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Abstract. Closure operators and closure systems play a significant
role in both pure and applied mathematics such that algebra, topology,
analysis and computer science. We investigate the relationships between
right (resp. left) closure systems and right (resp. left) closure operators on
complete generalized residuated lattices. We show that the set induced by
a right (resp. left) closure operator is right (resp. left) meet complete.
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1. Introduction

Bělohlávek [1, 2, 3, 4] investigate the properties of fuzzy relations and fuzzy closure
systems on a complete residuated lattice and developed the fuzzy formal concepts
and data analysis as foundation of theoretic computer science. As an Bělohlávek’s
extension, Fang and Yue [5] introduced strong fuzzy closure systems and strong
fuzzy closure operators.

Fuzzy closure operators and fuzzy closure systems can be applied to many different
areas as fuzzy Galios connections [6, 7, 8, 9], fuzzy rough sets [10], fuzzy formal
concepts [9, 10], decision rules [11] and fuzzy logics [12, 13, 14]. Recently, fuzzy
topological structures are introduced on soft sets, octahedron sets and cubic sets
[15, 16, 17].

For a non-commutative algebraic structure, Turunen [18] introduced a generalized
residuated lattice as a generalization of weak-pseudo-BL-algebras and left continuous
pseudo-t-norms [6, 19, 20]. Ko and Kim [21, 22] introduced the notions of right
(resp. left) closure operators and right (resp. left) closure systems on a generalized
residuated lattice. Moreover, as an extension of Zhang’s complete residuated lattices
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[23, 24], Ko and Kim [21, 22] investigated the notions of right (left) completeness
based on generalized residuated lattices.

In this paper, as the foundations of Alexandrov topologies, fuzzy formal con-
cepts, fuzzy rough sets, fuzzy relation logics, fuzzy equations and decision rules,
we examine the relationships between right (resp. left) closure systems and right
(resp. left) closure operators (See Section 3). Finally, we show that the set M ={
A ∈ LX | C(A) = A

}
, where C is a right (resp. left) closure operator, is a right

(resp. left) meet complete (See Section 4).

2. Preliminaries

In this section, we present some preliminary concepts and properties.

Definition 2.1 ([18, 21, 22]). A structure (L,∨,∧,⊙,→,⇒,⊥,⊤) is called a gen-
eralized residuated lattice if it satisfies the following three conditions:

(GR1) (L,∨,∧,⊤,⊥) is bounded where ⊤ is the upper bound and ⊥ is the uni-
versal lower bound,

(GR2) (L,⊙,⊤) is a monoid, where ⊤ is the identity,
(GR3) it satisfies a residuation, i.e., a⊙b ≤ c if and only if a ≤ b → c if and only if b ≤

a ⇒ c.

In this paper, we always assume that (L,∧,∨,⊙,→,⇒,⊤,⊥) is a complete gen-
eralized residuated lattice.

Lemma 2.2 ([18, 21, 22]). Let x, y, z ∈ L and let {xi}i∈Γ, {yi}i∈Γ ⊆ L. Then the
followings hold.

(1) If y ≤ z, then x⊙y ≤ x⊙ z, x → y ≤ x → z, z → x ≤ y → x, x ⇒ y ≤ x ⇒ z
and z ⇒ x ≤ y ⇒ x.

(2) x →
(∧

i∈Γ yi
)
=
∧

i∈Γ (x → yi) ,
(∨

i∈Γ xi

)
→ y =

∧
i∈Γ(xi → y),(∨

i∈Γ

xi

)
→

(∨
i∈Γ

yi

)
≥
∧
i∈Γ

(xi → yi) ,

(∧
i∈Γ

xi

)
→

(∧
i∈Γ

yi

)
≥
∧
i∈Γ

(xi → yi) ,

x ⇒

(∧
i∈Γ

yi

)
=
∧
i∈Γ

(x ⇒ yi) ,

(∨
i∈Γ

xi

)
⇒ y =

∧
i∈Γ

(xi ⇒ y),(∨
i∈Γ

xi

)
⇒

(∨
i∈Γ

yi

)
≥
∧
i∈Γ

(xi ⇒ yi) ,

(∧
i∈Γ

xi

)
⇒

(∧
i∈Γ

yi

)
≥
∧
i∈Γ

(xi ⇒ yi) .

(3) (x⊙ y) → z = x → (y → z) and (x⊙ y) ⇒ z = y ⇒ (x ⇒ z).
(4) x → (y ⇒ z) = y ⇒ (x → z) and x ⇒ (y → z) = y → (x ⇒ z).
(5) x ⊙ (x ⇒ y) ≤ y and (x → y) ⊙ x ≤ y. Moreover, x ≤ (x ⇒ y) → y and

x ≤ (x → y) ⇒ y.
(6) (x ⇒ y)⊙ z ≤ x ⇒ (y ⊙ z) and y ⊙ (x → z) ≤ x → (y ⊙ z).
(7) (x ⇒ y)⊙ (y ⇒ z) ≤ x ⇒ z and (y → z)⊙ (x → y) ≤ x → z.
(8) (x ⇒ z) ≤ (y ⊙ x) ⇒ (y ⊙ z) and (x → z) ≤ (x⊙ y) → (z ⊙ y).
(9) x → y ≤ (y → z) ⇒ (x → z) and (x ⇒ y) ≤ (y ⇒ z) → (x ⇒ z).
(10) y → z ≤ (x → y) → (x → z) and (y ⇒ z) ≤ (x ⇒ y) ⇒ (x ⇒ z).
(11) x → y = ⊤ if and only if x ≤ y. Similarly, x ⇒ y = ⊤ if and only if x ≤ y.
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Definition 2.3 ([21, 22]). Let X be a set. A map erX : X × X → L is called an
r-partial order (or right-partial order), if it satisfies the following three conditions:

