
Annals of Fuzzy Mathematics and Informatics

Volume 25, No. 3, (June 2023) pp. 235–254

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2023.25.3.235

@FMI
© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

Soft elementary bitopological spaces

Moumita Chiney, S. K. Samanta

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I
@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 25, No. 3, June 2023



Annals of Fuzzy Mathematics and Informatics

Volume 25, No. 3, (June 2023) pp. 235–254

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2023.25.3.235

@FMI
© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

Soft elementary bitopological spaces

Moumita Chiney, S. K. Samanta

Received 16 February 2023; Revised 20 March 2023; Accepted 13 April 2023

Abstract. In this article a notion of soft quasi-pseudo metric is in-
troduced and its underlying soft bitopology is defined where the relevant
soft topologies are elementary soft topologies. Considering the ordering
of a pair of soft elements two different notions of pairwise soft separation
axioms and weak pairwise soft separation axioms are developed. Some
properties of this new soft elementary bitopology regarding pairwise soft
separation axioms and weak pairwise soft separation axioms are studied.
With some examples and counter examples the relations among them have
been justified. Further it is seen that under a given condition the soft
quasi-pseudo metric space also satisfies the pairwise soft separation prop-
erties.
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1. Introduction and preliminaries

The symmetric requirement of distance function is often too restrictive as the
asymmetry appears naturally in many mathematical models. Such asymmetric dis-
tance function was first found in quasi-metric space by Wilson [1]. He discussed
some properties of quasi-metric space and the relations between metric spaces, quasi-
metric spaces and topological spaces. In [2], Kelly showed that a quasi pseudo metric
generates base for two different topologies on that set and started a new concept of
bitopological space. A bitopological space is a set X equipped with two arbitrary
topologies. Later on, Patty [3] and Saegrove [4] have done the conventional investi-
gations on bitopological spaces. In 1972, Reilly [5] studied the separation properties
of bitopological spaces.

On the other hand in 1999, Molodtsov [6] introduced soft set as generalization of
fuzzy set [7]. Maji et al. [8, 9] successfully applied soft set theory in decision making
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problems. Also they defined several operations on soft sets to strenghthen soft set
theory. Many researchers have contributed in developing mathematical structures
in soft set theory. Also, the soft set theory has been associated and applied to
decision making, data analysis and various mathematical structures (See [8, 10,
11, 12, 13, 14]). Aktaş and Çağman [15] introduced group structure in soft set,
Jun et al. [16, 12] studied soft BCK/BCI-algebras and soft semirings, Majumdar
and Samanta [17] introduced notion of soft mapping. Topological structure was
introduced in soft setting by Shabir and Naz [18]. From then many authors have
taken different approaches to study the topological structure on soft sets (See [19, 20,
21, 22, 23]). Das and Samanta [24, 25] introduced soft metric space and soft normed
linear space. In 2014, Soft Bitopological spaces were first studied by Şenel and
Çağman [26] and also by B. M. Ittanagi [27] independently. Also Şenel et al. studied
soft closed sets on soft bitopological spaces [26], soft topological subspaces [28], Soft
ditopological spaces [29], Soft topology generated by L-soft sets [30], etc. Again
Chiney and Samanta [19] redefined soft topology (also known as ϵ-soft topology
[31]) using elementary union, elementary intersections which are non distributive in
nature and the elementary complement which does not follow the excluded middle
law. Dutta et al. [32], Roy et al. [33, 34] studied different notions of this type of
soft topological spaces.

In this paper, our main goal is to introduce a notion of soft quasi-pseudo metric
space using soft elements and to develop a notion of soft bitopology induced by a soft
quasi-pseudo metric. Also we investigate the separation properties of a soft quasi-
pseudo metric space. In this framework we introduce a notion of soft elementary
bitopological space and study some separation axioms on it. A soft bitopological
space reduces to a soft topological space if the two soft topologies become identical.
Thus the theory of soft bitopological space is more general than the soft topolog-
ical space and we can consider the soft topological space as a special case of soft
bitopological space.

The organization of the paper is as follows : Some preliminary results of soft sets
and redefined soft topology related to our work has been discussed. In Section 2, we
define soft quasi-pseudo metric and construct soft elementary bitopology. In section
3 and 4, different notions of pairwise soft separation axioms have been introduced
and the relation among them are investigated with examples and counter examples.
An implication table is given to show the relations among them. Section 5 contains
conclusions and future work of the paper.

In order to maintain the length of the paper some preliminary results related to
soft set and soft topology are omitted in this paper. Some straightforward proofs
are also omitted.

Soft set was introduced by Molodtsov [6] in 1999. Later Ma et al. [35] and Nazmul
and Samanta [22] slightly modified his definition and extend it on whole parameter
set. In this paper we follow the definition considered by Nazmul and Samanta [22]
which is as follows.

Definition 1.1 ([22]). Let X be a universal set and A be a set of parameters. Let
P(X) denote the power set of X. A pair ⟨F , A⟩ is called a soft set over X, where
F is a mapping given by F : A → P(X). In other words, a soft set over X is a
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parameterized family of subsets of the universe X. For a soft set ⟨F , A⟩ and for each
α ∈ A, ⟨F , A⟩ (α) (simply F(α)) may be considered as the set of α approximate
elements of ⟨F , A⟩.

Operations on soft sets such as union, intersection, complement and absolute soft
set, null soft set etc. are taken from [22].

Definition 1.2 ([36]). Let X be a non-empty set and A be a non-empty parameter
set. Then a function x̃ : A → X is said to be a soft element of X. A soft element x̃ of
X is said to belong to a soft set ⟨F , A⟩ over X, denoted by x̃∈̃ ⟨F , A⟩, if x̃(λ) ∈ F(λ)
for all λ ∈ A.

LetX be an initial universal set and A be a non-empty parameter set. Throughout

the paper, we consider the null soft set
〈
Φ̃, A

〉
and those soft sets ⟨F , A⟩ over X

for which F(α) ̸= ϕ for all α ∈ A. We denote this collection by S(X̃) and r̄, s̄, t̄
will denote a particular type of soft elements such that r̄(λ) = r for all λ ∈ A. The
singleton soft set will be denoted by ⟨x̃, A⟩. We will denote the soft set generated
by a collection B of soft elements of X and the collection of soft elements of a soft
set ⟨F , A⟩ by SS(B) and SE ⟨F , A⟩ respectively.

Definition 1.3 ([24]). For any two soft sets ⟨F , A⟩ , ⟨G, A⟩ ∈ S(X̃),

(i) the elementary union of ⟨F , A⟩ and ⟨G, A⟩, denoted by ⟨F , A⟩ ⋓ ⟨G, A⟩, is
defined by ⟨F , A⟩ ⋓ ⟨G, A⟩ = SS(B),
where, B = {x̃∈̃

〈
X̃, A

〉
: x̃∈̃ ⟨F , A⟩ or x̃∈̃ ⟨G, A⟩}, i.e.,

⟨F , A⟩ ⋓ ⟨G, A⟩ = SS(SE ⟨F , A⟩ ∪ SE ⟨G, A⟩),
(ii) the elementary intersection of ⟨F , A⟩ and ⟨G, A⟩, denoted by ⟨F , A⟩⋒⟨G, A⟩,

is defined by ⟨F , A⟩ ⋒ ⟨G, A⟩ = SS(B),
where B = {x̃∈̃

〈
X̃, A

〉
: x̃∈̃ ⟨F , A⟩ and x̃∈̃ ⟨G, A⟩}, i.e.,

⟨F , A⟩ ⋒ ⟨G, A⟩ = SS(SE ⟨F , A⟩ ∩ SE ⟨G, A⟩).

Definition 1.4 ([36]). Let R be the set of real numbers and B(R) be the set of all
non-empty bounded subset of R. A mapping F : A → B(R) is said to be a soft real
set. In particular, if F(λ) is a singleton set for all λ ∈ A, then ⟨F , A⟩ is called a
soft real number. The set of all non-negative soft real numbers will be denoted by
R(A)∗.

Proposition 1.5 ([36]). For any two soft real numbers r̃, s̃,

(1) r̃ ≤̃ s̃, if r̃(λ) ≤ s̃(λ), λ ∈ A,
(2) r̃ ≥̃ s̃ if r̃(λ) ≥ s̃(λ), λ ∈ A.

