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Abstract. In this paper we study interrelation between fuzzy graphs
and fuzzy topological spaces. We have introduced various fuzzy topologi-
cal spaces on simple connected fuzzy graphs by using adjacency relation.
Some characterization theorems for fuzzy topologies related to isomorphic
fuzzy graphs, weak isomorphic fuzzy graphs and co-week isomorphic fuzzy
graphs are given. Interior, closure properties, T1 and T2 separation axioms
for these fuzzy topological spaces are studied. In last section we define
neighborhood fuzzy topological spaces on simple fuzzy graph and establish
a linkage between fuzzy topology and fuzzy graph.
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1. Introduction

Graph theory has wide applications in various fields like digital image process-
ing, computer technology, communication science, networking problems, mechanism
analysis, civil engineering, electric engineering, graphics, medical field, traffic prob-
lems, genetics etc. Graph is the pictorial representation of objects and binary re-
lation between them. Various real life situations can be modeled using graphs and
their practical solution can be obtained. Topology is a study of objects that are
invariant under certain deformations. Topology has vast applications in fields like
digital machine learning, image processing, graphics, robotics, biology, civil engi-
neering, geographic information system, data analysis, remote sensing, networking,
traffic problems, artificial intelligence, economics etc. Both graph theory and topol-
ogy are originated from Euler’s “ Seven Bridge of Konigsberg problem ” in 1736
and because of their common applications in many fields, the study of interrelation
between them is of great interest. Amiri et al. [1] defined graphic topology on crisp
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graph. Kilicman and Abdulkalek [2] introduced a incidence topology with a set of
vertices for any simple crisp graph. Sari and Kopuzlu [3] studied topologies gener-
ated by simple undirected crisp graphs without isolated vertices and discussed the
condition for homeomorphic topological spaces generated by crisp graphs. Ibraheem
and Nagim [4] generates topology on crisp graph by defining relations on the edges
set of graph. Gholap and Nikumbh [5] introduced topological spaces on simple crisp
graph by using adjacency relation and non adjacency relation on set of vertices.
Many researchers introduced and studied topological spaces associated with graphs
using various relations.

In 1968, Chang [6] introduced fuzzy topological spaces and in 1975, Rosenfeld [7]
introduced fuzzy graphs and various results analogue to crisp graphs. Pramanik et
al. [8] introduced interval valued fuzzy competition graph (IVFC) and discussed its
properties. Rashmanlou et al. [9] defined direct product, degree of vertex in cubic
graph and introduced complete cubic graphs. The concept of reinforcement number
with respect to half-domination introduced by Muhiuddin [10]. Amanathulla et al.
[11] studied surjective L(2, 1) labeling problems for paths and interval graphs. Atef
et al. [12] introduced a new kind of fuzzy topological structures in terms of fuzzy
graphs called fuzzy topological graphs, which is study of fuzzy graphs on certain
class of fuzzy subsets.

Since fuzzy graphs and fuzzy topological spaces have some common applications
in various fields hence to find relation between them is important. Many authors
studied topological spaces on various crisp graphs but there in no literature available
where fuzzy topological spaces on fuzzy graphs are studied. Using fuzzy topological
structure we can study different aspect of various fuzzy graphs, this is our motivation
to introduce fuzzy topological spaces on certain fuzzy graphs. In this paper we
introduce fuzzy vertex topology and fuzzy edge topology on simple connected fuzzy
graphs using adjacency relation and discussed related results. In the last section we
define fuzzy neighborhood topology on simple fuzzy graphs.

2. Preliminaries

Definition 2.1 ([13]). Let S be a set. A map σ : S → [0, 1] is called a fuzzy subset
of S. A fuzzy relation on S is a fuzzy subset of S × S.

Let S be a set , A and B be fuzzy sets on S. Then the join and the meet of A
and B, denoted by A ∨B and A ∧B, are defined as follows: for each x ∈ S,

(A ∨B)(x) = max(A(x), B(x)) and (A ∧B)(x) = min(A(x), B(x)).

Definition 2.2 ([14]). A fuzzy graph is a triplet G = (V, σ, µ), where V is a finite
nonempty set, σ is a fuzzy subset of V and µ is a fuzzy relation on σ satisfying

µ(a, b) ≤ σ(a) ∧ σ(b) ∀a, b ∈ V.