(O1) erX(x, x) = ⊤ for all x ∈ X,
(O2) if erX(x, y) = erX(y, x) = ⊤, where x, y ∈ X, then x = y,
(R) erX(x, y)⊙ erX(y, z) ≤ erX(x, z) for all x, y, z ∈ X.
A map elX : X × X → L is called an l-partial order (or left partial order), if it

satisfies (O1), (O2) and the following condition :
(L) elX(y, z)⊙ elX(x, y) ≤ elX(x, z) for all x, y, z ∈ X.
The pair (X, erX) is called an r-partially ordered set (or right partially ordered set).
The pair

(
X, elX

)
is called an l-partially ordered set (or left partially ordered set).

The triple
(
X, erX , elX

)
is called a bi-partially ordered set.

Using Lemma 2.2 (7), one can have the following.

Lemma 2.4. Let G ⊆ LX . Define erG : G × G → L and elG : G × G → L by: for
any A, B ∈ X,

erG(A,B) =
∧
x∈X

[A(x) ⇒ B(x)] and elG(A,B) =
∧
x∈X

[A(x) → B(x)] .

Then
(
G, erG, e

l
G

)
is a bi-partially ordered set.

3. Bi-closure operators and bi-closure systems

In this section, we investigate the relationship between right (resp. left) closure
systems and right (resp. left) closure operators.

Definition 3.1. A map Cr : LX → LX is called an r-closure operator (or right
closure operator) on X, if it satisfies the following three conditions:

(C1) A ≤ Cr(A) for all A ∈ LX ,
(C2) Cr (Cr(A)) ≤ Cr(A) for all A ∈ LX ,
(CR) erLX (A,B) ≤ erLX (Cr(A), Cr(B)) for all A,B ∈ LX .

A map Cl : LX → LX is called an l-closure operator (or left closure operator) on
X, if it satisfies the following three conditions:

(C1) A ≤ Cl(A) for all A ∈ LX ,
(C2) Cl

(
Cl(A)

)
≤ Cl(A) for all A ∈ LX ,

(CL) elLX (A,B) ≤ elLX

(
Cl(A), Cl(B)

)
for all A,B ∈ LX .

The triple
(
X,Cr, Cl

)
is called a bi-closure space.

Let k ∈ L and A ∈ LX . Define k → A : X → L and k ⇒ A : X → L by: for each
x ∈ X,

(k → A)(x) = k → A(x) and (k ⇒ A)(x) = k ⇒ A(x).

Definition 3.2. Let Gr, Gl ⊆ LX .
(i) A family Gr is called an r-closure system (or right closure system) on X, if
(a) k → A ∈ Gr for all k ∈ L and A ∈ Gr,
(b)

∧
i∈Γ Ai ∈ Gr for all {Ai}i∈Γ ⊆ Gr.

(ii) A family Gl is called an l-closure system (or left closure system) on X, if
(a) k ⇒ A ∈ Gl for all k ∈ L and A ∈ Gl,
(b)

∧
i∈Γ Ai ∈ Gl for all {Ai}i∈Γ ⊆ Gl.

The triple
(
X,Gr, Gl

)
is called a bi-closure system.
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Remark 3.3. Ko and Kim [21, 22] defined the concepts of Definitions 3.1–3.2 as a
sense of completeness and they demonstrated the compatibility of their definitions
with Definitions 3.1–3.2.

Lemma 3.4. Let k ∈ L and let A, B ∈ LX . Then the following hold.
(1) k ≤ erLX (k → A,A) and k ≤ elLX (k ⇒ A,A).

(2) Let Cr : LX → LX be an r-closure operator on X. If A ≤ B, then Cr(A) ≤
Cr(B).

(3) Let Cl : LX → LX be an l-closure operator on X. If A ≤ B, then Cl(A) ≤
Cl(B).

Proof. (1) By Lemma 2.2 (5), we have

erLX (k → A,A) =
∧
x∈X

[(k → A)(x) ⇒ A(x)] ≥ k.

Also, by Lemma 2.2 (5), we get

elLX (k ⇒ A,A) =
∧
x∈X

[(k ⇒ A)(x) → A(x)] ≥ k.

(2) Let A ≤ B, where A, B ∈ LX . Then

⊤ = erLX (A,B) ≤ erLX (Cr(A), Cr(B)) [By (CR)]
=
∧

x∈X [Cr(A)(x) ⇒ Cr(B)(x)] .

Thus by Lemma 2.2 (11), Cr(A) ≤ Cr(B).
(3) It can be similarly proved as in (2). □

Theorem 3.5. (1) Let Cr : LX → LX be an r-closure operator on X. Then
Gr

Cr =
{
A ∈ LX | Cr(A) = A

}
is an r-closure system on X.

