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Abstract. We introduce the idea of gradually (λ, µ)-statistical con-
vergence with regards to the n-norm in gradual n-normed linear space
(GNnLS) in this study. We look at certain inclusion relations with regards
to the n-norm between the sets of gradually statistically convergent and
gradually (λ, µ)-statistically convergent double sequences. We discover its
relationship to gradually strongly Cesàro summability, gradually strongly
(V, λ, µ)-summability, and gradually statistical convergence with regards
to the n-norm in GNnLS.
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1. Introduction

The idea of fuzzy sets was first proposed by Zadeh [1] in 1965. It now has several
applications across many fields of engineering and research. In the field of fuzzy set
theory, the idea of “fuzzy number” is crucial. Intervals, not numbers, were effectively
generalized to create fuzzy numbers. In fact, a few algebraic characteristics of the
classical numbers are absent from fuzzy numbers. Due to its varied behavior, many
scholars disagree with the idea of a “fuzzy number”. Several authors frequently sub-
stitute the idea of “fuzzy intervals” for fuzzy numbers. Researchers were perplexed,
but Fortin et. al. [2] proposed the idea of gradual real numbers as components of
fuzzy intervals to clear things up. Gradual real numbers (GRNs) are most com-
monly identified by the domain of the corresponding assignment function, which is
the range (0, 1]. As every real number has a constant assignment function, they may
all be thought of as a gradual numbers. The GRNs have been used in optimization
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and computing issues and provide all the algebraic properties of the traditional real
numbers.

Sadeqi and Azari [3] were the first to investigate the idea of GNLS in 2011. They
investigated many characteristics both topologically and algebraically. Ettefagh et.
al. [4, 5] have contributed to further advancement in this approach. One may cosult
[6, 7, 8, 9, 10, 11] for a thorough research on GRNs.

On the other hand, Fast [12] independently developed the concept of statistical
convergence using the notion of natural density in 1951. Mursaleen and Osama [13]
found relationships between statistical convergence and strongly Cesàro summable
double sequences by extending the aforementioned concept from single to double
sequences of scalars. The notion of statistical convergence was initiated and studied
by extending upto some extent in the environment up uncertainty via single [14, 15,
16], double [17], triple [18, 19] sequences of complex uncertain variable. You can
consult [20, 21, 22, 23, 24, 25, 26, 27] and several other mathematicians from all
around the world for a thorough study of statistical convergence.

Mursaleen [28] expanded statistical convergence to include λ-statistical conver-
gence in 2000 and did so as follows:

Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞
such that

λn+1 − λn ≤ 1, λ1 = 1.

The generalized de la Vallèe-Poussin mean is defined by

tn((wu)) =
1

λn

∑
u∈In

wu,

where In = [n− λn + 1, n].

A sequence (wu) is called to be (V, λ)-summable to a number w0 (see [29] for
details), if

tn((wu)) → w0, as n → ∞.

We write,

[V, λ] =

{
(wu) : for somew0, lim

n

(
1

λn

∑
u∈In

|wu − w0|

)
= 0

}
for the sets of sequences (wu), which are strongly (V, λ)-summable to w0, i.e.,
wu → w0[V, λ].

A sequence w = (wu) is said to be λ-statistically convergent to w0, if for each
ε > 0,

lim
n

1

λn
|{u ∈ In : |wu − w0| ≥ ε}| = 0.

In this case, we write Sλ − limw = w0 or wu → w0(Sλ). It is obvious that if
λn = n, then Sλ is coincident with S, where S is the set of all statistical convergent
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sequences (for more details one may see [30]). Furthermore, double λ-statistical
convergence was studied and examined by several authors ([31, 32, 33, 34, 35]).

The concept of 2-normed space was initially introduced by Gähler [36], in the
mid 1960’s, while that of n-normed spaces can be found in Misiak [37]. Since then,
many others authors have studied this concept and obtained various results (see, for

instance, Esi [38, 39], Esi and Açıkgöz [40], Esi and Özdemir [41], Sharma and Esi
[42], Raj and Esi [43] and Fistikci et al. [44].

2. Preliminaries

We discuss some current definitions and findings that are essential to our conclu-
sions in this section.

The gradual numbers and the gradual operations between the elements of G(R)
were investigated by Fortin et al. [2] as follows:

Definition 2.1. A GRN s̃ is identified by an assignment function Fs̃ : (0, 1] → R.
A GRN s̃ is called to be a non-negative number, provided that for each γ ∈ (0, 1],
Fs̃(γ) ≥ 0. The set of all GRNs and non-negative GRNs are demonstrated by G(R)
and G∗(R) respectively.

Definition 2.2. Suppose that ∗ be any operation in R and assume ũ1, ũ2 ∈ G(R)
with assignment functions Fũ1 and Fũ2 respectively. Then ũ1 ∗ ũ2 ∈ G(R) is deter-
mined with the assignment function Fũ1∗ũ2

defined by:

Fũ1∗ũ2(τ) = Fũ1(τ) ∗ Fũ2(τ) ∀τ ∈ (0, 1].

