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ABSTRACT. We introduce the concept of ordinary interval-valued fuzzi-
fying topology and obtain some of its basic properties. We show that
a neighborhood system in ordinary interval-valued fuzzifying topological
spaces has the same properties in a classical neighborhood system. Also,
we obtain two characterization of an ordinary interval-valued fuzzifying
base and one characterization of an ordinary interval-valued fuzzifying sub-
base. We define an ordinary interval-valued fuzzifying closure and prove
that an ordinary interval-valued fuzzifying topology induced by an ordi-
nary interval-valued fuzzifying closure operator.
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1. INTRODUCTION

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of
an ordinary set. In 1986, Chang [2] was the first to introduce the notion of a fuzzy
topology by using fuzzy sets. After that, many researchers [3, 4, 5, 6, 7, 8, 9, 10, 11,

] have investigated several properties in fuzzy topological spaces. In particular,

Kandil et al [13], Saleh [14, 15], Samanta and Mondal [16] has applied the concept
of interval-valued fuzzy set (See [17, 18]) to topology.

However, in their definition of fuzzy topology, fuzziness in the notion of openness
of a fuzzy set was absent. In 1992, Samanta et al. [19, 20] introduced the concept of

gradation of openness(closedness) of fuzzy sets in X in two different ways, and gave
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definitions of a fuzzy topology on X. After then, some works have been done by
Ramadan [21], Demirci [22], Chattopadhyay and Samanta [23] and Peters [24, 25].

Moreover, Coker and Demirci [26], and Samanta and Mondal [27, 28] defined
intuitionistic gradation of openness (in short IGO) of fuzzy sets in Sostak’s sense [29]
by using intuitionistic fuzzy sets introduced by Atanassov [30]. They mainly dealt
with intuitionistic gradation of openness of fuzzy sets in the sense of Chang. Lim et
al. [31] investigated intuitionistic smooth topological spaces in Lowen’s sense. Kim
et al. [32] studied continuities and neighborhood systems in intuitionistic smooth
topological spaces. Also Choi et al. [33] studied an interval-valued smooth topology
by gradation of openness of interval-valued fuzzy sets introduced by Zadeh [17].
In particular, Ying [34] introduced the concept of the topology (called a fuzzifying
topology) considering the degree of openness of an ordinary subset of a set. In 2012,
Lim et al. [35] studied some properties in ordinary smooth topological spaces (See
[36, 37, 38] for the further topological structures in ordinary smooth topological
spaces).

Now we would like to study the topological structures given by the interval num-
ber as the degree of openness of an ordinary subset of a set. To do this, we intend to
conduct research as follows: We introduce the concepts of ordinary interval-valued
fuzzifying topological spaces and subspaces, and study some of their properties. Sec-
ond, we define an ordinary interval-valued neighborhood system and we show that
it has the same properties in a classical neighborhood system. Third, we introduce
the notions of ordinary interval-valued fuzzifying bases and subbases, and obtain
two characterization of an ordinary interval-valued fuzzifying base and one char-
acterization of an ordinary interval-valued fuzzifying subbase. Finally, we define
an ordinary interval-valued fuzzifying closure and prove that an ordinary interval-
valued fuzzifying topology induced by an ordinary interval-valued fuzzifying closure
operator.

2. PRELIMINARIES

In this section, we list some notations, two definitions and one result needed in the
next sections (See [17]). Throughout this paper, I denotes the closed unit interval
[0,1].

The set of all closed subintervals of I is denoted by [I], and members of [I] are
called interval numbers and are denoted by a, 57 ¢, etc., where @ = [a™,a™] and
0 <a~ <at <1. In particular, if a= = a™, then we write as a = a.

We define an order and = on [I] as follows:

(Va, be[I)@a<b<ea <b” andat <b"),
(Va, bell)a=b<a<bandb<b, ic, a~ =b and at =b").
Tosay6<g,yemeanﬁggand57ég. N N
For any a, b € [I], their minimum and maximum, denoted by a Ab and @V b, are

defined as follows: B

aNb=1la" Ab ,at AbT],

avb=[a" Vb ,at VbF]
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Let (aj)jes C [I]. Then its inf and sup, denoted by A;c;a; and \ ; ;aj, are

defined as follows:
A @ =1N\ai \ajl

JjeJ jeJ jeJ

~ _ - +
V@ =1V, Vol
jeJ jeJ jeJ

For each @ € [I], its complement, denoted by a°, is defined as follows:
a“=[1—-a"1-a"].

Definition 2.1 ([17]). Let X be a nonempty set. Then a mapping A : X — [I] is
called an interval-valued fuzzy set (briefly, an IVFS) in X. Let [I]X denote the set
of all IVFSs in X. For each A € [I]X and z € X, A(z) = [A™(z), A*(z)] is called
the degree of membership of an element z to A, where A=, At € I'X are called a
lower fuzzy set and an upper fuzzy set in X respectively. For each A € [I]X, we write
A =[A~, AT]. In particular, 0 and 1 denote the interval-valued fuzzy empty set and
the interval-valued fuzzy whole set in X, respectively. We define relations C and =
on [I]X as follows:

(VA, BeI[*)(AC B+« (z € X)(A(z) < B(z)),

(YA, Be[II*)(A=DB<+= (z € X)(A(x) = B(x)).
Definition 2.2 ([17]). Let X be a nonempty set, let A € [I]* and let (4;);es be any
subfamily of [I]X. Then the complement of A, denoted by A€, and the intersection

and the union of (A;);cs, denoted by (.., Aj and |J..; A;, are defined as follows
respectively: for each x € X

A(z) =[1 = A" (2),1 - A" ()],
(4 = N 4i(@),

jeJ jeJ

jeJ jeJ
(U@ =V 45
jeJ jeJ

Definition 2.3 ([16]). A € [I]¥ is called an interval-valued fuzzy point (briefly, an
IVFP) with the support x € X and the value a € [I] with a™ > 0, denoted by
A = xg, if for each y € X,

_fa ify=z
za(y) = { 0 otherwise.

The set of all IVFPs in X is denoted by IV Fp(X).

For each w5 € IVFp(X) and A € [I]¥, we say that x; belong to A, denoted by
xz € A, if a < A(). Tt is clear that A =, ., 2a, for cach A € [I]¥.

Result 2.4 (Theorem 1, [16]). Let X be a set, let A, B, C € [I|* and (4A;)jes C
[I]X. Then the followings hold:
(1)0c AcT,
(2) AUB=BUA; ANB=BNA,
(3) AUBUC)=(AUB)UC; AN(BNC)=(ANB)NC,
177
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(4) A, BCAUB; ANBCA, B,

(5) AN (Ujes A3) = Ujes (AN A7) AU (N5 45) = Njes (AU A)),
(6) (0)=1;(1)° =0,

(7) ((A)9)° = A,

(8) (UjGJ Aj)° = ﬂjeJ A;" (ﬂjeJ Aj)e = UjeJ A§'

We display the interval-valued fuzzy logical and corresponding set-theoretical no-
tations used in this paper.
(1) [~a] =1 — [a],
[@—=Bl=1AAQ-[a]+[B)=1A[l—at +B7,1—a" +37],
Ve ale)] = Ayexla@)], Br a@) = V,cxlale)),
where X is the universe of discourse.
(2) Let A, B € [I]X and let z € X. Then
[xe Al :=A(x), ACB:=Va(zre A—zecB),
A=B:=ACBANBCA
It can be easily see that [A = B] = A\ x(1— | A(z) — B(x) |).