(2) Let Cl : LX → LX be an l-closure operator on X. Then Gl
Cl =

{
A ∈ LX | Cl(A) = A

}
is an l-closure system on X.

Proof. (1) Let k ∈ L and A ∈ Gr
Cr . Then

k ≤ erLX (k → A,A) [By Lemma 3.4 (1)]
≤ erLX (Cr(k → A), Cr(A)) [∵ Cr is an r-closure operator]
= erLX (Cr(k → A), A) [∵ A ∈ Gr

Cr ] .

By residuation, Cr(k → A) ≤ k → A. On the other hand, k → A ≤ Cr(k → A) by
(C1). Thus k → A = Cr(k → A). So k → A ∈ Gr

Cr .
Let {Ai}i∈Γ ⊆ Gr

Cr . Then

Cr
(∧

i∈Γ Ai

)
≤
∧

i∈Γ C
r(Ai) [by Lemma 3.4 (2)]

=
∧

i∈Γ Ai [∵ Ai ∈ Gr
Cr ] .

On the other hand,
∧

i∈Γ Ai ≤ Cr
(∧

i∈Γ Ai

)
by (C1). Thus Cr

(∧
i∈Γ Ai

)
=
∧

i∈Γ Ai

and
∧

i∈Γ Ai ∈ Gr
Cr . So Gr

Cr is an r-closure system on X.
(2) It can be similarly proved as in (1). □

Lemma 3.6. Let A, B ∈ LX . Then the following hold.
(1) A ≤ erLX (A,B) → B.

(2) A ≤ elLX (A,B) ⇒ B.

(3) If A ≤ B, then erLX (A,B) = ⊤ = elLX (A,B).
268
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Proof. (1) By residuation, one see that

A ≤ erLX (A,B) → B iff A(x) ≤ erLX (A,B) → B(x) for all x ∈ X

iff A(x)⊙ erLX (A,B) ≤ B(x) for all x ∈ X

iff erLX (A,B) ≤ A(x) ⇒ B(x) for all x ∈ X

iff
∧
y∈X

[A(y) ⇒ B(y)] ≤ A(x) ⇒ B(x) for all x ∈ X.

(2) It can be similarly done as in (1).
(3) It follows by Lemma 2.2 (11). □

Theorem 3.7. (1) Let Gr be an r-closure system on X. Define Cr
Gr : LX → LX

by: for each A ∈ LX ,

Cr
Gr (A) =

∧
{D ∈ Gr|A ≤ D} .

Then Cr
Gr is an r-closure operator such that

Cr
Gr (A) =

∧
D∈Gr

[erLX (A,D) → D] for all A ∈ LX and Gr
Cr

Gr
= Gr.

(2) Let Gl be an l-closure system on X. Define Cl
Gl : LX → LX by: for each

A ∈ LX ,

Cl
Gl(A) =

∧{
D ∈ Gl|A ≤ D

}
.

Then Cl
Gl is an l-closure operator such that

Cl
Gl(A) =

∧
D∈Gl

[
elLX (A,D) ⇒ D

]
for all A ∈ LX and Gl

Cl

Gl
= Gl.

(3) Let Cr : LX → LX be an r-closure operator on X. Then Cr
Gr

Cr
= Cr.

(4) Let Cl : LX → LX be an l-closure operator on X. Then Cl
Gl

Cl

= Cl.

Proof. (1) Claim 1: Cr
Gr (A) =

∧
D∈Gr

[
erLX (A,D) → D

]
for all A ∈ LX . Let

C(A) =
∧

D∈Gr

[
erLX (A,D) → D

]
, where A ∈ LX . Note that for all D ∈ Gr, we

have erLX (A,D) → D ∈ Gr and A ≤ erLX (A,D) → D by Lemma 3.6 (1). Then
Cr

Gr (A) ≤ C(A). On the other hand, we have

C(A) =
∧

D∈Gr

[
erLX (A,D) → D

]
≤ erLX (A,Cr

Gr (A)) → Cr
Gr (A) [∵ Cr

Gr (A) ∈ Gr]
= ⊤ → Cr

Gr (A) [∵ A ≤ Cr
Gr (A)] ,

Thus by residuation, C(A) ≤ Cr
Gr (A). So C(A) = Cr

Gr (A).
Claim 2: Let A ∈ LX and D ∈ Gr. Then A ≤ D if and only if Cr

Gr (A) ≤ D.
(⇒): Suppose A ≤ D. Then Cr

Gr (A) =
∧

{E ∈ Gr|A ≤ E} ≤ D.
(⇐): Suppose Cr

Gr (A) ≤ D. Then A ≤
∧
{E ∈ Gr|A ≤ E} = Cr

Gr (A) ≤ D.
(C1) By definition, A ≤ Cr

Gr (A) for all A ∈ LX .
(C2) For all A ∈ LX ,

Cr
Gr (Cr

Gr (A)) =
∧
{D ∈ Gr|Cr

Gr (A) ≤ D}
=
∧
{D ∈ Gr|A ≤ D} [By Claim 2]

= Cr
Gr (A).
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Claim 3: For all k ∈ L and A ∈ LX , Cr
Gr (k → A) ≤ k → Cr

Gr (A). Note that

k → Cr
Gr (A) = k →

∧
{D ∈ Gr|A ≤ D}

=
∧
{k → D|A ≤ D, D ∈ Gr} [By Lemma 2.2 (2)]

≥
∧
{k → D|k → A ≤ k → D, k → D ∈ Gr}

≥ Cr
Gr (k → A).

