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ABSTRACT. In this paper, we develop a systematic theory for the ideals
of an L-ring L(u, R). Recently, the authors have introduced the concepts
of prime ideals, semiprime ideals and the radical of an ideal in an L-ring.
Moreover, they have also introduced the notion of maximal ideals in L-
setting. In this paper, we introduce the concept of a primary ideal of an
L-ring and establish a necessary and sufficient condition for an ideal to be
a primary in term of level subring. We establish some results pertaining
to the notions of radical of an ideal of an L-ring which are versions of
corresponding results of classical ring theory. Besides this we prove that
for a commutative ring R, the radical /i of a primary ideal 5 of an L-ring
L(u, R) is a prime ideal of u provided n has sup-property.
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1. INTRODUCTION

"T'he notion of a maximal ideal of an L-ring L(p, R) has been introduced and dis-
cussed by the authors in [1, 2]. In paper [3], the concepts of prime ideals, semiprime
ideals and the radical of an ideal of an L-ring have been studied in L-setting. In
another paper [4], the concept of right (left) quotient (or residual) of an ideal n by an
ideal v of an L-ring p is introduced and discussed. Thus a systematic development
of the theory of ideals came into fore in an L-ring. This machinery has been ef-
fectively applied in a forthcoming [5] wherein the notions of primary decomposition
and reduced primary decomposition of an ideal in an L-ring have been introduced.
Moreover in the same paper [5], necessary and sufficient conditions for the existence
of a primary decomposition of an ideal of an L-ring have been provided.
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In this paper, we introduce the concept of primary ideal of an L-ring and establish
a necessary and sufficient condition for an ideal to be a primary in term of level sub-
ring. We prove several results pertaining to these notions which are versions of their
counterpart in classical ring theory. Besides this we prove that for a commutative
ring R, the radical /7 of a primary ideal 7 of an L-ring L(u, R) is a prime ideal of
u provided 7 has sup-property.

The concept of radical of an ideal in an L-ring is introduced in paper [3]. We will
establish some results pertaining to the notions of radical of an ideal of an L-ring
which are versions of corresponding results of classical ring theory. It is also prove
that every semiprime ideal of an L-ring which is also primary is a prime ideal of the
L-ring. In classical ring theory, it is well known that if the radical I of an ideal I of
a ring R is maximal, then [ is primary ideal. We have established the corresponding
result in an L-ring.

2. PRELIMINARIES

In this section, we recall some of the basic definitions and concepts which are used
in the sequel. For details we refer to [6, 7, 8].

In this paper, L denotes a lattice, ‘<’ denotes the partial ordering on L, and ‘V’
and ‘A’ denote the join and the meet of the elements of L respectively. Let X be a
non-empty set. An L-subset of X is a function from X into L. The set of L-subsets
of X is called the L-power set of X and is denoted by LX. For p € LX, the set
{p(x) | = € X} is called the image of p and is denoted by I'mp. An L-subset u of
X is said to be contained in an L-subset n of X, if u(x) < n(x) for all z € X. This
is denoted by u C n. If v C p and v # pu, then v is said to be properly contained in
w and we write v C . Throughout the paper, R will denote an ordinary ring and L
will denote a lattice, unless otherwise specifically mentioned. Also, Z* will denote
the set of positive integers and ¢ will denote an empty set.

Definition 2.1 ([7]). Let u € L. Then p is called an L-subring of R, if it satisfies
the following conditions: for any z, y € R,

(i) p(z —y) = p(@) A p(y),

(it p(zy) > p(x) A p(y).

The set of all L-subrings of R is denoted by L(R). It is obvious that if u is an
L-subring of R, then p(z) < p(0) V 2 € R. For convenience, we use the notation
L(u, R) for the L-subring p of R and we shall refer to it here as an L-ring L(u, R).

Definition 2.2 ([7]). Let u € L. Then p is called an L-ideal of R, if it satisfies
the following conditions: for any z, y € R,

(i) plz —y) = pl) A py),

(il) p(zy) = plz) v p(y).

We denote the set of all L-ideals of R by LI(R). It is obvious that if R has
identity 1 and p € LI(R), then pu(z) > p(l) ¥V = € R.

Definition 2.3 ([7]). Let X be a nonempty set. For p € L*X and a € L, we define
the level subset . and the strong level subset uZ of p are defined respectively as

follows:
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po={z€X | p()>a} and 47 = {z € X | u(z) > a}.
Obviously, pu2 C e and for a < 8, ug C pe and ,ug Cuz.