3. ORDINARY INTERVAL-VALUED TOPOLOGY

In this section, we define an ordinary interval-valued fuzzifying topological space
and obtain some its properties. Throughout this paper, we denote the set of all
subsets of a set X as 2X. For any A € 2%, we can consider A as the interval-valued
fuzzy set in X given by [x,,X,], where x, denotes the characteristic function of A

(See [39]).

Definition 3.1. Let X be a nonempty set. Then a mapping 7 = [7—,71] : 2% — [I]
is called an ordinary interval-valued fuzzifying topology (in short, OIVFT) on X, if
it satisfies the following axioms: for any A, B € 2% and each (A;);cs C 2%,

(OIVFT1) T(¢)=7(X) =1,

(OIVFT2) T7(ANB) > 7(A) AT(B),

(OIVET3)  7(Ujes 4j) = Njes T(4)-
The pair (X, 7) is called an ordinary interval-valued fuzzy fuzzifying topological space
(in short, OIVFTS).

We will denote the set of all ordinary interval-valued fuzzifying topologies on X
as OIVFT(X).

We can easily see that for an OIVFTS (X, 7), (X,77,7") is an ordinary smooth
bitopological space such that 7= C 71 (See [35]).

Let 2 = {0,1}. Then we can consider 2 as the ordinary two point set 2 = {0, 1}
such that 0 = 0 and 1 = 1. Thus 7 : 2¥ — 2 satisfy the axioms in Definition 3.1.
So 7 € T(X), where T(X) denotes the set of all classical topologies on X. So we
can see that T'(X) C OIVFT(X).

Example 3.2. (1) Let X = {a,b,c}. We define the mapping 7 : 2X — [I] as follows:
7(¢) =7(X) =1,
7({a}) =10.3,0.8], 7({b}) = [0.4,0.7], 7({c}) = [0.3,0.6],
7({a,b}) =10.3,0.7], 7({b, c}) = [0.4,0.6], 7({a, c}) = [0.3,0.8].
Then we can easily see that 7 € OIVFT(X).
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(2) Let X be a nonempty set. We define the mapping 7, : 2% — [I] as follows:
for each A € 2%,

|1 if either A=¢ or A =X,
To(A) = { 0 otherwise.

Then clearly, 7, € OIVT(X).

In this case, 7, [resp. (X, 74)] will be called the ordinary interval-valued fuzzifying
indiscrete topology on X [resp. the ordinary interval-valued fuzzifying indiscrete
space].

(3) Let X be a nonempty set. We define the mapping 7, : 2%X — [I] as follows:
for each A € 2%,

T (A)=1.

Then clearly, 7, € OIVFT(X).
In this case, 7, [resp. (X, 7, )] will be called the ordinary interval-valued fuzzifying
discrete topology on X [resp. the ordinary interval-valued fuzzifying discrete space].
(4) Let X be an infinite set and let @ € [I]\ {0, 1} be fixed. We define the mapping
7. : 2% — [I] as follows: for each A € 2%,

(A) = { 1 if either' A = ¢ or A€ is finite,
@ a otherwise.
Then we can easily see that 7. € OIVFT(X).

In this case, 7, will be called the a-ordinary interval-valued fuzzifying finite com-
plement topology on X. 7. is of interest only when X is a finite set, because if X is
infinite, then 7, = 7.

(5) Let X be an infinite set and let @ € [I]\ {0, 1} be fixed. We define he mapping
7, 2% — [I] as follows: for each A € 2%,

1 if either A = ¢ or A€ is countable,

na={

a otherwise.

Then clearly, 7, ., € OIVFT(X).

In this case, 7, . will be called the a-ordinary interval-valued fuzzifying countable
complement topology on X.

(6) Let T be the topology generated by S = {(a,b] : a,b € R,a < b} as a subbase,
let Ty be the family of all open sets of R w.r.t. the usual topology of R and let
@ € [I1\ {0,1} be fixed. We define the mapping 7®@ : 28 — [I] as follows: for each
Ac IR,

1 if AeTy,
r®A(A)={ G ifAeT\Tp,
0 otherwise.

Then we can easily see that 7(8@ € OIVFT(X).
(7) Let T € T(X). We define the mapping 7, : 2%X — [I] as follows : for each
A€ 2X,
1 ifAeT,
7o (4) = { 0  otherwise.
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Then it is easily seen that 7. € OIVFT(X). Moreover, we can see that if T is the
classical indiscrete topology, then 7, = 74 and if T' is the classical discrete topology,
then 7, =7,.

Definition 3.3. Let X be a nonempty set. Then a mapping C = (uc, ve) : 2% — [I]
is called an ordinary interval-valued fuzzifying cotopology (in short, OIVCT) on X,
if it is satisfies the following conditions: for any A, B € 2% and each {A;},cs C 2%,
(OIVCT1) C(p)=C(X) =1,
(OIVCT?2) C(AUB)>C(A)AC(B),
(OIVCT3) C(ﬂjeJAj) > /\jEJC(Aj).
The pair (X, C) is called an ordinary interval-valued fuzzifying cotopological space (in
short, OIVFCTS). The set of all OIVFCTs in X is denoted by OIVFCT(X).

The following is the immediate result of Definitions 3.1 and 3.3.

Proposition 3.4. We define two mappings f : OIVFT(X) — OIVFCT(X) and
g: OIVFCT(X) = OIVFT(X) as follows, respectively:
[f(T)](A) =T1(A°), VT € OIVFT(X), ¥ Ac2X
and
[9(C)](A) = C(A°), ¥VC € OIVFCT(X), V A€ 2X.
Then f and g are well-defined. Moreover, gof = idorvrr(x) and fog = idorv ror(x)-

Remark 3.5. For each 7 € OIVFT(X) and each C € OIVFCT(X), let f(7) =C,
and g(C) = 7.. Then, from Proposition 3.4, we can see that 7. =7 and ¢, =C.

Definition 3.6. Let 7,, 7, € OIVFT(X) and let C;, C; € OIVFCT(X). Then
(i) we say that 7, is finer than 7, or T, is coarser than 7,, denoted by 7, < 7, if
7,(A) < 1, (A) for each A € 2%,
(i) we say that Cy is finer than Cs or Ca is coarser than Cy, denoted by Ca < Cq,
if Cy (A) <C (A) for each A € 2X.

We can easily see that 7, is finer than 7, if and only if C; is finer than C; , and
(OIVFT(X),<) and (OIVFCT(X), <) are posets, respectively.