Claim 4: If A ≤ B, where A, B ∈ LX , then Cr
Gr (A) ≤ Cr

Gr (B). Suppose A ≤ B.
Since {D ∈ Gr|B ≤ D} ⊆ {D ∈ Gr|A ≤ D}, we have Cr

Gr (A) ≤ Cr
Gr (B).

(CR) Let A,B ∈ LX . Since

erLX (A,B) → Cr
Gr (B) ≥ Cr

Gr

(
erLX (A,B) → B

)
[By Claim 3]

≥ Cr
Gr (A) [By Lemma 3.6 (1) and Claim 4],

we have by residuation that erLX (A,B) ≤ erLX (Cr
Gr (A), Cr

Gr (B)). Thus Cr
Gr is an

r-closure operator.
Let A ∈ Gr

Cr
Gr

. Then A = Cr
Gr (A) =

∧
{D ∈ Gr | A ≤ D}. Thus A ∈ Gr. On

the other hand, let A ∈ Gr. Then Cr
Gr (A) =

∧
{D ∈ Gr | A ≤ D} = A. Thus

A ∈ Gr
Cr

Gr
.

(3) Claim 5: Let A ∈ LX and let D ∈ Gr
Cr . Then A ≤ D if and only if Cr(A) ≤

D.
(⇒): Suppose A ≤ D. Then by Lemma 3.4 (2), Cr(A) ≤ Cr(D). Since

D ∈ Gr
Cr , we have Cr(D) = D. Thus Cr(A) ≤ D.

(⇐): Suppose Cr(A) ≤ D. Since A ≤ Cr(A), we have A ≤ D.
Let A ∈ LX . Since Cr

Gr
Cr

(A) =
∧

{D ∈ Gr
Cr | A ≤ D}, Cr(A) ∈ Gr

Cr and A ≤
Cr(A), we have Cr

Gr
Cr

(A) ≤ Cr(A). On the other hand,

Cr
Gr

Cr
(A) =

∧
{D ∈ Gr

Cr | A ≤ D}
=
∧
{D ∈ Gr

Cr | Cr(A) ≤ D} [by Claim 5]
≥ Cr(A).

(2) and (4) can be similarly proved as in (1) and (3) respectively. □

By Theorem 3.7, we have the following.

Corollary 3.8. Let
(
X, erX , elX

)
be a bi-partially ordered set.

(1) There is a one to one correspondence between the set of all r-closure operators
on X and the set of all r-closure systems on X.

(2) There is a one to one correspondence between the set of all l-closure operators
on X and the set of all l-closure systems on X.

Definition 3.9 ([22]). Let
(
X, erX , elX

)
be a bi-partially ordered set. Define four

maps ↓r, ↓l, ↑r, ↑l: LX → LX by: for each S ∈ LX and each x ∈ X,

↓r A(x) =
∨

y∈X [erX(x, y)⊙A(y)] , ↓l A(x) =
∨

y∈X

[
A(y)⊙ elX(x, y)

]
,

↑r A(x) =
∨

y∈X [A(y)⊙ erX(y, x)] , ↑l A(x) =
∨

y∈X

[
elX(y, x)⊙A(y)

]
.
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Definition 3.10. Let
(
X, erX , elX

)
be a bi-partially ordered set. Define four maps

Cr
1 , C

l
1, C

r
2 , C

l
2 : LX → LX by: for each S ∈ LX and each x ∈ X,

Cr
1(A)(x) =

∧
y∈X

[∧
z∈X [A(z) ⇒ erX(z, y)] → erX(x, y)

]
,

Cl
1(A)(x) =

∧
y∈X

[∧
z∈X

[
A(z) → elX(z, y)

]
⇒ elX(x, y)

]
,

Cr
2(A)(x) =

∧
y∈X

[∧
z∈X

[
A(z) ⇒ elX(y, z)

]
→ elX(y, x)

]
,

Cl
2(A)(x) =

∧
y∈X

[∧
z∈X [A(z) → erX(y, z)] ⇒ erX(y, x)

]
.

Remark 3.11. Let (L,∨,∧,→) be a frame defined in [1, 18]. Then Cr
1(A) =

Cl
1(A) = (Au)l and Cr

2(A) = Cl
2(A) = (Al)u, where A ∈ LX .

Let
(
X, erX , elX

)
be a bi-partially ordered set. Let x ∈ X. Define four maps (erX)

x
,(

elX
)
x
,
(
elX
)x
, (erX)x : X → L by: for each y ∈ X,

(erX)
x
(y) = erX(y, x),

(
elX
)
x
(y) = elX(x, y),(

elX
)x

(y) = elX(y, x), (erX)x (y) = erX(x, y).

Define ⊤x : X → L by: for each z ∈ X, ⊤x(z) =

{
⊤ if z = x,

⊥ if z ̸= x.

Theorem 3.12. Let
(
X, erX , elX

)
be a bi-partially ordered set. Let A, B ∈ LX .