The fuzzy set σ and µ are called the fuzzy vertex set of G and the fuzzy edge set
of G respectively. Clearly, µ is a fuzzy relation on σ. A fuzzy graph H = (U, ρ, ν)
is called a fuzzy partial fuzzy subgraph of G = (V, σ, µ), if ρ ≤ σ and ν ≤ µ. We
call H = (U, ρ, ν) a spanning fuzzy subgraph of G = (V, σ, µ), if ρ = σ. A path in
a fuzzy graph G = (V, σ, µ) is a sequence of distinct vertices a0, a1, a2, ..., an such
that µ(ai−1, ai) > 0, 1 ≤ i ≤ n. Two vertices are said to be connected, if they are
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joined by path. The strength of path is defined as
∧n

i=1 µ(ai−1, ai). The strength
of connectedness between two vertices a and b is defined as the maximum of the
strengths of all paths between a and b and it is denoted by µ∞(a, b). A fuzzy graph
G = (V, σ, µ) is said to be connected, if µ∞(a, b) > 0 for every a, b in V .

Definition 2.3 ([14]). A fuzzy graph G = (V, σ, µ) is said to be a complete fuzzy
graph, if µ(a, b) = σ(a) ∧ σ(b) ∀ a, b ∈ V .

Definition 2.4 ([15]). A fuzzy graph G = (V, σ, µ) is said to be complete bipartite,
if vertex set V can be partitioned into two non empty sets V1 and V2 such that
µ(a, b) = 0 if a and b both belongs to V1 or V2 and µ(a, b) = σ(a) ∧ σ(b), if a ∈ V1

and b ∈ V2.

Definition 2.5 ([7]). Let G = (V, σ, µ) and G′ = (V ′, σ′, µ′) be two fuzzy graphs. A
map f : G → G′ is said to be a homomorphism from G to G′, if σ(a) ≤ σ′(f(a)) for
all a ∈ V and µ(a, b) ≤ µ′(f(a), f(b)) for all a, b ∈ V . A bijective map f : G → G′

is said to be an isomorphism from G to G′ if σ(a) = σ′(f(a)) for all a ∈ V and
µ(a, b) = µ′(f(a), f(b)) for all a, b ∈ V . A bijective homomorphism f : G → G′ is
said to be a weak isomorphism from G to G′, if σ(a) = σ′(f(a)) for all a ∈ V . A
bijective homomorphism f : G → G′ is said to be a co-weak isomorphism from G to
G′ if µ(a, b) = µ′(f(a), f(b)) for all a, b ∈ V .

Definition 2.6 ([16]). Let (X, τ) be a fuzzy topological space. Then a subfamily
β of τ is called a base for τ , if every member of τ can be written as a union of
members of β. A subfamily S of τ is called a subbase for τ , if the family of finite
intersections of its members forms a base for τ . If τ1 and τ2 are fuzzy topologies on
X and τ1 ⊆ τ2, then we say that τ1 is coarser than τ2 or τ2 is finer than τ1.

Definition 2.7 ([17]). A fuzzy topology τ is said to be generated by a subfamily S
of fuzzy sets in X, if every member of τ is a union of finite intersections of members
of S.

Definition 2.8 ([18]). Let G = (V, σ, µ) be a fuzzy graph. Then the complement of
G, denoted by Ḡ = (V, σ, µ̄), is defined as:

µ̄(a, b) = σ(a) ∧ σ(b)− µ(a, b) ∀a, b ∈ V.

Definition 2.9 ([18]). A fuzzy graph G = (V, σ, µ) is said to be self complementary,
if G is isomorphic to its complement Ḡ.

Definition 2.10 ([17]). A fuzzy topological space (X, τ) is called a fuzzy T1- topo-
logical space, if for every pair of distinct fuzzy points p, q ∈ X, we can find fuzzy
open sets U and V in (X, τ) such that p ∈ U, p ̸∈ V and q ∈ V, q ̸∈ U .

Definition 2.11 ([17]). A fuzzy topological space (X, τ) is said to be fuzzy T2 or
Hausdroff, if for every pair of distinct fuzzy points p, q ∈ X, there exist two fuzzy
open sets U and V in (X, τ) such that p ∈ U , q ∈ V and U ∩ V = 0.