Definition 1.6 ([24]). A mapping d : SE(X̃)×SE(X̃) → R(A)∗ is said to be a soft

metric on (X̃, A), if d satisfies the following conditions:

(M1) d(x̃, ỹ)≥̃0̄ for all x̃, ỹ ∈ SE(X̃),
(M2) d(x̃, ỹ) = 0̄ if and only if x̃ = ỹ,

(M3) d(x̃, ỹ) = d(ỹ, x̃) for all x̃, ỹ ∈ SE(X̃),

(M4) d(x̃, z̃)≤̃d(x̃, ỹ) + d(ỹ, z̃) for all x̃, ỹ, z̃ ∈ SE(X̃).
237
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Definition 1.7 ([19]). Let T be a collection of soft sets of S(X̃). Then T is said to
be a soft topology, if it satisfies the following conditions:

(i)
〈
Φ̃, A

〉
and

〈
X̃, A

〉
belong to T ,

(ii) the elementary intersection of any two soft sets of T belongs to T ,
(iii) the elementary union of any number of soft sets of T belongs to T .

The triplet
〈
X̃, T , A

〉
is called a soft topological space.

From now on, we shall refer it to an elementary soft topology. Each member of
T is called a soft open set or SO set. Throughout this paper, the soft topology is
taken in the sense of Chiney and Samanta [19]. Definitions of soft closed set or SC
set, soft closure and some soft separation axioms are also taken from [19].

2. Soft quasi-pseudo metric and soft elementary bitopology

Definition 2.1. A mapping P : SE(X̃) × SE(X̃) → R(A)∗ is said to be a soft

quasi-pseudo metric (SQPM) on
〈
X̃, A

〉
, if P satisfies the following conditions:

(Q1) P(x̃, x̃) = 0̄ for all x̃ ∈ SE(X̃),

(Q2) P(x̃, z̃)≤̃P(x̃, ỹ) + P(ỹ, z̃) for all x̃, ỹ, z̃ ∈ SE(X̃).

In addition, if P satisfies the condition P(x̃, ỹ) = 0̄ iff x̃ = ỹ, then P is said to be a

soft quasi-metric (SQM) on
〈
X̃, A

〉
.

The soft set
〈
X̃, A

〉
with a SQPM, P( , ) on it is called a soft quasi-pseudo metric

space (in short, SQPMS) and is denoted by
〈
X̃,P, A

〉
. Let

〈
X̃,P, A

〉
be a SQPMS

and let Q( , ) be defined by Q(x̃, ỹ) = P(ỹ, x̃) for all x̃, ỹ ∈ SE(X̃). Then it can be

easily verified that Q( , ) is also a SQPM on
〈
X̃, A

〉
and Q( , ) is called the soft

conjugate of P( , ). A SQPMS with SQPM P and its soft conjugate Q on
〈
X̃, A

〉
is denoted by

〈
X̃,P,Q, A

〉
.

Proposition 2.2. (Decomposition Theorem) If a SQPM P satisfies the condition :
(Q3) for (ξ1, ξ2) ∈ X × X and λ ∈ A, {P(x̃, ỹ)(λ) : x̃(λ) = ξ1, ỹ(λ) = ξ2} is a

singleton set, and if for λ ∈ A, Pλ : X ×X → R+ is defined by Pλ(x̃(λ), ỹ(λ)) =

P(x̃, ỹ)(λ) for all x̃, ỹ ∈ SE(X̃), then Pλ is a quasi-pseudo metric on X. Also, Qλ

is conjugate to quasi-pseudo metric Pλ on X.

Proof. Clearly, Pλ : X ×X → R+ is a rule that assigns an ordered pair of X to a
non-negative real number for all λ ∈ A. Now the well defined property of Pλ for all
λ ∈ A follows from the condition (Q3) and the soft quasi-pseudo metric axioms gives
the pseudo metric conditions of Pλ for all λ ∈ A. Then the soft quasi-pseudo metric
satisfying (Q3) gives a parametrized family of crisp quasi-pseudo metric. Also, by
definition of Q, it follows that Qλ is conjugate to Pλ for all λ ∈ A. □

Example 2.3. Consider the set R of real numbers with usual order and metric. Let
d be the metric on R defined by d(a, b) = min{1, |a− b|}∀a, b ∈ R.
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Now, we define P : SE(R̃)× SE(R̃) → R(A)∗ by

P(x̃, ỹ)(λ) = d(ξ, η) if ξ ≤ η,
= 1 if ξ ≥ η,

where x̃(λ) = ξ,ỹ(λ) = η.

Again, we define Q : SE(R̃)× SE(R̃) → R(A)∗ by

Q(x̃, ỹ)(λ) = d(ξ, η) if ξ ≥ η,
= 1 if ξ ≤ η,

where x̃(λ) = ξ,ỹ(λ) = η.

Then P, Q are soft quasi-pseudo metrics on
〈
R̃, A

〉
and Q is soft conjugate of P.

Also, if for λ ∈ A, Pλ : R× R → R+ is defined by Pλ(x̃(λ), ỹ(λ)) = P(x̃, ỹ)(λ) for

all x̃, ỹ ∈ SE(R̃), then Pλ is a quasi-pseudo metric on R.

Definition 2.4. Let
〈
X̃,P,Q, A

〉
be a SQPMS, r̃ be a positive soft real number

and ã∈̃SE(X̃). Then a soft open ball BP(ã, r̃) with centre at ã and radius r̃ is a

collection of soft elements of
〈
X̃, A

〉
satisfying P(x̃, ã)<̃r̃. Thus

BP(ã, r̃) = {x̃∈̃SE(X̃) : P(x̃, ã)<̃r̃}.

Definition 2.5. Let B be a collection of soft elements of
〈
X̃, A

〉
in a SQPMS〈

X̃,P,Q, A
〉
. Then a soft element ã is said to be an interior element of B, if there

exists a positive soft real number r̃ such that ã ∈ BP(ã, r̃) ⊂ B.

Definition 2.6. Let B be a non-null collection of soft elements of
〈
X̃, A

〉
in a

SQPMS
〈
X̃,P,Q, A

〉
. Then B is said to be open in P, if each elements of B is

an interior element of B.

Definition 2.7. Let
〈
X̃,P,Q, A

〉
be a SQPMS. A soft set ⟨F , A⟩ ∈ S(X̃) is said

to be asoft open (SO set) set in P, if there is a collection of soft elements B of〈
X̃, A

〉
which is open in P and SS(B) = ⟨F , A⟩.

Proposition 2.8. (1) In a SQPMS
〈
X̃,P,Q, A

〉
the null soft set

〈
Φ̃, A

〉
, the

absolute soft set
〈
X̃, A

〉
and arbitrary elementary union of SO sets are SO.

(2) Let
〈
X̃,P,Q, A

〉
be a SQPMS satisfying (Q3). Then ⟨G, A⟩ is a SO set

with respect to P iff G(λ) is open in (X,Pλ) for all λ ∈ A.

(3) If
〈
X̃,P,Q, A

〉
is a SQPMS satisfying (Q3), then elementary intersection

of two SO sets is SO.

Proof. (1)
〈
Φ̃, A

〉
is trivially a SO set. Obviously, SE(X̃) is the set of all soft

elements of X̃ and all of them are interior elements of SE(X̃). Then SE(X̃) is open

and
〈
X̃, A

〉
= SS(SE(X̃)) is soft open in

〈
X̃,P,Q, A

〉
. Again let {⟨Fα, A⟩}α∈A be
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an arbitrary family of SO sets. If ⟨Fα, A⟩ =
〈
Φ̃, A

〉
∀α ∈ A, then ⋓α∈A ⟨Fα, A⟩ =〈

Φ̃, A
〉
, which is a SO set. Finally, let ⟨Fα, A⟩ ≠

〈
Φ̃, A

〉
for at least one α ∈

A. Since ⟨Fα, A⟩ is SO for each α, there is a collection of Bα of soft elements of
⟨Fα, A⟩ such that Bα are open set and ⟨Fα, A⟩ = SS(Bα). Thus ⋓α∈A ⟨Fα, A⟩ =
SS(∪α∈ABα) is SO set.

(2) Suppose ⟨G, A⟩ is SO. Then there is a collection B of soft elements of ⟨G, A⟩
such that B is open and ⟨G, A⟩ = SS(B). Let x ∈ SS(B)(λ). Then there is x̃ in B
such that x̃(λ) = x. Since B is open, there exists r̃>̃0̄ such that x̃∈̃BP(x̃, r̃) ⊂ B,
i.e., x = x̃(λ) ∈ SS(BP(x̃, r̃))(λ) ⊂ SS(B)(λ) and SS(BP(x̃, r̃))(λ) is an open ball
in (X,Pλ). Thus x is an interior point of SS(B)(λ). So SS(B)(λ) is open in (X,Pλ).
This is true for every λ ∈ A.