Then the following hold.
(1) ↓r and Cr

1 are r-closure operators with ↓r (⊤x) = (erX)
x
and Cr

1 (⊤x) = (erX)
x
.

Moreover, ↓r≤ Cr
1 .

(2) ↑l and Cr
2 are r-closure operators with ↑l (⊤x) =

(
elX
)
x
and Cr

2 (⊤x) =
(
elX
)
x
.

Moreover, ↑l≤ Cr
2 .

(3) ↓l and Cl
1 are l-closure operators with ↓l (⊤x) =

(
elX
)x

and Cl
1 (⊤x) =

(
elX
)x
.

Moreover, ↓l≤ Cl
1.

(4) ↑r and Cl
2 are l-closure operators with ↑r (⊤x) = (erX)x and Cl

2 (⊤x) = (erX)x.

Moreover, ↑r≤ Cl
2.

Proof. (1) We show that ↓r is an r-closure operator.
(C1) Let A ∈ LX . Then

↓r A(x) =
∨

y∈X [erX(x, y)⊙A(y)] ≥ erX(x, x)⊙A(x) = ⊤⊙A(x) = A(x).

(C2) Let A ∈ LX . Then

↓r (↓r A)(x) =
∨

y∈X [erX(x, y)⊙ ↓r A(y)]

=
∨

y∈X

[
erX(x, y)⊙

∨
z∈X [erX(y, z)⊙A(z)]

]
=
∨

z∈X

[∨
y∈X [erX(x, y)⊙ erX(y, z)]⊙A(z)

]
=
∨

z∈X [erX(x, z)⊙A(z)]
=↓r A(x).

(CR) Let A,B ∈ LX . Then
erLX (↓r A, ↓r B)

=
∧

x∈X [↓r A(x) ⇒↓r B(x)]

=
∧

x∈X

[∨
y∈X [erX(x, y)⊙A(y)] ⇒

∨
y∈X [erX(x, y)⊙B(y)]

]
≥
∧

x∈X

∧
y∈X [[erX(x, y)⊙A(y)] ⇒ [erX(x, y)⊙B(y)]] [By Lemma 2.2 (2)]

≥
∧

y∈X [A(y) ⇒ B(y)] [By Lemma 2.2 (8)]
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= erLX (A,B).
Thus ↓r is an r-closure operator.

Moreover,
↓r ⊤z(x) =

∨
y∈X (erX(x, y)⊙⊤z(y))

= erX(x, z)
= (erX)

z
(x).

We show that Cr
1 is an r-closure operator.

(C1) Let A ∈ LX . Then

Cr
1(A)(x) =

∧
y∈X

[∧
z∈X [A(z) ⇒ erX(z, y)] → erX(x, y)

]
≥
∧

y∈X [[A(x) ⇒ erX(x, y)] → erX(x, y)] [By Lemma 2.2 (1)]

≥ A(x) [By Lemma 2.2 (5)].

(C2) Let A ∈ LX .
Claim 1:

∧
z∈X [A(z) ⇒ erX(z, y)] =

∧
z∈X [Cr

1(A)(z) ⇒ erX(z, y)].
Since A(z) ≤ Cr

1(A)(z) by (C1), we have by Lemma 2.2 (1) that∧
z∈X

[A(z) ⇒ erX(z, y)] ≥
∧
z∈X

[Cr
1(A)(z) ⇒ erX(z, y)] .

On the other hand, note that∧
w∈X [Cr

1(A)(w) ⇒ erX(w, y)]

=
∧

w∈X

[∧
p∈X

[∧
z∈X [A(z) ⇒ erX(z, p)] → erX(w, p)

]
⇒ erX(w, y)

]
≥
∧

w∈X

[[∧
z∈X [A(z) ⇒ erX(z, y)] → erX(w, y)

]
⇒ erX(w, y)

]
[By Lemma 2.2 (1)

≥
∧

w∈X

∧
z∈X [A(z) ⇒ erX(z, y)] [By Lemma 2.2 (5)]

=
∧

z∈X [A(z) ⇒ erX(z, y)] .
Then Claim 1 is proved.

Finally, we have

Cr
1 (C

r
1(A)) (x) =

∧
y∈X

[∧
z∈X [Cr

1(A)(z) ⇒ erX(z, y)] → erX(x, y)
]

=
∧

y∈X

[∧
z∈X [A(z) ⇒ erX(z, y)] → erX(x, y)

]
[by Claim 1]

= Cr
1(A)(x).