Especially, the gradual addition ũ1 + ũ2 and the gradual scalar multiplication
pũ(p ∈ R) are given as follows:

Fũ1+ũ2(τ) = Fũ1(τ) + Fũ2(τ) and Fpũ(τ) = pFũ(τ) ∀τ ∈ (0, 1].

Sadeqi and Azeri [3] created the GNLS and obtained the following conclusions
about gradual convergence using the gradual numbers.

Definition 2.3. Let Y be a real vector space. Then, the function ∥·∥G : Y → G∗(R)
is called a gradual norm on Y , provided that for each τ ∈ (0, 1], following situations
are correct: for any w, v ∈ Y ,

(i) F∥w∥G
(τ) = F0̃(τ) iff w = 0,

(ii) F∥µw∥G
(τ) = |µ| F∥w∥G

(τ) for any µ ∈ R,
(iii) F∥w+v∥G

(τ) ≤ F∥w∥G
(τ) + F∥v∥G

(τ).

In this case, (Y, ∥·∥G) is called a GNLS.

Example 2.4. Take Y = Rα and for w = (w1, w2, ..., wα) ∈ Rα, γ ∈ (0, 1], determine
∥·∥G as

F∥w∥G
(γ) = eγ

α∑
j=1

|wj |.

Then ∥·∥G is a gradual norm on Rα and (Rα, ∥·∥G) is a GNLS.

Nevertheless, Ettefagh et al. [5] were the first to identify a sequence’s gradual
boundedness in a GNLS and explore how it relates to gradual convergence.
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Definition 2.5 ([5]). Suppose that (Y, ∥·∥G) be a GNLS. Then, a sequence (wu)
in Y is said to be gradual bounded, provided that for each τ ∈ (0, 1], there is an
M = M(τ) > 0 such that F∥wu∥G

(τ) < M ∀u ∈ N.

Definition 2.6 ([3]). Let (wu) be a sequence in the GNLS (Y, ∥·∥G). Then (wu)
is called to be gradual convergent to w0 ∈ X, provided that for each τ ∈ (0, 1] and
κ > 0, there is an N(= Nκ(τ)) ∈ N such that

F∥wuv−w0∥G
(τ) < κ, ∀u, v ≥ N .

Symbolically, wuv
∥·∥G−−−→ w0.

Definition 2.7 ([10]). Let (wu) be a sequence in the GNLS (Y, ∥·∥G). Then (wu)
is said to be gradual statistically convergent to w0 ∈ Y , if for every ξ ∈ (0, 1] and
ε > 0,

lim
q→∞

1

q

∣∣∣{u ≤ q : F∥wu−w0∥G
(τ) ≥ κ

}∣∣∣ = 0.

Symbolically, wu
st−∥·∥G−−−−−→ w0. The set S(G) denotes the set of all gradually statistical

convergent sequences.

Definition 2.8 ([11]). Let (wu) be a sequence in the GNLS (Y, || · ||G). Then (wu)
is said to be gradually λ-statistical convergent to w0 ∈ Y , if for every ξ ∈ (0, 1] and
ε > 0,

lim
n

1

λn
| {u ∈ In : F||wu−w0||G(ξ) ≥ ε} |= 0.

Equivalently, F||wu−w0||G(ξ) < ε a.a.u.
In this case, w0 is called the gradual λ-statistical limit of the sequence (wu) and

we write

Sλ − || · ||G limwu = w0 or wu
Sλ−||·||G−−−−−−→ w0.

We shall also use Sλ(G) to denote the set of all gradually λ-statistical convergent
sequences.

Definition 2.9. [33] Let λ = (λm) and µ = (µn) be two non-decreasing sequences
of positive real numbers, each tending to ∞ and such that

λm+1 ≤ λm + 1, λ1 = 1; µn+1 ≤ µn + 1, µ1 = 1.

Let Im = [m− λm + 1,m], In = [n− µn + 1, n] and Im,n = Im × In. For any set
Q ⊆ N× N,

δ(λ,µ) (Q) = P − lim
m,n→∞

1

λmµn
|{(p, q) ∈ Im × In : (p, q) ∈ Q}|

is called a (λ, µ)-density of the set Q, provided the limit exists.

If we take, λm = m,µn = n, then the above definition reduces to the definition
of double natural density.

Definition 2.10 ([13]). A real double sequence w = (wuv) is said to be statistically
convergent to the number w0, if for each ε > 0, the set

{(u, v) , u ≤ m, v ≤ n : |wuv − w0| ≥ ε}
220
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has double natural density zero. In this case, we write st2 − limu,v wuv = w0.
We denote the set of all statistically convergent double sequences by st2.

Definition 2.11 ([37]). Let n be a non negative integer and Y be a real vector
space of dimension d ≥ n ( d may be infinite). A real-valued function ∥., . . . ,.∥ from
Y n into R satisfying the following conditions:

(i) ∥w1, w2, . . . , wn∥ = 0 if and only if w1, w2, . . . , wn are linearly dependent,
(ii) ∥w1, w2, . . . , wn∥ is invariant under permutation,
(iii) ∥αw1, w2, . . . , wn∥ = |α| ∥w1, w2, . . . , wn∥ for any α ∈ R,
(iv) ∥w + w̄, w2, . . . , wn∥ ≤ ∥w,w2, . . . , wn∥+ ∥w̄, w2, . . . , wn∥

is called an n-norm on Y and the pair (Y, ∥., . . . , ∥.) is called an n-normed space.