Conversely, suppose ⟨F , A⟩ (λ) = SS(B)(λ) is open in (X,Pλ) for every λ ∈
A. Let x̃∈̃SS(B). Then x̃(λ) ∈ SS(B)(λ) for every λ ∈ A. Since SS(B)(λ) is
open in (X,Pλ), there exists open ball Bλ(x̃(λ), rλ) in (X,Pλ) such that x̃(λ) ∈
Bλ(x̃(λ), rλ) ⊂ SS(B)(λ) for every λ ∈ A. Consider the soft real number r̃ such

that r̃(λ) = rλ ∀λ ∈ A. Then r̃>̃0̄ and BP(x̃, r̃) is a open ball in
〈
X̃,P,Q, A

〉
.

Thus x̃ ∈ BP(x̃, r̃) ⊂ SE(SS(B)) and so SE(SS(B)) = ∪x̃∈̃SS(B)BP(x̃, r̃). Since

arbitrary union of open set is open, it follows that SE(SS(B)) is open and SS(B) =
SS(SE(SS(BP(x̃, r̃)))). Hence SS(B) = ⟨F , A⟩ is SO in

〈
X̃,P,Q, A

〉
.

(3) Let ⟨F , A⟩ and ⟨G, A⟩ be two SO. Then there exist open sets B1, B2 in〈
X̃,P,Q, A

〉
such that ⟨F , A⟩ = SS(B1) and ⟨G, A⟩ = SS(B2). If ⟨F , A⟩⋒ ⟨G, A⟩ =〈

Φ̃, A
〉
, then ⟨F , A⟩ ⋒ ⟨G, A⟩ is SO. If ⟨F , A⟩ ⋒ ⟨G, A⟩ ≠

〈
Φ̃, A

〉
, then [⟨F , A⟩ ⋒

⟨G, A⟩](λ) = F(λ) ∩ G(λ) ∀λ ∈ A. Since F(λ) and G(λ) are open in (X,Pλ) for all
λ ∈ A, it follows that [⟨F , A⟩ ⋒ ⟨G, A⟩](λ) is open in (X,Pλ) for all λ ∈ A. Thus by
(2), ⟨F , A⟩ ⋒ ⟨G, A⟩ is SO set. □

Definition 2.9. Let
〈
X̃,P,Q, A

〉
be a SQPMS. A soft set ⟨F , A⟩ ∈ S(X̃) is said

to be a soft closed (SC) set, if ⟨F , A⟩C ∈ S(X̃) and ⟨F , A⟩C is SO in
〈
X̃,P, A

〉
.

Example 2.10. Consider the SQPMS as in Example 2.3. Let ã, b̃ ∈̃
〈
R̃, A

〉
. If we

define soft set ⟨G, A⟩ by G(λ) = [ã(λ), b̃(λ)) ∀ λ ∈ A, then G(λ) is open set in (R,Pλ).
Thus ⟨G, A⟩ is soft open set, i.e., SO w.r.t P. Also, the soft set ⟨F , A⟩ defined by

F (λ) = R \ [ã(λ), b̃(λ)) ∀ λ ∈ A. is soft closed set, i.e., SC w.r.t P, as F(λ) is closed
in (R,Pλ).

Proposition 2.11. Let
〈
X̃,P,Q, A

〉
be a SQPMS satisfying (Q3). Then ⟨F , A⟩ ∈

S(X̃) is SC in P iff F(λ) is proper closed set or X or Φ in ⟨X,Pλ,Qλ⟩ for all λ ∈ A.

Proof. Proof follows from Proposition 2.8 (2) and the definition of soft closed set. □
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Proposition 2.12. Let
〈
X̃,P,Q, A

〉
be a SQPMS satisfying (Q3). Let τP =

{⟨F , A⟩ ∈ S(X̃) : x̃∈̃ ⟨F , A⟩ implies there is a soft open set ⟨G, A⟩ in P such that

x̃∈̃ ⟨G, A⟩ ⊂̃ ⟨F , A⟩}. Then τP is an elementary soft topology on
〈
X̃, A

〉
.

Proof. Clearly
〈
Φ̃, A

〉
,
〈
X̃, A

〉
∈ τP . Let ⟨F1, A⟩ , ⟨F2, A⟩ ∈ τP . If ⟨F1, A⟩ ⋒

⟨F2, A⟩ =
〈
Φ̃, A

〉
, then ⟨F1, A⟩⋒⟨F2, A⟩ ∈ τP . Consider ⟨F1, A⟩⋒⟨F2, A⟩ ≠

〈
Φ̃, A

〉
.

Let x̃∈̃ ⟨F1, A⟩ ⋒ ⟨F2, A⟩. Then we have

x̃∈̃ ⟨F1, A⟩ , x̃∈̃ ⟨F2, A⟩ .

Thus there is soft open set ⟨G1, A⟩ , ⟨G2, A⟩ in P such that

x̃∈̃ ⟨G1, A⟩ ⊂̃ ⟨F1, A⟩ and x̃∈̃ ⟨G2, A⟩ ⊂̃ ⟨F2, A⟩ .

So we get

x̃∈̃ ⟨G1, A⟩ ⋒ ⟨G2, A⟩ ⊂̃ ⟨F1, A⟩ ⋒ ⟨F2, A⟩ .

Since
〈
X̃,P, A

〉
satisfies (Q3), ⟨G1, A⟩ ⋒ ⟨G2, A⟩ is a soft open set in P. Hence

⟨F1, A⟩ ⋒ ⟨F2, A⟩ ∈ τP .
Let ⟨Fi, A⟩ ∈ τP for all i ∈ ∆ and let x̃∈̃ ⋓

i∈∆
⟨Fi, A⟩.

Case I: Suppose there exists some i ∈ ∆ such that x̃∈̃ ⟨Fi, A⟩. Then there
exists a soft open set ⟨G, A⟩ in P such that x̃∈̃ ⟨G, A⟩ ⊂̃ ⟨Fi, A⟩ ⊂̃ ⋓

i∈∆
⟨Fi, A⟩. Thus

⋓
i∈∆

⟨Fi, A⟩ ∈ τP .

Case II: Suppose x̃ /̃∈ ⟨Fi, A⟩ for all i ∈ ∆ and choose a λ1 ∈ ∆ such that
x̃(α1) ∈ ⟨Fλ1 , A⟩ (α1) for some α1 ∈ A. Choose a soft element ỹλ1∈̃ ⟨Fλ1 , A⟩
such that ỹλ1

(α1) = x̃(α1). Then there is a soft open set ⟨Gλ1
, A⟩ in P such that

ỹλ1
∈̃ ⟨Gλ1

, A⟩ ⊂̃ ⟨Fλ1
, A⟩. Also choose a λ2 ∈ ∆ such that x̃(α2) ∈ ⟨Fλ2

, A⟩ (α2) for
some α2 ∈ A and a soft element ỹλ2

∈̃ ⟨Fλ2
, A⟩ such that ỹλ2

(α2) = x̃(α2). Then
there is a soft open set ⟨Gλ2 , A⟩ in P such that ỹλ2∈̃ ⟨Gλ2 , A⟩ ⊂̃ ⟨Fλ2 , A⟩. Proceeding
this way for each αi ∈ A, we get λi ∈ ∆ such that ỹλi∈̃ ⟨Gλi , A⟩ ⊂̃ ⟨Fλi , A⟩, where
⟨Gλi

, A⟩ is a soft open set in P and ỹλi
(αi) = x̃(αi). Thus we have

x̃∈̃ ⋓
λi∈A

⟨Gλi
, A⟩ ⊂̃ ⋓

i∈∆
⟨Fλi

, A⟩ .

Since ⋓
λi∈A

⟨Gλi , A⟩ is soft open in P, we have ⋓
i∈∆

⟨Fλi , A⟩ ∈ τP . So τP is an elemen-

tary soft topology on
〈
X̃, A

〉
. □

Remark 2.13. Let Q( , ) be the soft conjugate of P( , ). Let τQ = {⟨F ,A⟩ ∈
S(X̃) ; x̃∈̃ ⟨F , A⟩ implies there is a soft open set ⟨G, A⟩ inQ such that x̃∈̃ ⟨G, A⟩ ⊂̃ ⟨F , A⟩}.
Then τQ is an elementary soft topology on

〈
X̃, A

〉
. Thus omitting the condition

of symmetry from a soft metric can give rise to two elementary soft topologies on〈
X̃, A

〉
in the sense of Chiney and Samanta [19].
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Definition 2.14. Let X be a universal set and A be a parameter set. Let T1 and

T2 be two arbitrary soft elementary topologies on
〈
X̃, A

〉
as in Definition 1.7. Then〈

X̃, T1, T2, A
〉
is called a soft elementary bitopological space (SEBS).

