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Abstract. In this paper, we develop a systematic theory for the ideals
of an L-ring L(µ,R). Recently, the authors have introduced the concepts
of prime ideals, semiprime ideals and the radical of an ideal in an L-ring.
Moreover, they have also introduced the notion of maximal ideals in L-
setting. In this paper, we introduce the concept of a primary ideal of an
L-ring and establish a necessary and sufficient condition for an ideal to be
a primary in term of level subring. We establish some results pertaining
to the notions of radical of an ideal of an L-ring which are versions of
corresponding results of classical ring theory. Besides this we prove that
for a commutative ring R, the radical

√
η of a primary ideal η of an L-ring

L(µ,R) is a prime ideal of µ provided η has sup-property.
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1. Introduction

The notion of a maximal ideal of an L-ring L(µ,R) has been introduced and dis-
cussed by the authors in [1, 2]. In paper [3], the concepts of prime ideals, semiprime
ideals and the radical of an ideal of an L-ring have been studied in L-setting. In
another paper [4], the concept of right (left) quotient (or residual) of an ideal η by an
ideal ν of an L-ring µ is introduced and discussed. Thus a systematic development
of the theory of ideals came into fore in an L-ring. This machinery has been ef-
fectively applied in a forthcoming [5] wherein the notions of primary decomposition
and reduced primary decomposition of an ideal in an L-ring have been introduced.
Moreover in the same paper [5], necessary and sufficient conditions for the existence
of a primary decomposition of an ideal of an L-ring have been provided.
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In this paper, we introduce the concept of primary ideal of an L-ring and establish
a necessary and sufficient condition for an ideal to be a primary in term of level sub-
ring. We prove several results pertaining to these notions which are versions of their
counterpart in classical ring theory. Besides this we prove that for a commutative
ring R, the radical

√
η of a primary ideal η of an L-ring L(µ,R) is a prime ideal of

µ provided η has sup-property.
The concept of radical of an ideal in an L-ring is introduced in paper [3]. We will

establish some results pertaining to the notions of radical of an ideal of an L-ring
which are versions of corresponding results of classical ring theory. It is also prove
that every semiprime ideal of an L-ring which is also primary is a prime ideal of the
L-ring. In classical ring theory, it is well known that if the radical I of an ideal I of
a ring R is maximal, then I is primary ideal. We have established the corresponding
result in an L-ring.

2. Preliminaries

In this section, we recall some of the basic definitions and concepts which are used
in the sequel. For details we refer to [6, 7, 8].

In this paper, L denotes a lattice, ‘≤’ denotes the partial ordering on L, and ‘∨’
and ‘∧’ denote the join and the meet of the elements of L respectively. Let X be a
non-empty set. An L-subset of X is a function from X into L. The set of L-subsets
of X is called the L-power set of X and is denoted by LX . For µ ∈ LX , the set
{µ(x) | x ∈ X} is called the image of µ and is denoted by Imµ. An L-subset µ of
X is said to be contained in an L-subset η of X, if µ(x) ≤ η(x) for all x ∈ X. This
is denoted by µ ⊆ η. If ν ⊆ µ and ν ̸= µ, then ν is said to be properly contained in
µ and we write ν ⊊ µ. Throughout the paper, R will denote an ordinary ring and L
will denote a lattice, unless otherwise specifically mentioned. Also, Z+ will denote
the set of positive integers and ϕ will denote an empty set.

Definition 2.1 ([7]). Let µ ∈ LR. Then µ is called an L-subring of R, if it satisfies
the following conditions: for any x, y ∈ R,

(i) µ(x− y) ≥ µ(x) ∧ µ(y),
(ii µ(xy) ≥ µ(x) ∧ µ(y).

The set of all L-subrings of R is denoted by L(R). It is obvious that if µ is an
L-subring of R, then µ(x) ≤ µ(0) ∀ x ∈ R. For convenience, we use the notation
L(µ,R) for the L-subring µ of R and we shall refer to it here as an L-ring L(µ,R).

