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Abstract. The main purpose of this paper is to introduce and study
the notion of state relative annihilator in the framework of state residu-
ated lattices (SRLs), along with some related properties. We show that
this concept of state relative annihilator in SRLs is a generalization of the
existing one in De Morgan state residuated lattices. Among many other
results, we prove that state relative annihilators are a particular type of
state ideals of state residuated lattices. Furthermore, we establish some
links between state-morphism operators and annihilators in state residu-
ated lattices.
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1. Introduction

The genesis of residuated lattices is in Mathematical Logic without contrac-
tion. Apart from their logical interest, residuated lattices have important algebraic
properties, and it is well-known that the algebraic study of logical systems plays a
prominent role with considerable applications in artificial intelligence.

In order to provide an algebraic foundation for reasoning about probabilities of
fuzzy events inside  Lukasiewicz infinite-valued logic, Flaminio and Montagna ([1, 2])
added a unary operation φ to the language of MV -algebras as an internal state,
also called a state operator which generalize and preserves the usual properties of
states. Therefore, the concept of state operator has been extended to many com-
mutative and non-commutative algebraic structures such as BL-algebras [3], pseudo
BL-algebra [4], Rl-monoids [5], residuated lattices ([6, 7, 8]). However, most of these
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studies have mainly focused on state filters, whereas the notion of state ideal has
recently been investigated in state De Morgan residuated lattices ([9]), and in state
residuated lattices [10]. Now on, since state filters and state ideals are not dual
notions in state residuated lattices and knowing the importance of ideal theory in
classification problems, data organization, formal concept analysis, it is meaningful
to deepen the notion of state ideal in the framework of state residuated lattices. In
appropriate way, almost akin to annihilators in commutative rings, in [11], the au-
thors investigated the notion of f -relative annihilators in residuated lattices, where
f is an endomorphism. Due to the fact that a state operator is not always an endo-
morphism, it becomes reasonable to regard what happens when the endomorphism f
is replaced by a state operator φ. This paper seeks to expand our study of state rel-
ative annihilators done in state De Morgan residuated lattices ([9]) to the framework
of state residuated lattices.

The article is divided into 3 sections: in the first one, we present some prelimi-
naries comprising the basic definitions, some rules of calculus and theorems that are
needed in the sequel. Section 2 is devoted to the main results. We introduce the
notion of state annihilator of a nonempty set X with respect to a state ideal I in
a SRL, analyze some of its properties and present some examples. We demonstrate
that state relative annihilators are a particular type of state ideals. In Section 3, we
introduce the notion of state-morphism operator in residuated lattices and establish
a link with annihilators.

2. Preliminaries

We summarize here some fundamental definitions and results about residuated
lattices. For more details, we refer the reader to the papers [12, 13, 14, 15].

A nonempty set L with four binary operations ∧,∨,⊙,→ and two constants 0, 1 is
called a bounded integral commutative residuated lattice or shortly residuated lattice,
if the following axioms are verified:

(C1) (L,∧,∨, 0, 1) is a bounded lattice,
(C2) (L,⊙, 1) is a commutative monoid (with the unit element 1),
(C3) For all x, y ∈ L, x⊙ y ≤ z iff x ≤ y → z.

A residuated lattice satisfying the De Morgan property (x ∧ y)′ = x′ ∨ y′ is called a
De Morgan residuated lattice.
We shall notice from [16] that Boolean algebras, BL-algebras, MTL-algebras, Stonean
residuated lattices and regular residuated lattices (MV -algebras, IMTL-algebras)
are particular important subclasses of De Morgan residuated lattices.

The following notations of residuated lattices will be used:
L will stand for a residuated lattice (L,∧,∨,⊙,→, 0, 1). For any x ∈ L and

n ∈ N∗, x′ := x → 0, x′′ := (x′)′, x0 := 1 and xn := xn−1 ⊙ x.
The following basic arithmetic of residuated lattices will be used for any x, y, z ∈ L

(See [8, 12]):
(RL1) 1 → x = x, x → x = 1, x → 1 = 1, 0 → x = 1,
(RL2) x ≤ y ⇔ x → y = 1,
(RL3) x → y = y → x = 1 ⇔ x = y,
(RL4) if x ≤ y, then y → z ≤ x → z, z → x ≤ z → y, x⊙ z ≤ y ⊙ z and y′ ≤ x′,
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(RL5) x⊙ (x → y) ≤ y, x⊙ (x → y) ≤ x ∧ y,
(RL6) x⊙ y ≤ x ∧ y ≤ x, y ≤ x ∨ y, x ≤ y → x, x⊙ y ≤ x → y y → x,
(RL7) (x⊙ y)′′ = x′′ ⊙ y′′, (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ ≥ x′ ∨ y′,
(RL8) 0′ = 1, 1′ = 0,
(RL9) x ≤ x′′ ≤ x′ → x,
(RL10) x → y ≤ y′ → x′,
(RL11) x′′′ = x′, (x⊙ y)′ = x → y′ = y → x′ = x′′ → y′,
(RL12) x⊙ x′ = 0, x⊙ y = 0 ⇔ x ≤ y′, x⊙ 0 = 0,
(RL13) x′ → y ≤ (x′ ⊙ y′)′, x′ ⊙ y′ ≤ (x′ → y)′, x′ ⊙ y′ ≤ (x⊙ y)′,
(RL14) x → (x ∧ y) = x → y,
(RL15) x⊙ y = x⊙ (x → x⊙ y),
(RL16) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z), x⊙ (y ∧ z) ≤ (x⊙ y) ∧ (x⊙ z),

x ∨ (y ⊙ z) ≥ (x ∨ y) ⊙ (x ∨ z).

For every x, y ∈ L, we set x⊘ y = x′ → y.