3. Fuzzy vertex topology generated by fuzzy graphs

Definition 3.1. Let G = (V, σ, µ) be the simple connected fuzzy graph and let
V (G) be a fuzzy set of vertices. On fuzzy set V (G) we define an adjacency relation
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R as ((u, σ(u)), (v, σ(v))) ∈ R, if µ(u, v) > 0, where (u, σ(u)) and (v, σ(v)) ∈ V (G).
Now for (u, σ(u)) ∈ V (G), we define

R[u] = {(v, σ(v)) ∈ V (G)/µ(u, v) > 0}

Then the set S = {R[u] : (u, σ(u)) ∈ V (G)} forms a subbasis for a topology on V (G).
Let β be the finite intersection of members of subbasis S. Then clearly, β forms a
basis. The collection τ of all union of members of β is a topology on V (G) called as
a fuzzy vertex topology generated by fuzzy graph G and the ordered pair (V (G), τ)
as a fuzzy vertex topological space generated by fuzzy graph G. The members of τ
are called v-open fuzzy sets and the complement of an v-open fuzzy set is called a
v-closed fuzzy set.

Example 3.2. From figure 1, let G1 be fuzzy graph with vertex set and let

V (G1) = {(a, 0.2), (b, 0.5), (c, 0.4), (d, 0.7)}.

Then we have

R[a] = {(b, 0.5)}, R[b] = {(a, 0.2), (c, 0.4), (d, 0.7)}, R[c] = {(b, 0.5)}, R[d] = {(b, 0.5)}.

Moreover, we get

S1 =
{
{(b, 0.5)}, {(a, 0.2), (c, 0.4), (d, 0.7)}

}
and

β1 =
{
0, {(b, 0.5)}, {(a, 0.2), (c, 0.4), (d, 0.7)}

}
.

Thus τ1 =
{
0, {(b, 0.5)}, {(a, 0.2), (c, 0.4), (d, 0.7)}, V (G1

}
is a fuzzy vertex topology

generated by G1.

Figure 1. A simple connected fuzzy graph G1

Theorem 3.3. If H is a simple connected spanning fuzzy subgraph of fuzzy graph G,
then the fuzzy vertex topology generated by fuzzy graph H is finer than fuzzy vertex
topology generated by fuzzy graph G.
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Proof. Let H = (U, τ, ν) be a simple connected spanning fuzzy subgraph of fuzzy
graph G = (V, σ, µ), where U = V . Then by 3.1, S1 = {R[u] : (u, τ(u)) ∈ U} and
S2 = {R[u] : (u, σ(u)) ∈ V } forms a subbasis of vertex topology τ1 on H and fuzzy
vertex topology τ2 on G respectively. Clearly, S1 ⊆ S2. Thus τ2 ⊆ τ1. □

Theorem 3.4. If two fuzzy graphs G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are
isomorphic, then the fuzzy vertex topologies τ1 and τ2 generated by G1 and G2 re-
spectively are homeomorphic.

Proof. Since G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are isomorphic. Then there
exists a bijective mapping f : G1 → G2 such that σ1(a) = σ2(f(a)) ∀a ∈ V1 and
µ1(a, b) = µ2(f(a), f(b)) ∀a, b ∈ V1. Thus the sets S1 = {R[a] : (a, σ1(a)) ∈ V1} and
S2 = {R[f(a)] : (f(a) σ2(f(a))) ∈ V2} are equivalent. So the fuzzy vertex topologies
τ1 and τ2 generated by subbasis S1 and S2 respectively are homeomorphic. □

Example 3.5. From figure 2, G1 and G2 are isomorphic fuzzy graphs. Let τ1 be
the fuzzy vertex topology generated by G1 and let τ2 be the fuzzy vertex topology
generated by G2. Then we have

τ1 =
{
0, {(b, 0.5)}, {(d, 0.2)}, {(b, 0.5), (d, 0.2)}, {(a, 0.6), (c, 0.9)},
{(a, 0.6), (c, 0.9), (d, 0.2)}, {(a, 0.6), (b, 0.5), (c, 0.9)}, V (G1

}
and

τ2 =
{
0, {(x, 0.5)}, {(z, 0.2)}, {(y, 0.9), (w, 0.6)}, {(x, 0.5), z, 0.2)},
{(y, 0.9), (z, 0.2), (w, 0.6)}, {(x, 0.5), (y, 0.9), (w, 0.6)}, V (G2

}
.