Example 2.15. LetX = {x, y, z}, A = {α, β} and T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F , A⟩},

where F(α) = {x, y}, F(β) = {y, z} and T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨G, A⟩}, where

G(α) = {x, z},G(β) = {x, y, z}. Then
〈
X̃, T1, T2, A

〉
is a SEBS.

3. Pairwise soft T0, T1 and T2 spaces

In this section, we discuss about some separation axioms in SEBS in weak and
strong versions which arise for considering the pair of separating soft elements as
unordered and ordered pairs. In the rest of the paper (x̃, ỹ) will be considered as an
ordered pair of soft elements and x̃, ỹ as unordered pair of soft elements. In a SEBS〈
X̃, T1, T2, A

〉
the soft closure of a soft set ⟨F , A⟩ with respect to the soft topology

T will be denoted by ⟨F , A⟩
T
.

Definition 3.1. Let
〈
X̃, T1, T2, A

〉
be a SEBS and x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ)

for all λ ∈ A. Then
〈
X̃, T1, T2, A

〉
is said to be weak pairwise soft T0 (WPST0), if

there is ⟨F , A⟩ ∈ S(X̃) which is either T1- SO or T2- SO such that x̃∈̃ ⟨F , A⟩ , ỹ(λ)/∈F(λ)
for all λ ∈ A or ỹ∈̃ ⟨F , A⟩ , x̃(λ)/∈F(λ) for all λ ∈ A.

Definition 3.2. A SEBS
〈
X̃, T1, T2, A

〉
is said to be pairwise soft T0 (PST0),

if for each pair of soft elements (x̃, ỹ) with x̃(λ) ̸= ỹ(λ) ∀λ ∈ A, either there is
⟨F , A⟩ ∈ T1 such that x̃∈̃ ⟨F , A⟩ , ỹ(λ)/∈F(λ) ∀λ ∈ A or there is ⟨G, A⟩ ∈ T2 such
that ỹ∈̃ ⟨G, A⟩ , x̃(λ)/∈G(λ) for all λ ∈ A.

Remark 3.3. Clearly a PST0 space is WPST0 but not conversely. Also a PSTT0

space is not just a pair of two soft TT0 topological spaces.

Example 3.4. LetX = {a, b}, A = {α, β}. Let T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨ā, A⟩ ,

〈
b̄, A

〉
}

and T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F , A⟩ , ⟨G, A⟩}, where F(α) = {a},F(β) = {b};G(α) =

{b},G(β) = {a} Then clearly
〈
X̃, T1, T2, A

〉
is a PST0 space.

Example 3.5. Let X = {a, b}, A = {α, β}. Let T1 and T2 be the soft topologies

on
〈
X̃, A

〉
given as follows:

T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨ā, A⟩ ,

〈
b̄, A

〉
, ⟨F1, A⟩ , ⟨F2, A⟩ , ⟨F3, A⟩}

and

T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
},

where F1(α) = {a},F1(β) = {b};F2(α) = {a},F2(β) = {a, b};F3(α) = {a, b},
F3(β) = {b}. Then

〈
X̃, T1, T2, A

〉
is a WPST0 space but not PST0.
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Definition 3.6. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a weak pairwise soft T1 space

(WPST1), if for any x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ) for all λ ∈ A, there is ⟨F , A⟩ ∈
T1 and ⟨G, A⟩ ∈ T2 such that either x̃∈̃ ⟨F , A⟩ , ỹ(λ)/∈F(λ) and ỹ∈̃ ⟨G, A⟩ , x̃(λ)/∈G(λ)
for all λ ∈ A or x̃∈̃ ⟨G, A⟩ , ỹ(λ)/∈G(λ) and ỹ∈̃ ⟨F , A⟩ , x̃(λ)/∈F(λ) for all λ ∈ A.

Definition 3.7. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft T1 space

(PST1), if for each pair of soft elements (x̃, ỹ) with x̃(λ) ̸= ỹ(λ) for all λ ∈ A
there is ⟨F , A⟩ ∈ T1 and ⟨G, A⟩ ∈ T2 such that x̃∈̃ ⟨F , A⟩ , ỹ(λ)/∈F(λ) for all λ ∈ A
and ỹ∈̃ ⟨G, A⟩ , x̃(λ)/∈G(λ) for all λ ∈ A.

Remark 3.8. It is clear that PST1 space is PST0 and WPST1 space is WPST0.
Also PST1 space is WPST1 but not conversely.

Example 3.9. Let X = {a, b}, A = {α, β} and let T1 and T2 be the soft topologies

on
〈
X̃, A

〉
given as follows:

T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F1, A⟩ , ⟨F2, A⟩ , ⟨F3, A⟩},

T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨G1, A⟩ , ⟨G2, A⟩ , ⟨G3, A⟩},

where F1(α) = {a},F1(β) = {a};F2(α) = {b},F2(β) = {a};F3(α) = {a, b},F3(β) =
{a};G1(α) = {b},G1(β) = {b};G2(α) = {a},G2(β) = {b};G3(α) = {a, b},G3(β) =

{b}. Then
〈
X̃, T1, T2, A

〉
is WPST1 space. Consider the soft elements ξ̃1, ξ̃2, where

ξ̃1(α) = a, ξ̃1(β) = b and ξ̃2(α) = b, ξ̃2(β) = a. Then for the pair (ξ̃1, ξ̃2), there does

not exist any T1- SO set containing ξ̃1 and any T2- SO set containing ξ̃2. Thus〈
X̃, T1, T2, A

〉
is not PST1 space.

Remark 3.10. The following examples show that WPST◦ is not equivalent to
WPST1 and PST0 is not equivalent to PST1. Also WPST1 does not imply PST0.

Example 3.11. Let X = {a, b}, A = {α, β} and let T1 and T2 be the soft topologies

on
〈
X̃, A

〉
given as follows:

T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F1A⟩ , ⟨F2, A⟩ , ⟨F3, A⟩ , ⟨F4, A⟩ , ⟨F5, A⟩ ,

⟨F6, A⟩ , ⟨F7, A⟩ , ⟨F8, A⟩},
T2 = {

〈
Φ̃, A

〉
,
〈
X̃, A

〉
},

where F1(α) = {a},F1(β) = {a}; F2(α) = {b},F2(β) = {b};F3(α) = {a},F3(β) =
{b};F4(α) = {b},F4(β) = {a};F5(α) = {a, b},F5(β) = {a};F6(α) = {a, b},F6(β) =

{b};F7(α) = {a},F7(β) = {a, b};F8(α) = {b},F8(β) = {a, b}. Then
〈
X̃, T1, T2, A

〉
is WPST0 but not WPST1. Consider the SBS in Example 3.4 which is clearly
PST0. Now for the pair of soft elements (ā, b̄), there does not exist any T2- SO set

containing the soft element b̄. Then
〈
X̃, T1, T2, A

〉
is not PST1.
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Example 3.12. Let X = {a, b}, A = {α, β} and let T1 and T2 be the soft topologies

on
〈
X̃, A

〉
given as follows:

T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F1, A⟩ , ⟨F2, A⟩ , ⟨F3, A⟩},

T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨G1, A⟩ , ⟨G2, A⟩ , ⟨G3, A⟩},

where F1(α) = {a},F1(β) = {a};F2(α) = {b},F2(β) = {a};F3(α) = {a, b},F3(β) =
{a};G1(α) = {b},G1(β) = {b};G2(α) = {a},G2(β) = {b};G3(α) = {a, b},G3(β) =

{b}. Then
〈
X̃, T1, T2, A

〉
is a WPST1 space. Consider the pair of soft element

(b̄, ā). Then there does not exist any T1- soft SO set containing b̄ and any T2- SO
set containing ā. Thus

〈
X̃, T1, T2, A

〉
is not PST0.

Proposition 3.13. PST1 is equivalent to soft T1 in both soft topologies.