Definition 2.1 ([13], Definition 3.1). A nonempty subset I of a residuated lattice
L is called an ideal, if the following conditions are satisfied: for every x, y ∈ L,

(I1) if y ∈ I and x ≤ y, then x ∈ I,
(I2) if x, y ∈ I, then x⊘ y ∈ I.

By the fact that ⊘ is neither commutative nor associative in residuated lattices, in
order to get an operation with properties closed to addition properties, D. Buşneag
et al. (See Lemma 1, [17]) defined a commutative and associative operation ⊕ in
residuated lattices as follows: x⊕ y = (x′ ⊙ y′)′ for every x, y ∈ L.

Here are some properties of the operation ⊕ (See [9, 14, 17]).
(P1) x⊕ y = x′ → y′′ = y′ → x′′,
(P2) x⊕ x′ = 1, x⊕ 0 = x′′, x⊕ 1 = 1,
(P3) x⊕ y = y ⊕ x, x, y ≤ x⊕ y,
(P4) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z,
(P5) if x ≤ y, then x⊕ z ≤ y ⊕ z,
(P6) if x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t.

For any x ∈ L and n ∈ N, we define 0x = 0, 1x = x and nx = (n−1)x⊕x for n ≥ 2.

The following relations hold: for any x, y ∈ L and m, n ∈ N∗,
(P7) m ≤ n ⇒ mx ≤ nx, in particular, x ≤ nx,
(P8) x ≤ y ⇒ mx ≤ my,
(P9) n(x⊕ y) = nx⊕ ny,
(P10) x⊕ ny ≤ n(x⊕ y),
(P11) x, y ≤ x⊘ y ≤ x⊕ y,
(P12) [(x′)n]′ = nx,
(P13) (x⊕ y)′′ = x⊕ y = x′′ ⊕ y′′,
(P14) x ∧ (y1 ⊕ ...⊕ yn) ≤ (x′′ ∧ y′′1 ) ⊕ · · · ⊕ (x′′ ∧ y′′n),
(P15) if L is De Morgan , then (x ∧ y)′′ = x′′ ∧ y′′.

3
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Note that in (Theorem 3.5, [16]), it was shown that a nonempty subset I of a
residuated lattice L is an ideal of L if and only if for any x, y ∈ L,

(I3) if y ∈ I and x ≤ y, then x ∈ I,
(I4) if x, y ∈ I, then x⊕ y ∈ I.

The set of all ideals of a residuated lattice L will be denoted by I(L).

Remark 2.2. From the above definition, it is easy to see that for all I ∈ I(L),
0 ∈ I, and, x ∈ I if and only if x′′ ∈ I for any x ∈ L.

For a nonempty subset X of a residuated lattice L, the ideal generated by X is
⟨X⟩ := {a ∈ L : a ≤ x1 ⊕ x2 ⊕ · · · ⊕ xn, for some n ∈ N∗, xi ∈ X, for 1 ≤ i ≤ n}
(See Proposition 6, [17]).

The concepts of state operators and state residuated lattices were introduced in
[8] by Pengfei et al. as follows.

Definition 2.3 (Definition 3.1, [8]). A map φ : L → L is said to be a state operator
on L, if the following conditions hold: for any x, y ∈ L,

(SO1) φ(0) = 0,
(SO2) x → y = 1 implies φ(x) → φ(y) = 1,
(SO3) φ(x → y) = φ(x) → φ(x ∧ y),
(SO4) φ(x⊙ y) = φ(x) ⊙ φ(x → (x⊙ y)),
(SO5) φ(φ(x) ⊙ φ(y)) = φ(x) ⊙ φ(y),
(SO6) φ(φ(x) → φ(y)) = φ(x) → φ(y),
(SO7) φ(φ(x) ∨ φ(y)) = φ(x) ∨ φ(y),
(SO8) φ(φ(x) ∧ φ(y)) = φ(x) ∧ φ(y).

The pair (L,φ) is said to be a state residuated lattice, or more precisely, a residuated
lattice with internal state.

From now on, unless othewise specified, (L,φ) will always denote a state resid-
uated lattice (L,∨,∧,⊙,→, 0, 1), that is, L is a residuated lattice and φ is a state
operator on L.

We shall notice that, idL is a state operator on L which is an endomorphism but
in general a state operator φ is not an endomorphism.
The kernel of φ is the set ker(φ) := {x ∈ L : φ(x) = 1}. φ is said to be faithful, if
ker(φ) = {1}.

Analogously, the co-kernel of φ is the set coker(φ) := {x ∈ L : φ(x) = 0}. φ is
called cofaithful, if coker(φ) = {0} and uncofaithful otherwise.

Definition 2.4 ([8, 9]). An ideal I of L is said to be a state ideal of (L,φ), if
φ(I) ⊆ I, (i.e., for all x ∈ L, x ∈ I ⇒ φ(x) ∈ I).

SI(L) will stand for the set of all state ideals of (L,φ). It is obvious that {0}, L ∈
SI(L) ⊆ I(L).

Remark 2.5. (L, idL) is a state residuated lattice, that is, a residuated lattice L
can be view as a state residuated lattice. One can see that, each ideal of L is a state
ideal of (L, idL).

