Annals of Fuzzy Mathematics and Informatics
Volume 25, No. 3, (June 2023) pp. 293–302
ISSN: 2093–9310 (print version)
ISSN: 2287–6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2023.25.3.293

$$@\mathbb{FMI}$$

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Radical of an ideal and a primary ideal of an L-subring

Anand Swaroop Prajapati, Naseem Ajmal, Iffat Jahan

Annals of Fuzzy Mathematics and Informatics Volume 25, No. 3, (June 2023) pp. 293–302 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2023.25.3.293

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Radical of an ideal and a primary ideal of an *L*-subring

Anand Swaroop Prajapati, Naseem Ajmal, Iffat Jahan

Received 12 December 2022; Revised 28 January 2023; Accepted 5 May 2023

ABSTRACT. In this paper, we develop a systematic theory for the ideals of an *L*-ring $L(\mu, R)$. Recently, the authors have introduced the concepts of prime ideals, semiprime ideals and the radical of an ideal in an *L*-ring. Moreover, they have also introduced the notion of maximal ideals in *L*setting. In this paper, we introduce the concept of a primary ideal of an *L*-ring and establish a necessary and sufficient condition for an ideal to be a primary in term of level subring. We establish some results pertaining to the notions of radical of an ideal of an *L*-ring which are versions of corresponding results of classical ring theory. Besides this we prove that for a commutative ring *R*, the radical $\sqrt{\eta}$ of a primary ideal η of an *L*-ring $L(\mu, R)$ is a prime ideal of μ provided η has sup-property.

2020 AMS Classification: 03G10, 20N25

Keywords: Prime ideal, Semiprime ideal, Primary ideal, Radical of an ideal, *L*-subring.

Corresponding Author: Iffat Jahan (ij.umar@yahoo.com)

1. INTRODUCTION

The notion of a maximal ideal of an L-ring $L(\mu, R)$ has been introduced and discussed by the authors in [1, 2]. In paper [3], the concepts of prime ideals, semiprime ideals and the radical of an ideal of an L-ring have been studied in L-setting. In another paper [4], the concept of right (left) quotient (or residual) of an ideal η by an ideal ν of an L-ring μ is introduced and discussed. Thus a systematic development of the theory of ideals came into fore in an L-ring. This machinery has been effectively applied in a forthcoming [5] wherein the notions of primary decomposition and reduced primary decomposition of an ideal in an L-ring have been introduced. Moreover in the same paper [5], necessary and sufficient conditions for the existence of a primary decomposition of an ideal of an L-ring have been provided.

In this paper, we introduce the concept of primary ideal of an *L*-ring and establish a necessary and sufficient condition for an ideal to be a primary in term of level subring. We prove several results pertaining to these notions which are versions of their counterpart in classical ring theory. Besides this we prove that for a commutative ring *R*, the radical $\sqrt{\eta}$ of a primary ideal η of an *L*-ring $L(\mu, R)$ is a prime ideal of μ provided η has sup-property.

The concept of radical of an ideal in an L-ring is introduced in paper [3]. We will establish some results pertaining to the notions of radical of an ideal of an L-ring which are versions of corresponding results of classical ring theory. It is also prove that every semiprime ideal of an L-ring which is also primary is a prime ideal of the L-ring. In classical ring theory, it is well known that if the radical I of an ideal I of a ring R is maximal, then I is primary ideal. We have established the corresponding result in an L-ring.

2. Preliminaries

In this section, we recall some of the basic definitions and concepts which are used in the sequel. For details we refer to [6, 7, 8].

In this paper, L denotes a lattice, ' \leq ' denotes the partial ordering on L, and ' \vee ' and ' \wedge ' denote the join and the meet of the elements of L respectively. Let X be a non-empty set. An *L*-subset of X is a function from X into L. The set of *L*-subsets of X is called the *L*-power set of X and is denoted by L^X . For $\mu \in L^X$, the set $\{\mu(x) \mid x \in X\}$ is called the *image* of μ and is denoted by $Im\mu$. An *L*-subset μ of X is said to be contained in an *L*-subset η of X, if $\mu(x) \leq \eta(x)$ for all $x \in X$. This is denoted by $\mu \subseteq \eta$. If $\nu \subseteq \mu$ and $\nu \neq \mu$, then ν is said to be properly contained in μ and we write $\nu \subsetneq \mu$. Throughout the paper, R will denote an ordinary ring and Lwill denote a lattice, unless otherwise specifically mentioned. Also, \mathbb{Z}^+ will denote the set of positive integers and ϕ will denote an empty set.

