
⊆ G1

(
LX
)
. Let A ∈ G

(
LX
)
. Then clearly, A = gf(A) ∈

G1

(
LX
)
.

Claim 2: G1

(
LX
)
⊆ G

(
LX
)
. Let gf(A) ∈ G1

(
LX
)
, where A ∈ LX . Since

f(A) ∈ τe2X by (2), f(A) ≤ fgf(A) by (3). Since g is increasing by (1), gf(A) ≤
gfgf(A). On the other hand, since gf(A) ∈ τe1X by (2), gfgf(A) ≤ gf(A) by (3).

Then gfgf(A) = gf(A) and gf(A) ∈ G
(
LX
)
.

Now let F1

(
LX
)
=
{
fg(A) | A ∈ LX

}
. We show that F

(
LX
)
= F1

(
LX
)
.

Claim 1: F
(
LX
)
⊆ F1

(
LX
)
. Let A ∈ F

(
LX
)
. Then A = fg(A) ∈ F1

(
LX
)
.

Claim 2: F1

(
LX
)
⊆ F

(
LX
)
. Let fg(A) ∈ F1

(
LX
)
, where A ∈ LX . Since

g(A) ∈ τe1X by (2), gfg(A) ≤ g(A) by (3). Since f is increasing by (1), fgfg(A) ≤
fg(A). On the other hand, since fg(A) ∈ τe2X by (2), fgfg(A) ≥ fg(A) by 3. Then

fgfg(A) = fg(A) and fg(A) ∈ F
(
LX
)
.

(5) Suppose A ∈ τe1X . Then by (3), gf(A) ≤ A . Since f is increasing by (1),

fgf(A) ≤ f(A). On the other hand, since f(A) ∈ τe2X by (2), fgf(A) ≥ f(A) by

(3). Thus fgf(A) = f(A) and f(A) ∈ F
(
LX
)
.

Now suppose A ∈ τe2X . Then by (3), A ≤ fg(A). Since g is increasing by (1),

g(A) ≤ gfg(A). On the other hand, since g(A) ∈ τe1X by (2), gfg(A) ≤ g(A) by 3.

Thus gfg(A) = g(A) and g(A) ∈ G
(
LX
)
.
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(6) Let {Ai}i∈Γ ⊆ G
(
LX
)
. Then by (2), Ai = gf(Ai) ∈ τe1X for all i ∈ Γ. Thus∨

i∈Γ Ai ∈ τe1X . By (3), gf
(∨

i∈Γ Ai

)
≤
∨

i∈Γ Ai. On the other hand, since gf

is increasing by (1), Ai = gf(Ai) ≤ gf
(∨

i∈Γ Ai

)
for all i ∈ Γ. So

∨
i∈Γ Ai ≤

gf
(∨

i∈Γ Ai

)
. Hence gf

(∨
i∈Γ Ai

)
=
∨

i∈Γ Ai and
∨

i∈Γ Ai ∈ G
(
LX
)
.

Let A ∈ G
(
LX
)
and α ∈ L. Then by (2), A = gf(A) ∈ τe1X . Thus αX ⊙A ∈ τe1X .

By (3), gf(αX ⊙A) ≤ αX ⊙A. On the other hand,

f(αX ⊙A)(x) =
∧

y∈X

[
e2X(x, y) → [αX ⊙A] (y)

]
≥
∧

y∈X

[[
e2X(x, y) → A(y)

]
⊙ α

]
[By Lemma 2.2 (9)]

≥ f(A)(x)⊙ α.

So we get

gf(αX ⊙A)(x) =
∨

y∈X

[
f(αX ⊙A)(y)⊙ e1X(y, x)

]
≥
∨

y∈X

[
f(A)(y)⊙ α⊙ e1X(y, x)

]
=
∨

y∈X

[
f(A)(y)⊙ e1X(y, x)

]
⊙ α

= gf(A)(x)⊙ α
= (αX ⊙A)(x).

Hence gf(αX ⊙A) = αX ⊙A and αX ⊙A ∈ G
(
LX
)
.