So τ1 and τ2 are homeomorphic.

Figure 2. Isomorphic fuzzy graphs G1 and G2

Corollary 3.6. If two fuzzy graphs G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are
weak isomorphic then the fuzzy vertex topologies τ1 and τ2 generated by G1 and G2

respectively are homeomorphic.

Remark 3.7. If two fuzzy graphs G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are co-
weak isomorphic then the fuzzy vertex topology τ1 generated by G1 and the fuzzy
vertex topology τ2 generated by G2 may not be homeomorphic.
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Example 3.8. From figure 3, G1 and G2 are co-weak isomorphic fuzzy graphs. Let
τ1 be the fuzzy vertex topology generated by G1 and let τ2 be the fuzzy vertex
topology generated by G2. Then we have

τ1 =
{
0, {(b, 0.5)}, {(d, 0.2)}, {(b, 0.5), (d, 0.2)}, {(a, 0.6), (c, 0.9)},
{(a, 0.6), (c, 0.9), (d, 0.2)}, {(a, 0.6), (b, 0.5), (c, 0.9)}, V (G1

}
and

τ2 =
{
0, {(x, 0.6)}, {(z, 0.4)}, {(y, 1), (w, 0.6)}, {(x, 0.6), z, 0.4)},
{(y, 1), (z, 0.4), (w, 0.6)}, {(x, 0.6), (y, 1), (w, 0.6)}, V (G2

}
.

Since τ1 and τ2 contains different fuzzy sets, τ1 is not homeomorphic to τ2.

Figure 3. Co-weak isomorphic fuzzy graphs G1 and G2

Theorem 3.9. Let X be the set of all simple connected fuzzy graphs. Then the
relation ∼ defined on X as G1 ∼ G2 if and only if τ1 ≃ τ2 is an equivalence
relation on X, where τ1 and τ2 are fuzzy vertex topologies generated by G1 and G2

respectively.

Proof. 1. Reflexive: Since τ1 ≃ τ1, G1 ∼ G1.
2. Symmetry: As τ1 ≃ τ2, clearly, τ2 ≃ τ1. Then G1 ∼ G2 implies G2 ∼ G1.
3. Transitive: As G1 ∼ G2 and G2 ∼ G3, τ1 ≃ τ2 and τ2 ≃ τ3 which implies

τ1 ≃ τ3. Then G1 ∼ G3. Thus the relation ∼ defined on X is an equivalence
relation. □

Theorem 3.10. If G = (V, σ, µ) is a complete fuzzy graph, then the fuzzy vertex
topology τ generated by G is T1.

Proof. As G = (V, σ, µ) is a complete fuzzy graph, µ(a, b) = σ(a) ∧ σ(b) ∀ a, b ∈ V .
Let a, b ∈ V be any two distinct elements. Then by 3.1, a ∈ R[b] but a /∈ R[a] and
b ∈ R[a] but b /∈ R[b]. Since R[a] and R[b] are elements of τ , they are open sets.
thus for every pair of distinct fuzzy points a, b ∈ V , there exist fuzzy open sets R[a]
and R[b] in (V (G), τ) such that a ∈ R[b] but a /∈ R[a] and b ∈ R[a] but b /∈ R[b]. So
τ is T1. □

Remark 3.11. Converse of above theorem need not be true. That is if fuzzy vertex
topology τ generated by G is T1, then that fuzzy graph G = (V, σ, µ) may not be
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complete. For example the fuzzy graph G in figure 4 is not complete but its fuzzy
vertex topology τ =

{
0, {(a, 0.4)}, {(b, 0.6)}, {(c, 1)}, {(a, 0.4), (b, 0.6)}, {(a, 0.4),

(c, 1)}, {(b, 0.6), (c, 1)}, V (G)
}
is T1.