Definition 2.1 ([7]). Let $\mu \in L^R$. Then μ is called an *L*-subring of *R*, if it satisfies the following conditions: for any $x, y \in R$,

- (i) $\mu(x-y) \ge \mu(x) \land \mu(y)$,
- (ii $\mu(xy) \ge \mu(x) \land \mu(y)$.

The set of all *L*-subrings of *R* is denoted by L(R). It is obvious that if μ is an *L*-subring of *R*, then $\mu(x) \leq \mu(0) \forall x \in R$. For convenience, we use the notation $L(\mu, R)$ for the *L*-subring μ of *R* and we shall refer to it here as an *L*-ring $L(\mu, R)$.

Definition 2.2 ([7]). Let $\mu \in L^R$. Then μ is called an *L*-ideal of *R*, if it satisfies the following conditions: for any $x, y \in R$,

- (i) $\mu(x-y) \ge \mu(x) \land \mu(y)$,
- (ii) $\mu(xy) \ge \mu(x) \lor \mu(y)$.

We denote the set of all *L*-ideals of *R* by LI(R). It is obvious that if *R* has identity 1 and $\mu \in LI(R)$, then $\mu(x) \ge \mu(1) \forall x \in R$.

Definition 2.3 ([7]). Let X be a nonempty set. For $\mu \in L^X$ and $\alpha \in L$, we define the *level subset* μ_{α} and the *strong level subset* $\mu_{\alpha}^>$ of μ are defined respectively as follows:

 $\mu_a = \{x \in X \mid \mu(x) \ge a\}$ and $\mu_a^> = \{x \in X \mid \mu(x) > a\}.$ Obviously, $\mu_\alpha^> \subseteq \mu_\alpha$ and for $\alpha \le \beta$, $\mu_\beta \subseteq \mu_\alpha$ and $\mu_\beta^> \subseteq \mu_\alpha^>$.

Definition 2.4 (Definition 3.2.11 [7]). Let $\nu \in L^R$ and $\mu \in L(R)$ with $\nu \subseteq \mu$. Then ν is called an *L*-ideal of μ (or in μ), if it satisfies the following conditions: for any $x, y \in R$,

(i) $\nu(x-y) \ge \nu(x) \land \nu(y),$ (ii) $\nu(xy) > \{\nu(y) \land \mu(x)\} \lor \{\nu(x) \lor \mu(y)\}.$

For convenience, ν is called an *ideal* of μ (or *L*-ring $L(\mu, R)$). Clearly, for $\mu \in L(R)$, a non-empty level subset μ_a is an ordinary subring of R, called a *level subring* of μ .

Definition 2.5 ([7]). Let $L(\mu, R)$ be an *L*-ring and let $\nu \in L(R)$. If $\nu \subseteq \mu$, then ν is called a *subring* of μ (or *L* -ring $L(\mu, R)$).

Clearly, if ν is a subring of μ , then $\nu(x^n) \ge \nu(x) \quad \forall n \in \mathbb{Z}^+$

Theorem 2.6 ([4]). Let $L(\mu, R)$ be an L-ring and $\eta \in L^R$ with $\eta \subseteq \mu$. Then η is an ideal of μ if and only if each non-empty level subset η_a is an ideal of level subring μ_a .

Definition 2.7 ([7]). Let L be a complete lattice and $\eta, \nu \in L^R$. Then we define $\eta + \nu, \eta \nu$ and $\eta \circ \nu$ by

$$\eta + \nu(x) = \bigvee_{x=y+z} \{\eta(y) \wedge \nu(z)\},$$
$$\eta\nu(x) = \bigvee \left\{ \bigwedge_{i=1}^{n} \{\eta(y_i) \wedge \nu(z_i) : x = y_i z_i\} \right\}$$
$$\eta \circ \nu(x) = \bigvee_{x=yz} \{\eta(y) \wedge \nu(z)\}.$$

Clearly, if η and ν are subrings of an *L*-ring $L(\mu, R)$ with $\eta(0) = \nu(0)$, then η and $\nu \subseteq \eta + \nu$.

Lemma 2.8 ([7]). Let L be a complete lattice and η , ν , $\xi \in L^R$. Then the following assertions hold :

(1) $\eta \circ \eta \subseteq \eta \nu$, (2) $\xi \circ (\eta + \nu) \subseteq \xi \circ \eta + \xi \circ \nu$, (3) if $\eta \subseteq \nu$, then $\eta \xi \subseteq \nu \xi$ and $\eta \circ \xi \subseteq \nu \circ \xi$, (4) $\eta \ (\nu \xi) = (\eta \nu) \xi$, (5) $\eta \nu (x + y) \ge \eta \nu (x) \land \eta \nu (y) \forall x, y \in R$.