From Example 3.2 (2) and (3), it is obvious that 7, is the coarsest ordinary
interval-valued topology on X and 7y is the finest ordinary interval-valued topology
on X.

Proposition 3.7. If (1j)je; C OIVFT(X), then (;c,; 75 € OIVFT(X),

where [(;c; Ti](A) = Nje,mi(A) V A€ 2X.

Proof. From Definitions 2.2 and 3.1, it is obvious. U
From Definition 3.6 and Proposition 3.7, we have the following.

Proposition 3.8. (OIVFT(X), <) is a meet complete lattice with the least element
T¢ and the greatest element T, .

Definition 3.9. Let (X, 7) be an OIVFTs and let a € [I]. We define two families
[7]a and [7]% as follows, respectively:
() [z = {A € 2% : 7(4) > a},
(ii) [rlz = {A € 2X : 7(4) > a}.
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*

In this case, [7] [resp. [7]%] is called the a-level [resp. strong a-level] set of 7.

We can easily see that [T]o = 2% is the classical discrete topology on X and
[T]3 = ¢. Moreover, it is obvious that for any a € [I], [7]% C [7]a.

a

Lemma 3.10. Let 7 € OIVFT(X) and let @, b € [I]. Then
(1) [rls € T(X),
(2) if a <b, then []; C [7]a,
(3) [rla = ([l where a € [1]\ {0},
b<a
(1)/ [7]5 € T(X), where a € [I]\ {1},
(2) ifa <b, then [T]% C [r]E

[Tz = U [7]5, where a € [I]\ {1}.
b>a

’

Proof. The proofs of (1), (1), (2) and (2) are obvious from Definitions 3.1 and 3.9.
(3) From (2), it is obvious that ([ la )ae[l]\{o} is a descending family of classical

topologies on X. Then clearly, [7 ﬂ 3 for each a € [I] \ {0}.

b<a
Suppose A ¢ [r]g. Then 77 (A) < a™ or 77(A) < a™. Thus

3=, bt € I'\ {0} such that 77 (A) < b~ <a” or 7H(A) < b" <a'.
So, in either cases, A ¢ [7]; for some be [\ {0} such that b < @, i.c., A ¢ ﬂ [Tl

b<a
Hence ﬂ . Therefore [7]z = ﬂ [T];.
b<a b<a
(3) The proof is similar to (3). O

Remark 3.11. From (1) and (2) in Lemma 3.10, we can see that for each 7 €
OIVT(X), ([7]a)aen is a family of descending classical topologies (will be called
the a-level classical topologies on X w.r.t. 7).

Lemma 3.12. (1) Let (7,)ae(n be a descending family of classical topologies on
X such that 7, is the classical discrete topology on X. We define the mapping
7:2%X = [I] as follows: for each A € 2%,

4=\ a
Aer,
Then T € OIVFT(X).
2) Ifr, =(Geas for each @ € [I]\ {0}, then [Tz =T, .
(3) If 7, = Uoa 7, for each a € I|\ {1}, then [7]; = ,.

Proof. (1) It is obvious that @, X € 7, for each @ € [I]. Then by the definition of
7, 7(&) = 7(X) = 1. Thus the condition (OIVFT1) holds.

Suppose A, B € 2% such that 7(4) = G and 7(B) = b. If @ =0 or b = 0,
then 77 (ANB) >0>7 (A) AT (B), 7T7(ANDB) > 0> 77 (A) A 7H(B). Thus
T(ANB) > 7(A) AT(A) AT(B). So without loss of generality, we assume that @ > 0,

181



Shi et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 175-203

b>0,ie,a be [I]\{0} and let £ > 0. Then by the definition of T, there are
€1, ¢z € [I]\ {0} such that
a —e<c <a, a+—5<cf§a+, b” —e<ey <07, b+—5<02+§b+
and A € T, BeT . Letc =cAcy, ct =cfAef andd™ =a"Ab™,dt = at AT
Then clearly, ¢ € [I] \ {0} such that ¢ <@ and ¢ < b. Since (7, )aeqn is a descending
family of classical topologies on X, 7. C 7, and 7. C 7. Since Aer, and B € T,
A, Ber,.Thus AN B € 1,. So we have
T (ANB)>c¢ >d —¢, 77 (ANB)>d" >a" —=.
Since € > 0 is arbitrary,
T (ANB)>c =d =a Ab -, 77 (ANB)>d" =at AbT.

Hence 7(AN B) > 7(A) A 7(B). Therefore, in either cases, the condition (OITVFT2)
holds.

Finally, let (A4;)jes C 2%, let 7(A4;) = a; for each j € J and let a = Njesaj- I
@ = 0, then T_(UjeJ Aj) > /\jeJT_(Aj) and T+(Uj€J Aj) > /\jeJ 7T (A;). Thus
T(Ujes 4j) = Njes7(A;). Suppose @ > 0 and let € > 0 such that a= > e. Then
clearly, 0 < a™ —e < a; and 0 < at —e < aj+ for each j € J. Thus A; € Tam —eoat o]
for each j € J. Since T Aj e T .- By the
definition of 7, we get

T*(U Aj)>a —e, T+(U Aj)>at —e

jeJ jeJ

: is a topology on X, UjeJ

[a_—s,a“’fs ——eg,at—

Since € is arbitrary, we have
(U4 zam = N7 (4, 7T JA) =a" = \ (4.
Jjed JjeJ JjEJ jeJ
So 7(Ujes 4j) = N\jes 7(A;). Hence, in either cases, the condition (OIVEFT3) holds.

Therefore 7 € OIVFT(X).
(2) Suppose 7, = (Y;; 7, for each @ € [I]\ {0} and let A € [r],. Then clearly,

7(A) > @. By the definition of 7, 7(A) = \/ 4, ¢=d >, where ¢ € [I] \ {0}. Let
e > 0. Then there is b € [I] \ {0} such that d~ —e < b~, d* —e < b*. Thus we get
a” —e<d —e<b,a"—e<d"—e<bt.

SoAer .. - Since ¢ is arbitrary, A € 7,. Hence [], C 7,. It is clear that
7, C [7],. Therefore [7]. =T..
(3) The proof is similar to (2). O

From Lemmas 3.10 and 3.12, we have the following result.

Proposition 3.13. Let 7 € OIVFT(X) and let [T]z be the a-level classical topology
on X w.r.t. 7. We define the mapping 1 : 2% — [I] as follows: for each A € 2%,

nA) =\ a
AG[T]E

Thenn=rT.
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The fact that an ordinary interval-valued topological space fully determined by
it’s decomposition in classical topologies is restated in the following Theorem.

Theorem 3.14. Let 7,,7, € OIVFT(X). Then 7, =7, if and only if [1,]a = [T,]a
for each @ € [I] or alternatively, if and only if [1,]% = [7,]% for each a € [I].

Remark 3.15. In a similar way, we can construct an ordinary interval-valued fuzzi-
fying cotopology C on a set X, by using the a-levels,

(Cla ={A€2X:C(A)>a}and [C]% = {A € 2¥ : C(A) > a)}

for each @ € [I].