For computational issues, we will use the following properties (See [8, 9]).
For any x, y ∈ L, for all n ≥ 1,
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(SO9) φ(1) = 1,
(SO10) x ≤ y implies φ(x) ≤ φ(y),
(SO11) φ(x′) = (φ(x))′,
(SO12) φ(x⊙ y) ≥ φ(x) ⊙ φ(y) and if x⊙ y = 0, then φ(x⊙ y) = φ(x) ⊙ φ(y),
(SO13) φ(x⊙ y′) ≥ φ(x) ⊙ (φ(y))′,
(SO14) φ(x → y) ≤ φ(x) → φ(y), particularly, if x, y are comparable, then

φ(x → y) = φ(x) → φ(y),
(SO15)] if φ is faithful, then x < y implies φ(x) < φ(y),
(SO16) φ2(x) = φ(φ(x)) = φ(x),
(SO17) φ(L) = Fix(φ), where Fix(φ) = {x ∈ L : φ(x) = x},
(SO18) φ(L) is a subalgebra of L,
(SO19) if x ≤ y, then φ(x⊙ y′) = φ(x) ⊙ (φ(y))′,
(SO20) coker(φ) is a state ideal of (L,φ),
(SO21) (φ(x))′′ = φ(x′′),
(SO22) φ(x⊕ y) ≤ φ(x) ⊕ φ(y),
(SO23) if x, y ∈ φ(L), then x⊕ y ∈ φ(L),
(SO24) φ(nx) ≤ nφ(x).

3. State relative annihilators in state residuated lattices

In this section, we bring in the concept of state relative annihilator of a nonempty
set X with respect to a state ideal I in a state residuated lattice (L,φ), and study
some of its properties.

Definition 3.1. Let (L,φ) be a state residuated lattice and I be a state ideal of
(L,φ). Given a nonempty subset X of L, the set

X
⊥φ

I := {a ∈ L : x′′ ∧ φ(a)′′ ∈ I, for all x ∈ X}
is called the state relative annihilator of X with respect to I.

We have the following.

(1) If I = {0}, then X⊥φ = X
⊥φ

{0} := {a ∈ L : x′′ ∧ φ(a)′′ = 0, for all x ∈ X},

(2) If X = {x}, we denote x
⊥φ

I = {x}⊥φ

I := {a ∈ L : x′′ ∧ φ(a)′′ ∈ I},

(3) If φ = idL, we obtain X
⊥idL

I := {a ∈ L : x′′ ∧ a′′ ∈ I, for all x ∈ X} = X⊥
I

and it is called the relative annihilator of X with respect to I (See Definition
3.1, [11]);

(4) If φ = idL and I = {0}, we denote X
⊥idL

{0} := {a ∈ L : x′′∧a′′ = 0, for all x ∈
X} = X⊥, which is called the annihilator of X in L (See [11, 18]).

For the convenience of the reader, we present some illustrative examples.

Example 3.2. Let L = {0, a, b, c, 1} be a poset with 0 < a, b < c < 1 and a, b not
comparable. Consider the Cayley tables of ⊙ and → presented in Figure 1.

Then L = (L,∧,∨,⊙,→, 0, 1) is a residuated lattice which is not De Morgan,
since (a ∧ b)′ = 1 ̸= c = a′ ∨ b′. Now, we define a map φ on the residuated lattice L
as follows:

5



Woumfo et al. /Ann. Fuzzy Math. Inform. 26 (2023), No. 1, 1–15

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Figure 1. Cayley tables of the operations ⊙ and →

φ(x) =

{
0 for x ∈ {0, a},

1 for x ∈ {b, c, 1}.

One can easily check that (L,φ) is a state residuated lattice and I = coker(φ) =

{0, a} is a state ideal of (L,φ). We have 0
⊥φ

I = a
⊥φ

I = L and b
⊥φ

I = c
⊥φ

I = 1
⊥φ

I =

{0, a} = I. For X = {a, b}, we obtain X
⊥φ

I = {0, a} = I.

Remark 3.3. If L is De Morgan , then X
⊥φ

I = {a ∈ L : x∧φ(a) ∈ I, for all x ∈ X},
which coincides with the definition of a state relative annihilator in state De Morgan

residuated lattices given in (Definition 7, [9]. In addition, if φ = idL, X
⊥idL

I := {a ∈
L : x∧a ∈ I, for all x ∈ X} = X⊥

I , which is the definition of relative annihilator in
De Morgan residuated lattices given in (Definition 4.23, [16]). Indeed, suppose that
L is De Morgan, then we have

X
⊥φ

I = {a ∈ L : x′′ ∧ φ(a)′′ ∈ I for all x ∈ X}
= {a ∈ L : (x ∧ φ(a))′′ ∈ I, for all x ∈ X} [By (P15)]
= {a ∈ L : x ∧ φ(a) ∈ I, for all x ∈ X}. [By Remark 2.2]

Remark 3.4. Let L be a residuated lattice. Then the following holds: for any
x, y ∈ L,

(SO25) φ(x⊘ y) ≤ φ(x) ⊘ φ(y).

This follows from the fact that
φ(x⊘ y) = φ(x′ → y)

≤ φ(x′) → φ(y) [By (SO14)]
= φ(x)′ → φ(y) [By (SO11)]
= φ(x) ⊘ φ(y).

Theorem 3.5. Let I be a state ideal of a state residuated lattice (L,φ). Given a

nonempty subset X of L, X
⊥φ

I is a state ideal of (L,φ).

Proof. Let a ∈ L and b ∈ X
⊥φ

I such that a ≤ b.
Then, from (SO10), φ(a) ≤ φ(b), which implies that φ(a)′′ ≤ φ(b)′′ from (RL4).

It follows that x′′ ∧ φ(a)′′ ≤ x′′ ∧ φ(b)′′ for all x ∈ X. Since φ(b)′′ ∧ x′′ ∈ I and I is

an ideal, we deduce that φ(a)′′ ∧ x′′ ∈ I for all x ∈ X. Thus a ∈ X
⊥φ

I .