Proof. Let
〈
X̃, T1, T2, A

〉
be a PST1 space. Let x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ) for

all λ ∈ A. Then by PST1, for the pair of soft elements (x̃, ỹ), ∃ ⟨F , A⟩ ∈ T1 and
⟨G, A⟩ ∈ T2 such that x̃∈̃ ⟨F , A⟩ , ỹ(λ)/∈F(λ) for all λ ∈ A and ỹ∈̃ ⟨G, A⟩ , x̃(λ)/∈G(λ)
for all λ ∈ A. Again for the pair of soft elements (ỹ, x̃), there exists ⟨U , A⟩ ∈ T1 and
⟨V, A⟩ ∈ T2 such that ỹ∈̃ ⟨U , A⟩ , x̃(λ)/∈U(λ) ∀λ ∈ A and x̃∈̃ ⟨V, A⟩ , ỹ(λ)/∈V(λ) ∀λ ∈
A. Thus

〈
X̃, T1, A

〉
and

〈
X̃, T2, A

〉
are soft T1.

Conversely, let
〈
X̃, T1, A

〉
and

〈
X̃, T2, A

〉
be two soft T1 topological spaces. Let

x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ) for all λ ∈ A. Consider the pair (x̃, ỹ). Since〈
X̃, T1, A

〉
is soft T1, there exists ⟨F , A⟩ , ⟨G, A⟩ ∈ T1 such that x̃∈̃⟨F ,A⟩,

ỹ(λ)/∈F(λ) for all λ ∈ A and ỹ∈̃ ⟨G, A⟩ , x̃(λ)/∈G(λ) for all λ ∈ A. Again since〈
X̃, T2, A

〉
is soft T1, there exists ⟨U , A⟩ , ⟨V, A⟩ ∈ T2 such that x̃∈̃ ⟨U , A⟩ , ỹ(λ)

/∈U(λ) for all λ ∈ A and ỹ∈̃ ⟨V, A⟩ , x̃(λ)/∈V(λ) for all λ ∈ A. Thus for the pair (x̃, ỹ),
we get a T1- SO set ⟨F , A⟩ and a T2- SO set ⟨V, A⟩ such that x̃∈̃ ⟨F , A⟩ , ỹ(λ)/∈F(λ)

for all λ ∈ A and ỹ∈̃ ⟨V, A⟩ , x̃(λ)/∈V(λ) for all λ ∈ A. So
〈
X̃, T1, T2, A

〉
is PST1

space. □

Definition 3.14. Let
〈
X̃, T1, T2, A

〉
be a SEBS and x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ)

for all λ ∈ A. Then
〈
X̃, T1, T2, A

〉
is said to be weak pairwise soft T2 (WPST2), if

there exist ⟨F , A⟩ ∈ T1 and ⟨G, A⟩ ∈ T2 such that

⟨F , A⟩ ∩̃ ⟨G, A⟩ =< Φ̃, A > and

either x̃∈̃ ⟨F , A⟩ , ỹ∈̃ ⟨G, A⟩ or ỹ∈̃ ⟨F , A⟩ , x̃∈̃ ⟨G, A⟩ .

Definition 3.15. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft T2 space

(PST2), if for any pair of soft elements (x̃, ỹ) with x̃(λ) ̸= ỹ(λ) ∀λ ∈ A, there exists

⟨F , A⟩ ∈ T1 and ⟨G, A⟩ ∈ T2 such that ⟨F , A⟩ ∩̃ ⟨G, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨F , A⟩ , ỹ∈̃ ⟨G, A⟩.
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Remark 3.16. Clearly WPST2 implies WPST1 and PST2 implies PST1. Also
PST2 implies WPST2 but not conversely. Consider the SBS of Example 3.12 which
is WPST2. Now consider the pair of soft elements (b̄, ā). Then there does not exists

any T1- SO set containing b̄ and any T2- SO set containing ā. Thus
〈
X̃, T1, T2, A

〉
is

not a PST2 space. WPST2 does not imply PST1. Consider the SBS of Example 3.12
which is WPST2 but for the pair of soft elements (b̄, ā). Then there does not exist

any T1- SO set containing b̄ and any T2- SO set containing ā. Thus
〈
X̃, T1, T2, A

〉
is not a PST1 space. The following example shows that PST1 is not equivalent to
PST2 and WPST1 is not equivalent to WPST2.

Example 3.17. Let X be an uncountable set and A be a parameter set. Let

T1 = {
〈
Φ̃, A

〉
}∪{⟨F , A⟩ ⊆̃

〈
X̃, A

〉
: X\F(α) is a finite subset of X for each α ∈ A}.

Let x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ) for all λ ∈ A. Then x̃∈̃ ⟨ỹ, A⟩C , ỹ∈̃ ⟨x̃, A⟩C

and ⟨ỹ, A⟩C , ⟨x̃, A⟩C are T1- SO set. Thus
〈
X̃, T1, A

〉
is a soft T1 space.

Let T2 = {
〈
Φ̃, A

〉
} ∪ {⟨F , A⟩ ⊆̃

〈
X̃, A

〉
: X\F(α) is a countable subset of X

for each α ∈ A}. Then similarly, it can be shown that
〈
X̃, T2, A

〉
is a soft T1

space. Thus
〈
X̃, T1, T2, A

〉
is a PST1 space and so a WPST1 space. If possible,

let
〈
X̃, T1, T2, A

〉
is a PST2 space. Then for any (x̃, ỹ) with x̃(λ) ̸= ỹ(λ) for all

λ ∈ A, there exists ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2 such that x̃∈̃ ⟨U , A⟩ , ỹ∈̃ ⟨V, A⟩ and
⟨U , A⟩ ∩̃ ⟨V, A⟩ =

〈
Φ̃, A

〉
. Thus X\U(α) is finite and X\V(α) is countable for each

α ∈ A. Again ⟨U , A⟩C ⋓ ⟨V, A⟩C =
〈
X̃, A

〉
which implies X is countable which is a

contradiction. So
〈
X̃, T1, T2, A

〉
is neither a PST2 space nor a WPST2 space.

4. Pairwise soft regular and pairwise soft normal spaces

Definition 4.1. A SEBS
〈
X̃, T1, T2, A

〉
is said to be:

(i) (T1)R0 with respect to T2, if for any T2- SC set ⟨F , A⟩ and for any soft element
x̃ with x̃(λ)/∈F(λ) for all λ ∈ A, there exists a T1- SO set ⟨U , A⟩ such that x̃(λ)/∈U(λ)
for all λ ∈ A and ⟨F , A⟩ ⊆̃ ⟨U , A⟩,

(ii) (T2)R0 with respect to T1, if for any T1- SC set ⟨F , A⟩ and for any soft element
x̃ with x̃(λ)/∈F(λ) for all λ ∈ A, there exists a T2- SO set ⟨V, A⟩ such that x̃(λ)/∈V(λ)
for all λ ∈ A and ⟨F , A⟩ ⊆̃ ⟨V, A⟩.

Definition 4.2. A SBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft R0 space (PSR◦),

if it is (T1)R0 with respect to T2 and (T2)R0 with respect to T1.

Proposition 4.3. PST0 and PSR0 together in a SEBS is equivalent to PST1.

Proof. Let
〈
X̃, T1, T2, A

〉
be a PST1 space. Then it is PST0. To prove (T2)R0, let

⟨F , A⟩ be a T1- SC set and x̃ be a soft element with x̃(λ)/∈F(λ) for all λ ∈ A. Then
for any ỹ∈̃ ⟨F , A⟩ , x̃(λ) ̸= ỹ(λ) for all λ ∈ A. By PST1, for the pair of soft element
(x̃, ỹ), there exists a T2- SO set ⟨Vỹ, A⟩ containing ỹ and x̃(λ)/∈Vỹ(λ) for all λ ∈ A.
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Thus ⟨F , A⟩ ⊆̃ ⋓
ỹ∈̃⟨F,A⟩

⟨Vỹ, A⟩. So ⋓
ỹ∈̃⟨F,A⟩

⟨Vỹ, A⟩ ∈ T2 and x̃(λ)/∈ ⋓
ỹ∈̃⟨F,A⟩

Vỹ(λ) for

all λ ∈ A. Hence
〈
X̃, T1, T2, A

〉
is (T2)R0 w.r.t T1. Similarly, it can be proved that〈

X̃, T1, T2, A
〉
is (τ

1
)R0 w.r.t τ

2
. Therefore

〈
X̃, T1, T2, A

〉
is PSR0.

Conversely, suppose
〈
X̃, T1, T2, A

〉
is PST0 and PSR0. Let x̃, ỹ ∈ SE(X̃) with

x̃(λ) ̸= ỹ(λ) for all λ ∈ A. Then by PST0, for the pair of soft element (x̃, ỹ), two
cases may arise.