Definition 3.16. Let T € T(X) and let 7 € OIVFT(X). Then 7 is said to be
compatible with T, if T = S(7), where S(7) = {A € 2%X : 7(A) > 0}.

Example 3.17. (1) Let Ty be the classical indiscrete topology on X. Then clearly,
S(rg) = {A€2¥ : 74,(A) >0} = {¢, X} = To.

Thus 74 is compatible with Tp.
(2) Let T3 be the classical discrete topology on X. Then clearly,

S(ry)={Aec2¥ 7, (A) >0} =2% =T.

Thus 7, is compatible with T7.
(3) Let X be a nonempty set and let @ € [I]\ 1 be fixed. We define the mapping
7: 2% — [I] as follows: for each A € 2%,
T(A):{l if either A=¢ or A = X,

a otherwise.
Then clearly, 7 € OIVFT(X) and 7 is compatible with T;.

Furthermore, every classical topology can be considered as an ordinary interval-
valued topology in the sense of the following result.

Proposition 3.18. Let (X, 7) be a classical topological space and and let a € [I)\{0}
be fized. Then there exists 7@ € OIVEFT(X) such that 7% is compatible with T.
Moreover, [T%; = T.

In this case, 7 is called a-th ordinary interval-valued fuzzifying topology on X
and (X, 79) is called an a-th ordinary interval-valued fuzzifying topological space.

Proof. Let a € [I]\ {0} be fixed and we define the mapping 7% : 2% — [I] as follows:
for each A € 2%,

1 ifeither A=¢or A=X,
if Aer\{s, X},
0  otherwise.

\]
N
—~
=
Il
S|

Then we can easily see that 7 € OIVFT(X) and [r%]z = 7. Moreover, by the
definition of 7¢,

S(r%) = {Ae2¥: T9(A) > 0} =r.
Thus 7% is compatible with 7. O
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Proposition 3.19. Let (X,T) be a classical topological space and let C(T) be the
set of all OIVFTs on X compatible with T, let T = T \ {¢, X} and let [I]g be the
set of all mappings f : T — [I] satisfying the following conditions:

(i) f(A) #0 for each A€ T,

(i) f(ANB) > f(A) A f(B) for any A, BET,

(iif) f(UjeJAj) 2 /\je,] f(A;) for any (Aj)jes CT.

Then there is a one-to-one correspondence between C(T') and the set [I]OT.

Proof. We define the mapping F : [I ]OT — C(T) as follows: for each f € [I ]OT,

F(f) =15,
where 7, : 2% — [I] is the mapping defined by: for each A € 2%,
1 if either A=¢ or A =X,
T.(A)=< f(4) ifAeT,
0 otherwise.

Then we easily see that 7, € C(T).
Now we define the mapping G : C(T) — [I]§ as follows: for each 7 € C(T),

G(r) = fr,
where f, : T — [I] is the mapping defined by: for each A € T,
fr(A) =7(4).
Then clearly, f, € [I]g. Furthermore, we can see that F'o G = id¢(ry and G o F' =

id 7. Thus C(T) is equipotent to [I]g. This completes the proof. O
o

Proposition 3.20. Let (X, 7) be an OIVFTS and letY C X. We define the mapping
7, : 2Y — [I] as follows: for each A € 2Y,

7, (A) = \/ 7(B).
Be2X, A=BnY
Then 7, € OIVT(Y) and 7, (A) > 7(A) for each A € 2Y.
In this case, (Y,7,.) is called an ordinary interval-valued fuzzifying subspace of
(X, 7) and 7, is called the induced ordinary interval-valued fuzzifying topology on'Y
by T.

Proof. Tt is obvious that the condition (OIVFT1) holds, i.e., 7y (¢) = 7v(Y) = 1.
Let A, B € 2¥. Then
7 (A) A7, (B) = (/\cle2x, A=YNCy 7(C1)) A (/\czezx, B=YNC» 7(Ca))
= /\Cl, Cre2X, AﬁB:Yﬁ(ClﬂCQ)[T(Cl) A T(Cs)]
< Acy, creax, anB=yn(cincy) T(C1 N C2)
=71,(ANB).
Thus the condition (OIVFT2) holds.
Now let (A;)jes C 2¥. Then
Ty (UjeJ Aj) = /\Bjezx, (U]
> Npjeax,

e Aj 7(Ujes Bj)
By)NY=U,c, A; [/\jeJ 7(B;)]
184
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4, 7(Bj)]

/\]EJ[/\BJE2 »(U es BinY=U

= /\]EJ ( )
Thus the condition (OIVT3) holds. So 7, € OIVFT(Y).
Furthermore, we can easily see that for each A € 2, 7.(A4) > 7(A). This
completes the proof. O

]E]

The following is the immediate result of Proposition 3.20.

Corollary 3.21. Let (Y,7,) be an ordinary interval-valued fuzzifying subspace of
(X,7) and let A € 2Y.

(1) Cy(A) = Vgeox a—pny C(B), where Cy (A) =1, (Y — A).
2 IfZcYcCX,thent,=(1,),.

4. ORDINARY INTERVAL-VALUED FUZZIFYING NEIGHBORHOOD STRUCTURES

Definition 4.1. Let (X, 7) be an OIVFTS and let x € X. Then a mapping N, :
2X — [I] is called the ordinary interval-valued fuzzifying neighborhood system of x,
if for each A € 2%,

AeN] =M=\ 7(B).
r€EBCA

Example 4.2. Let X = {a,b,c} and let (X, 7) be the OIVFTS defined in Example
3.2 (1). Then

Nal{a}) = Vaene o 7(B) = 7({a}) = [0.2,0.7),
(

Na({a,b}) = Voepcfap 7(B) = 7({a}) V 7({a,b})
=1[0.2,0.7] v [0.3,0.7] = [0.3,0.7],

Na{a,c}) = Voepcae T(B) = 7({a}) v 7({a, c})
=1[0.2,0.7] v [0.3,0.8] = [0.3,0.8],

Na(X)=\/aechT( ) =71({a}) v 7({a,b}) v 7({a,c})
=1[0.2,0.7] v [0.3,0.7] v [0.3,0.8] = [0.3,0.8].

We have the similar to that of Lemma 3.1 in [34].

Lemma 4.3. Let (X, 7) be an OIVFTS and let A € 2X. Then

AV (B =14

r€AxzeEBCA

Proof. 1t is clear that A, .4 Vyepca T(B) = 7(A). Now let B, = {B € 2¥ : 2 €
B C A} and let f € II;eaB,. Then clearly, | J, ., f(z) = A. Thus

N\ (@) <7 f@) =

z€A z€A
So
AV 3=\ Ar(f@) <),
z€ATEBCA fEM caB, z€A
Hence A c 4 VaoepcaT(B) = 1(A). O
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Example 4.4. Let X = {a,b, ¢} and let (X, 7) be the OIVFTS defined in Example
3.2 (1). Let A ={a,b}. Then
{a}) vr(A) A (r({b}) v 7(A)
0.