The following lemma is easy to verify:

Lemma 2.9 ([4]). Let L be a complete lattice, $L(\mu, R)$ be an L-ring and let η be a subring of μ . Then

 $\begin{array}{l} (1) \ \eta \circ \eta \subseteq \eta \eta \subseteq \eta, \\ (2) \ \eta + \eta = \eta. \\ In \ particular, \ \mu \circ \mu \subseteq \mu \mu \subseteq \mu \ and \ \mu + \mu = \mu. \end{array}$

Definition 2.10 ([1])). A proper ideal η of an *L*-ring $L(\mu, R)$ is called a maximal ideal of μ , if for any ideal θ of μ , whenever $\eta \subseteq \theta \subseteq \mu$, then either $\eta = \theta$ or $\theta = \mu$.

Theorem 2.11 ([1]). Let L be a chain, let $L(\mu, R)$ be an L-ring and let η be a maximal ideal of μ . Then there is exactly one pair (η_{t_0}, μ_{t_0}) such that $\eta_{t_0} \subsetneq \mu_{t_0}$ and for all other pairs (η_t, μ_t) , we have $\eta_t = \mu_t$.

Lemma 2.12 ([7]). Let L be a complete lattice and let $L(\mu, R)$ be an L-ring. Then the intersection of an arbitrary family of ideals of μ is an ideal of μ .

Lemma 2.13 ([3]). Let $L(\mu, R)$ be an L-ring. If η is an ideal of μ , then for all $x, y \in R$,

$$\eta(xy) \land \mu(x) \land \mu(y) \ge \eta(x) \land \mu(y)$$

and

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) \ge \eta(y) \wedge \mu(x).$$

Definition 2.14 ([3]). Let R be a commutative ring and let $L(\mu, R)$ be an L-ring. An ideal $\eta \neq \mu$ of μ is called a *prime ideal* of μ , if for all $x, y \in R$, either

$$\eta(xy) \land \mu(x) \land \mu(y) = \eta(x) \land \mu(y)$$

or

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(y) \wedge \mu(xy).$$

Definition 2.15 ([3]). Let R be a commutative ring and let $L(\mu, R)$ be an L-ring. An ideal $\eta \neq \mu$ of μ is called a *semiprime ideal* of μ , if

$$\eta(x^n) \wedge \mu(x) = \eta(x) \ \forall x \in R \text{ and } \forall n \in \mathbb{Z}^+.$$

Theorem 2.16 ([3]). Let R be a commutative ring and let $L(\mu, R)$ be an L-ring and let η be a prime ideal of μ . Then η is a semiprime ideal of μ .

Definition 2.17 ([3]). Let R be a commutative ring, let L be a complete lattice, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ . The radical of η , denoted by $\sqrt{\eta}$, is defined by

$$\sqrt{\eta}(x) = \bigvee_{n \in \mathbb{Z}^+} \{\eta(x^n) \land \mu(x)\} \ \forall x \in R.$$

Clearly, $\eta \subseteq \sqrt{\eta} \subseteq \mu$.

Theorem 2.18 ([3]). Let R be a commutative ring, let L be a complete lattice and let $L(\mu, R)$ be an L-ring. An ideal η of μ is a semiprime ideal of μ if and only if $\sqrt{\eta} = \eta$.

Here we recall the definition of sup-property:

Definition 2.19 ([7]). Let $\mu \in L^X$. Then, μ is said to *have sup-property*, if for each $A \subseteq X$, there exists $a_0 \in A$ such that $\bigvee \mu(a) = \mu(a_0)$.

Lemma 2.20 ([3]). Let R be a commutative ring, let L be a complete lattice, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ such that η has sup-property. Then $(\sqrt{\eta})_t = \sqrt{\eta}_t \cap \mu_t \ \forall \ t \in L.$

Theorem 2.21 ([3]). Let R be a commutative ring, let L be a complete lattice, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ having sup-property. Then $\sqrt{\eta}$ is an ideal of μ .

Theorem 2.22 ([3]). Let R be a commutative ring, let L be a complete Heyting algebra, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ . Then $\sqrt{\eta}$ is an ideal of μ .

Theorem 2.23 ([3]). Let R be a commutative ring, let L be a complete lattice, let η and let θ be ideals of μ . If $\eta \subseteq \theta$, then $\sqrt{\eta} \subseteq \sqrt{\theta}$.