Definition 2.4 (Definition 3.2.11 [7]). Let v € L and u € L(R) with v C p. Then
v is called an L-ideal of p (or in p), if it satisfies the following conditions: for any
z, y € R,

() v(z —y) = v(x) Av(y),

(i) v(zy) = {v(y) Ap)}tv{v(e) vy}

For convenience, v is called an ideal of p (or L-ring L(u, R)). Clearly, for u €
L(R), a non-empty level subset y, is an ordinary subring of R, called a level subring
of u.

Definition 2.5 ([7]). Let L(p, R) be an L-ring and let v € L(R). If v C p, then v
is called a subring of p (or L -ring L(u, R)).
Clearly, if v is a subring of y, then v(z") > v(z) VneZ*

Theorem 2.6 ([1]). Let L(p, R) be an L-ring and n € LT with n C u. Then 7 is an
ideal of p if and only if each non-empty level subset n, is an ideal of level subring

Ha-

Definition 2.7 ([7]). Let L be a complete lattice and n,v € L¥. Then we define
n+ v, nvand nov by

n+v)=\/ {n) vz},

r=y+z

nv(x) = \/ {/\ {n(yi) Av(z) cx = yizi}} ;

i=1

nov(z)=\/ {n(y)

r=yz

Clearly, if n and v are subrings of an L-ring L(u, R) with n(0) = v(0), then
nand v Cn+v.

Lemma 2.8 ([7]). Let L be a complete lattice and n, v, & € L®. Then the following
assertions hold :

(1) non Sy,

(2) fo(n+v)Clon+Eov,

(3) if n Cv, thenn Cvé andnol Cvof,

(4) n (v€) = ()&,

(5) nv(z +y) = nv(x) Anqv(y) Vo, y € R.

The following lemma is easy to verify:

Lemma 2.9 ([1]). Let L be a complete lattice, L(u, R) be an L-ring and let n be a
subring of u. Then
(1) non Cun Cn,
(2) n+n=n.
In particular, pop C pup C p and g+ p = p.
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Definition 2.10 ([1])). A proper ideal 5 of an L-ring L(u, R) is called a mazimal
ideal of u, if for any ideal 6 of u, whenever n C 6 C p, then either n =6 or 6§ = p.

Theorem 2.11 ([1]). Let L be a chain, let L(u, R) be an L-ring and let n be a
mazimal ideal of 1. Then there is exactly one pair (g, , e, ) Such that ny, S e, and
for all other pairs (ng, pt), we have ny = py.

Lemma 2.12 ([7]). Let L be a complete lattice and let L(p, R) be an L-ring. Then
the intersection of an arbitrary family of ideals of p is an ideal of .

Lemma 2.13 ([3]). Let L(u, R) be an L-ring. If n is an ideal of u, then for all
z,y € R,

n(xy) A p(@) A ply) = n(e) A ply)
and

n(wy) A p(@) A p(y) = n(y) A p().
Definition 2.14 ([3]). Let R be a commutative ring and let L(u, R) be an L-ring.
An ideal 1 # p of p is called a prime ideal of pu, if for all z,y € R,
either

n(@y) A @) A ply) = n@) A p(y)
or

n(zy) A p(x) A p(y) =n(y) A p(zy).
Definition 2.15 ([3]). Let R be a commutative ring and let L(u, R) be an L-ring.
An ideal i # p of p is called a semiprime ideal of p, if

n(z"™) A u(z) = n(z) Vo € R and Vn € Z™.

Theorem 2.16 ([3]). Let R be a commutative ring and let L(p, R) be an L-ring and
let n be a prime ideal of . Then 1 is a semiprime ideal of .

Definition 2.17 ([3]). Let R be a commutative ring, let L be a complete lattice,let
L(p, R) be an L-ring and let 1 be an ideal of p. The radical of 1, denoted by /7, is
defined by
Vil(z) = \/ {n(a") A p(x)} Vo € R,
neZ+t
Clearly, n € /5 C p.

Theorem 2.18 ([3]). Let R be a commutative ring, let L be a complete lattice and
let L(pu, R) be an L-ring. An ideal n of p is a semiprime ideal of p if and only if

Vi=1
Here we recall the definition of sup-property:

Definition 2.19 ([7]). Let u € LX. Then, pu is said to have sup-property, if for each
A C X, there exists ag € A such that \/ pu(a) = p(ag).
acA

Lemma 2.20 ([3]). Let R be a commutative ring, let L be a complete lattice, let
L(p, R) be an L-ring and let n be an ideal of u such that n has sup-property. Then

(\/ﬁ)tz\/ﬁtﬂ,ut Vte L.
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Theorem 2.21 ([3]). Let R be a commutative ring, let L be a complete lattice, let
L(p, R) be an L-ring and let n be an ideal of pu having sup-property. Then \/n is an
ideal of .