Moreover, let a, b ∈ X
⊥φ

I . Then we have x′′ ∧ φ(a)′′ ∈ I and x′′ ∧ φ(b)′′ ∈ I for
all x ∈ X. Since I is an ideal, we have (x′′ ∧φ(a)′′)⊕ (x′ ∧φ(b)′′) ∈ I. We will show

that a⊘ b ∈ X
⊥φ

I , that is, φ(a⊘ b)′′ ∧ x′′ ∈ I for all x ∈ X. From (RL13), we have
φ(a)′ ⊙ φ(b)′ ≤ (φ(a)′ → φ(b))′. It follows that

6
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φ(a⊘ b)′′ ≤ (φ(a) ⊘ φ(b))′′ [By (SO25) and (RL4)]
= (φ(a)′ → φ(b))′′

≤ (φ(a)′ ⊙ φ(b)′)′, [By (RL4)]
that is, we have: for all x ∈ X,

x′′ ∧ φ(a⊘ b)′′ ≤ x′′ ∧ (φ(a)′ ⊙ φ(b)′)′

= [x′ ∨ (φ(a)′ ⊙ φ(b)′)]′ [By (RL7)]
≤ [(x′ ∨ φ(a)′) ⊙ (x′ ∨ φ(b)′)]′ [By (RL4) and (RL16)]
= [(x′ ∨ φ(a)′) ⊙ (x′ ∨ φ(b)′)]′′′ [By (RL11)]
= [(x′ ∨ φ(a)′)′′ ⊙ (x′ ∨ φ(b)′)′′]′ [By (RL7)]
= [(x′′ ∧ φ(a)′′)′ ⊙ (x′ ∧ φ(b)′′)′]′ [By (RL7)]
= (x′′ ∧ φ(a)′′) ⊕ (x′ ∧ φ(b)′′) ∈ I.

Thus x′′ ∧φ(a⊘ b)′′ ∈ I for all x ∈ X. So a⊘ b ∈ X
⊥φ

I . Hence X
⊥φ

I is an ideal of L.

In addition, let a ∈ X
⊥φ

I . Since (φ(φ(a)))′′
(SO21)

= φ(φ(a)′′)
(SO21)

= φ(φ(a′′))
(SO16)

=

φ(a′′)
(SO21)

= φ(a)′′, it follows that (φ(φ(a)))′′ ∧ x′′ = φ(a)′′ ∧ x′′ ∈ I for all x ∈ X.

Then φ(a) ∈ X
⊥φ

I . We conclude that X
⊥φ

I is a state ideal of (L,φ). □

The subsequent case illustrates that the converse of Theorem 3.5 does not neces-
sarily hold.
Indeed, consider the state residuated lattice (L,φ) defined in Example 3.2, and let

J = {0, b} be a subset of L. Then, a
⊥φ

J = L which is a state ideal of (L,φ), though
J = {0, b} is not a state ideal of (L,φ), since b ∈ J but φ(b) = 1 /∈ J .

Corollary 3.6. Let I be a state ideal of (L,φ). Given a nonempty subset X of L,
we have:

(1) X⊥φ is a state ideal of (L,φ),
(2) X⊥

I and X⊥ are state ideals of L.

Lemma 3.7. Let L be a residuated lattice. Then, for any x, y, z, x1, · · ·xn ∈ L,
n ∈ N∗,

(P16) x ∧ (y ⊕ z) ≤ x′′ ∧ (x⊕ z)′′ ≤ (x′′ ∧ y′′) ⊕ (x′′ ∧ z′′),
(P17) x ∧ (x1 ⊕ ...⊕ xn) ≤ x′′ ∧ (x1 ⊕ ...⊕ xn)′′ ≤ (x′′ ∧ x′′

1) ⊕ ...⊕ (x′′ ∧ x′′
n).

Proof. (P16) Let x, y, z ∈ L. From (RL9), we have x ≤ x′′ and y ⊕ z ≤ (y ⊕ z)′′.
Then x ∧ (y ⊕ z) ≤ x′′ ∧ (x⊕ z)′′. In addition, we get

x′′ ∧ (y ⊕ z)′′ = x′′ ∧ (y′ ⊙ z′)′′′

= x′′ ∧ (y′ ⊙ z′)′ [By (RL11)]
= [x′ ∨ (y′ ⊙ z′)]′ [By (RL7)]
≤ [(x′ ∨ y′) ⊙ (x′ ∨ z′)]′ [By (RL4) and (RL16)]
= [(x′ ∨ y′) ⊙ (x′ ∨ z′)]′′′ [By (RL11)]
= [(x′ ∨ y′)′′ ⊙ (x′ ∨ z′)′′]′ [By (RL7)]
= (x′′ ∧ y′′)′ ⊙ (x′′ ∧ z′′)′]′ [By (RL7)]
= (x′′ ∧ y′′) ⊕ (x′′ ∧ z′).

Thus x′′ ∧ (x⊕ z)′′ ≤ (x′′ ∧ y′′) ⊕ (x′′ ∧ z′′). So we have

x ∧ (y ⊕ z) ≤ x′′ ∧ (x⊕ z)′′ ≤ (x′′ ∧ y′′) ⊕ (x′′ ∧ z′′).
7
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(P17) Let x, x1, · · · , xn ∈ L, n ∈ N∗. From (RL9), we have x ≤ x′′ and
x1 ⊕ ....⊕ xn ≤ (x1 ⊕ ...⊕ xn)′′. Then x ∧ (x1 ⊕ ...⊕ xn) ≤ x′′ ∧ (x1 ⊕ ...⊕ xn)′′.

The proof of x′′ ∧ (x1 ⊕ · · · ⊕ xn)′′ ≤ (x′′ ∧ x′′
1) ⊕ · · · ⊕ (x′′ ∧ x′′

n) will be done by
mathematical induction.

If n = 1, then we have the equality.
If n = 2, then by (P16), we have x′′ ∧ (x1 ⊕ x2)′′ ≤ (x′′ ∧ x′′

2) ⊕ (x′′ ∧ x′′
2).