Theorem 2.24 ([3]). Let R be a commutative ring, let L be a complete Heyting algebra, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ . Then $\sqrt{\sqrt{\eta}} = \eta$.

Theorem 2.25 ([4]). Let L be a complete lattice, let $L(\mu, R)$ be an L-ring and let $\eta \in L^R$ with $\eta \subseteq \mu$. Then η is an ideal of μ if and only if

 $\begin{array}{l} (1) \ \eta(x-y) \geq \eta(x) \wedge \eta(y) \ \forall \ x, \ y \in R, \\ (2) \ \eta \circ \mu, \ \mu \circ \eta \subseteq \eta. \end{array}$

Theorem 2.26 ([4]). Let L be a complete lattice, let $L(\mu, R)$ be an L-ring and let $\eta \in L^R$ with $\eta \subseteq \mu$. Then η is an ideal of μ if and only if

(1) $\eta(x-y) \ge \eta(x) \land \eta(y) \forall x, y \in R$,

(2) $\eta\mu$, $\mu\eta \subseteq \eta$.

Theorem 2.27 ([4]). Let L be a complete lattice and let $L(\mu, R)$ be an L-ring. If η and ν are ideals of μ with $\eta(0) = \nu(0)$, then $\eta + \nu$ is an ideal of μ and $\eta \subseteq \eta + \nu$, $\nu \subseteq \eta + \nu$.

Theorem 2.28 ([4]). Let L be a complete lattice and let $L(\mu, R)$ be an L-ring. If η and ν are ideals of μ , then $\eta\nu$ is an ideal of μ .

3. RADICALS OF AN IDEAL AND A PRIMARY IDEAL

Theorem 3.1. Let R be a commutative ring, let L be a completely distributive lattice and let $L(\mu, R)$ be an L-ring. If η and θ are ideals of μ , then $\sqrt{\eta \cap \theta} = \sqrt{\eta} \cap \sqrt{\theta}$.

Proof. Let
$$x \in R$$
. Then

$$\begin{split} \sqrt{\eta \ \cap \theta}(x) &= \bigvee_{n \in Z^+} \left\{ (\eta \ \cap \theta)(x^n) \wedge \mu(x) \right\} \\ &= \bigvee_{n \in Z^+} \left\{ \eta(x^n) \wedge \theta(x^n) \wedge \mu(x) \right\} \\ &= \left\{ \bigvee_{n \in Z^+} \left\{ \eta(x^n) \wedge \mu(x) \right\} \right\} \bigwedge \left\{ \bigvee_{n \in Z^+} \left\{ \theta(x^n) \wedge \mu(x) \right\} \right\} \end{split}$$

[Since L is a completely distributive lattice]

 $= \ \sqrt{\eta} \ (x) \ \cap \ \sqrt{\theta} \ (x) \ = (\sqrt{\eta} \ \cap \ \sqrt{\theta}) \ (x).$

Thus $\sqrt{\eta \cap \theta} = \sqrt{\eta} \cap \sqrt{\theta}$. Since η and θ are ideals of μ , by Theorem 2.28, $\eta\theta$ is an ideal of μ . Also by Lemma 2.8 and Theorem 2.26, $\eta\theta \subseteq \eta\mu \subseteq \eta$. By Theorem 2.23, $\sqrt{\eta\theta} \subseteq \sqrt{\eta}$. Similarly, $\sqrt{\eta\theta} \subseteq \sqrt{\theta}$. So $\sqrt{\eta\theta} \subseteq \sqrt{\eta} \cap \sqrt{\theta} = \sqrt{\eta \cap \theta}$.

Now, let $x \in R$. Then

$$\begin{split} \sqrt{\eta \theta}(x) &= \bigvee_{n \in Z^+} \left\{ \eta \theta(x^n) \wedge \mu(x) \right\} \\ &\geq \bigvee_{n \geq 2} \left\{ \left[\bigvee_{r=1}^{n-1} \left(\eta(x^r) \wedge \theta(x^{n-r}) \right) \right] \wedge \mu(x) \right\}. \end{split}$$

On the other hand,

$$\begin{split} \bigvee_{r=1}^{n-1} \left\{ \eta(x^r) \wedge \theta(x^{n-r}) \right\} &\geq \left\{ \eta(x^{n-1}) \wedge \theta(x) \right\} \vee \left\{ \eta(x) \wedge \theta(x^{n-1}) \right\} \\ &= \left\{ \eta(x^{n-1}) \vee \eta(x) \right\} \wedge \left\{ \theta(x^{n-1}) \vee \theta(x) \right\} \\ & \text{[Since } L \text{ is a completely distributive lattice]} \\ &= \eta(x^{n-1}) \wedge \theta(x^{n-1}). \\ & \text{[Since } \eta(x^{n-1}) \geq \eta(x) \text{ and } \theta(x^{n-1}) \geq \theta(x)] \\ &= (\eta \cap \theta)(x^{n-1}). \end{split}$$