(7) Let {Ai}i∈Γ ⊆ F
(
LX
)
. By (2), Ai = fg(Ai) ∈ τe2X for all i ∈ Γ. Then∧

i∈Γ Ai ∈ τe2X . Thus by (3),
∧

i∈Γ Ai ≤ fg
(∧

i∈Γ Ai

)
. On the other hand, since fg

is increasing by (1), fg
(∧

i∈Γ Ai

)
≤ fg(Ai) = Ai for all i ∈ Γ. So fg

(∧
i∈Γ Ai

)
≤∧

i∈Γ Ai. Hence fg
(∧

i∈Γ Ai

)
=
∧

i∈Γ Ai and
∧

i∈Γ Ai ∈ F
(
LX
)
.

Let A ∈ F
(
LX
)
and α ∈ L. By (2), A = fg(A) ∈ τe2X . Then αX → A ∈ τe2X .

Thus by (3), αX → A ≤ fg(αX → A). On the other hand, we have

g(αX → A)(x) =
∨

y∈X

[
[αX → A] (y)⊙ e1X(y, x)

]
≤
∨

y∈X

[
α →

[
A(y)⊙ e1X(y, x)

]]
[By Lemma 2.2 (9)]

≤ α → g(A)(x).[By Lemma 2.2 (2)]

So we get

fg(αX → A)(x) =
∧

y∈X

[
e2X(x, y) → g(αX → A)(y)

]
≤
∧

y∈X

[
e2X(x, y) → [α → g(A)(y)]

]
=
∧

y∈X

[
α →

[
e2X(x, y) → g(A)(y)

]]
[By Lemma 2.2 (7)]

= α → fg(A)(x)[By Lemma 2.2 (4)]
= α → A(x)
= (αX → A)(x).

Hence fg(αX → A) = αX → A and αX → A ∈ F
(
LX
)
. □

Definition 3.3. Let τX ⊆ LX be an Alexandrov topology on X.
(i) A map I : τX → τX is called an interior operator, if

(I1) I(A) ≤ A for all A ∈ τX ,
(I2) I(A) ≤ I(I(A)) for all A ∈ τX ,
(I3) eτX (A,B) ≤ eτX (I(A), I(B)) for all A, B ∈ τX .

(2) A map C : τX → τX is called a closure operator, if
(C1) A ≤ C(A) for all A ∈ τX ,
(C2) C(C(A)) ≤ C(A) for all A ∈ τX ,
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(C3) eτX (A,B) ≤ eτX (C(A), C(B)) for all A, B ∈ τX .

Theorem 3.4. Let (X, e1X , e2X) be a fuzzy bi-partially ordered space. Let f : τe1X →
τe2X and g : τe2X → τe1X be the restrictions of f and d defined in Definition 3.1. Then
the followings hold:

(1) gf : τe1X → τe1X is an interior operator such that gf(A) =
∨{

C ∈ G
(
LX
)
| C ≤ A

}
,

(2) fg : τe2X → τe2X is a closure operator such that fg(A) =
∧{

D ∈ F
(
LX
)
| A ≤ D

}
.

Proof. By Theorem 3.2(2), f and g are well-defined.
(1) (I1) Let A ∈ τe1X . Then by Theorem 3.2 (3), gf(A) ≤ A .

(I2) Let A ∈ τe1X . Then by Theorem 3.2 (5), f(A) ∈ F
(
LX
)
. Thus fgf(A) =

f(A). So gfgf(A) = gf(A).
(I3) Let A, B ∈ τe1X . Then we have

eτ
e1
X

(fg(A), gf(B)) ≥ eτ
e2
X

(f(A), f(B)) ≥ eτ
e1
X

(A,B). [By Theorem 3.2 (1)]

Thus gf is an interior operator.
Let H(A) =

∨{
C ∈ G

(
LX
)
| C ≤ A

}
, where A ∈ τe1X . Since gf(A) ≤ A by

Theorem 3.2 (3) and gf(A) ∈ G
(
LX
)
by Theorem 3.2 (4), we have gf(A) ≤ H(A).

Conversely, H(A) ≤ A by definition and H(A) ∈ G
(
LX
)
by Theorem 3.2 (6).

Since gf is increasing by Theorem 3.2 (1), H(A) = gf (H(A)) ≤ gf(A). Then
gf(A) = H(A).

(2) (C1) Let A ∈ τe2X . Then A ≤ fg(A) by Theorem 3.2 (3).