Theorem 3.12. If G = (V, σ, µ) is a complete fuzzy graph, then fuzzy vertex topology
τ generated by G is T2.

Proof. As G = (V, σ, µ) is a complete fuzzy graph, for each a ∈ V (G), R[a] =
V − {(a, σ(a))}. Then S = {V − {(a, σ(a))} : (a, σ(a)) ∈ V (G)} is a subbase for τ .
Let β be the finite intersection of members of S. Then for each (a, σ(a) ∈ V (G),
{(a, σ(a))} ∈ β because (a, σ(a)) /∈ R[a] but (a, σ(a)) ∈ R[b] for all (a, σ(a)), (b, σ(b)) ∈
V (G) such that (a, σ(a)) ̸= (b, σ(b)); so that

∩R[b] = {(a, σ(a))},

where intersection is taken over all (b, σ(b)) ∈ V (G) such that (b, σ(b)) ̸= (a, σ(a)).
Thus the fuzzy vertex topology τ generated by G must contains singleton set of the
form {(a, σ(a))} for each (a, σ(a)) ∈ V (G). So for any (a, σ(a)), (b, σ(b)) ∈ V (G)
with (a, σ(a)) ̸= (b, σ(b)), there exists open sets say U = {(a, σ(a))} and V =
{(b, σ(b))} in τ such that (a, σ(a)) ∈ U , (b, σ(b)) ∈ V (G) and U ∩ V = ϕ. Hence τ
is T2. □

Remark 3.13. Converse of above theorem need not be true. That is, if fuzzy vertex
topology τ generated by G is T2, then that fuzzy graph G = (V, σ, µ) may not be
complete. For example, the fuzzy graph G in figure 4 is not complete but its fuzzy
vertex topology, τ =

{
0, {(a, 0.4)}, {(b, 0.6)}, {(c, 1)}, {(a, 0.4), (b, 0.6)}, {(a, 0.4),

(c, 1)}, {(b, 0.6), (c, 1)}, v(G)
}
is T2.

Corollary 3.14. If G = (V, σ, µ) is a complete bipartite fuzzy graph, then fuzzy
vertex topology τ generated by G is T1 and T2.

Theorem 3.15. If G = (V, σ, µ) is a simple connected self complementary fuzzy
graph, then fuzzy vertex topologies generated by G and Ḡ respectively are equal.

Proof. As G is self complementary, G and Ḡ are isomorphic. Then by 3.4, fuzzy
vertex topologies generated by G and Ḡ are homeomorphic. It is clear that vertex
set V of G and Ḡ is same. Thus fuzzy vertex topologies generated by G and Ḡ are
equal. □

Example 3.16. From figure 4, G is a self complementary fuzzy graph. Let τ be
the fuzzy vertex topology generated by G and let τ̄ be the fuzzy vertex topology
generated by Ḡ. Then we have

τ =
{
0, {(a, 0.4)}, {(b, 0.6)}, {(c, 1)}, {(a, 0.4), (b, 0.6)},
{(a, 0.4), (c, 1)}, {(b, 0.6), (c, 1)}, V (G)

}
and

τ̄ =
{
0, {(a, 0.4)}, {(b, 0.6)}, {(c, 1)}, {(a, 0.4), (b, 0.6)},
{(a, 0.4), (c, 1)}, {(b, 0.6), (c, 1)}, V (Ḡ)

}
.

Thus τ = τ̄ .
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Figure 4. Self complementary fuzzy graphs G and Ḡ

4. The interiors and the closures of a fuzzy graph

In this section, we define the interior and the closure of a subset of a vertex set
of a fuzzy graph G with respect to vertex topology generated by G.

Definition 4.1. Let G = (V, σ, µ) be a simple connected fuzzy graph and (V (G), τ)
be the corresponding fuzzy vertex topological space. Let A be any subset of V (G).
Then the interior and the closure of A, denoted by int(A) and cl(A), are defined as
follows:

int(A) =
∨

{B ∈ τ : B ≤ A} and cl(A) =
∧

{B ∈ τ ′ : B ≥ A},

where τ ′ is the complement of τ .