Case I : Suppose there exists ⟨U , A⟩ ∈ T1 such that x̃∈̃ ⟨U , A⟩ and ỹ(λ)/∈U(λ) for
all λ ∈ A. Then x̃(λ)/∈UC(λ) for all λ ∈ A, where ⟨U , A⟩C is a T1- SC set. Then by

PSR0, there is ⟨V, A⟩ ∈ T2 such that x̃(λ)/∈V(λ) for all λ ∈ A and ⟨U , A⟩C ⊂̃ ⟨V, A⟩.
Thus we have ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2 such that x̃∈̃ ⟨U , A⟩ , ỹ(λ)/∈U(λ) for all
λ ∈ A and ỹ∈̃ ⟨V, A⟩ , x̃(λ)/∈V(λ) for all λ ∈ A.

Case II: Suppose for the pair of soft elements (x̃, ỹ), ∃ ⟨V, A⟩ ∈ T2 such that
ỹ∈̃ ⟨V, A⟩ , x̃(λ)/∈ ⟨V, A⟩ (λ) for all λ ∈ A. Then ỹ(λ)/∈VC(λ) for all λ ∈ A, where

⟨V, A⟩C is a T2- SC set. Thus by PSR0, there exists ⟨U , A⟩ ∈ T1 such that ỹ /∈U(λ)
for all λ ∈ A and ⟨V, A⟩C ⊂̃ ⟨U , A⟩. So we have ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2 such
that x̃∈̃ ⟨U , A⟩ , ỹ(λ)/∈U(λ) for all λ ∈ A and ỹ∈̃ ⟨V, A⟩ , x̃(λ)/∈V(λ) for all λ ∈ A.

Hence in both cases,
〈
X̃, T1, T2, A

〉
is PST1. □

Definition 4.4. A SEBS
〈
X̃, T1, T2, A

〉
is said to be:

(i) (T1)R1 with respect to T2, if for any soft element x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸= ỹ(λ)

for all λ ∈ A, x̃(λ)/∈⟨ỹ, A⟩
T2
(λ) for all λ ∈ A, there exist ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2

such that

⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨V, A⟩ , ⟨ỹ, A⟩

T2⊆̃ ⟨U , A⟩ ,

(ii) (T2)R1 with respect to T1, if for any soft element x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸=
ỹ(λ) for all λ ∈ A, x̃(λ)/∈⟨ỹ, A⟩

T1
(λ) for all λ ∈ A, then there exist ⟨U , A⟩ ∈ T1 and

⟨U , A⟩ ∈ T2 such that

⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨U , A⟩ , ⟨ỹ, A⟩

T1⊆̃ ⟨V, A⟩ .

Definition 4.5. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft R1 space

(PSR1), if it is (T1)R1 with respect to T2 and (T2)R1 with respect to T1.

Proposition 4.6. PST1 and PSR1 together in a SEBS is equivalent to PST2.

Proof. Suppose
〈
X̃, T1, T2, A

〉
is PST2 space. Then it is PST1. Thus by Proposition

3.13,
〈
X̃, T1, A

〉
and

〈
X̃, T2, A

〉
are soft T1 spaces. So ⟨x̃, A⟩

T1
= ⟨x̃, A⟩

T2
= ⟨x̃, A⟩.

Since
〈
X̃, T1, T2, A

〉
is PST2 space, for any soft element x̃, ỹ ∈ SE(X̃) with x̃(λ) ̸=

ỹ(λ) for all λ ∈ A, x̃(λ)/∈⟨ỹ, A⟩
T1
(λ) for all λ ∈ A, there exist ⟨U , A⟩ ∈ T1 and

⟨V, A⟩ ∈ T2 such that ⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨U , A⟩ , ⟨ỹ, A⟩

T1⊆̃ ⟨V, A⟩.
Hence it is PSR1.
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Conversely, let us take
〈
X̃, T1, T2, A

〉
as PST1 and PSR1 space. Let (x̃, ỹ) be

any pair of soft elements with x̃(λ) ̸= ỹ(λ) for all λ ∈ A. Then x̃(λ)/∈⟨ỹ, A⟩
T1
(λ)

for all λ ∈ A. Thus by PSR1, there exist ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2 such that

⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨U , A⟩ , ⟨ỹ, A⟩

T1⊂̃ ⟨V, A⟩. So x̃∈̃ ⟨U , A⟩ , ỹ∈̃ ⟨V, A⟩

and ⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
. Hence

〈
X̃, T1, T2, A

〉
is PST2. □

Definition 4.7. A SEBS
〈
X̃, T1, T2, A

〉
is said to be:

(i) soft T1 regular with respect to T2, if for any T1- SC set ⟨F , A⟩ and for any soft
element x̃ with x̃(λ)/∈F(λ) for all λ ∈ A, there exist ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2
such that

⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨U , A⟩ , ⟨F , A⟩ ⊆̃ ⟨V, A⟩ ,

(ii) soft T2 regular with respect to T1, if for any T2- SC set ⟨F , A⟩ and for any soft
element x̃ with x̃(λ)/∈F(λ) for all λ ∈ A, there exist ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2
such that

⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨V, A⟩ , ⟨F , A⟩ ⊆̃ ⟨U , A⟩ .

Definition 4.8. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft regular space

(PSR2), if it is soft T1 regular with respect to T2 and soft T2 regular with respect
to T1.

Proposition 4.9. (1) A PSR2 space is PSR1.
(2) A PSR1 space is PSR0.

Example 4.10. Let X = {x, y, z}, A = {α, β}, T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F , A⟩}

and T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨G, A⟩}, where F(α) = {x, y},F(β) = {z} and G(α) =

{z},G(β) = {x, y}. Then
〈
X̃, T1, T2, A

〉
is soft T1 regular with respect to T2 and

soft T2 regular with respect to T1, i.e., pairwise soft regular space (PSR2). Thus it
is also PSR1 and PSR0.

Proposition 4.11. Let
〈
X̃, T1, T2, A

〉
be a SEBS. Then the following statements

are equivalent :

(1)
〈
X̃, T1, T2, A

〉
is soft T1 regular with respect to T2,

(2) for any soft element x̃ and T1- SO set ⟨U , A⟩ containing x̃ such that ⟨U , A⟩C ̸=〈
Φ̃, A

〉
, there exists ⟨V, A⟩ ∈ T1 such that x̃∈̃ ⟨V, A⟩ ⊂̃ ⟨V, A⟩

T2⊂̃ ⟨U , A⟩,
(3) for any soft element x̃ and T1- SC set ⟨F , A⟩ with x̃(λ)/∈F(λ) for all λ ∈ A,

there exists ⟨U , A⟩ ∈ T1 such that x̃∈̃ ⟨U , A⟩ and ⟨U , A⟩
T2∩̃ ⟨F , A⟩ =

〈
Φ̃, A

〉
.

Proof. (1) ⇒ (2) : Let
〈
X̃, T1, T2, A

〉
be soft T1 regular with respect to T2. Let

⟨U , A⟩ ∈ T1 and x̃∈̃ ⟨U , A⟩. Then x̃(λ)/∈UC(λ) ∀λ ∈ A, where ⟨U , A⟩C is a T1- SC
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set. Thus by the assumption, there exist ⟨V, A⟩ ∈ T1, ⟨F , A⟩ ∈ T2 such that

⟨V, A⟩ ∩̃ ⟨F , A⟩ =
〈
Φ̃, A

〉
and x̃∈̃ ⟨V, A⟩ , ⟨U , A⟩C ⊂̃ ⟨F , A⟩ .

Since ⟨V, A⟩ ∩̃ ⟨F , A⟩ =
〈
Φ̃, A

〉
, ⟨V, A⟩⊂̃ ⟨F , A⟩C, where ⟨F , A⟩C is a T2- SO set. So

⟨V, A⟩
T2⊂̃ ⟨F , A⟩C . Again ⟨F , A⟩C ⊂̃ ⟨U , A⟩. Hence x̃∈̃ ⟨V, A⟩ ⊂̃⟨F , A⟩

T2⊂̃ ⟨U , A⟩.
(2) ⇒ (3) : Let ⟨F , A⟩ be any T1- SC set and x̃ be any soft element such that

x̃(λ)/∈F(λ) for all λ ∈ A. Then x̃∈̃ ⟨F , A⟩C , where ⟨F , A⟩C is a T1 - SO set. Thus by

the assumption, there exists ⟨U , A⟩ ∈ T1 such that x̃∈̃ ⟨U , A⟩ and ⟨U , A⟩
T2⊂̃ ⟨F , A⟩C .

So ⟨U , A⟩
T2∩̃ ⟨F , A⟩ =

〈
Φ̃, A

〉
.