Throughout the paper, we indicate λm,n = λnµn and the collection of such se-
quences λ will be showed by ∆2. Furthermore, δ2(P ) denotes the double natural
density of the set P ⊆ N.

3. Main results

Here, we share our research results. The following definitions, which will be used
throughout the study, serve as our starting point.

Definition 3.1. Let Y be a real vector space. Then the function ∥., ..., .∥G : Y n →
G∗(R) is called to be a gradual n-norm on Y n, provided that following statements
are correct: for any w, v ∈ Y ,

(i) F∥w1,w2,...,wn∥G
(τ) = F0̃(τ) iff w1, w2, ..., wn are linear dependent,

(ii) F∥µw1,w2,...,wn∥G
(τ) = |µ| F∥w1,w2,...,wn∥G

(τ) for any µ ∈ R,
(iii) F∥w+v,w1,w2,...,wn∥G

(τ) ≤ F∥w,w1,w2,...,wn∥G
(τ) + F∥v,w1,w2,...,wn∥G

(τ).

In this case, (Y, ∥., ..., .∥G) is called an n-normed GNnLS.

Definition 3.2. A double sequence w = (wuv) in (Y, ∥., ..., .∥G) is called to be
statistically gradual convergent (in short st2(G)-convergent) to w0 ∈ Y with respect
to the n-norm, provided that for each κ > 0 and τ ∈ (0, 1],

δ2

({
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) ≥ κ
})

= 0,

for all z1, z2, ..., zn−1 ∈ Y .
In this case, we write stnN2 (G)− limwuv = w0 or wuv → w0(st

nN
2 (G)).

Definition 3.3. A double sequence w = (wuv) is called to be gradually (λ, µ)-
statistically convergent (or shortly S(λ,µ)(G)-convergent) to w0 ∈ Y with respect to
the n-norm, provided that for each κ > 0 and τ ∈ (0, 1],

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ = 0,

for all z1, z2, ..., zn−1 ∈ Y . Namely, the set

T (κ) :=
{
(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) ≥ κ
}

has (λ, µ)-density zero.
Symbolically, we write SnN

(λ,µ)(G)− limwuv = w0 or wuv → w0(S
nN
(λ,µ)(G)).
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Kişi et al. /Ann. Fuzzy Math. Inform. 25 (2023), No. 3, 217–234

In addition, we use SnN
(λ,µ)(Y ) to denote the collection of all gradually S(λ,µ)(G)-

convergent double sequences in Y , and

SnN
(λ,µ)(Y ) :=

{
w = (wuv) : ∃w0 ∈ Y , SnN

(λ,µ)(G)− limwuv = w0

}
.

If λm = m, µn = n for all m, n then the space SnN
(λ,µ)(Y ) is reduced to the space

stnN2 (Y ) and since δ2 (T ) ≤ δ(λ,µ) (T ), we have SnN
(λ,µ)(Y ) ⊂ stnN2 (Y ).

Example 3.4. Let Y = Rα and ∥·∥G be the norm defined in Example 2.4. Consider
the sequence (λm,n) determined by

λm,n =

{
1 mn = 1,
mn
2 mn ≥ 2.

Then the sequence (wuv) in Rα defined as

wuv =

{
(0, 0, ..., 0, α) if u = p2, v = q2, p, q ∈ N,
(0, 0, ....., 0, 0) otherwise

is gradually (λ, µ)-statistical convergent to 0 with respect to the n-norm in Rα where
0 demonstrates the α-tuple (0, 0, ....0, 0).
Justification. We get

lim
m,n→∞

1
λm,n

∣∣{(u, v) ∈ Im,n : F∥wuv−0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
= 2 lim

m,n→∞
1

mn

∣∣{u ∈
[
m
2 + 1,m

]
, v ∈

[
n
2 + 1, n

]
: F∥wuv−0,z1,z2,...,zn−1∥G

(τ) ≥ κ
}∣∣

≤ 2 lim
m,n→∞

1
mn

∣∣{u ≤ m, v ≤ n : F∥wuv−0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
≤ 2 lim

m,n→∞
[
√
mn]
mn , where [q] demonstrates the largest integer ≤ q

= 0.

Then we conclude that wuv → 0(SnN
(λ,µ)(G)).

Example 3.5. Let Y = R and for any w0 ∈ R, let ∥.∥G be the norm defined as
F∥w0∥G

= eτ |w0|.
Consider the sequence (λm,n) determined in Example 3.4. Then the sequence

w = (wuv) in Y identified as wuv = u2v2 is not gradually (λ, µ)-statistical convergent
with respect to the n-norm.
Justification. For any w0 ∈ R, we have w0 ≤ 0 or w0 > 0. Then for all of the
following situations, w will not gradually (λ, µ)-statistical convergent to w0 with
respect to the n-norm.