Now suppose that for n = k ∈ N∗, k ≥ 2,

x′′ ∧ (x1 ⊕ · · · ⊕ xk)′′ ≤ (x′′ ∧ x′′
1) ⊕ · · · ⊕ (x′′ ∧ x′′

k)

holds. We will prove that it also holds for n = k + 1, that is,

x′′ ∧ (x1 ⊕ · · · ⊕ xk ⊕ xk+1)′′ ≤ (x′′ ∧ x′′
1) ⊕ · · · ⊕ (x′′ ∧ x′′

k) ⊕ (x′′ ∧ x′′
k+1).

We have
x′′ ∧ (x1 ⊕ · · · ⊕ xk ⊕ xk+1)′′

= x′′ ∧ [(x1 ⊕ · · · ⊕ xk)′ ⊙ x′
k+1]′′′

= x′′ ∧ [(x1 ⊕ · · · ⊕ xk)′ ⊙ x′
k+1]′ [By (RL11)]

= [x′ ∨ ((x1 ⊕ · · · ⊕ xk)′ ⊙ x′
k+1)]′ [By (RL7)]

≤ [(x′ ∨ (x1 ⊕ · · · ⊕ xk)′) ⊙ (x′ ∨ x′
k+1)]′ [By (RL4) and (RL16)]

= [(x′ ∨ (x1 ⊕ · · · ⊕ xk)′) ⊙ (x′ ∨ x′
k+1)]′′′ [By (RL11)]

= [(x′ ∨ (x1 ⊕ · · · ⊕ xk)′)′′ ⊙ (x′ ∨ x′
k+1)′′]′ [By (RL7)]

= [(x′′ ∧ (x1 ⊕ · · · ⊕ xk)′′)′ ⊙ (x′′ ∧ x′′
k+1)′]′ [By (RL7)]

= (x′′ ∧ (x1 ⊕ · · · ⊕ xk)′′) ⊕ (x′′ ∧ x′′
k+1)

≤ (x′′ ∧ x′′
1) ⊕ · · · ⊕ (x′′ ∧ x′′

k) ⊕ (x′′ ∧ x′′
k+1). [By the hypothesis]

Then it follows that, x′′∧ (x1⊕· · ·⊕xn)′′ ≤ (x′′∧x′′
1)⊕ ...⊕ (x′′∧x′′

n) for all n ∈ N∗.
Thus, x ∧ (x1 ⊕ · · · ⊕ xn) ≤ x′′ ∧ (x1 ⊕ ...⊕ xn)′′ ≤ (x′′ ∧ x′′

1) ⊕ · · · ⊕ (x′′ ∧ x′′
n). □

In the following, we collect several properties of state relative annihilators.

Proposition 3.8. Let I, J be state ideals of (L,φ). Given nonempty subsets X, Y
of L, we have:

(1) I ⊆ J ⇒ X
⊥φ

I ⊆ X
⊥φ

J ,

(2) X ⊆ Y ⇒ (Y )
⊥φ

I ⊆ X
⊥φ

I ,

(3) ( ∪
k∈K

Xk)
⊥φ

I = ∩
k∈K

(Xk)
⊥φ

I ,

(4) X
⊥φ

( ∩
k∈K

Ik)
= ∩

k∈K
X

⊥φ

Ik
,

(5) ⟨X⟩⊥φ

I = X
⊥φ

I , in particular, ∅⊥φ

I = 0
⊥φ

I = L,
(6) coker(φ) ⊆ X⊥φ , L⊥φ = coker(φ),

(7) X
⊥φ

I = ∩
x∈X

x
⊥φ

I ,

(8) X⊥φ = ∩
x∈X

x⊥φ ,

(9) X
⊥φ

I = L iff X ⊆ I, particularly, 0
⊥φ

I = I
⊥φ

I = L,

(10) ∩
k∈K

(Xk)
⊥φ

I ⊆ ( ∩
k∈K

Xk)
⊥φ

I ,

(11) I ⊆ X
⊥φ

I ,

(12) X⊥φ ⊆ X
⊥φ

I .
8
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Proof. (1) Let I ⊆ J and a ∈ X
⊥φ

I . Then x′′ ∧ φ(a)′′ ∈ I for all x ∈ X. Thus

x′′ ∧ φ(a)′′ ∈ J for all x ∈ X, that is, a ∈ X
⊥φ

J . So X
⊥φ

I ⊆ X
⊥φ

J .

(2) Let X ⊆ Y and a ∈ (Y )
⊥φ

I . Then x′′ ∧ φ(a)′′ ∈ I for all x ∈ Y . Thus

x′′ ∧ φ(a)′′ ∈ I for all x ∈ X, which implies a ∈ X
⊥φ

I . So (Y )
⊥φ

I ⊆ X
⊥φ

I .

(3) Since Xk ⊆ ∪
k∈K

Xk, it follows from (2) that ( ∪
k∈K

Xk)
⊥φ

I ⊆ (Xk)
⊥φ

I for all

k ∈ K. We deduce that ( ∪
k∈K

Xk)
⊥φ

I ⊆ ∩
k∈K

(Xk)
⊥φ

I .

Conversely, let a ∈ ∩
k∈K

(Xk)
⊥φ

I . Then we have a ∈ (Xk)
⊥φ

I for all k ∈ K. Thus

x′′
k ∧ φ(a)′′ ∈ I for all xk ∈ Xk and k ∈ K, which implies that a ∈ ( ∪

k∈K
Xk)

⊥φ

I . So

∩
k∈K

(Xk)
⊥φ

I ⊆ ( ∪
k∈K

Xk)
⊥φ

I . Hence ( ∪
k∈K

Xk)
⊥φ

I = ∩
k∈K

(Xk)
⊥φ

I .

(4) We have a ∈ X
⊥φ

( ∩
k∈K

Ik)
iff x′′ ∧φ(a)′′ ∈ ∩

k∈K
Ik for all x ∈ X iff x′′ ∧φ(a)′′ ∈ Ik

for all x ∈ X and k ∈ K iff a ∈ X
⊥φ

Ik
for all k ∈ K iff a ∈ ∩

k∈K
X

⊥φ

Ik
. Then

X
⊥φ

( ∩
k∈K

Ik)
= ∩

k∈K
X

⊥φ

Ik
.