Theorem 2.22 ([3]). Let R be a commutative ring, let L be a complete Heyting
algebra, let L(p, R) be an L-ring and let n be an ideal of . Then /1 is an ideal of
i

Theorem 2.23 ([3]). Let R be a commutative ring, let L be a complete lattice, let
n and let 0 be ideals of p. If n C 0, then \/n C V.

Theorem 2.24 ([3]). Let R be a commutative ring, let L be a complete Heyting
algebra, let L(p, R) be an L-ring and let n be an ideal of p. Then \/\/n = 1.

Theorem 2.25 ([1]). Let L be a complete lattice, let L(u, R) be an L-ring and let
n € L® with n C . Then n is an ideal of u if and only if

(1) n(z —y) = n(@) An(y) ¥z, y € R,

(2) nop, pon Sn.
Theorem 2.26 ([1]). Let L be a complete lattice, let L(p, R) be an L-ring and let
n € LT with n C p. Then n is an ideal of u if and only if

(1) n(z —y) =) Anly) vz, y € R,

(2) np, pm S 0.
Theorem 2.27 ([1]). Let L be a complete lattice and let L(p, R) be an L-ring. If
and v are ideals of p with n(0) = v(0), then n+ v is an ideal of p and n C n+ v,
vCn+v.

Theorem 2.28 ([1]). Let L be a complete lattice and let L(p, R) be an L-ring. If

and v are ideals of u, then nv is an ideal of .

3. RADICALS OF AN IDEAL AND A PRIMARY IDEAL

Theorem 3.1. Let R be a commutative ring, let L be a completely distributive lattice
and let L(p, R) be an L-ring. If n and 0 are ideals of ju, then /n N0 = /n N V.

Proof. Let x € R. Then

Vi ne@ =\ {0 no)a") Ap(e))

nez+t

=\ {n=") Ab(") A ()}

nez+

:{ \V {n(:E")Au(w)}}/\{ \ {9(96”)/\11(96)}}

nezZ+ nezZ+

[Since L is a completely distributive lattice]
= Vi (@) N Vo (2) = (/7 N Vo) (x).

Thus 7N = /N V0. Since n and 6 are ideals of x, by Theorem 2.28, 76 is an
ideal of p. Also by Lemma 2.8 and Theorem 2.26, nf C nu C 1. By Theorem 2.23,

V0 C /. Similarly, vnf C V0. So v C /N V0 = /nno.
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Now, let z € R. Then
\/ {nf(") Ap(x)}

nezZ+t

>\/ Hn\/1 (n(=") Aa(xnr))] Au(x)}-

n>2 r=1

On the other hand,

\/{n ) A0 )} = {n(@" ) Ab(2)} v {n(@) A"}

={n@@"""Yvnx)} A{0""") vo(z)}

[Since L is a completely distributive lattice]
=" HA0@").

[Since n(x"~1) > n(x) and O(z"~1) > ()]

=(mNo) ")
Thus /n0(x) > \>/2{(nﬂ 0) (z" 1) Ap(x)} = /nNB(z). So/nN8C /nd. Hence
Vi =g, O

Theorem 3.2. Let R be a commutative ring. let L be a complete Heyting Algebra
and let L(p, R) be an L-ring. If n and 6 are ideals of p with n(0) = 6(0), then

Vi + VoS yn+ Vo =1/n+0.
Proof. By Theorem 2.22, ,/n and V0 are ideals of u. By Theorem 2.27, n + 6 and
\/ﬁ—i—\/@ are an ideal of p. Clearly, ﬁ—i—\/é Cy/vn+ V0. Since n C /1 and 6 C \/5,

n+0C./n+ V6. Then by Theorem 2.23, v/ + 0 C \/ /M + V6. By Theorem 2.22,
V11 + 60 is an ideal of p. Thus by Lemma 2.9, /n +6 +/n+0 = v/n+ 6. Since
n € n+ 0, by Theorem 2.23, \/n C v/n + 0. Similarly, V0 C /n+0. So we have

VI+VOCS\n+0+/n+0=1/n+0.
By Theorem 2.23 and Theorem 2.24, 4/\/f + VO C \/Vn+0 = /n+0. Hence
i+ b= V¥ 0

Definition 3.3. Let R be a commutative ring and let L(u, R) be an L-ring. An
ideal 1 # p of p is said to be primary ideal of p, if for all x,y € R, we have either

(3.1) n(x) Ap(y)  =n(zy) A p(e) A ply)
(3.2) or n(y) Ap(z)  >n(xy) A ple) A p(y)
(3.3) or n(@™) A p(x) An(y™) A ply) = nloy) A p(e) A p(y),

for some integers m, n > 1.