Case-I: When w0 ≤ 0, we select κ = 1
2e

τ . Then we have

lim
m,n→∞

1
λm,n

∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥(τ) ≥ κ
}∣∣

= lim
m,n→∞

2
mn

∣∣∣{u ∈
[
m
2 + 1,m

]
, v ∈

[
n
2 + 1, n

]
: F∥u2v2−w0,z1,z2,...,zn−1∥G

(τ) ≥ 1
2e

ξ
}∣∣∣

=

 lim
m,n→∞

2
mn

(
mn
2 − 1

)
; when m,n is even

lim
m,n→∞

2
mn

(
mn+1

2 − 1
)
; when m,n is odd

= 1
̸= 0.
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Case-II: If w0 > 0, then there are u0 ∈ N such that wu0−1 ≤ w0 ≤ wu0
.

Subcase-I: If 0 < w0 < 1, then select κ = eτ

2 min{w0, 1−w0}. Thus it is easy to
verify that

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ = 1 ̸= 0.

Subcase-II: If w0 ≥ 1, then select κ = eτ

2 min{w0 − wu0−1, wu0 − w0}. Thus it
is easy to verify that

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ = 1 ̸= 0.

From the above case study, we can conclude that w is not gradually (λ, µ)-statistical
convergent with respect to n-norm.

Definition 3.6. Assume (Y, ∥., ..., .∥G) be any n-normed GNLS. We establish the

new sequence spaces [C, 1, 1]
nN

(G) and [V, λ, µ]
nN

(G) as follows:

[C, 1, 1]
nN

(G) =


(wuv) : for some w0 ∈ Y and for all τ ∈ (0, 1] ,

lim
m,n→∞

1
mn

(
m,n∑

u,v=1,1
F∥wuv−w0,z1,z2,...,zn−1∥G

(τ)

)
= 0


and

[V, λ, µ]
nN

(G) =


(wuv) : for some w0 ∈ Y and for all τ ∈ (0, 1] ,

lim
m,n→∞

1
λm,n

( ∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

)
= 0


for the sets of Y -valued double sequences w = (wuv) which are gradually strongly
Cesàro summable and gradually strongly (V, λ, µ)-summable to w0 with respect to

n-norm in (Y, ∥., ..., .∥G). In this case, we denote wuv → w0([C, 1, 1]
nN

(G)) and

wuv → w0([V, λ, µ]
nN

(G))respectively.
When λm,n = mn, then gradually [V, λ, µ]

nN
-summability reduces to gradually

[C, 1, 1]
nN

-summability in the GNLS.

Theorem 3.7. Assume w = (wuv) be a double sequence in the n-normed GNLS
(Y, ∥., ..., .∥G).

(1) If wuv → w0([V, λ, µ]
nN

(G)), then wuv → w0(S
nN
(λ,µ)(G)) but the converse is

not true.
(2) [V, λ, µ]

nN
(G) is a proper subset of SnN

(λ,µ)(G) in (Y, ∥., ..., .∥G).
(3) If (wuv) is gradually bounded (w ∈ l2∞ (Y )) and wuv → w0(S

nN
(λ,µ)(G)), then

wuv → w0([V, λ, µ]
nN

(G)) and thus wuv → w0([C, 1, 1]
nN

(G)).
(4) SnN

(λ,µ)(G) ∩ l2∞ (Y ) = [V, λ, µ]
nN

(G) ∩ l2∞ (Y ).
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Proof. (1) Suppose κ > 0 be arbitrary τ ∈ (0, 1] and wuv → w0([V, λ, µ]
nN

(G)).
Then we can write

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

≥
∑

(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)≥κ

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

≥ κ
∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) ≥ κ
}∣∣∣ .

Thus

1
κ.λm,n

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

≥ 1
λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ .
This finalizes the proof.

(2) To demonstrate that the inclusion [V, λ, µ]
nN

(G) ⊂ SnN
(λ,µ)(G) is proper, we

define a sequence w = (wuv) by

w = (wuv) =

{
uv if m− [

√
λm] + 1 ≤ u ≤ m and n− [

√
µn] + 1 ≤ v ≤ n,

0 otherwise.

It is obvious that w /∈ l2∞ (Y ). Then for each κ > 0 with 0 < κeκ ≤ 1, we obtain

1

λm,n

∑
(u,v)∈Im,n

F∥wuv−0,z1,z2,...,zn−1∥G
(τ) ≤

[
√
λm][

√
µn]

λmµn
→ 0 as m,n → ∞,

namely, wuv → 0([V, λ, µ]
nN

(G)). On the other hand,

1

λm,n

∣∣{(u, v) ∈ Im,n : F∥wuv−0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣→ ∞ as m,n → ∞,

in Pringsheim sense, i.e., wuv does not gradually (λ, µ)-statistically convergent to 0
with respect to the n-norm.

(3) Let wuv → w0(S
nN
(λ,µ)(G)) and (wuv) is gradually bounded, say

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≤ M,
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for all u, v ∈ N. Then for any κ > 0, we get

1
λm,n

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

= 1
λm,n

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)≥κ

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

+ 1
λm,n

∑
k∈In

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)<κ

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

≤ M
λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)) ≥ κ

2

}∣∣∣+ κ
2 ,

which consequently means that wuv → w0([V, λ, µ]
nN

(G)).
Again, we obtain

1
mn

m,n∑
u,v=1,1

F∥wuv−w0,z1,z2,...,zn−1∥G

≤ 1
mn

m−λm,n−µn∑
m,n=1,1

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

+ 1
mn

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

≤ 1
λm,n

m−λm,n−µn∑
m,n=1,1

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

+ 1
λm,n

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ)

≤ 2
λm,n

∑
(u,v)∈Im,n

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) .