Definition 2.2 ([7]). Let µ ∈ LR. Then µ is called an L-ideal of R, if it satisfies
the following conditions: for any x, y ∈ R,

(i) µ(x− y) ≥ µ(x) ∧ µ(y),
(ii) µ(xy) ≥ µ(x) ∨ µ(y).

We denote the set of all L-ideals of R by LI(R). It is obvious that if R has
identity 1 and µ ∈ LI(R), then µ(x) ≥ µ(1) ∀ x ∈ R.

Definition 2.3 ([7]). Let X be a nonempty set. For µ ∈ LX and α ∈ L, we define
the level subset µα and the strong level subset µ>

α of µ are defined respectively as
follows:
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µa = {x ∈ X | µ(x) ≥ a} and µ>
a = {x ∈ X | µ(x) > a}.

Obviously, µ>
α ⊆ µα and for α ≤ β, µβ ⊆ µα and µ>

β ⊆ µ>
α .

Definition 2.4 (Definition 3.2.11 [7]). Let ν ∈ LR and µ ∈ L(R) with ν ⊆ µ. Then
ν is called an L-ideal of µ (or in µ), if it satisfies the following conditions: for any
x, y ∈ R,

(i) ν(x− y) ≥ ν(x) ∧ ν(y),
(ii) ν(xy) ≥ {ν(y) ∧ µ(x)} ∨ {ν(x) ∨ µ(y)}.

For convenience, ν is called an ideal of µ (or L-ring L(µ,R)). Clearly, for µ ∈
L(R), a non-empty level subset µa is an ordinary subring of R, called a level subring
of µ.

Definition 2.5 ([7]). Let L(µ,R) be an L-ring and let ν ∈ L(R). If ν ⊆ µ, then ν
is called a subring of µ (or L -ring L(µ,R)).

Clearly, if ν is a subring of µ, then ν(xn) ≥ ν(x) ∀ n ∈ Z+

Theorem 2.6 ([4]). Let L(µ,R) be an L-ring and η ∈ LR with η ⊆ µ. Then η is an
ideal of µ if and only if each non-empty level subset ηa is an ideal of level subring
µa.

Definition 2.7 ([7]). Let L be a complete lattice and η, ν ∈ LR. Then we define
η + ν, ην and η ◦ ν by

η + ν(x) =
∨

x=y+z

{η(y) ∧ ν(z)} ,

ην(x) =
∨{

n∧
i=1

{η(yi) ∧ ν(zi) : x = yizi}

}
,

η ◦ ν(x) =
∨

x=yz

{η(y) ∧ ν(z)} .

Clearly, if η and ν are subrings of an L-ring L(µ,R) with η(0) = ν(0), then
η and ν ⊆ η + ν.

Lemma 2.8 ([7]). Let L be a complete lattice and η, ν, ξ ∈ LR. Then the following
assertions hold :

(1) η ◦ η ⊆ ην,
(2) ξ ◦ (η + ν) ⊆ ξ ◦ η + ξ ◦ ν,
(3) if η ⊆ ν, then ηξ ⊆ νξ and η ◦ ξ ⊆ ν ◦ ξ,
(4) η (νξ) = (ην)ξ,
(5) ην(x+ y) ≥ ην(x) ∧ ην(y) ∀ x, y ∈ R.

The following lemma is easy to verify:

Lemma 2.9 ([4]). Let L be a complete lattice, L(µ,R) be an L-ring and let η be a
subring of µ. Then

(1) η ◦ η ⊆ ηη ⊆ η,
(2) η + η = η.
In particular, µ ◦ µ ⊆ µµ ⊆ µ and µ+ µ = µ.
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Definition 2.10 ([1])). A proper ideal η of an L-ring L(µ,R) is called a maximal
ideal of µ, if for any ideal θ of µ, whenever η ⊆ θ ⊆ µ, then either η = θ or θ = µ.

Theorem 2.11 ([1]). Let L be a chain, let L(µ,R) be an L-ring and let η be a
maximal ideal of µ. Then there is exactly one pair (ηt0 , µt0) such that ηt0 ⊊ µt0 and
for all other pairs (ηt, µt), we have ηt = µt.