Thus Cr
1 (C

r
1(A)) = Cr

1(A) for all A ∈ LX .
(CR) Let A, B ∈ LX . Then we have

erLX (Cr
1(A), Cr

1(B))
=
∧

x∈X [Cr
1(A)(x) ⇒ Cr

1(B)(x)]

=
∧

x∈X

[∧
y∈X

[∧
z∈X [A(z) ⇒ erX(z, y)] → erX(x, y)

]
⇒
∧

y∈X

[∧
z∈X [B(z) ⇒ erX(z, y)] → erX(x, y)

] ]
≥
∧

x∈X

∧
y∈X

[ [∧
z∈X [A(z) ⇒ erX(z, y)] → erX(x, y)

]
⇒
[∧

z∈X [B(z) ⇒ erX(z, y)] → erX(x, y)
] ]

[By Lemma 2.2 (2)]
≥
∧

x∈X

∧
y∈X

[∧
z∈X [B(z) ⇒ erX(z, y)] →

∧
z∈X [A(z) ⇒ erX(z, y)]

]
[By Lemma 2.2 (9)]

≥
∧

x∈X

∧
y∈X

∧
z∈X [[B(z) ⇒ erX(z, y)] → [A(z) ⇒ erX(z, y)]]
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[By Lemma 2.2 (2)]
≥
∧

x∈X

∧
y∈X

∧
z∈X [A(z) ⇒ B(z)] [By Lemma 2.2 (9)]

=
∧

z∈X [A(z) ⇒ B(z)]
= erLX (A,B).

Thus Cr
1 is an r-closure operator.

Moreover,

Cr
1 (⊤w) (x) =

∧
y∈X

[∧
z∈X [⊤w(z) ⇒ erX(z, y)] → erX(x, y)

]
=
∧

y∈X [erX(w, y) → erX(x, y)]

= erX(x,w)
= (erX)

w
(x).

We show ↓r≤ Cr
1 . Let A ∈ LX . Since

erX(x, y)⊙A(y)⊙
∧

z∈X [A(z) ⇒ erX(z, w)] ≤ erX(x, y)⊙A(y)⊙ [A(y) ⇒ erX(y, w)]
≤ erX(x, y)⊙ erX(y, w) (by Lemma 2.2(5))
≤ erX(x,w) (by (R)),

we have by residuation that

erX(x, y)⊙A(y) ≤
∧
z∈X

[A(z) ⇒ erX(z, w)] → erX(x,w) for all y, w ∈ X,

which implies that∨
y∈X

[erX(x, y)⊙A(y)] ≤
∧

w∈X

[ ∧
z∈X

[A(z) ⇒ erX(z, w)] → erX(x,w)

]
.

So ↓r (A) ≤ Cr
1(A) for all A ∈ LX

(4) We show that ↑r is an l-closure operator.
(C1) Let A ∈ LX . Then

↑r A(x) =
∨
y∈X

[A(y)⊙ erX(y, x)] ≥ A(x)⊙ erX(x, x) = A(x)⊙⊤ = A(x).

(C2) Let A ∈ LX . Then

↑r (↑r A) (x) =
∨

y∈X [↑r A(y)⊙ erX(y, x)]

=
∨

y∈X

[∨
z∈X [A(z)⊙ erX(z, y)]⊙ erX(y, x)

]
=
∨

z∈X

[
A(z)⊙

∨
y∈X [erX(z, y)⊙ erX(y, x)]

]
=
∨

z∈X [A(z)⊙ erX(z, x)]
=↑r A(x).

(CL) Let A, B ∈ LX . Then we get
elLX (↑r A, ↑r B)

=
∧

x∈X [↑r A(x) →↑r B(x)]

=
∧

x∈X

[∨
y∈X [A(y)⊙ erX(y, x)] →

∨
y∈X [B(y)⊙ erX(y, x)]

]
≥
∧

x∈X

∧
y∈X [[A(y)⊙ erX(y, x)] → [B(y)⊙ erX(y, x)]] [By Lemma 2.2 (2)]

≥
∧

x∈X

∧
y∈X [A(y) → B(y)] [By Lemma 2.2 (8)]

=
∧

y∈X [A(y) → B(y)]
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= elLX (A,B).
Thus ↑r is an l-closure operator.

Moreover,
↑r ⊤z(x) =

∨
y∈X [⊤z(y)⊙ erX(y, x)]

= erX(z, x)
= (erX)z (x).

We show that Cl
2 is an l-closure operator.

(C1) Let A ∈ LX . Then

Cl
2(A)(x) =

∧
y∈X

[∧
z∈X [A(z) → erX(y, z)] ⇒ erX(y, x)

]
≥
∧

y∈X [[A(x) → erX(y, x)] ⇒ erX(y, x)] [By Lemma 2.2 (1)]

≥
∧

y∈X A(x) [By Lemma 2.2 (5)]

= A(x).

(C2) Let A ∈ LX .
Claim 2:

∧
z∈X [A(z) → erX(y, z)] =

∧
z∈X

[
Cl

2(A)(z) → erX(y, z)
]
.

Since A(z) ≤ Cl
2(A)(z) ≥ by (C1), we have by Lemma 2.2 (1) that∧

z∈X

[A(z) → erX(y, z)] ≥
∧
z∈X

[
Cl

2(A)(z) → erX(y, z)
]
.

On the other hand, note that∧
w∈X

[
Cl

2(A)(w) → erX(y, w)
]

=
∧

w∈X

[∧
p∈X

[∧
z∈X [A(z) → erX(p, z)] ⇒ erX(p, w)

]
→ erX(y, w)

]
≥
∧

w∈X

[[∧
z∈X [A(z) → erX(y, z)] ⇒ erX(y, w)

]
→ erX(y, w)

]
[By Lemma 2.2 (1)]

≥
∧

w∈X

∧
z∈X [A(z) → erX(y, z)] [By Lemma 2.2 (5)]

=
∧

z∈X [A(z) → erX(y, z)] .
Then Claim 2 is proved.