As a result, wuv → w0([C, 1, 1]
nN

(G)), because wuv → w0([V, λ, µ]
nN

(G)).
(4) This is an immediate consequence of (1), (2) and (3). □

If we take λm,n = mn in Theorem 3.7, we get the following corollary.

Corollary 3.8. Assume w = (wuv) be a double sequence in the GNnLS (Y, ∥., ..., .∥G).
(1) If wuv → w0([C, 1, 1]

nN
(G)), then wuv → w0(st

nN
2 (G)) but the converse is not

true.
(2) [C, 1, 1]

nN
(G) is a proper subset of stnN2 (G) in GNnLS (Y, ∥., ..., .∥G).

(3) If (wuv) is gradually bounded (w ∈ l2∞ (Y )) and wuv → w0(st
nN
2 (G)), then

wuv → w0([C, 1, 1]
nN

(G)).
(4) stnN2 (G) ∩ l2∞ (Y ) = [C, 1, 1]

nN
(G) ∩ l2∞ (Y ).
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Theorem 3.9. Let (wuv) be a double sequence in the GNnLS (Y, ∥., ..., .∥G). Then,

wuv → w0(S
nN
(λ,µ)(G)) iff there is an

M = {(mu, nv) : m1 < m2 < ... < mu < ...;n1 < n2 < ... < nv < ...} ⊂ N× N

such that δ(λ,µ)(M) = 1 and (wmunv
)
∥.,...,.∥G→ w0.

Proof. Firstly, we assume that there is a set

M = {(mu, nv) : m1 < m2 < ... < mu < ...;n1 < n2 < ... < nv < ...} ⊂ N× N

supplying

δ(λ,µ)(M) = 1 and (wmunv )
∥.,...,.∥G→ w0.

Then for each κ > 0 and τ ∈ (0, 1], there are M(= Mκ(τ)), N(= Nκ(τ)) ∈ N such
that

F∥wmunv−w0,z1,z2,...,zn−1∥ (τ) < κ,∀u ≥ M,v ≥ N.

Consider

B(τ, κ) =
{
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) ≥ κ
}
.

Then the inclusion

B(τ, κ) ⊂ (N× N) \ {(mM+1, nN+1) , (mM+2, nN+2) , ...}

holds. Thus δ(λ,µ)(B(τ, κ)) = 0. So wuv → w0(S
nN
(λ,µ)(G)).

For the converse part, suppose that wuv → w0(S
nN
(λ,µ)(G)) supplies. Then for each

τ ∈ (0, 1] and j ∈ N, δ(λ,µ)(Mj) = 1, where

Mj =

{
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) <
1

j

}
.

From the construction of Mj ’s, it is obvious that

(3.1) M1 ⊃ M2 ⊃ ... ⊃ Mj ⊃ Mj+1 ⊃ ...

Let us select q1 ∈ M1 be an arbitrary element. Then there is an q2 ∈ M2 such that
for all m,n ≥ q2,

1

λm,n
|{(u, v) ∈ Im,n : (u, v) ∈ M2}| >

1

2

holds. In a similar way, there exists q3 ∈ M3 such that for all m,n ≥ q3,

1

λm,n
|{(u, v) ∈ Im,n : (u, v) ∈ M3}| >

2

3

holds. Proceeding like this, we can establish a increasing sequence (qj) of positive
integers such that qj ∈ Mj and for all m,n ≥ qj ,

(3.2)
1

λm,n
|{(u, v) ∈ Im,n : (u, v) ∈ Mj}| > 1− 1

j

is true.
Let us examine M as follows: each natural number of the interval [1, q1] belong to
M and any natural number of the interval [qj , qj+1] belongs to M iff it belongs to
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Mj , (j ∈ N).
From (3.1) and (3.2), we have for each qj ≤ m,n < qj+1,

|{(u, v) ∈ Im,n : (u, v) ∈ M}|
λm,n

≥ |{(u, v) ∈ Im,n : (u, v) ∈ Mj}|
λm,n

> 1− 1

j
.

As a result, δ(λ,µ)(M) = 1. Let κ > 0 be given. By Archimedean property, select

j ∈ N such that 1
j < κ. Further, assume u, v ∈ M be such that u ≥ qj and v ≥ qj .

Then there exists t ≥ j such that qt ≤ u ≤ qt+1, qt ≤ v ≤ qt+1. But by the definition
of M , (u, v) ∈ Mt. Thus we have

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) <

1

t
≤ 1

j
< κ.

So (wmunv )
∥.,...,.∥G→ w0 holds. The proof is complete. □

Theorem 3.10. Assume (Y, ∥., ..., .∥G) be any n-normed GNLS and let (λm,n) ∈ ∆2.