Thus $\sqrt{\eta\theta}(x) \ge \bigvee_{n\ge 2} \left\{ (\eta\cap\theta) \left(x^{n-1}\right) \land \mu(x) \right\} = \sqrt{\eta\cap\theta}(x)$. So $\sqrt{\eta\cap\theta} \subseteq \sqrt{\eta\theta}$. Hence $\sqrt{\eta\cap\theta} = \sqrt{\eta\theta}$.

Theorem 3.2. Let R be a commutative ring. let L be a complete Heyting Algebra and let $L(\mu, R)$ be an L-ring. If η and θ are ideals of μ with $\eta(0) = \theta(0)$, then

$$\sqrt{\eta} + \sqrt{\theta} \subseteq \sqrt{\sqrt{\eta} + \sqrt{\theta}} = \sqrt{\eta + \theta}.$$

Proof. By Theorem 2.22, $\sqrt{\eta}$ and $\sqrt{\theta}$ are ideals of μ . By Theorem 2.27, $\eta + \theta$ and $\sqrt{\eta} + \sqrt{\theta}$ are an ideal of μ . Clearly, $\sqrt{\eta} + \sqrt{\theta} \subseteq \sqrt{\sqrt{\eta} + \sqrt{\theta}}$. Since $\eta \subseteq \sqrt{\eta}$ and $\theta \subseteq \sqrt{\theta}$, $\eta + \theta \subseteq \sqrt{\eta} + \sqrt{\theta}$. Then by Theorem 2.23, $\sqrt{\eta + \theta} \subseteq \sqrt{\sqrt{\eta} + \sqrt{\theta}}$. By Theorem 2.22, $\sqrt{\eta + \theta}$ is an ideal of μ . Thus by Lemma 2.9, $\sqrt{\eta + \theta} + \sqrt{\eta + \theta} = \sqrt{\eta + \theta}$. Since $\eta \subseteq \eta + \theta$, by Theorem 2.23, $\sqrt{\eta} \subseteq \sqrt{\eta + \theta}$. Similarly, $\sqrt{\theta} \subseteq \sqrt{\eta + \theta}$. So we have

$$\sqrt{\eta} + \sqrt{\theta} \subseteq \sqrt{\eta + \theta} + \sqrt{\eta + \theta} = \sqrt{\eta + \theta}.$$

By Theorem 2.23 and Theorem 2.24, $\sqrt{\sqrt{\eta} + \sqrt{\theta}} \subseteq \sqrt{\sqrt{\eta + \theta}} = \sqrt{\eta + \theta}$. Hence $\sqrt{\sqrt{\eta} + \sqrt{\theta}} = \sqrt{\eta + \theta}$.

Definition 3.3. Let R be a commutative ring and let $L(\mu, R)$ be an L-ring. An ideal $\eta \neq \mu$ of μ is said to be *primary ideal* of μ , if for all $x, y \in R$, we have either

(3.1)
$$\eta(x) \wedge \mu(y) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y)$$

(3.2) or $\eta(y) \wedge \mu(x) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y)$

(3.3) or
$$\eta(x^n) \wedge \mu(x) \wedge \eta(y^m) \wedge \mu(y) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y),$$

for some integers m, n > 1.

Obviously, every prime ideal of an L-ring $L(\mu, R)$ is a primary ideal of μ .

Lemma 3.4. Let R be a commutative ring. An ideal I of R is primary if and only if, whenever $xy \in I$ we have either $x \in I$ or $y \in I$ or $(x^n, y^m \in I$ for some integers m, n > 1).

Proof. Suppose that the ideal I is primary. Let $xy \in I$. Then we consider the following three cases.

Case(i) $x \notin I, y \notin I$. Since *I* is a primary ideal and $x \notin I$, we have $y^m \in I$ for some positive integer *m*. Also m > 1, since $y \notin I$. Similarly, we have $x^n \in I$ for some integer n > 1.

Case (ii) $x \notin I$ and either $x^n \notin I$ or $y^n \notin I$ for any integer n > 1. Again, since I is a primary ideal and $x \notin I$, we have $y^m \in I$ for some integer $m \ge 1$. We show that $y \in I$. Assume that $y \notin I$. Then m > 1. Thus by the hypothesis, $x^n \notin I$ for any integer n > 1. Since I is primary and $y \notin I$, $x^m \in I$ for some integer $m \ge 1$. As $x \notin I$, m > 1. So $x^m \in I$ for some integer m > 1, which is a contradiction. Hence $y \in I$.