(3) ⇒ (1) : Let ⟨F , A⟩ be any T1- SC set and x̃ be any soft element such that
x̃(λ)/∈F(λ) for all λ ∈ A. Then by the assumption, there exists ⟨U , A⟩ ∈ T1 such

that x̃∈̃ ⟨U , A⟩ and ⟨U , A⟩
T2∩̃ ⟨F , A⟩ =

〈
Φ̃, A

〉
. Thus we have

⟨F , A⟩ ⊂̃(⟨U , A⟩
T2
)C ,

where (⟨U , A⟩
T2
)C is a T2- SO set and ⟨U , A⟩ ∩̃(⟨U , A⟩

T2
)C =

〈
Φ̃, A

〉
. So

〈
X̃, T1, T2, A

〉
is soft T1 regular with respect to T2. □

Proposition 4.12. Let
〈
X̃, T1, T2, A

〉
be a SEBS. Then the following statements

are equivalent

(1)
〈
X̃, T1, T2, A

〉
is soft T2 regular with respect to T1,

(2) for any soft element x̃ and T2- SO set ⟨V, A⟩ containing x̃ such that ⟨V, A⟩C ̸=〈
Φ̃, A

〉
, there exists ⟨U , A⟩ ∈ T2 such that x̃∈̃ ⟨U , A⟩ ⊂̃ ⟨V, A⟩

T1⊂̃ ⟨V, A⟩,
(3) for any soft element x̃ and T2- SC set ⟨F , A⟩ with x̃(λ)/∈F(λ) for all λ ∈ A,

there exists ⟨V, A⟩ ∈ T2 such that x̃∈̃ ⟨V, A⟩ and ⟨V, A⟩
T1 ∩̃ ⟨F , A⟩ =

〈
Φ̃, A

〉
.

Definition 4.13. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a weak pairwise soft T3 space

(WPST3), if it is PSR2 and WPST1.

Definition 4.14. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft T3 space

(PST3), if it is PSR2 and PST1.

Proposition 4.15. (1) A PST3 space is PST2.
(2) A WPST3 space is WPST2.

Example 4.16. Consider the set R of real numbers and for all α ∈ A and let Tα be
the usual topology on R. Let T = {⟨F , A⟩ ∈ S(R̃) : F(α) ∈ Tα} and T1 = T2 = T .

Then
〈
X̃, T1, T2, A

〉
is pairwise soft T3 space (PST3). Thus it is also PST2.

Remark 4.17. A WPST3 space is not PST2. Consider the Example 3.9. Then for
the pair of soft elements (b̄, ā), there does not exist any T1- SO set ⟨F , A⟩ containing
b̄ and any T2- SO set ⟨G, A⟩ containing ā such that ⟨F , A⟩ ∩̃ ⟨G, A⟩ =

〈
Φ̃, A

〉
.
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Proposition 4.18. PSR2 and PST2 together in a SEBS is equivalent to PST3.

Proof. Let
〈
X̃, T1, T2, A

〉
be a PST3 space. Then it is PSR2. To prove PST2,

consider a pair of soft elements (x̃, ỹ) with x̃(λ) ̸= ỹ(λ) for all λ ∈ A. Since〈
X̃, T1, T2, A

〉
is PST1, ⟨x̃, A⟩ , ⟨ỹ, A⟩ are T1 and T2- SC set. Then x̃(λ)/∈⟨ỹ, A⟩

T1
(λ)

for all λ ∈ A. Thus there exist ⟨U , A⟩ ∈ T1, ⟨V, A⟩ ∈ T2 such that ⟨U , A⟩ ∩̃ ⟨V, A⟩ =〈
Φ̃, A

〉
and x̃∈̃ ⟨U , A⟩ , ⟨ỹ, A⟩

T1⊂̃ ⟨V, A⟩, i.e., ỹ∈̃ ⟨V, A⟩. So
〈
X̃, T1, T2, A

〉
is a PST2

space.
The converse is straightforward. □

Definition 4.19. A SEBS
〈
X̃, T1, T2, A

〉
is said to be pairwise soft normal (PSR3),

if for any T1- SC set ⟨F , A⟩ and a T2- SC set ⟨G, A⟩ with ⟨F , A⟩ ∩̃ ⟨G, A⟩ =
〈
Φ̃, A

〉
,

there exist ⟨U , A⟩ ∈ T1 and ⟨V, A⟩ ∈ T2 such that

⟨F , A⟩ ⊂̃ ⟨V, A⟩ , ⟨G, A⟩ ⊂̃ ⟨U , A⟩ and ⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
.

Definition 4.20. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a weak pairwise soft T4 space

(WPST4), if it is PSR3 and WPST1.

Definition 4.21. A SEBS
〈
X̃, T1, T2, A

〉
is said to be a pairwise soft T4 space

(PST4), if it is PSR3 and PST1.

Remark 4.22. A PSR3 space is not PSR2.

Example 4.23. LetX = {a, b}, A = {α, β}. Let T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F , A⟩}, T2 =

{
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨G, A⟩}, where F(α) = {b},F(β) = {a};G(α) = {b},G(β) = {b}.

Consider the SEBS
〈
X̃, T1, T2, A

〉
. Then it is PSR3. Since there does not exist any

disjoint SO set of T1 and T2, it is not PSR2.

Proposition 4.24. Let
〈
X̃, T1, T2, A

〉
be a SEBS. Then the following statements

are equivalent :

(1)
〈
X̃, T1, T2, A

〉
is PSR3,

(2) for any T1- SC set ⟨F , A⟩ and any T2- SO set ⟨V, A⟩ [⟨V, A⟩C ̸=
〈
Φ̃, A

〉
]

containing ⟨F , A⟩, there exists ⟨U , A⟩ ∈ T2 such that

⟨F , A⟩ ⊂̃ ⟨U , A⟩ ⊂̃⟨U , A⟩
T1⊂̃ ⟨V, A⟩,

(3) for any T1- SC set ⟨F , A⟩ and a T2- SC set ⟨G, A⟩ with ⟨F , A⟩ ∩̃ ⟨G, A⟩
=

〈
Φ̃, A

〉
, there exists a T2- SO set ⟨V, A⟩ containing ⟨F , A⟩ such that

⟨V, A⟩
T1∩̃ ⟨G, A⟩ =

〈
Φ̃, A

〉
.

Proof. (1) ⇒ (2) : Suppose
〈
X̃, T1, T2, A

〉
is a PSR3 space. Let ⟨F , A⟩ be any

T1- SC set and ⟨V, A⟩ be a T2- SO set such that ⟨F , A⟩ ⊂̃ ⟨V, A⟩. Then ⟨V, A⟩C
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is a T2- SC set such that ⟨F , A⟩ ∩̃ ⟨V, A⟩C =
〈
Φ̃, A

〉
. Thus by PSR3, there exist〈

U ′
, A

〉
∈ T1, ⟨U , A⟩ ∈ T such that ⟨F , A⟩ ⊂̃ ⟨U , A⟩ and ⟨V, A⟩C ⊂̃

〈
U ′

, A
〉
. Now

⟨U , A⟩ ⊂̃
〈
U ′

, A
〉C

, where
〈
U ′

, A
〉C

is a T1- SC set. So ⟨U , A⟩
T1⊂̃

〈
U ′

, A
〉C

. Again〈
U ′

, A
〉C

⊂̃ ⟨V, A⟩. Hence ⟨F , A⟩ ⊂̃ ⟨U , A⟩ ⊂̃⟨U , A⟩
T1⊂̃ ⟨V, A⟩.

(2) ⇒ (3) : Suppose the condition (2) holds. Let ⟨F , A⟩ be any T1- SC set and

⟨G, A⟩ be any T2- SC set with ⟨F , A⟩ ∩̃ ⟨G, A⟩ =
〈
Φ̃, A

〉
. Then ⟨F , A⟩ ⊂̃ ⟨G, A⟩C ,

where ⟨G, A⟩C is a T2- SO set. Thus by the condition (2), ∃ ⟨V, A⟩ ∈ T2 such that

⟨F , A⟩ ⊂̃ ⟨V, A⟩ and ⟨V, A⟩
T1⊂̃ ⟨G, A⟩C .

So ⟨V, A⟩
T1∩̃ ⟨G, A⟩ =

〈
Φ̃, A

〉
.