Lemma 2.12 ([7]). Let L be a complete lattice and let L(µ,R) be an L-ring. Then
the intersection of an arbitrary family of ideals of µ is an ideal of µ.

Lemma 2.13 ([3]). Let L(µ,R) be an L-ring. If η is an ideal of µ, then for all
x, y ∈ R,

η(xy) ∧ µ(x) ∧ µ(y) ≥ η(x) ∧ µ(y)

and

η(xy) ∧ µ(x) ∧ µ(y) ≥ η(y) ∧ µ(x).

Definition 2.14 ([3]). Let R be a commutative ring and let L(µ,R) be an L-ring.
An ideal η ̸= µ of µ is called a prime ideal of µ, if for all x, y ∈ R,
either

η(xy) ∧ µ(x) ∧ µ(y) = η(x) ∧ µ(y)

or

η(xy) ∧ µ(x) ∧ µ(y) = η(y) ∧ µ(xy).

Definition 2.15 ([3]). Let R be a commutative ring and let L(µ,R) be an L-ring.
An ideal η ̸= µ of µ is called a semiprime ideal of µ, if

η(xn) ∧ µ(x) = η(x) ∀x ∈ R and ∀n ∈ Z+.

Theorem 2.16 ([3]). Let R be a commutative ring and let L(µ,R) be an L-ring and
let η be a prime ideal of µ. Then η is a semiprime ideal of µ.

Definition 2.17 ([3]). Let R be a commutative ring, let L be a complete lattice,let
L(µ,R) be an L-ring and let η be an ideal of µ. The radical of η, denoted by

√
η, is

defined by
√
η(x) =

∨
n∈Z+

{η(xn) ∧ µ(x)} ∀x ∈ R.

Clearly, η ⊆ √
η ⊆ µ.

Theorem 2.18 ([3]). Let R be a commutative ring, let L be a complete lattice and
let L(µ,R) be an L-ring. An ideal η of µ is a semiprime ideal of µ if and only if√
η = η.

Here we recall the definition of sup-property:

Definition 2.19 ([7]). Let µ ∈ LX . Then, µ is said to have sup-property, if for each
A ⊆ X, there exists a0 ∈ A such that

∨
a∈A

µ(a) = µ(a0).

Lemma 2.20 ([3]). Let R be a commutative ring, let L be a complete lattice, let
L(µ,R) be an L-ring and let η be an ideal of µ such that η has sup-property. Then
(
√
η)t =

√
η
t
∩ µt ∀ t ∈ L.
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Theorem 2.21 ([3]). Let R be a commutative ring, let L be a complete lattice, let
L(µ,R) be an L-ring and let η be an ideal of µ having sup-property. Then

√
η is an

ideal of µ.

Theorem 2.22 ([3]). Let R be a commutative ring, let L be a complete Heyting
algebra, let L(µ,R) be an L-ring and let η be an ideal of µ. Then

√
η is an ideal of

µ.

Theorem 2.23 ([3]). Let R be a commutative ring, let L be a complete lattice, let

η and let θ be ideals of µ. If η ⊆ θ, then
√
η ⊆

√
θ.

Theorem 2.24 ([3]). Let R be a commutative ring, let L be a complete Heyting
algebra, let L(µ,R) be an L-ring and let η be an ideal of µ. Then

√√
η = η.

Theorem 2.25 ([4]). Let L be a complete lattice, let L(µ,R) be an L-ring and let
η ∈ LR with η ⊆ µ. Then η is an ideal of µ if and only if

(1) η(x− y) ≥ η(x) ∧ η(y) ∀ x, y ∈ R,
(2) η ◦ µ, µ ◦ η ⊆ η.

Theorem 2.26 ([4]). Let L be a complete lattice, let L(µ,R) be an L-ring and let
η ∈ LR with η ⊆ µ. Then η is an ideal of µ if and only if

(1) η(x− y) ≥ η(x) ∧ η(y) ∀ x, y ∈ R,
(2) ηµ, µη ⊆ η.