(5) Since X ⊆ ⟨X⟩, we deduce by (2) that ⟨X⟩⊥φ

I ⊆ X
⊥φ

I .

Conversely, let a ∈ X
⊥φ

I and z ∈ ⟨X⟩. Then x′′ ∧ φ(a)′′ ∈ I for all x ∈ X. Since
z ∈ ⟨X⟩, there are n ∈ N∗ and x1, x2, · · · , xn ∈ X such that z ≤ x1⊕x2⊕· · ·⊕xn.
It follows that

z′′ ∧ φ(a)′′ ≤ φ(a)′′ ∧ (x1 ⊕ x2 ⊕ · · · ⊕ xn)′′

≤ (φ(a)′′ ∧ x′′
1) ⊕ · · · ⊕ (φ(a)′′ ∧ x′′

n) ∈ I. [By (P17)]

Thus φ(a)′′ ∧ z′′ ∈ I for all z ∈ ⟨X⟩. So a ∈ ⟨X⟩⊥φ

I . Hence ⟨X⟩⊥φ

I = X
⊥φ

I .
(6) Let a ∈ coker(φ). Then φ(a) = 0, which implies that φ(a)′′ = 0. Since

x′′ ∧ φ(a)′′ ≤ φ(a)′′ = 0 for all x ∈ X, we have x′′ ∧ φ(a)′′ = 0, that is, a ∈ X⊥φ .
Thus coker(φ) ⊆ X⊥φ . Taking X = L, we have coker(φ) ⊆ L⊥φ . Now, let a ∈ L⊥φ .
Then x′′∧φ(a)′′ = 0 for all x ∈ L. In particular, taking x = φ(a), we have φ(a)′′ = 0.
It follows that φ(a)′ = φ(a)′′′ = 0′ = 1, which implies φ(a)′ = 1. So φ(a) = 0.
Hence a ∈ coker(φ), that is, L⊥φ ⊆ coker(φ). Therefore coker(φ) ⊆ X⊥φ and
L⊥φ = coker(φ).

(7) According to (3), we have

X
⊥φ

I = ( ∪
x∈X

{x})
⊥φ

I = ∩
x∈X

x
⊥φ

I .

(8) Taking I = {0} in (1), we obtain X⊥φ = ∩
x∈X

x⊥φ .

(9) Assume that X
⊥φ

I = L and let x ∈ X. Then x′′ = x′′ ∧ φ(1)′′ ∈ I, that is,
x′′ ∈ I, which implies x ∈ I from Remark 2.2.

Conversely, suppose that X ⊆ I and a ∈ L. Then for any x ∈ X, we have x ∈ I.
It follows that x′′ ∈ I. Since x′′ ∧ φ(a)′′ ≤ x′′ ∈ I, we obtain x′′ ∧ φ(a)′′ ∈ I. Thus

a ∈ X
⊥φ

I . So X
⊥φ

I = L.

(10) Since ∩
k∈K

Xk ⊆ Xk for each k ∈ K, it follows from (2) that (Xk)
⊥φ

I ⊆

( ∩
k∈K

Xk)
⊥φ

I for all k ∈ K. Then ∩
k∈K

(Xk)
⊥φ

I ⊆ ( ∩
k∈K

Xk)
⊥φ

I .

9
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(11) Let a ∈ I. Since I is a state ideal, we have φ(a) ∈ I which implies φ(a)′′ ∈ I.
In addition, x′′ ∧ φ(a)′′ ≤ φ(a)′′ ∈ I for all x ∈ X. Then x′′ ∧ φ(a)′′ ∈ I for all

x ∈ X. Thus a ∈ X
⊥φ

I . So I ⊆ X
⊥φ

I .
(12) Let I be an ideal of L. We have a ∈ X⊥φ implies φ(a)′′ ∧x′′ = 0 ∈ I for any

x ∈ X. Then φ(a)′′ ∧ x′′ ∈ I for any x ∈ X. Thus a ∈ X
⊥φ

I . So X⊥φ ⊆ X
⊥φ

I .
□

The next result shows some affinity properties of state relative annihilators with
other operations.

Proposition 3.9. Let (L,φ) be a state residuated lattice. Then we have: for all
a, b ∈ L,

(1) a ≤ b ⇒ b
⊥φ

I ⊆ a
⊥φ

I ,

(2) (a ∨ b)
⊥φ

I = a
⊥φ

I ∩ b
⊥φ

I = (a⊘ b)
⊥φ

I = (b⊘ a)
⊥φ

I .

Proof. (1) Assume that a ≤ b. Then ⟨a⟩ ⊆ ⟨b⟩, which implies from Proposition 3.8

(2) and (5) that b
⊥φ

I ⊆ a
⊥φ

I .

(2) First of all, we will prove that (a ∨ b)
⊥φ

I = a
⊥φ

I ∩ b
⊥φ

I . Since a, b ≤ a ∨ b, it

follows from (1) that (a ∨ b)
⊥φ

I ⊆ a
⊥φ

I ∩ b
⊥φ

I . Moreover, let x ∈ a
⊥φ

I ∩ b
⊥φ

I . Then

x ∈ a
⊥φ

I and x ∈ b
⊥φ

I . This implies that φ(x)′′ ∧ a′′, φ(x)′′ ∧ b′′ ∈ I. But
φ(x)′′ ∧ (a ∨ b)′′ = (φ(x)′ ∨ (a ∨ b)′)′ [By (RL7)]

= (φ(x)′ ∨ (a′ ∧ b′))′ [By (RL7)]
≤ (φ(x)′ ∨ (a′ ⊙ b′))′ [By (RL4) and (RL6)]
≤ ((φ(x)′ ∨ a′) ⊙ (φ(x)′ ∨ b′))′ [By (RL4) and (RL6)]
= ((φ(x)′ ∨ a′) ⊙ (φ(x)′ ∨ b′))′′′ [By (RL11)]
= ((φ(x)′ ∨ a′)′′ ⊙ (φ(x)′ ∨ b′)′′)′ [By (RL7)]
= ((φ(x)′′ ∧ a′′)′ ⊙ (φ(x)′′ ∧ b′′)′)′ [By (RL7)]
= (φ(x)′′ ∧ a′′) ⊕ (φ(x)′′ ∧ b′′) ∈ I.