(3) ⇒ (1) : Suppose the condition (3) holds. Let ⟨F , A⟩ be any T1- SC set

and ⟨G, A⟩ be any T2- SC set with ⟨F , A⟩ ∩̃ ⟨G, A⟩ =
〈
Φ̃, A

〉
. Then by the condi-

tion (3), ∃ ⟨V, A⟩ ∈ T2 with ⟨F , A⟩ ⊂̃ ⟨V, A⟩ and ⟨V, A⟩
T1 ∩̃ ⟨G, A⟩ =

〈
Φ̃, A

〉
. Thus

⟨G, A⟩ ⊂̃(⟨V, A⟩
T1
)C , where (⟨V, A⟩

T1
)C ∈ T1 and ⟨V, A⟩ ∩̃(⟨V, A⟩

T1
)C =

〈
Φ̃, A

〉
. So〈

X̃, T1, T2, A
〉
is PSR3. □

Proposition 4.25. Let
〈
X̃, T1, T2, A

〉
be a SEBS. Then the following statements

are equivalent :

(1)
〈
X̃, T1, T2, A

〉
is PSR3,

(2) for any T2- SC set ⟨F , A⟩ and any T1- SO set ⟨V, A⟩ [⟨V, A⟩C ̸=
〈
Φ̃, A

〉
]

containing ⟨F , A⟩, there exists ⟨U , A⟩ ∈ T1 such that

⟨F , A⟩ ⊂̃ ⟨U , A⟩ ⊂̃⟨U , A⟩
T2⊂̃ ⟨V, A⟩,

(3) for any T1- SC set ⟨F , A⟩ and a T2- SC set ⟨G, A⟩ with ⟨F , A⟩ ∩̃ ⟨G, A⟩
=

〈
Φ̃, A

〉
, there exists a T1- SO set ⟨V, A⟩ containing ⟨G, A⟩ such that

⟨V, A⟩
T2 ∩̃ ⟨F , A⟩ =

〈
Φ̃, A

〉
.

Proof. The proofs are similar to Proposition 4.24. □

Remark 4.26. A PST4 space is PST3.

Example 4.27. Let X = {a, b}, A = {α, β} and let T1 and T2 be the soft topologies

on
〈
X̃, A

〉
given as follows:

T1 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨F1, A⟩ , ⟨F2, A⟩ , ⟨F3, A⟩ , ⟨F4, A⟩ , ⟨F5, A⟩},

T2 = {
〈
Φ̃, A

〉
,
〈
X̃, A

〉
, ⟨G1, A⟩ , ⟨G2, A⟩ , ⟨G3, A⟩ , ⟨G4, A⟩ , ⟨G5, A⟩},

where F1(α) = {a},F1(β) = {a};F2(α) = {b},F2(β) = {b};F3(α) = {a},F3(β) =
{b};F4(α) = {a},F4(β) = {a, b};F5(α) = {a, b},F5(β) = {b};G1(α) = {a},G1(β) =
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{b};G2(α) = {b},G2(β) = {a};G3(α) = {b},G3(β) = {b};G4(α) = {a, b},G4(β) =

{b};G5(α) = {b},G5(β) = {a, b}. Then the SEBS < X̃, T1, T2, A > is WPST4. Now

consider the T1- SC set ⟨H, A⟩, where H(α) = {a},H(β) = {a}. Then b̄ /̃∈ ⟨H, A⟩,
but there does not exist a T2- SO set containing ⟨H, A⟩ other than

〈
X̃, A

〉
. Thus〈

X̃, T1, T2, A
〉
is not WPST3 space.

Remark 4.28. A WPST4 space is not PST3. Consider the Example 3.9 which is
clearly a WPST4 space but not PST1. Then it is not PST3.

The following Figure indicates some implications proven in above section con-
cerning pairwise soft separation in SEBS.

Definition 4.29. A SQPMS
〈
X̃,P,Q, A

〉
is said to be pairwise soft Hausdorff,

if for any two soft elements x̃, ỹ with x̃(λ) ̸= ỹ(λ) for all λ ∈ A, there exist a
P- SO set ⟨F , A⟩ containing x̃ and a Q- SO set ⟨G, A⟩ containing ỹ such that

⟨F , A⟩ ∩̃ ⟨G, A⟩ =
〈
Φ̃, A

〉
.

Proposition 4.30. A SQPMS satisfying (Q3) is pairwise soft Hausdorff.

Proof. Let
〈
X̃,P,Q, A

〉
be a SQPMS with a soft conjugate Q satisfying (Q3). Let

x̃, ỹ be two soft elements with x̃(λ) ̸= ỹ(λ) for all λ ∈ A. Then Pλ(x̃(λ), ỹ(λ)) > 0
for all λ ∈ A. Thus P(x̃, ỹ)>̃0̄. Let r̃ be a soft real number such that 0 < r̃(λ) <
1
2P(x̃, ỹ)(λ) for all λ ∈ A. Consider the P- SO set F1 = BP(x̃, r̃) and the Q- SO set
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F2 = BQ(ỹ, r̃). Then x̃ ∈ F1 and ỹ ∈ F2 and F1∩F2 = Φ. Thus SS(F1)∩̃SS(F2) =〈
Φ̃, A

〉
. □

Definition 4.31. A SQPMS
〈
X̃,P,Q, A

〉
is said to be:

(i) P soft regular with respect to Q, if for any P- SC set ⟨F , A⟩ and for any soft
element x̃ with x̃(λ) /∈ F(λ) for all λ ∈ A, there exist a P- SO set ⟨U , A⟩ and a Q-

SC set ⟨V, A⟩ such that x̃∈̃ ⟨V, A⟩ , ⟨F , A⟩ ⊂̃ ⟨V, A⟩ and ⟨U , A⟩ ∩̃ ⟨V, A⟩ =
〈
Φ̃, A

〉
.

(ii) pairwise soft regular, if it is P soft regular w.r.t Q and Q soft regular w.r.t P.

Definition 4.32. A SQPMS
〈
X̃,P,Q, A

〉
is said to be pairwise normal, if for any

P- SC set ⟨F , A⟩ and for any Q- SC set ⟨G, A⟩ with ⟨F , A⟩ ∩̃ ⟨G, A⟩ =
〈
Φ̃, A

〉
, there

exist P- SO set ⟨U , A⟩ containing ⟨G, A⟩ and Q- SO set ⟨V, A⟩ containing ⟨F , A⟩
such that ⟨U , A⟩ ∩̃ ⟨V, A⟩ =

〈
Φ̃, A

〉
.

Proposition 4.33. A SQPMS satisfying (Q3) is pairwise soft regular.

Proof. Let
〈
X̃,P,Q, A

〉
be a SQPMS satisfying (Q3). Let ⟨F , A⟩ be a P- SC set

and x̃ be a soft element with x̃(λ) /∈ F(λ) for all λ ∈ A. Since F(λ) is closed in
⟨X,Pλ⟩, there exist open sets Hλ in ⟨X,Pλ⟩ and Gλ in ⟨X,Qλ⟩ such that x̃(λ) ∈ Hλ

and F(λ) ⊂ Gλ for all λ ∈ A. Consider the P- SO set ⟨H, A⟩ and Q- SO set ⟨G, A⟩,
where H(λ) = Hλ and G(λ) = Gλ for all λ ∈ A. Then x̃∈̃ ⟨H, A⟩, ⟨F , A⟩ ⊂̃ ⟨G, A⟩
and ⟨H, A⟩ ∩̃ ⟨G, A⟩ =

〈
Φ̃, A

〉
. Thus

〈
X̃,P,Q, A

〉
is P soft regular with respect to

Q. Similarly, it can be shown that
〈
X̃,P,Q, A

〉
is Q soft regular with respect to

P. So
〈
X̃,P,Q, A

〉
is pairwise soft regular. □

Remark 4.34. A SQPMS satisfying (Q3) is pairwise soft normal.

Example 4.35. Let us consider the SQPMS as in Example 2.3. Then it is pairwise
soft Hausdorff, pairwise soft regular and pairwise soft normal as it satisfies (Q3).

5. Conclusion and future work

In this study, we introduce the notions of soft quasi-pseudo metric and soft ele-
mentary bitopological spaces using redefined soft topology. Two different types of
pairwise separation axioms are introduced and their properties are discussed. Still
there is a scope to study important properties like bicompactness, connectedness,
countability axioms, metrizability etc. in soft elementary bitopological spaces. It
will be necessary to carry out more theoretical research to establish a general frame-
work for the topological applications. This is just a beginning of study and much
further studies are required to develop this field.
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[29] G. Şenel, Soft topology generated by L-soft sets. Journal of New Theory 4 (24) (2018) 88–100.

253



Chiney and Samanta/Ann. Fuzzy Math. Inform. 25 (2023), No. 3, 235–254
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