(C2) Let A ∈ τe2X . Then g(A) ∈ G
(
LX
)
by Theorem 3.2 (5). Thus gfg(A) =

g(A) and fgfg(A) = fg(A).
(C3) Let A,B ∈ τe2X . Then we get

eτ
e2
X

(fg(A), fg(B)) ≥ eτ
e1
X

(g(A), g(B)) ≥ eτ
e2
X

(A,B). [By Theorem 3.2 (1)]

Thus fg is a closure operator.
Let J (A) =

∧{
D ∈ F

(
LX
)
| A ≤ D

}
, where A ∈ τe2X . Since A ≤ fg(A) by

Theorem 3.2 (3) and fg(A) ∈ F
(
LX
)
by Theorem 3.2 (4), we have J (A) ≤ fg(A).

Conversely, A ≤ J (A) by definition and J (A) ∈ F
(
LX
)
by Theorem 3.2 (7).

Since fg is increasing by Theorem 3.2 (1), J (A) = fg (J (A)) ≥ fg(A). Then
fg(A) = J (A). □

Definition 3.5. Let (L1,≤,∧,∨) and (L2,≤,∧,∨) be complete lattices. L1 and L2

are isomorphic, if there exists a bijective map h : L1 → L2 such that

h
(∨

i∈Γ xi

)
=
∨

i∈Γ h (xi) and h
(∧

i∈Γ xi

)
=
∧

i∈Γ h (xi) for all {xi}i∈Γ ⊆ L1.

Theorem 3.6. Let
(
X, e1X , e2X

)
be a fuzzy bi-partially ordered space. Let f and g

be the maps defined in Definition 3.1. Then the followings hold.
(1)

(
G
(
LX
)
,⊓,
∨
,⊥X ,⊤X

)
is a complete lattice with

⊓i∈ΓAi = g
(∧

i∈Γ f (Ai)
)
and

∨
i∈Γ Ai for all {Ai}i∈Γ ⊆ G

(
LX
)
.

(2)
(
F
(
LX
)
,
∧
,⊔,⊥X ,⊤X

)
is a complete lattice with∧

i∈Γ Bi and ⊔i∈ΓBi = f
(∨

i∈Γ g (Bi)
)
for all {Bi}i∈Γ ⊆ F

(
LX
)
.

(3) G
(
LX
)
and F

(
LX
)
are isomorphic.
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Proof. (1) Let {Ai}i∈Γ ⊆ G
(
LX
)
. Then by Theorem 3.2 (6),

∨
i∈Γ Ai ∈ G

(
LX
)
.

We show ⊓i∈ΓAi ∈ G
(
LX
)
. Since g

(∧
i∈Γ f (Ai)

)
∈ τe1X by Theorem 3.2 (2),

gfg
(∧

i∈Γ f(Ai)
)
≤ g

(∧
i∈Γ f(Ai)

)
by Theorem 3.2 (3). On the other hand, since

f(Ai) ∈ τe2X by Theorem 3.2 (2), we have
∧

i∈Γ f(Ai) ∈ τe2X . Thus by Theorem 3.2

(3), fg
(∧

i∈Γ f(Ai)
)
≥
∧

i∈Γ f(Ai). Since g is increasing by Theorem 3.2 (1), we

have gfg
(∧

i∈Γ f(Ai)
)
≥ g

(∧
i∈Γ f(Ai)

)
. So gfg

(∧
i∈Γ f(Ai)

)
= g

(∧
i∈Γ f(Ai)

)
and ⊓i∈ΓAi ∈ G

(
LX
)
.

We show that ⊓i∈ΓAi is the infimum of {Ai}i∈Γ in G
(
LX
)
. Since

∧
i∈Γ f(Ai) ≤

f(Ai) for all i ∈ Γ and g is increasing by Theorem 3.2 (1), we have g
(∧

i∈Γ f(Ai)
)
≤

gf(Ai) = Ai for all i ∈ Γ. Hence g
(∧

i∈Γ f(Ai)
)
is a lower bound of {Ai}i∈Γ in

G
(
LX
)
.