Then stnN2 (G) ⊂ SnN
(λ,µ)(G) iff lim infm,n

λm,n

mn > 0.

Proof. Assume first that lim infm,n
λm,n

mn > 0. Then for given κ > 0 and τ ∈ (0, 1),
we obtain

1
mn

∣∣{u ≤ m, v ≤ n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
≥ 1

mn

∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
≥ λm,n

mn . 1
λm,n

∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣ .
It follows that

wuv → w0(st
nN
2 (G)) ⇒ wuv → w0(S

nN
(λ,µ)(G)).

Thus st2(G) ⊂ S(λ,µ)(G).
Conversely, assume that lim infm,n

λm,n

mn = 0. Then we can choose a subsequence
(m (p) , n (r))

∞,∞
p,r=1,1 such that

λm(p),n(r)

m (p)n (r)
<

1

pr
.

We consider a double sequence w = (wuv) as follows:

w = (wuv) =

{
1 if u, v ∈ Im(p),n(r) , p, r = 1, 2, 3, ...,
0 otherwise.

Then w is gradually statistically convergent with respect to n-norm in GNLS. Thus

w ∈ stnN2 (G). Hovewer, w /∈ [V, λ, µ]
nN

(G). So by Theorem 3.7 (3), w /∈ SnN
(λ,µ)(G).

This finalizes the proof. □

Theorem 3.11. Assume (Y, ∥., ..., .∥G) be any GNnLS. If (λm,n) ∈ ∆2 such that

limm,n
λm,n

mn = 1, then stnN2 (G) = SnN
(λ,µ)(G).
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Proof. Since lim
λm,n

mn = 1, for each κ > 0 and τ ∈ (0, 1), we examine that

1
mn

∣∣{u ≤ m, v ≤ n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
≤ 1

mn

∣∣{u ≤ m− λm, v ≤ n− µn : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
+ 1

mn

∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
≤ (m−λm)(n−µn)

mn + 1
mn

∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣
= (m−λm)(n−µn)

mn +
λm,n

mn . 1
λm,n

∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣ .
This means that w is gradually statistically convergent with respect to the n-norm
in GNLS, if (wuv) is gradually (λ, µ)-statistically convergent with respect to the n-

norm. As a result, we get SnN
(λ,µ)(G) ⊂ stnN2 (G). Since limm,n

λm,n

mn = 1, means that

lim infm,n
λm,n

mn > 0, according to Theorem 3.10, we get stnN2 (G) ⊂ SnN
(λ,µ)(G). Then

we have stnN2 (G) = SnN
(λ,µ)(G). □

Open Question: We do not know whether the condition limm,n
λm,n

mn = 1, in the
Theorem 3.11 is necessary and leave it as an open problem.

Theorem 3.12. Let (wuv) be a double sequence in the n-normed GNLS (Y, ∥., ..., .∥G)
such that wuv → w0(S

nN
(λ,µ)(G)). Then w0 is unique.

Proof. Suppose that there exist elements w0, w1 (w0 ̸= w1) in Y such that

wuv → w0(S
nN
(λ,µ)(G)); wuv → w1(S

nN
(λ,µ)(G)).

Since w0 ̸= w1, w0 −w1 ̸= 0. Thus there exist z1, z2, ..., zn−1 ∈ Y such that w0 −w1

and z1, z2, ..., zn−1 are linearly independent. So

F∥w0−w1,z1,z2,...,zn−1∥G
(τ) = 2κ > 0.

Since wuv → w0(S
nN
(λ,µ)(G)) and wuv → w1(S

nN
(λ,µ)(G)), it follows that

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ = 0

and

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w1,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ = 0

for each κ > 0, τ ∈ (0, 1] and for all z1, z2, ..., zn−1 ∈ Y .
There are (u, v) ∈ Im,n such that

F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) < κ and F∥wuv−w1,z1,z2,...,zn−1∥G

(τ) < κ.

Further, for these u, v, we have

F∥w0−w1,z1,z2,...,zn−1∥G
(τ) < F∥wuv−w0,z1,z2,...,zn−1∥G

+F∥wuv−w1,z1,z2,...,zn−1∥G
(τ) < 2κ.

which is a contradiction. This completes the proof. □
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Theorem 3.13. Let (Y, ∥., ..., .∥G) be n-normed GNLS, (wuv) and (tuv) be two double
sequences in Y . Then

(1) wuv + tuv → w0 + t0(S
nN
(λ,µ)(G)),

(2)pwuv → pw0(S
nN
(λ,µ)(G)) for any p ∈ R.

Proof. The proofs are straightforward. □

Theorem 3.14. SnN
(λ,µ)(Y ) ∩ l2∞ (Y ) is a closed subset of l2∞ (Y ), if Y an n-Banach

space.

Proof. Suppose that
(
wi
)
i∈N =

(
wi

uv

)
u,v∈N is a gradual convergent double sequence

in SnN
(λ,µ)(Y ) ∩ l2∞ (Y ) gradual converging to w ∈ l2∞ (Y ). We need to prove that

w ∈ SnN
(λ,µ)(Y ) ∩ l2∞ (Y ). Assume that (wi)

∥.,...,.∥G→ pi

(
SnN
(λ,µ)(Y )

)
for all i ∈ N.