Case (iii) $y \notin I$ and either $x^n \notin I$ or $y^n \notin I$ for any integer n > 1. The proof of this part is similar to that of case (ii).

To prove the converse part, suppose $xy \in I$ and $x \notin I$. Then either $y \in I$ or there exists integers m, n > 1 such that $x^n \in I$ and $y^m \in I$. Thus in either case $y^m \in I$ for some positive integer m. Similarly, if $y \notin I$, then $x^n \in I$ for some positive integer n. So I is a primary ideal of R.

Theorem 3.5. Let R be a commutative ring, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ with $\eta \neq \mu$. Then η is a primary ideal of μ if and only if for each non-empty level subset η_t , either $\eta_t = \mu_t$ or η_t is a primary ideal of μ_t .

Proof. Suppose η is a primary ideal of μ and η_t is a non-empty level subset such that $\eta_t \neq \mu_t$. Let $xy \in \eta_t$, $x, y \in \mu_t$. Then it follows that $\eta(xy) \wedge \mu(x) \wedge \mu(y) \geq t$. Since η is primary ideal of μ , one of the conditions (3.1), (3.2) and (3.3) hold.

If condition (3.1) holds, then

$$\eta(x) \ge \eta(x) \land \mu(y) \ge \eta(xy) \land \mu(x) \land \mu(y) \ge t.$$

Thus $x \in \eta_t$.

If (3.2) holds, then

$$\eta(y) \ge \eta(y) \land \mu(x) \ge \eta(xy) \land \mu(x) \land \mu(y) \ge t.$$

Thus $y \in \eta_t$.

If (3.3) holds, then we have

$$\eta(x^n) \wedge \mu(x) \wedge \eta(y^m) \wedge \mu(y) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y) \ge t$$

for some integer m, n > 1. Thus $x^n, y^m \in \eta_t$. So, by Lemma 3.4Confirm it, η_t is a primary ideal of μ_t .

Conversely, suppose that for each non-empty level subset η_t , either $\eta_t = \mu_t$ or η_t is a primary ideal of μ_t . We write $\eta(xy) \wedge \mu(x) \wedge \mu(y) = t$. Then $xy \in \eta_t$, $x \in \mu_t$ and $y \in \mu_t$. If $\eta_t = \mu_t$, then $x \in \eta_t$ and $y \in \eta_t$. Thus $\eta(x) \ge t$. So

$$\eta(x) \wedge \mu(y) \ge t \wedge t = t = \eta(xy) \wedge \mu(x) \wedge \mu(y).$$
299

If η_t is a primary ideal of μ_t , then $xy \in \eta_t$ implies that $x \in \eta_t$ or $y \in \mu_t$ or $x^n, y^m \in \eta_t$ for some integers m, n > 1. Suppose that $x \in \eta_t$. Then $\eta(x) \ge t$ implies that

$$\eta(x) \wedge \mu(y) \ge t \wedge t = t = \eta(xy) \wedge \mu(x) \wedge \mu(y).$$

Similarly, if $y \in \eta_t$, then

$$\eta(y) \wedge \mu(x) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y).$$

Thus η is a primary ideal of μ .

Our next result shows that every semiprime ideal of an *L*-ring which is also primary is a prime ideal.

Theorem 3.6. Let R be a commutative ring, let $L(\mu, R)$ be an L-ring and let η be a semiprime ideal of μ . If η is a primary ideal of μ , then η is a prime ideal of μ .

Proof. Let $x, y \in R$. Since η is semiprime ideal of μ , we have

$$\eta(x^n) \wedge \mu(x) = \eta(x) \text{ and } \eta(y^m) \wedge \mu(y) = \eta(y) \ \forall n, \ m \in \mathbb{Z}^+.$$

Thus

(3.4)
$$\eta(x^n) \wedge \mu(x) \wedge \eta(y^m) \wedge \mu(y) = \eta(x) \wedge \eta(y) \ \forall n, \ m \in \mathbb{Z}^+$$

Since η is a primary ideal of μ , one of the conditions (3.1), (3.2) and (3.3) holds. If condition (3.3) holds, then for some integers r, s > 1, we have

$$\eta(x^r) \wedge \mu(x) \wedge \eta(y^s) \wedge \mu(y) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y).$$

From this along with (3.4), we have

$$\eta(x) \wedge \mu(y) \ge \eta(x) \wedge \eta(y) = \eta(x^r) \wedge \mu(x) \wedge \eta(y^s) \wedge \mu(y)$$
$$\ge \eta(xy) \wedge \mu(x) \wedge \mu(y).$$

This again gives us condition (3.1). Thus either condition (3.1) or (3.2) holds. Since η is an ideal of μ , by Lemma 2.17, we have

 $\eta(xy) \wedge \mu(x) \wedge \mu(y) \geq \eta(x) \wedge \mu(y)$ and $\eta(xy) \wedge \mu(x) \wedge \mu(y) \geq \eta(y) \wedge \mu(x)$.