Theorem 2.27 ([4]). Let L be a complete lattice and let L(µ,R) be an L-ring. If η
and ν are ideals of µ with η(0) = ν(0), then η + ν is an ideal of µ and η ⊆ η + ν,
ν ⊆ η + ν.

Theorem 2.28 ([4]). Let L be a complete lattice and let L(µ,R) be an L-ring. If η
and ν are ideals of µ, then ην is an ideal of µ.

3. Radicals of an ideal and a primary ideal

Theorem 3.1. Let R be a commutative ring, let L be a completely distributive lattice
and let L(µ,R) be an L-ring. If η and θ are ideals of µ, then

√
η ∩ θ =

√
η ∩

√
θ.

Proof. Let x ∈ R. Then√
η ∩ θ(x) =

∨
n∈Z+

{(η ∩ θ)(xn) ∧ µ(x)}

=
∨

n∈Z+

{η(xn) ∧ θ(xn) ∧ µ(x)}

=

{ ∨
n∈Z+

{η(xn) ∧ µ(x)}

}∧{ ∨
n∈Z+

{θ(xn) ∧ µ(x)}

}
[Since L is a completely distributive lattice]

=
√
η (x) ∩

√
θ (x) = (

√
η ∩

√
θ) (x).

Thus
√
η ∩ θ =

√
η ∩

√
θ. Since η and θ are ideals of µ, by Theorem 2.28, ηθ is an

ideal of µ. Also by Lemma 2.8 and Theorem 2.26, ηθ ⊆ ηµ ⊆ η. By Theorem 2.23,√
ηθ ⊆ √

η. Similarly,
√
ηθ ⊆

√
θ. So

√
ηθ ⊆ √

η ∩
√
θ =

√
η ∩ θ.
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Now, let x ∈ R. Then√
ηθ(x) =

∨
n∈Z+

{ηθ(xn) ∧ µ(x)}

≥
∨
n≥2

{[
n−1∨
r=1

(
η(xr) ∧ θ(xn−r)

)]
∧ µ(x)

}
.

On the other hand,

n−1∨
r=1

{
η(xr) ∧ θ(xn−r)

}
≥

{
η(xn−1) ∧ θ(x)

}
∨
{
η(x) ∧ θ(xn−1)

}
=

{
η(xn−1) ∨ η(x)

}
∧
{
θ(xn−1) ∨ θ(x)

}
[Since L is a completely distributive lattice]

= η(xn−1) ∧ θ(xn−1).

[Since η(xn−1) ≥ η(x) and θ(xn−1) ≥ θ(x)]

= (η ∩ θ)(xn−1).

Thus
√
ηθ(x) ≥

∨
n≥2

{
(η ∩ θ)

(
xn−1

)
∧ µ(x)

}
=

√
η ∩ θ(x). So

√
η ∩ θ ⊆

√
ηθ. Hence

√
η ∩ θ =

√
ηθ. □

Theorem 3.2. Let R be a commutative ring. let L be a complete Heyting Algebra
and let L(µ,R) be an L-ring. If η and θ are ideals of µ with η(0) = θ(0), then

√
η +

√
θ ⊆

√√
η +

√
θ =

√
η + θ.

Proof. By Theorem 2.22,
√
η and

√
θ are ideals of µ. By Theorem 2.27, η + θ and

√
η+

√
θ are an ideal of µ. Clearly,

√
η+

√
θ ⊆

√√
η +

√
θ. Since η ⊆ √

η and θ ⊆
√
θ,

η+ θ ⊆ √
η+

√
θ. Then by Theorem 2.23,

√
η + θ ⊆

√√
η +

√
θ. By Theorem 2.22,

√
η + θ is an ideal of µ. Thus by Lemma 2.9,

√
η + θ +

√
η + θ =

√
η + θ. Since

η ⊆ η + θ, by Theorem 2.23,
√
η ⊆

√
η + θ. Similarly,

√
θ ⊆

√
η + θ. So we have

√
η +

√
θ ⊆

√
η + θ +

√
η + θ =

√
η + θ.