Suppose B ≤ Ai for all i ∈ Γ, where B ∈ G
(
LX
)
. Then by Theorem 3.2 (1),

f(B) ≤ f(Ai) for all i ∈ Γ. Thus f(B) ≤
∧

i∈Γ f(Ai). Since g is increasing by

Theorem 3.2 (1), we have B = gf(B) ≤ g
(∧

i∈Γ f(Ai)
)
. So ⊓i∈ΓAi the infimum of

{Ai}i∈Γ in G
(
LX
)
.

(2) Let {Bi}i∈Γ ⊆ F
(
LX
)
. Then

∧
i∈Γ Bi ∈ F

(
LX
)
by Theorem 3.2 (7).

We show ⊔i∈ΓBi ∈ F
(
LX
)
. Since f

(∨
i∈Γ g(Bi)

)
∈ τe2X by Theorem 3.2 (2),

fgf
(∨

i∈Γ g(Bi)
)
≥ f

(∨
i∈Γ g(Bi)

)
by Theorem 3.2(3). On the other hand, since

g(Bi) ∈ τe1X by Theorem 3.2 (2), we have
∨

i∈Γ g(Bi) ∈ τe1X . Thus gf
(∨

i∈Γ g(Bi)
)
≤∨

i∈Γ g(Bi) by Theorem 3.2 (3). Since f is increasing by Theorem 3.2 (1),

fgf

(∨
i∈Γ

g(Bi)

)
≤ f

(∨
i∈Γ

g(Bi)

)
.

So we have fgf
(∨

i∈Γ g(Bi)
)
= f

(∨
i∈Γ g(Bi)

)
and ⊔i∈ΓBi ∈ F

(
LX
)
.

We now show that ⊔i∈ΓBi is the supremum of {Bi}i∈Γ in F
(
LX
)
. Since g(Bi) ≤∨

i∈Γ g(Bi) for all i ∈ Γ and f is increasing by Theorem 3.2 (1), we have Bi =

fg(Bi) ≤ f
(∨

i∈Γ g(Bi)
)
for all i ∈ Γ. Then f

(∨
i∈Γ g(Bi)

)
is an upper bound of

{Bi}i∈Γ in F
(
LX
)
.

Suppose Bi ≤ B for all i ∈ Γ, where B ∈ F
(
LX
)
. Then by Theorem 3.2

(1), g(Bi) ≤ g(B) for all i ∈ Γ. Thus
∨

i∈Γ g(Bi) ≤ g(B). Since f is increasing by

Theorem 3.2 (1), we have f
(∨

i∈Γ g(Bi)
)
≤ fg(B) = B. So ⊔i∈ΓBi is the supremum

of {Bi}i∈Γ in F
(
LX
)
.

(3) Define f1 : G
(
LX
)
→ F

(
LX
)
by

f1(A)(x) =
∧

y∈X

[
e2X(x, y) → A(y)

]
.

Let A ∈ G
(
LX
)
. Then fgf1(A) = fgf(A) = f(A) = f1(A). Thus f1(A) ∈ F

(
LX
)
.

So f1 is well-defined.
Suppose f1(A) = f1(B), where A,B ∈ G

(
LX
)
. Then A = gf(A) = gf1(A) =

gf1(B) = gf(B) = B. Thus f1 is injective.
Let C ∈ F

(
LX
)
. Then C = fg(C) = f1 (g(C)) and gf (g(C)) = g(C). Thus f1

is surjective.
Let {Ai}i∈Γ ⊆ G

(
LX
)
. Then

f1
(∨

i∈Γ Ai

)
= f

(∨
i∈Γ gf(Ai)

)
= ⊔i∈Γf1(Ai).
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We show
∧

i∈Γ f(Ai) ∈ F
(
LX
)
. Since f(Ai) ∈ τe2X by Theorem 3.2 (2), we have∧

i∈Γ f(Ai) ∈ τe2X . Then
∧

i∈Γ f(Ai) ≤ fg
(∧

i∈Γ f(Ai)
)
by Theorem 3.2 (3). On

the other hand, since
∧

i∈Γ f(Ai) ≤ f(Ai) for all i ∈ Γ and fg is increasing by

Theorem 3.2 (1), we have fg
(∧

i∈Γ f(Ai)
)
≤ fgf(Ai) = f(Ai) for all i ∈ Γ. Thus

fg
(∧

i∈Γ f(Ai)
)
≤
∧

i∈Γ f(Ai). So we get

fg

(∧
i∈Γ

f(Ai)

)
=
∧
i∈Γ

f(Ai) and
∧
i∈Γ

f(Ai) ∈ F
(
LX
)
.