Finally, we have

Cl
2

(
Cl

2(A)
)
(x) =

∧
y∈X

[∧
z∈X

[
Cl

2(A)(z) → erX(y, z)
]
→ erX(y, x)

]
=
∧

y∈X

[∧
z∈X [A(z) → erX(y, z)] ⇒ erX(y, x)

]
[By Claim 2]

= Cl
2(A)(x).

Thus Cl
2

(
Cl

2(A)
)
= Cl

2(A) for all A ∈ LX .

(CL) Let A, B ∈ LX . Then we have
elLX

(
Cl

2(A), Cl
2(B)

)
=
∧

x∈X

[
Cl

2(A)(x) → Cl
2(B)(x)

]
=
∧

x∈X

[∧
y∈X

[∧
z∈X [A(z) → erX(y, z)] ⇒ erX(y, x)

]
→
∧

y∈X

[∧
z∈X [B(z) → erX(y, z)] ⇒ erX(y, x)

] ]
=
∧

x∈X

∧
y∈X

[ [∧
z∈X [A(z) → erX(y, z)] ⇒ erX(y, x)

]
→
[∧

z∈X [B(z) → erX(y, z)] ⇒ erX(y, x)
] ]

[By Lemma 2.2 (2)]
≥
∧

x∈X

∧
y∈X

[∧
z∈X [B(z) → erX(y, z)] ⇒

∧
z∈X [A(z) → erX(y, z)]

]
[By Lemma 2.2 (9)]
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≥
∧

x∈X

∧
y∈X

∧
z∈X [[B(z) → erX(z, y)] ⇒ [A(z) → erX(z, y)]]

[By Lemma 2.2 (2)]
≥
∧

x∈X

∧
y∈X

∧
z∈X [A(z) → B(z)] [By Lemma 2.2 (9)]

=
∧

z∈X [A(z) → B(z)]

= elLX (A,B).

Thus Cl
2 is an l-closure operator.

Moreover,

Cl
2 (⊤w) (x) =

∧
y∈X

(∧
z∈X (⊤w(z) → erX(y, z)) ⇒ erX(y, x)

)
=
∧

y∈X (erX(y, w) ⇒ erX(y, x))

= erX(w, x) [By (R)]
= (erX)w (x).

We show ↑r≤ Cl
2. Let A ∈ LX . Since∧

z∈X [A(z) → erX(w, z)]⊙A(y)⊙ erX(y, x)
≤ [A(y) → erX(w, y)]⊙A(y)⊙ erX(y, x)
≤ erX(w, y)⊙ erX(y, x) [By Lemma 2.2 (5)]
≤ erX(w, x) [By (R)],

we have by residuation that

A(y)⊙ erX(y, x) ≤
∧
z∈X

[A(z) → erX(w, z)] ⇒ erX(w, x) for all y, w ∈ X,

which implies that∨
y∈X

[A(y)⊙ erX(y, x)] ≤
∧

w∈X

[ ∧
z∈X

[A(z) → erX(w, z)] ⇒ erX(w, x)

]
.

So ↑r A ≤ Cl
2(A) for all A ∈ LX .

(2) and (3) can be similarly proved. □

4. Various completeness

In this section, we show that the set M =
{
A ∈ LX | C(A) = A

}
, where C is a

right (resp. left) closure operator, is a right (resp. left) meet complete.

Definition 4.1 ([22]). Let (X, erX) be an r-partially ordered set. Let A ∈ LX .
(i) A point x0 is called an r-join (or right-join) of A, denoted by x0 = ⊔rA, if it

satisfies the following conditions:
(RJ1) A(x) ≤ erX (x, x0) for all x ∈ X,
(RJ2)

∧
x∈X [A(x) ⇒ erX(x, y)] ≤ erX (x0, y) for all y ∈ X.

(ii) A point x1 is called an r-meet (or right-meet) of A, denoted by x1 = ⊓rA, if
it satisfies the following conditions:

(RM1) A(x) ≤ erX (x1, x) for all x ∈ X,
(RM2)

∧
x∈X [A(x) → erX(y, x)] ≤ erX (y, x1) for all y ∈ X.

Let
(
X, elX

)
be an l-partially ordered set. Let A ∈ LX .

(iii) A point x0 is called an l-join (or left-join) of A, denoted by x0 = ⊔lA, if it
satisfies

(LJ1) A(x) ≤ elX (x, x0) for all x ∈ X,
(LJ2)

∧
x∈X

[
A(x) → elX(x, y)

]
≤ elX (x0, y) for all y ∈ X.
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(iv) A point x1 is called an l-meet (or left-meet) of A, denoted by x1 = ⊓lA, if it
satisfies

(LM1) A(x) ≤ elX (x1, x) for all x ∈ X,
(LM2)

∧
x∈X

[
A(x) ⇒ elX(y, x)

]
≤ elX (y, x1) for all y ∈ X.

(v) An r-partially ordered set (X, erX) is r-join complete (resp. r-meet complete),
if there exists ⊔rA (resp. ⊓rA) for all A ∈ LX .

(vi) An r-partially ordered set (X, erX) is r-complete if is r-join complete and
r-meet complete.