Take a positive decreasing convergent sequence (κi)i∈N, where κi =
κ
2i for a given

κ > 0. Obviously, (κi)i∈N converges to 0. Choose a positive integer i such that
F∥w−wi,z1,z2,...,zn−1∥G

(τ) < κi

4 for given κ > 0, τ ∈ (0, 1) and for all z1, z2, ..., zn−1 ∈
Y . Then we have

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ) ≥ κi

4

}∣∣∣ = 0

and

lim
m,n→∞

1

λm,n

∣∣∣∣{(u, v) ∈ Im,n : F∥wi+1
uv −pi+1,z1,z2,...,zn−1∥G

(τ) ≥ κi+1

4

}∣∣∣∣ = 0.

Now
1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ) ≥ κi

4

∨ F∥wi+1
uv −pi+1,z1,z2,...,zn−1∥G

(τ) ≥ κi+1

4

}∣∣∣∣ < 1

and for all u, v ∈ N,.{
(u, v) ∈ Im,n : F∥wi

uv−pi,z1,z2,...,zn−1∥G
(τ) ≥ κi

4

}
∩
{
(u, v) ∈ Im,n : F∥wi+1

uv −pi+1,z1,z2,...,zn−1∥G
(τ) ≥ κi+1

4

}
is infinite. Thus there must exist (u, v) ∈ Im,n for which we have simultanously,

F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ) <
κi

4
and F∥wi+1

uv −pi+1,z1,z2,...,zn−1∥G
(τ) <

κi+1

4
.

So it follows that

F∥pi−pi+1,z1,z2,...,zn−1∥G
(τ) ≤ F∥pi−wi

uv,z1,z2,...,zn−1∥G
(τ)

+F∥wi
uv−wi+1

uv ,z1,z2,...,zn−1∥G
(τ) + F∥wi+1

uv −pi+1,z1,z2,...,zn−1∥G
(τ)

≤ F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ) + F∥wi+1
uv −pi+1,z1,z2,...,zn−1∥G

(τ)

+F∥w−wi,z1,z2,...,zn−1∥G
(τ) + F∥w−wi+1,z1,z2,...,zn−1∥G

(τ)

≤ κi

4 + κi+1

4 + κi

4 + κi+1

4 ≤ κi.

This means that (pi) is a Cauchy sequence in Y . Hence there is number p ∈ Y such

that pi
∥.,...,.∥G→ p as i → ∞.
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We need to prove that w → p(SnN
(λ,µ)(G)). For any κ > 0, choose i ∈ N such that

κi <
κ
4 ,

F∥w−wi,z1,z2,...,zn−1∥G
(τ) <

κ

4
and F∥pi−p,z1,z2,...,zn−1∥G

(τ) <
κ

4
.

Then we get

1
λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−p,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣
≤ 1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ)

+F∥wuv−wi
uv,z1,z2,...,zn−1∥G

(τ) + F∥pi−p,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣
≤ 1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ) + κ
4 + κ

4 ≥ κ
}∣∣∣

≤ 1
λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wi
uv−pi,z1,z2,...,zn−1∥G

(τ) ≥ κ
2

}∣∣∣→ 0 as m,n → ∞

in Pringsheim sense. This gives that w → p(SnN
(λ,µ)(G)), which completes the proof.

□

Lemma 3.15. Assume q ≥ 2 be a fixed natural number and B =
{
m,n ∈ N : (mn)

1
q ∈ N

}
.

If lim
m,n

(mn)
1
q

λm,n
exists, then δ(λ,µ)(B) = 0.

Proof. Let

Bm,n = {(u, v) ∈ B : (u, v) ∈ Im,n} and lim
m,n

(mn)
1
q

λm,n
= l.

Then it is easy to indicate that

|Bm,n| =
[
(mn)

1
q

]
−
[
(mn− λm,n +

1− (−1)mn

2
)

1
q

]
,

where [q] denotes the largest integer ≤ q.
Case-I: If m,n are even, then we have

(mn)
1
q − 1 ≤

[
(mn)

1
q

]
≤ (mn)

1
q

⇒ (mn)
1
q −1

λm,n
≤

[
(mn)

1
q

]
λm,n

≤ (mn)
1
q

λm,n
⇒ lim

m,n

[
(mn)

1
q

]
λm,n

= l.

Also, (mn− λm,n)
1
q − 1 ≤ [(mn− λm,n)

1
q ] ≤ (mn− λm,n)

1
q

⇒ (mn− λm,n)
1
q − 1

λm,n
≤ [(mn− λm,n)

1
q ]

λm,n
≤ (mn− λm,n)

1
q

λm,n

⇒ (mn)
1
q

λm,n
(1− λm,n

mn
)

1
q − 1

λm,n

≤ [(mn− λm,n)
1
q ]

λm,n
≤ (mn)

1
q

λm,n
(1− λm,n

mn
)

1
q .
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If
λm,n

mn < 1, then from the above,

(mn)
1
q

λm,n
−O(

λm,n

mn
)− 1

λm,n
≤ [(mn− λm,n)

1
q ]

λm,n
≤ (mn)

1
q

λm,n
−O(

λm,n

mn
).