Thus x ∈ (a ∨ b)
⊥φ

I . So (a ∨ b)
⊥φ

I = a
⊥φ

I ∩ b
⊥φ

I .

Now, we show that a
⊥φ

I ∩ b
⊥φ

I = (a ⊘ b)
⊥φ

I . We have a, b
(P11)

≤ a ⊘ b implies from

(1) that (a⊘ b)
⊥φ

I ⊆ a
⊥φ

I ∩ b
⊥φ

I .

Conversely, let x ∈ a
⊥φ

I ∩ b
⊥φ

I . Then x ∈ a
⊥φ

I and x ∈ b
⊥φ

I , that is, φ(x)′′ ∧
a′′, φ(x)′′ ∧ b′′ ∈ I. It follows that (φ(x)′′ ∧ a′′) ⊕ (φ(x)′′ ∧ b′′) ∈ I. But,

φ(x)′′ ∧ (a⊘ b)′′ ≤ φ(x)′′ ∧ (a′ ⊙ b′)′ [By (P11)]
= [φ(x)′ ∨ (a′ ⊙ b′)]′ [By (RL7)]
≤ [(φ(x)′ ∨ a′) ⊙ (φ(x)′ ∨ b′)]′ [By (RL4) and (RL16)]
= [(φ(x)′ ∨ a′) ⊙ (φ(x)′ ∨ b′)]′′′ [By (RL11)]
= [(φ(x)′ ∨ a′)′′ ⊙ (φ(x)′ ∨ b′)′′]′ [By (RL7)]
= [(φ(x)′′ ∧ a′′)′ ⊙ (φ(x)′′ ∧ b′′)′]′ [By (RL7)]
= (φ(x)′′ ∧ a′′) ⊕ (φ(x)′′ ∧ b′′) ∈ I.

Thus φ(x)′′ ∧ (a ⊘ b)′′ ∈ I. So x ∈ (a ⊘ b)
⊥φ

I . Hence a
⊥φ

I ∩ b
⊥φ

I = (a ⊘ b)
⊥φ

I .

Analogously, we get a
⊥φ

I ∩ b
⊥φ

I = (b⊘ a)
⊥φ

I . □

The following properties always hold for φ = idL, which may not in general be
the case for some state operators of residuated lattices.
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Proposition 3.10. Let (L, idL) be a state residuated lattice, let I, J be two state
ideals of (L, idL) and let X, Y two nonempty subsets of L.

(1) X ∩X⊥
I ⊆ I.

(2) I ⊆ X iff X ∩X⊥
I = I. Particularly, X⊥

I ∩ (X⊥
I )⊥I = I.

(3) Y ⊥
I ∪X⊥

I ⊆ Y ⊥
(X⊥

I )
, X⊥

(Y ⊥
I )

and Y ⊥
(X⊥

I )
∪X⊥

(Y ⊥
I )

⊆ (X ∧ Y )⊥I , where X ∧ Y =

{x ∧ y : x ∈ X, y ∈ Y }.
(4) L⊥

I = I and 1⊥I = I.
(5) X ⊆ (X⊥

I )⊥I . Particularly, (I⊥I )⊥I = I and (L⊥
I )⊥I = L.

(6) X⊥
I = ((X⊥

I )⊥I )⊥I .
(7) X⊥

(X⊥
I )

⊆ X(X
(Y ⊥

I
)
).

(8) If X ⊆ I, then: X⊥
(X⊥

I )
= X⊥

(X⊥
(X⊥

I
)
)

= X(X
(Y ⊥

I
)
), whenever X ⊆ Y .

Proof. The proof is similar to the one of Proposition 3.7 and Corollary 3.8 in [11]. □

Example 3.11 exhibits a state residuated lattice in which items (1) and (2) of
Proposition 3.10 do not hold.

Example 3.11. Let L = {0, p, a, b, c, d, e, f, q, 1} be a set such that 0 < p < a <
c < e < q < 1, 0 < p < b < d < f < q < 1, b < c, d < e, f < q, but a and b are not
comparable, as well as c and d, also e and f .

The Cayley tables of ⊙ and → are displayed in Figure 2:

⊙ 0 p a b c d e f q 1
0 0 0 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 0 0 p
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 0 0 0 0 b b b
c 0 0 a 0 a 0 a b c c
d 0 0 0 0 0 b b d d d
e 0 0 a 0 a b c d e e
f 0 0 0 b b d d f f f
q 0 0 a b c d e f q q
1 0 p a b c d e f q 1

→ 0 p a b c d e f q 1
0 1 1 1 1 1 1 1 1 1 1
p q 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 1 1 1 1 1
c d d e f 1 f 1 f 1 1
d c c c e e 1 1 1 1 1
e b b c d e f 1 f 1 1
f a a a c c e e 1 1 1
q p p a b c d e f 1 1
1 0 p a b c d e f q 1

Figure 2. Cayley tables of the operations ⊙ and →
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Then L = (L,∧,∨,⊙,→, 0, 1) is a residuated lattice. The map φ defined on L by:

φ(x) =

{
0 for x ∈ {0, p, b, d, f},

1 for x ∈ {a, c, e, q, 1}.

is a state operator on L. Thus (L,φ) is a state residuated lattice. I = {0, p} and
J = {0, p, b, d, f} are two state ideals of (L,φ).