So either,

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(x) \wedge \mu(y) \text{ or } \eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(y) \wedge \mu(x).$$

Hence η is a prime ideal of μ .

Theorem 3.7. Let R be a commutative ring, let L be a complete lattice and let $L(\mu, R)$ be an L-ring. If η is a primary ideal of μ having sup-property, then $\sqrt{\eta}$ is a prime ideal of μ . Also $\sqrt{\sqrt{\eta}} = \sqrt{\eta}$.

Proof. By Theorem 2.21, $\sqrt{\eta}$ is an ideal of μ . Let $x, y \in R$. Since η has sup-property, there exists $m \in \mathbb{Z}^+$ such that

(3.5)
$$\sqrt{\eta}(xy) = \bigvee_{n \in \mathbb{Z}^+} \left[\eta((xy)^n) \wedge \mu(xy) \right] = \eta(x^m y^m) \wedge \mu(xy).$$

On the other hand,

$$\sqrt{\eta}(x) = \bigvee_{n \in \mathbb{Z}^+} [\eta(x^n) \land \mu(x)] \ge \eta(x^s) \land \mu(x) \ \forall s \in \mathbb{Z}^+.$$

Then we get

(3.6)
$$\sqrt{\eta}(x) \wedge \mu(y) \ge \eta(x^s) \wedge \mu(x) \wedge \mu(y) \; \forall s \in \mathbb{Z}^+.$$

Similarly, we have

(3.7)
$$\sqrt{\eta}(y) \wedge \mu(x) \ge \eta(y^s) \wedge \mu(x) \wedge \mu(y) \; \forall s \in \mathbb{Z}^+.$$

Since η is a primary ideal of μ , by Definition 3.3, we have either

(3.8)
$$\eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \le \eta(x^m) \wedge \mu(y^m)$$

or

(3.9)
$$\eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \le \eta(y^m) \wedge \mu(x^m)$$

or

$$(3.10) \quad \eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \le \eta(x^{mk}) \wedge \mu(x^m) \wedge \eta(y^{mr}) \wedge \mu(y^m)$$

for some integers k, r > 1.

By (3.5), we have

$$\begin{split} \sqrt{\eta}(xy) \wedge \mu(x) & \wedge \mu(y) &= \eta(x^m y^m) \wedge \mu(xy) \wedge \mu(x) \wedge \mu(y) \\ &= \eta(x^m y^m) \wedge \mu(x) \wedge \mu(y) \\ &= \eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \wedge \mu(x) \wedge \mu(y). \end{split}$$

If (3.8) holds, then

$$\begin{array}{rcl} \sqrt{\eta}(xy) \wedge \mu(x) \wedge \mu(y) & \leq & \eta(x^m) \wedge \mu(y^m) \wedge \mu(x) \wedge \mu(y) \\ & = & [\sqrt{\eta}(x^m) \wedge \mu(x)] \wedge \mu(y) \\ & \leq & \sqrt{\eta}(x) \wedge \mu(y).[By(\textbf{3.6})] \end{array}$$

If (3.9) holds, then

$$\sqrt{\eta}(xy) \wedge \mu(x) \wedge \mu(y) \leq \eta(y^m) \wedge \mu(x^m) \wedge \mu(x) \wedge \mu(y)$$

$$= [\eta(y^m) \wedge \mu(x)] \wedge \mu(y)$$

$$\leq \eta(y) \wedge \mu(x) \cdot [By(3.7)]$$

If the condition (3.10) is valid, then

$$\begin{split} \sqrt{\eta}(xy) \wedge \mu(x) \wedge \mu(y) &\leq \eta(x^{mk}) \wedge \mu(x^m) \wedge \eta(y^{mr}) \wedge \mu(y^m) \wedge \mu(x) \wedge \mu(y) \\ &= \eta(x^{mk}) \wedge \eta(y^{mr}) \wedge \mu(x) \wedge \mu(y) \\ &= \left[\eta(x^{mk}) \wedge \mu(x) \wedge \mu(y)\right] \wedge \left[\eta(y^{mr}) \wedge \mu(y) \wedge \mu(x)\right] \\ &\leq \left[\sqrt{\eta}(x) \wedge \mu(y)\right] \wedge \left[\sqrt{\eta}(y) \wedge \mu(x)\right] \\ &\leq \sqrt{\eta}(x) \wedge \mu(y). \end{split}$$