Thus lim
m,n

[(mn−λm,n)
1
q ]

λm,n
= l.

If
λm,n

mn = 1, then lim
m,n

[(mn−λm,n)
1
q ]

λm,n
= l is trivial. Thus we have

lim
m,n

[(mn)
1
q ]

λm,n
− lim

m,n

[(mn− λm,n)
1
q ]

λm,n
= l − l = 0.

So if m,n are even, then lim
m,n

|Bm,n|
λm,n

= 0.

Case-II: If m,n are odd, utilizing the similar technique it can be easily shown

that lim
m,n

|Bm,n|
λm,n

= 0.

Hence, from above two cases, we can conclude that δ(λ,µ)(B) = 0. □

Remark 3.16. Every subsequence of a gradually (λ, µ)-statistical convergent se-
quence is not necessarily gradually (λ, µ)-statistical convergent.

Example 3.17. Assume Y = R and ∥·∥G be the norm determined in Example 3.5.
Consider the sequence (λm,n) defined by

λm,n =

{
1 mn = 1,
mn
2 mn ≥ 2.

Take

wuv =

{
uv ifu = p2, v = q2, p, q ∈ N,
0 otherwise.

Then for any κ > 0,

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−0,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣
= δ(λ,µ)(B), where B = {mn ∈ N :

√
mn ∈ N}

= 0. [By Lemma 3.15, considering q = 2]

Thus wuv → 0(SnN
(λ,µ)( G)). But the sequence considered in Example 3.5 is not gradu-

ally (λ, µ)-statistical convergent with respect to n-norm although it is a subsequence
of the above sequence.

Definition 3.18. Assume (Y, ∥., ..., .∥G) be any n-normed GNLS. A sequence (xk)
in X is called to be a gradually (λ, µ)-statistical Cauchy sequence with respect to n
normed, provided that for each κ > 0 and τ ∈ (0, 1], there exist P = P (κ) ∈ N and
Q = Q (κ) ∈ N such that

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−wPQ,z1,z2,...,zn−1∥G
(τ) ≥ κ

}∣∣∣ = 0

or equivalently, F∥wuv−wPQ,z1,z2,...,zn−1∥G
(τ) < κ a.a.u, v.
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Theorem 3.19. Assume (Y, ∥., ..., .∥G) be any n-normed GNLS. Then each gradu-
ally (λ, µ)-statistical convergent sequence with respect to n-norm is gradually (λ, µ)-
statistical Cauchy with respect to same norm.

Proof. Let wuv → w0(S
nN
(λ,µ)(G)). Then for any κ > 0 and τ ∈ (0, 1],

lim
m,n→∞

1

λm,n

∣∣∣{(u, v) ∈ Im,n : F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) ≥ κ

2

}∣∣∣ = 0.

This means that F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) < κ

2 a.a.u, v.
i.e.,

δλ,µ

({
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

≥ κ

2

})
= 0

i.e.,

δλ,µ

({
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

<
κ

2

})
̸= 0.

Thus the set {
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) <
κ

2

}
is non empty.
Select P = P (κ) ∈ N and Q = Q (κ) ∈ N such that

P,Q ∈
{
(u, v) ∈ N× N : F∥wuv−w0,z1,z2,...,zn−1∥G

(τ) <
κ

2

}
.

Then we obtain

F∥wuv−wPQ,z1,z2,...,zn−1∥G
(τ) = F∥wuv−w0+w0−wPQ,z1,z2,...,zn−1∥(τ)

≤ F∥wuv−w0,z1,z2,...,zn−1∥G
(τ) + F∥wPQ−w0,z1,z2,...,zn−1∥G

(τ)

< κ a.a.u, v.

Thus (wuv) is gradually (λ, µ)-statistical Cauchy with respect to n-norm. □

4. Conclusion

We have outlined a few key characteristic of (λ, µ)-statistical convergence in the
n-normed GNnLS in this paper. To show how the ideas are related, we also added

[V, λ, µ]
nN

-summability to the n-normed GNnLS and created Theorem 3.7. Lastly,
we have researched the idea of (λ, µ)-statistical Cauchy double sequences in the n-
normed GNnLS and analyzed the interconnection between gradual (λ, µ)-statistical
convergent and gradual (λ, µ)-statistical Cauchy double sequences with regards to
n-norm.
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[27] E. Savaş and R. F. Patterson, On double statistical P-convergence of fuzzy numbers, J. Inequal.
Appl. 2009, Art. ID 423792, 7 pages.

[28] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (1) (2000) 111–115.
[29] L. Leindler, Uber die de la vallee pousinsche summierbarkeit allgemeiner orthogonalreihen,

Acta Math. Acad. Sci. Hungar. 16 (1965) 375–387.
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[32] E. Savaş and R. F. Patterson, (λ, µ)-double sequence spaces via Orlicz function, J. Comput.

Anal. Appl., 10 (1) (2008) 101–111.
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[44] N. Fıstıkçı, M. Açıkgöz and A. Esi, I-lacunary generalized difference convergent sequences in

n-normed spaces, J. Math. Anal. 2 (1) (2011) 18–24.
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