We have 0
⊥φ

I = p
⊥φ

I = L and a
⊥φ

I = b
⊥φ

I = c
⊥φ

I = d
⊥φ

I = e
⊥φ

I = f
⊥φ

I = q
⊥φ

I =

1
⊥φ

I = {0, p, b, d, f} = J .

(1) For X = {d}, we obtain X
⊥φ

I = J . But X ∩ X
⊥φ

I = {d}, which is not a
subset of I.

(2) Let X = {0, p, f}. By Proposition 3.8 (3), we have X
⊥φ

I = 0
⊥φ

I ∩p⊥φ

I ∩f⊥φ

I =

L ∩ L ∩ J = J . Clearly I ⊆ X, but X ∩X
⊥φ

I = X ∩ J = X ̸= I.

4. State-morphism operators and annihilators in state residuated
lattices

In this section, we introduce the notion of state-morphism operator in state resid-
uated lattices and establish a relationship between annihilators and state-morphism
operators.

Definition 4.1. A map φ : L −→ L is called a state morphism operator, if φ is an
idempotent endomorphism (that is, φ is an endomorphism of L such that φ2 = φ).
The couple (L,φ) is called a state-morphism residuated lattice.

Example 4.2. Set L = {0, a, b, 1} with 0 < a < b < 1. Then, L is a residuated
lattice with the operations presented in Figure 3.

⊙ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Figure 3. Cayley tables of the operations ⊙ and →

Let define the unary operator φ on L by

φ(x) =


0 if x = 0,

a if x = a,

1 if x ∈ {b, 1}.

Then one can easily check that φ is a state operator on L. Thus the couple (L,φ)
is a SRL. In addition, coker(φ) = {0} and φ verified the following properties:

φ(x → y) = φ(x) → φ(y) and φ(x⊙ y) = φ(x) ⊙ φ(y) for any x, y ∈ L.

So φ is a cofaithful state-morphism operator. Moreover, the state ideals of (L,φ)
are {0} and L.

12
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Example 4.3. Let L1 and L2 be two nontrivial residuated lattices and h : L1 −→ L2

a homomorphism. We define the map φh : L1 × L2 −→ L1 × L2

(x, y) 7−→ φh(x, y) = (x, h(x)).
Then one can check that φh is an idempotent endomorphism on L1 × L2. Thus
φh is a state-morphism operator and the couple (L1 × L2, φh) is a state-morphism
residuated lattice. In addition, coker(φh) = {0} × L2. So φh is a uncofaithful
state-morphism operator.

Proposition 4.4. Every state-morphism operator of a residuated lattice L is a state
operator of L.

Proof. Let φ be a state-morphism operator of a residuated lattice L. We will show
that φ verifies the eight conditions of a state operator from Definition 2.3.

(SO1) : Since φ is an endomorphism of L, we have φ(0) = 0.
(SO2) : Let x, y ∈ L such that x → y = 1. Then φ(x) → φ(y) = φ(x → y) =

φ(1) = 1.
(SO3) : Let x, y ∈ L. Then from (RL14), we have x → (x ∧ y) = x → y. Thus

φ(x → y) = φ(x → (x ∧ y)) = φ(x) → φ(x ∧ y).
(SO4) : Let x, y ∈ L. Then from (RL15), we have x ⊙ y = x ⊙ (x → (x ⊙ y)).

Thus φ(x⊙ y) = φ(x⊙ (x → (x⊙ y))) = φ(x) ⊙ φ(x → (x⊙ y)).
(SO5) : Let x, y ∈ L. Then φ(φ(x)⊙φ(y)) = φ2(x)⊙φ2(y) = φ(x)⊙φ(y), because

φ is idempotent.

(SO6), (SO7) and (SO8) are obtained similarly as (SO5). So φ is a state operator
on L. □

In the following, we put on view some links between annihilators and state-
morphism operators.

Proposition 4.5. Let (L,φ) be a state-morphism residuated lattice and X a nonempty
subset of L. Then we have the following:

(1) φ(X⊥) ⊆ (φ(X))⊥,
(2) If φ is surjective then, (φ−1(X))⊥ ⊆ φ−1(X⊥),
(3) φ(X⊥) = (φ(X))⊥ iff φ(X⊥) = (φ(X⊥))⊥⊥ and

(φ(X))⊥ ∩ (φ(X⊥))⊥ = {0},
(4) if φ is surjective, then

(φ−1(X))⊥ = φ−1(X⊥) iff φ−1(X⊥) ∩ (φ−1(X))⊥⊥ = {0},
(5) if φ is bijective, then φ(X⊥) = (φ(X))⊥ and (φ−1(X))⊥ = φ−1(X⊥).

Proof. Since a state-morphism operator is an endomorphism, the proofs of (1),(2),(3),
(4) and (5) are similar to the one of Proposition 3.12, Proposition 3.13, Proposition
3.14, Proposition 3.15 and Proposition 3.16 in [11] respectively. □

From (Example 3.30 and Example 3.32, [19]), one can see that φ(X⊥) and
φ−1(X⊥) are not always annihilators.

Conclusion

This work was devoted to the investigation on state relative annihilators in the
framework of state residuated lattices. We brought in the concept of state relative
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annihilator of a given nonempty subset with respect to a state ideal in a SRL, in-
vestigated some of its properties and examples. We have shown that this notion is
a generalization of the one of De Morgan state residuated lattices recently studied
in our previous paper [9]. Particulary, we have proved that state relative annihila-
tors are state ideals. Also, we have presented some links between state-morphism
operators and annihilators.

In the same view as the work done by Pengfei et al. in [20], we will study as
future work the L-fuzzy state annihilators in state residuated lattices.
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