Now, note that

f1 (⊓i∈ΓAi) = f1
(
g
(∧

i∈Γ f(Ai)
))

= fg
(∧

i∈Γ f(Ai)
)
=
∧

i∈Γ f1(Ai).

Hence G
(
LX
)
and F

(
LX
)
are isomorphic. □

Example 3.7. Let (X,≤,∧,∨,⊥,⊤) be a bounded lattice. Let ([0, 1],⊙,→, 0, 1) be
the complete residuated lattice where

x⊙ y := (x+ y − 1) ∨ 0 and x → y := (1− x+ y) ∧ 1.

Define two maps e1 : X ×X → [0, 1] and e2 : X ×X → [0, 1] by

e1(x, y) =

{
1, if x = y,
0, if x ̸= y

and e2(x, y) =

{
1, if x ≤ y,
0, if x ̸≤ y.

Then one can see that e1 and e2 are fuzzy partial orders and

τe1 = [0, 1]X ,
τe2 = {A ∈ LX | if x ≤ y, then A(x) ≤ A(y)}.

Consider the fuzzy bi-partially ordered space
(
X, e1, e2

)
. Let f and g be maps

defined in Definition 3.1. Then

f(A)(x) =
∧

y∈X

[
e2(x, y) → A(y)

]
=
∧

x≤y
y∈X

A(y),

g(A)(x) =
∨

y∈X

[
A(y)⊙ e1(y, x)

]
= A(x),

where A ∈ [0, 1]X .
Let A ∈ τe1 = [0, 1]X and B ∈ τe2 . Then

fg(A)(x) =
∨

y∈X

[
f(A)(y)⊙ e1(y, x)

]
= f(A)(x) =

∧
x≤y
y∈X

A(y),

fg(B)(x) =
∧

y∈X

[
e2(x, y) → g(B)(y)

]
=
∧

y∈X

[
e2(x, y) → B(y)

]
=
∧

x≤y
y∈X

B(y)

= B(x). [Since B is increasing]

Thus by Theorem 3.4, gf : τe1 → τe1 by gf(A)(x) =
∧

x≤y
y∈X

A(y) is an interior

operator and fg : τe2 → τe2 by fg(B)(x) = B(x) is a closure operator.
Moreover,

G
(
[0, 1]X

)
=
{
A ∈ [0, 1]X | if x ≤ y, then A(x) ≤ A(y)

}
= F

(
[0, 1]X

)
.

Let {Ai}i∈Γ ⊆ G
(
[0, 1]X

)
= F

(
[0, 1]X

)
. Then

(⊓i∈ΓAi) (x) = g
(∧

i∈Γ f(Ai)
)
(x) =

∧
i∈Γ f(Ai)(x) =

∧
i∈Γ

∧
x≤y
y∈X

Ai(y)

=
∧

i∈Γ Ai(x) [Since Ai is increasing]
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and

(⊔i∈ΓAi) (x) = f
(∨

i∈Γ g(Ai)
)
(x) =

∧
x≤y
y∈X

∨
i∈Γ g(Ai)(y) =

∧
x≤y
y∈X

∨
i∈Γ Ai(y)

=
∨

i∈Γ Ai(x). [Since Ai is increasing]

So by Theorem 3.6, we conclude that(
G
(
[0, 1]X

)
= F

(
[0, 1]X

)
,⊓ =

∧
,⊔ =

∨
, 0X , 1X

)
is a complete lattice.

4. Conclusion

In this paper, we are interested in the algebraic structures induced by bi-partial
orders based on complete residuated lattices. We have shown that the two families
of f -stable and g-stable fuzzy sets are complete lattices and they are isomorphic.
Moreover, we have demonstrated that the composition map gf , when the two maps
f and g are restricted to suitable Alexandrov topologies, can be regarded as an
interior operator, while the map fg can be viewed as a closure operator.

In the future, by using bi-partial orders on complete residuated lattices, we might
investigate various fuzzy concept lattices, information systems and decision rules on
complete residuated lattices.
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