NoeaVaepcaT(B) = ( )
7]V 10.3,0.7]) A ([0.4,0.5] v [0.2,0.7])

7(
([0.2,
=1[0.3,0.7] A [0.4,0.7] = [0.3,0.7]
=7(4).

Thus we can confirm that Lemma 4.3 holds.
We have the similar to Theorem 3.1 in [34].
Proposition 4.5. Let (X,7) be an OIVFTS, let A € 2% and let x € X. Then
F(AeT)<V(xe A—3IB(Be N, ANBCA)),

i.e.,
[Act]=V(xeA—IB(B N, ANBCA),
i.e.,
[A € 7] /\ \/ N, (B
z€A BCA
Proof. From Lemma 4.3, it is obvious. O

Definition 4.6. Let A be an interval-valued fuzzy set in 2%. Then A is said to be
normal, if there is Ay € 2% such that A(4g) = 1.
2X

We will denote the set of all normal interval-valued fuzzy sets in 2% as [I]% .

From the following result, we can see that an ordinary interval-valued fuzzy neigh-
borhood system has the same properties in a classical neighborhood system.

Theorem 4.7. Let (X,7) be an OIVFTS and let N : X — [IEVX be the mapping
given by N (z) = N, for each v € X. Then N has the following properties:

(1) foranyz € X, Ac2X FAeN, =z €A,
(2) foranyx € X, A, B€2X, E(AcN,)AN(BEN,) = ANBEN,,
(3) foranyx € X, A, B€2X, F(ACB) = (AeN, = BEN,),
(4) foranyz € X, E(AeN,) - 3C(C e N )AN(C CAAVylyeC = C e
).

Conwversely, if a mapping N : X — [I]?\;( satisfies the above properties (2) and
(3), then there is an ordinary interval-valued fuzzifying topology T : 2% — [I] on X
defined as follows: for each A € 2%,

AerT:=Ve(zre A— AeN,),

i.e.,

[Aer]=71(A /\N

z€A

In particular, if N satisfies the above properties (1) and (4) also, then for each
z € X, N is an ordinary interval-valued fuzzifying neighborhood system of x with
respect to T.
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Proof. (1) Since A € 2%, we can consider A as a special interval-valued fuzzy set in
x represented by A = [xa, xa]. Then [x € A] = A(z) = 1. On the other hand,

AeN,]= \/ r(O)<1

zeCCA

Thus [A € V| < [z € A].
(2) By the definition of Nz, [ANB € N;] =V, cccanps 7(C). Then
No(ANB) = Vaeccans 7(C)
= VzeCiCA, zeC2CB T(Cl N 02)
> \/wEC'1CA, zECch[T(Cl) A 7(C3)] [By Definition 3.1]
=Vaeec,caT(C) AV eo,cpT(C2)
= N (A) AN, (B)
=[(A € Ny) A (B €N,)].
Thus [ANB e N;] > [(A € N,) A (B € N,)).
(3) From the definition of AV, we can easily show that [A € N] < [B € N,].
(4)  [BOUCeN)AN(C CA)AVY(y € C = CeNy))]
= Ve aNalC) A A ee N (€]
=VeocaWNa(C) A Nyec Vyepce T(D)] [By Definition 4.1]
— Voo (C) A T(C)] [By Lemma 4.3
~Veeat(©)
2 Vaecca(C)
= [A € N]. [By Definition 4.1]
Then [3C((C e Np) AN(C C A)AVy(y e C — C eN,))| > [A e N,].
Conversely suppose N satisfies the above properties (2) and (3) and let 7 : 2% —
[I] be the mapping defined as follows: for each A € 2%,

TEA

Then clearly, 7(¢) = 1. Since A, is an interval-valued normal set in 2%, there is
Ap € 2% such that NV;(Ag) = 1. Thus N;(X) =1. So 7(X) = Aex Na(X) =1
Hence 7 satisfies the axiom (OIVFT1).
Let A, B € 2X. Then
T(ANB) = Ayeanp Ne(AN B)
> VaeansNa(A) AN (B)) [By (2)]
= /\wEAF‘IB Na(A) A /\mEAr']B Na(B)
Z /\meANx(A) /\ /\weBNx(B)
=7(A) AT(B).
Thus 7 satisfies the axiom (OIVFT?2).
Now let (A;)jes C 2. Then
T(UjeJ Aj) = /\zerGJ Aj Nw(UjeJ Aj)
= /\jeJ /\zeAj Nz(UjeJ Aj)
Z /\jeJ /\zeAj Na(4;) By (3)]
= /\jeJ T(4;).
Thus 7 satisfies the axiom (OIVFT3). So 7 € OIVT(X).
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Now suppose N satisfies additionally the above properties (1) and (4). Then from

the proof of Theorem 3.2 in [34], we can easily prove that A, is the ordinary interval-
valued fuzzifying neighborhood system of x with respect to 7 for each x € X. This
completes the proof. O

5. ORDINARY INTERVAL-VALUED FUZZIFYING BASES AND SUBBASES

Definition 5.1. Let (X,7) be an OIVFTS and let B : 2¥ — [I] be a mapping
such that B C 7, i.e., B(A) < 7(A) for each A € 2X. Then B is called an ordinary
interval-valued fuzzifying base for 7, if for each A € 2%,

B(A) = \/ N\ B(B;).

{Bj}jesC2%, A=U,c,; Bj jcJ
Example 5.2. (1) Let X be a set and let B : 2% — [I] be the mapping defined by:
B({z})=1Vx € X.

Then B is an ordinary interval-valued fuzzifying base for 7, .
(2) Let X = {a,b,c}, let @ € [I] \ {1} be fixed and let B : 2% — [I] be the
mapping as follows: for each A € 2%,

7(A) = { 1 if either A = {a,b} or {b,c} or X,

a otherwise.

Then B is not an ordinary interval-valued fuzzifying base for an OIVFT on X.

Assume that B is an ordinary interval-valued fuzzifying base for an OIVFT 7 on
X. Then clearly, B C 7. Thus 7({a,b}) = 7({b,c}) = 1. So

T({0}) = 7({a, b} N 7({b,c}) = 7({a, b} A7({b, c} = 1.
Hence 7({b}) = 1. On the other hand, by the definition of B,
T({b}) = V N B(4;) =a.
{Ajhesc2¥, {b}=U;c; A5 7€
This is a contradiction. Therefore B is not an ordinary interval-valued fuzzifying

base for an 7 on X

Theorem 5.3. Let (X, 7) be an OIVFTS and let B : 2% — [I] be a mapping such
that B C 7. Then B is an ordinary interval-valued fuzzifying base for T if and only
if for each x € X and each A € 2%,