Obviously, every prime ideal of an L-ring L(u, R) is a primary ideal of p.
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Lemma 3.4. Let R be a commutative ring. An ideal I of R is primary if and only
if, whenever xy € I we have either x € I ory € I or (z"™, y™ € I for some integers
m, n>1).

Proof. Suppose that the ideal I is primary. Let zy € I. Then we consider the
following three cases.

Case(i) x ¢ I,y ¢ I. Since I is a primary ideal and x ¢ I, we have y™ € I for
some positive integer m. Also m > 1, since y ¢ I. Similarly, we have 2™ € I for
some integer n > 1.

Case (ii) z ¢ I and either 2™ ¢ I or y" ¢ I for any integer n > 1. Again, since
I is a primary ideal and x ¢ I, we have y™ € I for some integer m > 1. We show
that y € I. Assume that y ¢ I. Then m > 1. Thus by the hypothesis, 2™ ¢ I for
any integer n > 1. Since [ is primary and y ¢ I, ™ € I for some integer m > 1. As
x ¢ I, m>1. Soa™ € I for some integer m > 1, which is a contradiction. Hence
yel

Case (iii) y ¢ I and either 2™ ¢ I or y™ ¢ I for any integer n > 1. The proof of
this part is similar to that of case (ii).

To prove the converse part, suppose xy € I and « ¢ I. Then either y € I or there
exists integers m, n > 1 such that 2™ € I and y™ € I. Thus in either case y™ € I
for some positive integer m. Similarly, if y ¢ I, then 2™ € I for some positive integer
n. So I is a primary ideal of R. O

Theorem 3.5. Let R be a commutative ring, let L(p, R) be an L-ring and let n be
an ideal of p with n # p. Then n is a primary ideal of p if and only if for each
non-empty level subset 1, either ny = py or n; is a primary ideal of puy.

Proof. Suppose 7 is a primary ideal of g and 7, is a non-empty level subset such
that 1, # pe. Let xy € my, x,y € py. Then it follows that n(zy) A p(z) A p(y) > t.
Since 7 is primary ideal of p, one of the conditions (3.1), (3.2) and (3.3) hold.

If condition (3.1) holds, then

n(x) > n(z) A uy) = n(zy) A () A ply) > t.

Thus z € n,.
If (3.2) holds, then

n(y) = n(y) A p(x) > n(zy) A plz) A ply) >t

Thus y € n.
If (3.3) holds, then we have

n(@™) A p(x) Any™) A uly) > n(ey) A p(z) Auply) >t

for some integer m,n > 1. Thus 2™, y™ € n,. So, by Lemma 3.4Confirm it, n; is a
primary ideal of p;.

Conversely, suppose that for each non-empty level subset 7, either 1, = p; or 0,
is a primary ideal of p;. We write n(zy) A u(z) A u(y) = t. Then zy € n, & € 1y
and y € pg. If ny = pe, then x € 0 and y € n. Thus n(z) > ¢. So

n(x) Au(y) >t At =1t =mn(zy) Ap(z) A up(y).
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If n; is a primary ideal of u;, then zy € n, implies that x € n, or y € puy or
™, y™ € ny for some integers m, n > 1. Suppose that & € 7. Then n(x) >t
implies that

n

n(@) Aply) >t At =t =n(xy) Ap(e) A py).
Similarly, if y € n;, then
n(y) A (@) = n(zy) A pe) A py).

Thus 7 is a primary ideal of u. g

Our next result shows that every semiprime ideal of an L-ring which is also
primary is a prime ideal.
Theorem 3.6. Let R be a commutative ring, let L(p, R) be an L-ring and let n be
a semiprime ideal of u. If 1 is a primary ideal of p, then n is a prime ideal of .

Proof. Let x,y € R. Since 7 is semiprime ideal of u, we have
(™) A p(x) = n(x) and n(y™) A u(y) = n(y) Yn, m € Z*.