Theorem 4.2. Let G = (V, σ, µ) be the simple connected fuzzy graph and (V (G), τ)
be the corresponding fuzzy vertex topological space. If A is a subset of V (G), then
(1) int(A) ≤ A,
(2) int(int(A)) = int(A)
(3) A ≤ B =⇒ int(A) ≤ int(B),
(4) int(A ∧B) = int(A) ∧ int(B),
(5) A ≤ cl(A),
(6) cl(cl(A)) = cl(A),
(7) A ≤ B =⇒ cl(A) ≤ cl(B),
(8) cl(A ∨B) = cl(A) ∨ cl(B).

5. Fuzzy edge topology generated by a fuzzy graph

Definition 5.1. Let G = (V, σ, µ) be a simple connected fuzzy graph and let E(G)
be a fuzzy set of edges for it. On fuzzy set E(G), we define an adjacency relation R as
((e1, µ(e1)), (e2, µ(e2))) ∈ R, if e1 is adjacent to e2 for (e1, µ(e1)), (e2, µ(e2)) ∈ E(G).
Now for (e1, µ(e1)) ∈ E(G), we define,

R[ei] =
{
(ej , µ(ej)) ∈ E(G)/((ei, µ(ei)), (ej , µ(ej))) ∈ R

}
, where i ̸= j.

Then the set S =
{
R[e]/(e, µ(e)) ∈ E(G)

}
forms a subbasis for a topology on E(G).

Let β be the finite intersection of members of subbasis S. Then clearly, β forms a
286
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basis. The collection τ of all union of members of β is a topology on E(G). We
called τ as a fuzzy edge topology generated by fuzzy graph G and the ordered pair
(E(G), τ) as a fuzzy edge topological space generated by fuzzy graph G. The members
of τ are called an E-open fuzzy set and the complement of E-open fuzzy set is called
an E-closed fuzzy set.

Example 5.2. From figure 5,let G2 be simple connected fuzzy graph with edge set
and let E(G2) = {(e1, 0.4), (e2, 0.3), (e3, 0.6)}. Then we have

R[e1] = {(e2, 0.3), (e3, 0.6)}, R[e2] = {(e1, 0.4), (e3, 0.6)}, R[e3] = {(e1, 0.4), (e2, 0.3)},
S2 =

{
{(e2, 0.3), (e3, 0.6)}, {(e1, 0.4), (e3, 0.6)}, {(e1, 0.4), (e2, 0.3)}

}
,

β2 =
{
0, {(e1, 0.4)}, {(e2, 0.3)}, {(e3, 0.6)}, {{(e2, 0.3), (e3, 0.6)},

{(e1, 0.4), (e3, 0.6)}, {(e1, 0.4), (e2, 0.3)}
}
,

τ2 =
{
0, {(e1, 0.4)}, {(e2, 0.3)}, {(e3, 0.6)}, {(e2, 0.3), (e3, 0.6)},
{(e1, 0.4), (e3, 0.6)}, {(e1, 0.4), (e2, 0.3)}, E(G2)

}
.

Figure 5. A simple connected graph G2

Theorem 5.3. If H is a simple connected spanning fuzzy subgraph of fuzzy graph
G, then the fuzzy edge topology generated by fuzzy graph H is finer than the fuzzy
edge topology generated by fuzzy graph G.

Theorem 5.4. If two fuzzy graphs G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are iso-
morphic, then the fuzzy edge topologies τ1 and τ2 generated by G1 and G2 respectively
are homeomorphic.

Proof. Since G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are isomorphic. Then there
exists a bijective mapping f : G1 → G2 such that σ1(a) = σ2(f(a)) ∀a ∈ V1 and
µ1((a, b)) = µ2(f(a), f(b)) ∀a, b ∈ V1. Thus S1 = {R[e] : (e, µ1(e)) ∈ E1} and
S2 = {R[f(e)] : (f(e), µ2(f(e))) ∈ E2} are equivalent. So the fuzzy edge topologies
τ1 and τ2 generated by subbasis S1 and S2 respectively are homeomorphic. □

Corollary 5.5. If two fuzzy graphs G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are
co-weak isomorphic, then the fuzzy edge topologies τ1 and τ2 generated by G1 and
G2 respectively are homeomorphic.
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Remark 5.6. If two fuzzy graphs G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are weak
isomorphic, then the fuzzy edge topology τ1 generated by G1 and the fuzzy edge
topology τ2 generated by G2 may not be homeomorphic.