By Theorem 2.23 and Theorem 2.24,
√√

η +
√
θ ⊆

√√
η + θ =

√
η + θ. Hence√√

η +
√
θ =

√
η + θ. □

Definition 3.3. Let R be a commutative ring and let L(µ,R) be an L-ring. An
ideal η ̸= µ of µ is said to be primary ideal of µ, if for all x, y ∈ R, we have either

η(x) ∧ µ(y) ≥ η(xy) ∧ µ(x) ∧ µ(y)(3.1)

or η(y) ∧ µ(x) ≥ η(xy) ∧ µ(x) ∧ µ(y)(3.2)

or η(xn) ∧ µ(x) ∧ η(ym) ∧ µ(y) ≥ η(xy) ∧ µ(x) ∧ µ(y),(3.3)

for some integers m, n > 1.

Obviously, every prime ideal of an L-ring L(µ,R) is a primary ideal of µ.
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Lemma 3.4. Let R be a commutative ring. An ideal I of R is primary if and only
if, whenever xy ∈ I we have either x ∈ I or y ∈ I or (xn, ym ∈ I for some integers
m, n > 1).

Proof. Suppose that the ideal I is primary. Let xy ∈ I. Then we consider the
following three cases.

Case(i) x /∈ I, y /∈ I. Since I is a primary ideal and x /∈ I, we have ym ∈ I for
some positive integer m. Also m > 1, since y /∈ I. Similarly, we have xn ∈ I for
some integer n > 1.

Case (ii) x /∈ I and either xn /∈ I or yn /∈ I for any integer n > 1. Again, since
I is a primary ideal and x /∈ I, we have ym ∈ I for some integer m ≥ 1. We show
that y ∈ I. Assume that y /∈ I. Then m > 1. Thus by the hypothesis, xn /∈ I for
any integer n > 1. Since I is primary and y /∈ I, xm ∈ I for some integer m ≥ 1. As
x /∈ I, m > 1. So xm ∈ I for some integer m > 1, which is a contradiction. Hence
y ∈ I.

Case (iii) y /∈ I and either xn /∈ I or yn /∈ I for any integer n > 1. The proof of
this part is similar to that of case (ii).

To prove the converse part, suppose xy ∈ I and x /∈ I. Then either y ∈ I or there
exists integers m, n > 1 such that xn ∈ I and ym ∈ I. Thus in either case ym ∈ I
for some positive integer m. Similarly, if y /∈ I, then xn ∈ I for some positive integer
n. So I is a primary ideal of R. □

Theorem 3.5. Let R be a commutative ring, let L(µ,R) be an L-ring and let η be
an ideal of µ with η ̸= µ. Then η is a primary ideal of µ if and only if for each
non-empty level subset ηt, either ηt = µt or ηt is a primary ideal of µt.

Proof. Suppose η is a primary ideal of µ and ηt is a non-empty level subset such
that ηt ̸= µt. Let xy ∈ ηt, x, y ∈ µt. Then it follows that η(xy) ∧ µ(x) ∧ µ(y) ≥ t.
Since η is primary ideal of µ, one of the conditions (3.1), (3.2) and (3.3) hold.

If condition (3.1) holds, then

η(x) ≥ η(x) ∧ µ(y) ≥ η(xy) ∧ µ(x) ∧ µ(y) ≥ t.

Thus x ∈ ηt.
If (3.2) holds, then

η(y) ≥ η(y) ∧ µ(x) ≥ η(xy) ∧ µ(x) ∧ µ(y) ≥ t.

Thus y ∈ ηt.
If (3.3) holds, then we have

η(xn) ∧ µ(x) ∧ η(ym) ∧ µ(y) ≥ η(xy) ∧ µ(x) ∧ µ(y) ≥ t

for some integer m,n > 1. Thus xn, ym ∈ ηt. So, by Lemma 3.4Confirm it, ηt is a
primary ideal of µt.