N:(4) < \/ B(B).
r€BCA
Proof. (=): Suppose B is an ordinary interval-valued fuzzifying base for 7. Let
r € X and let A € 2X. Then
Nz(A) =V, epea 7(B) [By Definition 4.1]
=V,enca \/{Bj},-EJC2X, B=U,., B; Njes B(B;j). [By Definition 5.1]
If € BC Aand B=|J,_;B,, then there is jo € J such that z € Bj,. Thus

jed
/\ B(B;) <B(Bj,) < \/ B(B).
JjeJ rEBCA

188



Shi et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 175-203

So Na(A) <V, cpea B(B).
(«<): suppose the necessary condition holds. Let A € 2%, where A = ies Bj
and (Bj)jes C 2%. Then
7(A) = N\;e; 7(B;) [By the axiom (OIVEFT3)]
> N\,es B(B;)). [Since B C 7]
Thus
(5.3.1) T(A) > \/ )\ B(B;).
{Bj}jesC2¥%, A=U,c; B; j€J
On the other hand,

T(A) = Nyea Vacpca 7(B) [By Lemma 4.3]
= A,caNz(A) [By Definition 4.1]

< Asea Vaienca B(B) [By the hypothesis]

= Ve, an, Noca BUF (@),
where B, = {B € 2X 12 € B C A}. Furthermore, A = UxeA f(x) for each
f €zeaB,. So

Vo A B(@) = V N\ B(B;).
fe€llzcaB, z€A {Bj}jesC2¥, A=U, e, B; j€J
Hence
(5.3.2) T(A) < \ /\ B(B;).
{Bj}jeJCQXa AZUJ'eJ B; jed

By (5.3.1) and (5.3.2), 7(A) = V(p,},., cox, A=U,c, B Njes B(Bj). Therefore B is
an ordinary interval-valued fuzzifying base for 7. O
Theorem 5.4. Let B : 2% — [I] be a mapping. Then B is an ordinary interval-

valued fuzzifying base for some OIVT T on X if and only if it has the following
conditions:

() Visy,escox, x=u,., B, Nes B(Bj) =1,
(2) for any Ay, Ay € 2% and each x € A} N As,
BA)ABUA) <\ B(A).
TEACAINA,
In fact, 7 : 2% — [I] is the mapping defined as follows: for each A € 2%,
(A) = 1 if A=¢
T = V{Bj}jeJC2X7 A=U, ., B, /\jeJB(Bj) otherwise.

In this case, 7 is called the ordinary interval-valued fuzzifying topology on X
induced by B.

Proof. (=): Suppose B is an ordinary interval-valued fuzzifying base for some
OIVFT 7 on X. Then by Definition 5.1 and the axiom (OIVFT1),

\V /\ B(B;) =7(X) =1.
{Bj}iesC2¥, X=U;c; B; J€J

Thus the condition (1) holds.
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Let Al, A2 S 2X and let z € A1 n AQ. Then

B(Al) A\ B(AQ) S T(Al) N T(Ag) S T(Al n AQ) S Nm(Al N AQ) § \/ B(A)

T€EACAINAZ

Thus B(A1) AB(A2) <V ,caca,na, B(A). So the condition (2) holds.

(«<): Suppose the necessary conditions (1) and (2) are satisfied. From the defini-
tion of 7 and the condition (1), it is obvious that 7(X) = 7(¢) = 1. Then 7 satisfies
the axiom (OIVFTI).

Let (Aj)je] - 2X and let Bj = {{B5j : 5j S JJ} : Uﬁjer B(;j = AJ} Let
f € HaerBa. Then clearly, ;¢ ; Ustef(j) Bs; =Ujes Aj. Thus

T(Ujes 4) =V, Bs=U;c, A; Nse B(Bs)
> Vyen,e8, Nies Nos,epi) B(Bs;)
= /\jEJ \/{B(;j:(;jEJj}EBj /\5j€Jj B(B(SJ)
= Njes 7(4))-
So 7 satisfies the axiom (OIVFT3).

Now let A, B € 2% and suppose 7(A) > @ and 7(B) > @, for @ € [I]. Then there
are {A;, : j1 € J1} and {Bjy, : j2 € Jo} such that U; 5, 45, = A, Uj,es, Bjo = B,
and B(A;,) > a for each j; € J; and B(Bj,) > a for each j, € Jo. Let x € AN B.
Then there are ji1, € J1 and jo, € Jo such that z € A;, N By, . Thus from the
assumption,

G<BA)ABBL) <\ BO).

zeCCA;, NB

Jlx

Moreover, there is Cy, such that z € C, C A;,, NB,,, C ANB and B(C,) > a. Since
UxeAnB Cgc =A N B, we obtain

a< N B(C.) < \V /\ B(B;) = (AN B).

z€ANB U,jes Bi=ANB j€J

J2x

Now let b = 7(A) A 7(B) and let n be any natural number, where b e [1].
Then 7(A) > b— % and 7(B) > b— %, where b— 2 = [b= — L st + 1], Thus
T(ANB) >b— 1. So7(ANB) > b= 7(A) A7(B). Hence 7 satisfies the axiom
(OIVEFT2). This completes the proof. O

Example 5.5. (1) Let X = {a,b,c} and let @ € [I] \ {1} be fixed. We define the
mapping B : 2% — [I] as follows: for each A € 2%,

B(A) = { 1 if A= {b} or {a,b} or {b,c}

a otherwise.

Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4.
Thus B is an ordinary interval-valued base for an OIVFT 7 on X. In fact, 7 : 2%X —
[I] is defined as follows: for each A € 2%,

T(A){ 1 if A € {¢,{b},{a,b}, {b,c}, X}

a otherwise.
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(2) Let @ € [1]\ {1} be fixed. We define the mapping B : 28 — [I] as follows: for
each A € 2R,

o4 _ ) _
B(A):{} if A= (a,b) fora, be R witha <b

a otherwise.
Then it can be easily seen that B satisfies the conditions (1) and (2) in Theorem
5.4. Thus B is an ordinary interval-valued fuzzifying base for an OIVT 7; on R.

In this case, 7, will be called the a-ordinary interval-valued fuzzifying usual topol-
ogy on R and we will write 7, = U5.

(3) Let a € [I]\ {1} be fixed. We define the mapping B : 28 — [I] as follows: for
each A € 2R,

B(A):{l ifA:.[a,b)fora,béRWithagb
a otherwise.
Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4.
Thus B is an ordinary interval-valued fuzzifying base for an OIVFT 7; on R.

In this case, 7, will be called the a-ordinary interval-valued fuzzifying lower-limit
topology on R.

Definition 5.6. Let 71, 72 € OIVFT(X), and let By and B; be ordinary interval-
valued fuzzifying bases for 7 and 7y respectively. Then we say that By and B; are
equivalent, if T, = 7o.

Theorem 5.7. Let 7y, 70 € OIVFT(X), and let By and By be ordinary interval-
valued fuzzifying bases for T and o respectively. Then 11 is coarser than 1o if and
only if for each x € X and each A € 2%, if x € A, then Bi(A) <V, cpca B2(B).