Example 5.7. From figure 6, G1 and G2 are weak isomorphic. Let τ1 be the fuzzy
edge topology generated by G1 and let τ2 be the fuzzy edge topology generated by
G2. Then we have

τ1 =
{
0, {(e2, 0.2)}, {(e1, 0.4), (e5, 0.2)}, {(e3, 0.2), (e4, 0.5)},
{(e1, 0.4), (e2, 0.2), (e5, 0.2)}, {(e2, 0.2), (e3, 0.2), (e4, 0.5)},
{(e1, 0.4), (e3, 0.2), (e4, 0.5), (e5, 0.2), E(G1)

}
and

τ2 =
{
0, {(e′2, 0.2)}, {(e′1, 0.4), (e′5, 0.2)}, {(e′3, 0.2), (e′4, 0.5)},
{(e′1, 0.4), (e′2, 0.2), (e′5, 0.2)}, {(e′2, 0.2), (e′3, 0.2), (e′4, 0.5)},
{(e′1, 0.4), (e′3, 0.2), (e′4, 0.5), (e′5, 0.2), E(G2)

}
.

Thus clearly, τ1 is not homeomorphic to τ2.

Figure 6. Weak isomorphic fuzzy graphs G1 and G2

Theorem 5.8. Let X be the set of all simple connected fuzzy graphs. Then the
relation ∼ defined on X as G1 ∼ G2 if and only if τ1 ≃ τ2 is a equivalence relation,
where τ1 and τ2 be the fuzzy edge topologies generated by G1 and G2 respectively.

Proof. 1. Reflexive: Since τ1 ≃ τ1, G1 ∼ G1.
2. Symmetry: As τ1 ≃ τ2, clearly, τ2 ≃ τ1. Then G1 ∼ G2 implies G2 ∼ G1.
3. Transitive: As G1 ∼ G2 and G2 ∼ G3, τ1 ≃ τ2 and τ2 ≃ τ3 which implies

τ1 ≃ τ3. Then G1 ∼ G3. Thus ∼ is reflexive, symmetric and transitive. So ∼ is
equivalence relation. □

Theorem 5.9. If G = (V, σ, µ) is a simple connected self complementary fuzzy
graph, then fuzzy edge topologies generated by G and Ḡ respectively are equal.

Proof. As G is self complementary, G and Ḡ are isomorphic. Then by 5.4, the fuzzy
edge topologies generated by G and Ḡ are homeomorphic. It is obvious that E of G
and Ḡ is same. Thus fuzzy edge topologies generated by G and Ḡ are equal. □
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Theorem 5.10. If G = (V, σ, µ) is a complete fuzzy graph, then fuzzy edge topology
τ generated by G is T1 and T2.

Corollary 5.11. If G = (V, σ, µ) is a complete bipartite fuzzy graph, then fuzzy edge
topology τ generated by G is T1 and T2.

6. Fuzzy neighborhood topology generated by a simple fuzzy graph

Definition 6.1. Let G = (V, σ, µ) be the simple fuzzy graph and let V (G) be a
fuzzy set of vertices. Then a neighborhood of each (a, σ(a)) ∈ V (G) is defined as
set of all vertices in (b, σ(b)) ∈ V (G) such that µ(a, b) > 0 and containing (a, σ(a))
itself. We denote it as N [a].

Definition 6.2. Let G = (V, σ, µ) be the simple fuzzy graph and let V (G) be a fuzzy
set of vertices. Then the set S = {N [a] : (a, σ(a)) ∈ V (G)} forms a subbasis for a
topology on V (G). Let β be the finite intersection of members of subbasis S. Then
clearly, β forms a basis. The collection τ of all union of members of β is a topology
on V (G). We called τ as a fuzzy neighborhood topology generated by simple fuzzy
graph G and the ordered pair (V (G), τ) as a fuzzy neighborhood topological space
generated by simple fuzzy graph G. The members of τ are called a fuzzy N-open
fuzzy set and the complement of open fuzzy set is called a fuzzy N-closed set.