(vii) An l-partially ordered set
(
X, elX

)
is l-join complete( resp. l-meet complete)

if there exists ⊔lA (resp. ⊓lA) for all A ∈ LX .
(viii) An l-partially ordered set

(
X, elX

)
is l-complete if it is l-join complete and

l-meet complete.

Lemma 4.2 ([22]). Let
(
X, erX , elX

)
be a bi-partially ordered set. Let x0, x1 ∈ X.

Let A ∈ LX . Then the following hold.
(1) x0 = ⊔rA if and only if

∧
x∈X [A(x) ⇒ erX(x, y)] = erX (x0, y) for all y ∈ X.

(2) x1 = ⊓rA if and only if
∧

x∈X [A(x) → erX(y, x)] = erX (y, x1) for all y ∈ X.

(3) x0 = ⊔lA if and only if
∧

x∈X

[
A(x) → elX(x, y)

]
= elX (x0, y) for all y ∈ X.

(4) x1 = ⊓lA if and only if
∧

x∈X

[
A(x) ⇒ elX(y, x)

]
= elX (y, x1) for all y ∈ X.

(5) ⊔rA, ⊓rA, ⊔lA and ⊓lA are unique if each exists.

Let k ∈ L. Let A ∈ LX . Define two maps k → A, k ⇒ A : X → L by

(k → A)(x) = k → A(x), (k ⇒ A)(x) = k ⇒ A(x).

Theorem 4.3. (1) Let Cr : LX → LX be an r-closure operator. Let Gr
Cr = {A ∈

LX | Cr(A) = A}. Then
(
Gr

Cr , erGr
Cr

)
is r-meet complete, where

⊓rΨ =
∧

A∈Gr
Cr

[Ψ(A) → A] for all Ψ ∈ LLX

.

(2) Let Cl : LX → LX be an l-closure operator. Let Gl
Cl = {A ∈ LX | Cl(A) =

A}. Then

(
Gl

Cl , e
l
Gl

Cl

)
is l-meet complete, where

⊓lΨ =
∧

A∈Gl

Cl

[Ψ(A) ⇒ A] for all Ψ ∈ LLX

.

Proof. (1) Let Ψ : Gr
Cr → L be a map. Note that for all B ∈ Gr

Cr ,∧
A∈Gr

Cr

[
Ψ(A) → erGr

Cr
(B,A)

]
=
∧

A∈Gr
Cr

[
Ψ(A) →

∧
x∈X [B(x) ⇒ A(x)]

]
=
∧

A∈Gr
Cr

∧
x∈X [Ψ(A) → [B(x) ⇒ A(x)]] [By Lemma 2.2 (2)]

=
∧

A∈Gr
Cr

∧
x∈X [B(x) ⇒ [Ψ(A) → A(x)]] [By Lemma 2.2 (4)]

=
∧

x∈X

[
B(x) ⇒

∧
A∈Gr

Cr
[Ψ(A) → A(x)]

]
[By Lemma 2.2 (2)]

= erGr
Cr

(
B,
∧

A∈Gr
Cr

[Ψ(A) → A]
)
.

By Lemma 4.2, ⊓rΨ =
∧

A∈Gr
Cr

[Ψ(A) → A].

(2) Let Ψ : Gl
Cl → L be a map. Note that for all B ∈ Gl

Cl ,
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∧
A∈Gl

Cl

[
Ψ(A) ⇒ el

Gl

Cl

(B,A)

]
=
∧

A∈Gl

Cl

[
Ψ(A) ⇒

∧
x∈X [B(x) → A(x)]

]
=
∧

A∈Gl

Cl

∧
x∈X [Ψ(A) ⇒ [B(x) → A(x)]] [By Lemma 2.2 (2)]

=
∧

A∈Gl

Cl

∧
x∈X [B(x) → [Ψ(A) ⇒ A(x)]] [By Lemma 2.2 (4)]

=
∧

x∈X

[
B(x) →

∧
A∈Gl

Cl
[Ψ(A) ⇒ A(x)]

]
[By Lemma 2.2 (2)]

= el
Gl

Cl

(
B,
∧

A∈Gl

Cl
[Ψ(A) ⇒ A]

)
.

By Lemma 4.2, ⊓lΨ =
∧

A∈Gl

Cl
[Ψ(A) ⇒ A]. □

By Theorems 3.12 and 4.3, we have the following.

Corollary 4.4. (1) The pair
(
Gr

Cr , erGr
Cr

)
is r-meet complete where Cr =↓r, Cr

1 ,

↑l or Cr
2 .

(2) The pair

(
Gl

Cl , e
l
Gl

Cl

)
is l-meet complete where Cl =↓l, Cl

1, ↑r or Cl
2.

Remark 4.5. Ko and Kim [22] proved that the followings hold:

(1) the pair
(
Gr

Cr , erGr
Cr

)
is r-complete, where Cr =↓r or ↑l,

(2) the pair

(
Gl

Cl , e
l
Gl

Cl

)
is l-complete, where Cl =↓l or ↑r.

5. Conclusion

We have investigated the relationships among right (resp. left) closure systems,
right (resp. left) closure operators and right (resp. left) meet complete lattices on
generalized complete residuated lattices.

In the future, fuzzy rough sets, information systems and decision rules may be
investigated on generalized complete residuated lattices.
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