Thus $\sqrt{\eta}$ is a prime ideal of μ . So by Theorem 2.16, η is a semiprime ideal. Hence by Theorem 2.18, $\sqrt{\sqrt{\eta}} = \sqrt{\eta}$.

It is well-known in classical ring theory that if the radical \sqrt{I} of an ideal I in a commutative ring R is a maximal ideal of R, then I itself is a primary ideal of R. Now we provide the *L*-version of this result. **Theorem 3.8.** Let L be a complete chain, let R be a commutative ring with unity, let $L(\mu, R)$ be an L-ring and let η be an ideal of μ having sup-property. If $\sqrt{\eta}$ is a maximal ideal of μ such that $(\sqrt{\eta})_{t_0}$ is a maximal ideal of $\mu_{t_0}, t_0 \in Im \mu$ and $\mu_{t_0} = R$, then η is a primary ideal of μ .

Proof. Let η_t be a non-empty level subset of μ_t such that $\eta_t \subsetneqq \mu_t$. We show that η_t is primary ideal of μ_t . Now, two cases arise:

Case (i) $(\sqrt{\eta})_t = \mu_t$. Then by Lemma 2.20, we have $\sqrt{\eta_t} \cap \mu_t = \mu_t$. Let $ab \in \eta_t$, $a, b \in \mu_t$ and $a \notin \eta_t$. Then $b \in \mu_t = \sqrt{\eta_t} \cap \mu_t \subseteq \sqrt{\eta_t}$. Thus η_t is a primary ideal of μ_t .

Case (ii) $(\sqrt{\eta})_t \neq \mu_t$. By Theorem 2.11, we have $(\sqrt{\eta})_t = (\sqrt{\eta})_{t_0}$ and $\mu_t = \mu_{t_0} = R$. Thus by Lemma 2.20, we have

$$(\sqrt{\eta})_{t_0} = (\sqrt{\eta})_t = (\sqrt{\eta})_t \bigcap \mu_t = (\sqrt{\eta})_t \bigcap R = \sqrt{\eta}_t.$$

By the hypothesis, $(\sqrt{\eta})_{t_0}$ is a maximal ideal of μ_{t_0} . So η_t is a maximal ideal of R. Hence in view of a result of classical ring theory, η_t is a primary ideal of R, i.e., η_t is a primary ideal of μ_t .

References

- A. S. Prajapati and N. Ajmal, Maximal ideals of L-subring, The Journal of Fuzzy Mathematics 15 (2) (2007) 383–398.
- [2] A. S. Prajapati and N. Ajmal, Maximal ideals of L-subring II, The Journal of Fuzzy Mathematics 15 (2) (2007) 399–411.
- [3] A. S. Prajapati and N. Ajmal, Prime Ideal, Semiprime ideal and Radical of an Ideal of an *L*-subring, Preprint.
- [4] A. S. Prajapati., Residual of ideals of an L-ring, IJMS 4 (2) (2007) 69-82.
- [5] N. Ajmal and A. S. Prajapati, Prime radical and primary decomposition of ideals in an Lsubring, preprint.
- [6] J. N. Mordeson, L-subspaces and L-subfield, Centre for Research in Fuzzy Mathematics and Computer Science, Creighton University, USA 1996.
- [7] J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra, World Scientific Publishing Co. USA 1998.
- [8] Yandong Yu, J. N. Mordeson and Shih-Chuan Cheng, Elements of L-algebra, Lecture notes in Fuzzy Mathematics and Computer Science 1, Center for Research in Fuzzy Mathematics and Computer Science, Creighton University, USA 1994.

Naseem Ajmal (nasajmal@yahoo.com)

Department of Mathematics, Zakir Hussain College, University of Delhi, J.L. Nehru Marg, New Delhi-110006, India

Anand Swaroop Prajapati (nasajmal@yahoo.com)

Department of Mathematics, ARSD College, University of Delhi, Dhaula Kuan, Delhi-110021, India

<u>Iffat Jahan</u> (ij.umar@yahoo.com)

Department of Mathematics, Ramjas College, University of Delhi, Delhi-110007, India