Conversely, suppose that for each non-empty level subset ηt, either ηt = µt or ηt
is a primary ideal of µt. We write η(xy) ∧ µ(x) ∧ µ(y) = t. Then xy ∈ ηt, x ∈ µt

and y ∈ µt. If ηt = µt, then x ∈ ηt and y ∈ ηt. Thus η(x) ≥ t. So

η(x) ∧ µ(y) ≥ t ∧ t = t = η(xy) ∧ µ(x) ∧ µ(y).
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If ηt is a primary ideal of µt, then xy ∈ ηt implies that x ∈ ηt or y ∈ µt or
xn, ym ∈ ηt for some integers m, n > 1. Suppose that x ∈ ηt. Then η(x) ≥ t
implies that

η(x) ∧ µ(y) ≥ t ∧ t = t = η(xy) ∧ µ(x) ∧ µ(y).

Similarly, if y ∈ ηt, then

η(y) ∧ µ(x) ≥ η(xy) ∧ µ(x) ∧ µ(y).

Thus η is a primary ideal of µ. □

Our next result shows that every semiprime ideal of an L-ring which is also
primary is a prime ideal.

Theorem 3.6. Let R be a commutative ring, let L(µ,R) be an L-ring and let η be
a semiprime ideal of µ. If η is a primary ideal of µ, then η is a prime ideal of µ.

Proof. Let x, y ∈ R. Since η is semiprime ideal of µ, we have

η(xn) ∧ µ(x) = η(x) and η(ym) ∧ µ(y) = η(y) ∀n, m ∈ Z+.

Thus

η(xn) ∧ µ(x) ∧ η(ym) ∧ µ(y) = η(x) ∧ η(y) ∀n, m ∈ Z+.(3.4)

Since η is a primary ideal of µ, one of the conditions (3.1), (3.2) and (3.3) holds. If
condition (3.3) holds, then for some integers r, s > 1, we have

η(xr) ∧ µ(x) ∧ η(ys) ∧ µ(y) ≥ η(xy) ∧ µ(x) ∧ µ(y).

From this along with (3.4), we have

η(x) ∧ µ(y) ≥ η(x) ∧ η(y) = η(xr) ∧ µ(x) ∧ η(ys) ∧ µ(y)

≥ η(xy) ∧ µ(x) ∧ µ(y).

This again gives us condition (3.1). Thus either condition (3.1) or (3.2) holds. Since
η is an ideal of µ, by Lemma 2.17, we have

η(xy) ∧ µ(x) ∧ µ(y) ≥ η(x) ∧ µ(y) and η(xy) ∧ µ(x) ∧ µ(y) ≥ η(y) ∧ µ(x).

So either,

η(xy) ∧ µ(x) ∧ µ(y) = η(x) ∧ µ(y) or η(xy) ∧ µ(x) ∧ µ(y) = η(y) ∧ µ(x).

Hence η is a prime ideal of µ. □

Theorem 3.7. Let R be a commutative ring, let L be a complete lattice and let
L(µ,R) be an L-ring. If η is a primary ideal of µ having sup-property, then

√
η is a

prime ideal of µ. Also
√√

η =
√
η.

Proof. By Theorem 2.21,
√
η is an ideal of µ. Let x, y ∈ R. Since η has sup-property,

there exists m ∈ Z+ such that
√
η(xy) =

∨
n∈Z+

[η((xy)n) ∧ µ(xy)] = η(xmym) ∧ µ(xy).(3.5)

On the other hand,
√
η(x) =

∨
n∈Z+

[η(xn) ∧ µ(x)] ≥ η(xs) ∧ µ(x) ∀s ∈ Z+.
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Then we get
√
η(x) ∧ µ(y) ≥ η(xs) ∧ µ(x) ∧ µ(y) ∀s ∈ Z+.(3.6)

Similarly, we have
√
η(y) ∧ µ(x) ≥ η(ys) ∧ µ(x) ∧ µ(y) ∀s ∈ Z+.(3.7)