Proof. (=): Suppose 71 is coarser than 7o. For each z € X, let x € A € 2X. Then
B1(A) < 7(A) [Since B is an ordinary interval-valued fuzzifying base for 7]
< 73(A) [By the hypothesis]
- V{Aj}jeJCQX» A=U cs Aj /\jGJ Ba(4;)-
[Since By is an ordinary interval-valued fuzzifying base for 72|
Since z € A and A = J;; A;, there is jo € J such that z € Aj,. Thus

\/ /\32(Aj)552(14j0)§ \/ By (B).

{Aj}Yjesc2X, A=U,c, A5 5€J z€BCA

So Bi(A) < Vyepca B2(B).
(«<): Suppose the necessary conditions hold. Let A € 2X. Then
T1(A) = Npea Vaoenca Bi(B) [By Lemma 4.3]
< NAsea Vienea Vacoes B2(C) [By the hypothesis]
= Vzecca /\xeA By (C)
= V{CI}IEACQX, A=U,c4 Ca /\zeA 32(Cz)
= TQ(A).

Thus 71 < 75. So 7 is coarser than 5. This completes the proof. O

The following is the immediate result of Definition 5.6 and Theorem 5.7.
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Corollary 5.8. Let By and By be ordinary interval-valued fuzzifying bases for two
ordinary interval-valued fuzzy topologies on a set X respectively. Then By and B,
are equivalent if and only if

(1) for each By € 2% and each x € By, Bi(B1) <V, ep,cp, B2(B2),

(2) for each By € 2% and each x € By, By(Bs) < \/weBch2 B1(By).

It is obvious that every ordinary interval-valued fuzzifying topology itself forms
an ordinary interval-valued fuzzifying base. Then the following provides a sufficient
condition for one to see if a mapping B : 2X — [I] such that B C 7 is an ordinary
interval-valued base for 7, where 7 € OIVFT(X).

Proposition 5.9. Let (X,7) be an OIVTS and let B : 2% — [I] be a mapping
such that B C 7. Then for each x € X and each A € 2% such that v € A and
T(A) < Vyepca B(B), B is an ordinary interval-valued fuzzifying base for 7.

B /\jeJ B(Bj)
< \/{Bj},].EJCQX7 X=U,c, Bj /\jEJ T(Bj) [Since B C T]
< \/{Bj}jeJCQX, xX=U;c, B; T(UjeJ Bj) [By the axiom (OIVFT3)]
=7(X)
= Noex Vaepex 7(B) [By Lemma 4.3] .
< Awex Vaenex Vaeccs B(C) [By the hypothesis]
= \/xECCX /\xEX B(C)
= \/{Bj}jEJc2X, X=Ujes Bj /\jeJ B(Bj)~
Since 7 € OIVFT(X), 7(X) = 1. Thus V{Bj}ngC2X7 x=U
So the condition (1) of Theorem 5.4 holds.
Now let A;, Ay € 2% and let x € A; N As. Then
B(A1) AB(A2) < 7(A1) AT(Asg) [Since B C 7]
< 7(A; N As) [By the axiom (OIVFT2)]
< \/IEACAlﬂAz B(A). [By the hypothesis]
Thus the condition (2) of Theorem 5.4 holds. So, by Theorem 5.4, B is an ordinary
interval-valued base for 7. This completes the proof. O

Proof. V{Bj}jeJCQ)‘v xX=U

Jj€EJ

B; /\je] B(BJ) =1

jeJ

Definition 5.10. Let (X,7) be an OIVFTS and let ¢ : 2% — [I] be a mapping.
Then ¢ is called an ordinary interval-valued fuzzifying subbase for 7, if ¢ is an
ordinary interval-valued fuzzifying base for 7, where " : 2% — [I] is the mapping
defined as follows: for each A € 2%,

P(A) = \ N ¢(B)),

(B;}C2X, A=, B; i€
where {B;} C 2% means that {B,} is a finite subset of 2%,

Example 5.11. Let a € [I]\ {1} be fixed. We define the mapping ¢ : 2% — [I] as
follows: for each A € 2K,

cp(A){ 1 if A= (a,0) or (c0,b) or (a,b)

a otherwise,
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where a, b € R such that a < b. Then we can easily see that ¢ is an ordinary
interval-valued fuzzifying subbase for the a-ordinary interval-valued fuzzifying usual
topology Uz on R.

Theorem 5.12. Let o : 2X — [I] be a mapping. Then ¢ is an ordinary interval-
valued fuzzifying subbase for some OIVET if and only if

\/ N e(B;) =1.

{Bj}tiesC2¥%, X=U,;c, BsicJ

Proof. (=): Suppose ¢ is an ordinary interval-valued fuzzifying subbase for some
OIVFT. Then by Definition 5.10, it is clear that the necessary condition holds.
(«<): Suppose the necessary condition holds. We only show that (" satisfies the
condition (2) in Theorem 5.4. Let A, B € 2% and # € AN B for each z € X. Then
1(A) A" (B)

=V Bj,=A Njres, #(Bi)) A (VA 0y =B Njrer, ¢(Bis))

J1€J1 j2€J2 B
= theh Bj, =A Vr]jzer B_7~2:B(/\j1€,]1 ‘P(le) A /\j2€J2 ‘P(sz))
< anEJ B,—anB Njes #(Bj)
=¢""(ANB).
Since z € AN B, ¢"(A) AN"(B) < ¢ (AN B) < V,cocans @ (C). Thus ¢
satisfies the condition (2) in Theorem 5.4. This completes the proof. O

Example 5.13. Let X = {a,b,c,d,e} and let @ € [I] \ {1} be fixed. We define the
mapping ¢ : 2% — [I] as follows: for each A € 2%,

o(A) = { 1 if Ae {{a},{a,b,c},{b,c,d},{c,e}}

a otherwise.
Then X = {a} U {b,c,d} U {c,e} and ¢"({a}) = ¢""({b,c,d}) = ¢ ({c,e}) = 1.

Thus
\/ N\ @(B)) =1.

{Bj}jesC2¥, X=U,c, B;jicJ

So by Theorem 5.12, ¢ is an ordinary interval-valued fuzzifying subbase for some
OIVFT.

The following is an immediate result of Corollary 5.8 and Theorem 5.12.

Proposition 5.14. ¢y, s : 2% — [I] be two mappings such that

\/ (Bj) =1

{Bj}jesC2%, X:UjEJ B; /\jeJ 1

{B;j}jesC2X, X=U,c,; B;jicJ
Suppose the two conditions hold:
(1) for each Sy € 2% and each x € S1, ©1(51) < V,es,cs, ©2(52),
(2) for each Sy € 2% and each x € So, p2(Ss) < \/xeslch ©1(S1).
Then 1 and @2 are ordinary interval-valued fuzzifying subbases for the same ordi-
nary interval-valued fuzzifying topology on X.
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6. ORDINARY INTERVAL-VALUED FUZZIFYING DERIVED SETS AND CLOSURES

Definition 6.1. Let (X, 7) be an OIVTS and let A € 2X. Then A’ is called the

ordinary interval-valued fuzzifying derived set of A, denoted by A, is an interval-
valued fuzzy set in X defined as follows: for each x € X,

zeA =VBBeN, - BN (A-{z}+£¢), iec
Al(w) = A (1-N.(B)) = A [1 - NS (B),1-N; (B)].