Theorem 6.3. Let G = (V, σ, µ) be the simple fuzzy graph and let V (G) be a fuzzy
set of vertices. Then the collection S =

{
N [a]/(a, σ(a)) ∈ V (G)

}
forms a subbasis

for a fuzzy topology on V (G).

Example 6.4. From figure 7, let G3 be fuzzy graph with vertex set
V (G3) = {(a, 0.4), (b, 0.7), (c, 0.8), (d, 0.9)}. Then we have

N [a] = {(a, 0.4), (b, 0.7)}, N [b] = {(a, 0.4), (b, 0.7)}, N [c] = {(c, 0.8)}, N [d] = {(d, 0.9)},
S3 =

{
{(a, 0.4), (b, 0.7)}, {(c, 0.8)}, {(d, 0.9)}

}
,

β3 =
{
0, {(a, 0.4), (b, 0.7)}, {(c, 0.8)}, {(d, 0.9)}

}
,

τ3 =
{
0, {(c, 0.8)}, {(d, 0.9)}, {(a, 0.4), (b, 0.7)}, {(a, 0.4), (b, 0.7), (c, 0.8)},
{(a, 0.4), (b, 0.7), (d, 0.9)}, V (G3)

}
.

Theorem 6.5. If G = (V, σ, µ) is a null fuzzy graph and (V (G), τ) is a fuzzy neigh-
borhood topological space generated by G, then the proper N-open sets of (V (G), τ)
are singleton.

Example 6.6. Let G4 be a null fuzzy graph with vertex set

V (G4) = {(a, 0.4), (b, 0.7), (c, 0.8), (d, 0.9)}.
Then we have

N [a] = {(a, 0.4)}, N [b] = {(b, 0.7)}, N [c] = {(c, 0.8)}, N [d] = {(d, 0.9)},
S4 =

{
{(a, 0.4)}, {(b, 0.7)}, {(c, 0.8)}, {(d, 0.9)}

}
,

β4 =
{
0, {(a, 0.4)}, {(b, 0.7)}, {(c, 0.8)}, {(d, 0.9)}

}
.

Thus the fuzzy neighborhood topology generated by G2 is
τ4 =

{
0, {(a, 0.4)}, {(b, 0.7)}, {(c, 0.8)}, {(d, 0.9)},
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Figure 7. A simple fuzzy graph G3

{(a, 0.4), (b, 0.7)}, {(a, 0.4), (c, 0.8)}, {(a, 0.4), (d, 0.9)},
{(b, 0.7), (c, 0.8)}, {(b, 0.7), (d, 0.9)}, {(c, 0.8), (d, 0.9)},
{(a, 0.4), (b, 0.7), (c, 0.8)}, {(a, 0.4), (b, 0.7), (d, 0.9)},
{(a, 0.4), (c, 0.8), (d, 0.9)}, {(b, 0.7), (c, 0.8), (d, 0.9)}, V (G4)

}
Theorem 6.7. If G = (V, σ, µ) is a complete fuzzy graph, then fuzzy neighborhood
topology τ generated by G is T1 and T2.

Corollary 6.8. If G = (V, σ, µ) is a complete bipartite fuzzy graph, then fuzzy
neighborhood topology τ generated by G is T1 and T2.

7. Conclusion

In this paper we have studied a relation between fuzzy graphs and fuzzy topo-
logical spaces. We have generated three types of fuzzy topological spaces on fuzzy
graphs by using adjacency relation. Also fuzzy topologies related to isomorphic fuzzy
graphs, weak isomorphic fuzzy graphs and co-week isomorphic fuzzy graphs are in-
vestigated. We have shown that homeomorphic fuzzy topological structure forms an
equivalence relation. We have verified that the fuzzy topological spaces generated by
complete fuzzy graph and complete bipartite fuzzy graph satisfies separation axioms
T1 and T2.We have shown that using interior and closure of a set corresponding to
a fuzzy graph a fuzzy topology can be formed and there interrelationship may give
some useful insights. Using fuzzy topological structures as discussed in the paper
one can further study various topological aspects and fuzzy topological indices of
different types of fuzzy graphs. The results discussed may lead to significant ap-
plications in fields that deal with uncertainty,vagueness and imprsion like pattern
recognition, image processing,decision making,control system etc. in future.
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