Thus
(3.4) (™) A () An(y™) A ply) = n(x) Anly) Yn, m e Z*.
Since 7 is a primary ideal of p, one of the conditions (3.1), (3.2) and (3.3) holds. If
condition (3.3) holds, then for some integers r, s > 1, we have

n(@") A (@) An(y®) A ply) = n(zy) A p(z) A py).
From this along with (3.4), we have

n() A p(y) = n@) An(y) = n(z") A p(x) An(y®) A py)
= n(xy) A p(@) A p(y).

This again gives us condition (3.1). Thus either condition (3.1) or (3.2) holds. Since
7 is an ideal of p, by Lemma 2.17, we have

n(@y) A p(x) A p(y) = n(z) A ply) and n(zy) A p(z) A ply) = n(y) A p(z).
So either,

n(@y) A p() A p(y) =n(z) A py) or nlzy) A p(e) A ply) = nly) A p(z).
Hence 7 is a prime ideal of p. g
Theorem 3.7. Let R be a commutative ring, let L be a complete lattice and let
L(p, R) be an L-ring. If n is a primary ideal of p having sup-property, then (/1 is a

prime ideal of p. Also \/\/n = /1.

Proof. By Theorem 2.21, /7 is an ideal of y1. Let z, y € R. Since n has sup-property,
there exists m € ZT such that

(3.5) Vilzy) =\ ((@y)™) A play)] = n(@™y™) A play).
nezZt
On the other hand,
Vi) = \/ @™ Ap@)] > n(a®) A p(e) Vs € 2+,
nezZt
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Then we get

(3.6) V@) A ply) = n(@*) A pe) A ply) Vs € Z+.
Similarly, we have

(3.7) V() A () > n(y®) A p(x) A ply) Vs € 27
Since n is a primary ideal of u, by Definition 3.3, we have either
(3.8) n(@™y™) A p(z™) A p(y™) < (™) A py™)

or

(3.9) n(@™y™) A (™) A p(y™) < ny™) A p(™)

(3.10) n(x™y™) A p(@™) A p(y™) < n(@™ ) A p(a™) Any™) A py™)

for some integers k, r > 1.
By (3.5), we have

Viey) Ap(z) Auy) = n@™y™) A p(zy) A p(e) A py)
)

If (3.8) holds, then

Vi(@y) A p(e) A p(y) n(@™) A p(y™) A p(e) A ply)
[Vn(z™) A p(@)] A p(y)

V() A u(y).[By(3.6)]

IN

If (3.9) holds, then

Vi(zy) A p(x) A p(y) ny™) A p(™) A p(z) A p(y)
(y™) A ()] A p(y)
< ny) A p(z).[By(3.7)]

If the condition (3.10) is valid, then

Vi(zy) Ap() Aply) < (™) A p@™) Any™) A py™) A @) A py)
= 77(33’") n(y™) A p(@) A ply)
= [n@@™) A p(@) A ()] Any™) Apy) A )]
< [Vl ) pW A VIY) A p()]
< Vi) A ply).
Thus /7 is a prime ideal of . So by Theorem 2.16, 7 is a semiprime ideal. Hence
by Theorem 2.18, \/\/n = /1. O

It is well-known in classical ring theory that if the radical v/T of an ideal I in a
commutative ring R is a maximal ideal of R, then I itself is a primary ideal of R.

Now we provide the L-version of this result.
301



Haci Aktag et al. /Ann. Fuzzy Math. Inform. 25 (2023), No. 3, 293-302

Theorem 3.8. Let L be a complete chain, let R be a commutative ring with unity,
let L(p, R) be an L-ring and let ) be an ideal of pn having sup-property. If \/n is
a mazimal ideal of p such that (\/ﬁ)to
t, = R, then n is a primary ideal of p.

is a mazimal ideal of py,,to € Im p and

Proof. Let 1; be a non-empty level subset of p; such that 7, g pi. We show that
is primary ideal of u;. Now, two cases arise:

Case (i) (\/ﬁ)t = p¢. Then by Lemma 2.20, we have /7 Ny = pg. Let ab € 1,
a, be pyand a ¢ mn. Then b € py = Ve Ny C \/ﬁt. Thus n; is a primary ideal of

M-
Case (ii) (\/?])t # 1. By Theorem 2.11, we have (\/ﬁ)t = <\/ﬁ)to and p; =
i, = R. Thus by Lemma 2.20, we have

(\/ﬁ)tg =Wm), = (\/E)tﬂ:ut = (Vn), mR =V,

By the hypothesis, (\/77) to is a maximal ideal of u,. So 7 is a maximal ideal of R.
Hence in view of a result of classical ring theory, 7; is a primary ideal of R, i.e., n:
is a primary ideal of . 0
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