Since η is a primary ideal of µ, by Definition 3.3, we have either

η(xmym) ∧ µ(xm) ∧ µ(ym) ≤ η(xm) ∧ µ(ym)(3.8)

or

η(xmym) ∧ µ(xm) ∧ µ(ym) ≤ η(ym) ∧ µ(xm)(3.9)

or

η(xmym) ∧ µ(xm) ∧ µ(ym) ≤ η(xmk) ∧ µ(xm) ∧ η(ymr) ∧ µ(ym)(3.10)

for some integers k, r > 1.
By (3.5), we have

√
η(xy) ∧ µ(x) ∧ µ(y) = η(xmym) ∧ µ(xy) ∧ µ(x) ∧ µ(y)

= η(xmym) ∧ µ(x) ∧ µ(y)

= η(xmym) ∧ µ(xm) ∧ µ(ym) ∧ µ(x) ∧ µ(y).

If (3.8) holds, then
√
η(xy) ∧ µ(x) ∧ µ(y) ≤ η(xm) ∧ µ(ym) ∧ µ(x) ∧ µ(y)

= [
√
η(xm) ∧ µ(x)] ∧ µ(y)

≤ √
η(x) ∧ µ(y).[By(3.6)]

If (3.9) holds, then
√
η(xy) ∧ µ(x) ∧ µ(y) ≤ η(ym) ∧ µ(xm) ∧ µ(x) ∧ µ(y)

= [η(ym) ∧ µ(x)] ∧ µ(y)

≤ η(y) ∧ µ(x).[By(3.7)]

If the condition (3.10) is valid, then
√
η(xy) ∧ µ(x) ∧ µ(y) ≤ η(xmk) ∧ µ(xm) ∧ η(ymr) ∧ µ(ym) ∧ µ(x) ∧ µ(y)

= η(xmk) ∧ η(ymr) ∧ µ(x) ∧ µ(y)

=
[
η(xmk) ∧ µ(x) ∧ µ(y)

]
∧ [η(ymr) ∧ µ(y) ∧ µ(x)]

≤ [
√
η(x) ∧ µ(y)] ∧ [

√
η(y) ∧ µ(x)]

≤ √
η(x) ∧ µ(y).

Thus
√
η is a prime ideal of µ. So by Theorem 2.16, η is a semiprime ideal. Hence

by Theorem 2.18,
√√

η =
√
η. □

It is well-known in classical ring theory that if the radical
√
I of an ideal I in a

commutative ring R is a maximal ideal of R, then I itself is a primary ideal of R.
Now we provide the L-version of this result.
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Theorem 3.8. Let L be a complete chain, let R be a commutative ring with unity,
let L(µ,R) be an L-ring and let η be an ideal of µ having sup-property. If

√
η is

a maximal ideal of µ such that
(√

η
)
t0

is a maximal ideal of µt0 , t0 ∈ Im µ and

µt0 = R, then η is a primary ideal of µ.

Proof. Let ηt be a non-empty level subset of µt such that ηt ⫋ µt. We show that ηt
is primary ideal of µt. Now, two cases arise:

Case (i)
(√

η
)
t
= µt. Then by Lemma 2.20, we have

√
ηt ∩µt = µt. Let ab ∈ ηt,

a, b ∈ µt and a /∈ ηt. Then b ∈ µt =
√
ηt ∩ µt ⊆

√
η
t
. Thus ηt is a primary ideal of

µt.
Case (ii)

(√
η
)
t
̸= µt. By Theorem 2.11, we have

(√
η
)
t
=

(√
η
)
t0

and µt =

µt0 = R. Thus by Lemma 2.20, we have

(
√
η)t0 = (

√
η)t = (

√
η)t

⋂
µt = (

√
η)t

⋂
R =

√
ηt.

By the hypothesis,
(√

η
)
t0

is a maximal ideal of µt0 . So ηt is a maximal ideal of R.

Hence in view of a result of classical ring theory, ηt is a primary ideal of R, i.e., ηt
is a primary ideal of µt. □
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