BA(A—{z}), Be2X BN(A—{z}), Be2X
Example 6.2. (1) Let X = {a,b,c}, let A ={a,b} and let (X, 7) be the OIVFTS
defined in Example 3.2 (1). Then

A(a) = Apn(a—{ay), Beax[1 =N (B),1 =N, (B)]
=1 =Ng({a}), 1 =Ny ({ah)] AL —f\”({ D, 1 =Ny ({e})]
A= NG ({a, ), 1= N ({a, c})]

and from Example 4.2,

N.({a}) =10.2,0.7], No({a,c})] =1[0.3,0.8].
On the other hand, we have No({c}) =V ,cpc(ny 7(B) = 7(¢) = [1,1]. Thus

Aa)=[1-07,1-02)A[l—1,1—1]A[1—0.8,1—0.3] = [0.0].

/

Similarly, we have A’ (a) = [0,0] = A"(b) and A'(c) = [0.4,0.7]. So
A= {(a,[0,0), (b, 0,0]), (¢, [0.4,0.7])}.

(2) Let (X,74) be the interval-valued fuzzifying indiscrete space (See Example
4.2 (2)). Suppose X has at least two points. Let z € X and let A € 2X. Then there
is ¢ # B € 2% such that BN A — {z} = ¢. Since B # X, 7,(B) = [0,0]. Thus by
the definition of A", A"(z) = [1,1]. So A" =1.

Suppose X is a singleton set {x}. Then clearly, we have B = ¢ such that BN
A —{x} = ¢. Thus 74(B) = 74(¢) = [1,1]. So A'(x) = [0,0]. Hence A" = 0.

(3) Let (X, 7, ) be the interval-valued fuzzifying discrete space (See Example 4.2
(3)). Let A € 2% and let x € X. Consider B € 2% such that BN A~ {z} = ¢. Then
clearly, by the definition of 7, 7, (B) = [1,1]. Thus A’ (z) = [0,0]. So A" = 0.

Lemma 6.3. Let (X, 7) be an OIVFTS and let A € 2X. Then for each x € X,
Al(z) =1 = N, (A°U {z}).
Proof. From Definition 6.1, it is clear. g

Theorem 6.4. For each Ac2X = AeCw A CA, ie., C(A)=[A" c A,
where for each B € [I]X and each Ae2¥, [BC Al =A,cu(1—B(x)).

Proof. Let x € X. Then
A C Al = Ayene1—A'(2))
= Npcae No(A°U {z}) [By Lemma 6.3]
= Nupeac Na(A°) [Since z € A°]
= Nscae Vocccae T(C) [By Definition 4.1]
— (4%
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= C(A) [By Proposition 3.4]
=[AeC]. 0

Definition 6.5. Let (X,7) be an OIVTS and let A € 2¥. Then the ordinary
interval-valued fuzzifying closure of A, denoted by A, is an interval-valued fuzzy set
in X defined as follows: for each z € X,

r€A:=VB(BD>A)A(B€EC)—x€B), ie,
Alz) = A (1—-C(B)).

rZBDA, Be2X
43 b

In fact, we can think that the ordinary interval-valued fuzzifying closure is a

mapping ~ : 2% — [I]X.

Lemma 6.6. Let (X, 7) be an OIVFTS and let A € 2X. Then for each z € X,
A(z) =1 — N (A).

Proof. Tt follows directly from Proposition 3.4. d

Theorem 6.7. Let (X,7) be an OIVTS, let x € X and let A € 2%. Then
(HDEA=AUA,
(2 Erec A VB(BEN, - ANB # ¢),
B)FA=A+ AccC.

Proof. (1) The proof is straightforward form Lemma 6.6.
(2) [VB<B EN; - ANB # (/5)] = /\AmB:¢(1 —/\/',;(B))
=1-=Vanp—yNa(B)
=1-V,ecccpca-7(0)
=1-N,(A°)
= A(z). [By Lemma 6.6]
(3) It follows from Theorem 6.4 and (1). O

In order to distinguish an interval-valued fuzzy set from an ordinary set, we will
denote interval-valued fuzzy sets as A, B, ---, etc. For each A € [I]*X and @ € [I],
aA is the interval-valued fuzzy set in X defined as follows: for each z € X,

(@A) (z) =a A Ax) =[a~ ANA(z),at A At (2)].

In fact, for each A € 2% and each @ € [I], we can easily see that aA is the interval-
valued fuzzy set in X given by:

aA =afx,; xal-
Then for each z € X,

- a fzeA
(@4) = { 0 otherwise.

Definition 6.8. Let A € [I]X and let @ € [I]. Then [A]; and [A]% are subsets of X
defined as follows: _
(i) [A]g = {z € X : A(z) > a} is called the a-level subset of X [32],
(i) [g]?’; —{z € X : A(z) > @} is called the G-strong level subset of X.
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It is obvious that for any @, b € [I] such that @ < b,
[Alz D [A];, [A]Z D [AL.
Definition 6.9. Let (X,7) be an OIVFTS and let = : 2X — [I]¥ be the ordinary
interval-valued fuzzifying closure mapping. Let ¢l : [I]X¥ — [I]X be the mapping
(will be called the extension of —) defined as follows: for each A € [I]X,
cd(A) = | J a4l

ael(l]

Suppose cl satisfies the following Kuratovski closure axioms: for any j’ Be (1%,

(i) cl(0) =0,
(i) A C cl(A),
(iii) cl(AU B) = cl(A) Ucl(B),

(iv) cl(cl(A)) C cl(A).

Then ~ : 2% — [I]¥ is called an ordinary interval-valued fuzzifying closure operator.

Lemma 6.10. Let (X, 7) be an OIVFTS and let A € [I]X. Then

Cl(g) = U g(x)[g]ﬁ(x)-

zeX

Proof. 1t follows directly from Definition 6.1 g

Proposition 6.11. Let (X, 7) be an OIVFTS. Then ~ satisfies the following Kura-
tovski closure azioms: for any A, B € 2X,

(1) o =29,
(2) AC A,
(3) (AUB)=AUB,
(4) AcC A.
Proof. (1) ¢(z) =1 — N, (¢°) [By Lemma 6.6]
=1- Nm(X)
=1—\,cpcx 7(B)[By Definition 4.1]
—1-7(X)=1-1
B = [0,0] = [x¢, x¢(x)
Thus ¢ = ¢.

(2) The proof is straightforward from Theorem 6.7 (1).

(3) (AUB)(x) =1 - N((AU B))
=1-N,(A°NDB°)
=1—-Vieccarnpe 7(C)
=1—=V.ec,cae, zecyepe T(C1NCo)
<1- Vacecchc, xECQCBC[(T(Cl) A (T(C2)]
=1 =Viec,caeT(C1) V(1= Vioeq,cpe T(C2)
= (1 = No(A9) V(1 = No(B9))
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Suppose A, B € 2% such that A C B and let a € [I]. Then
[Ala ={z € X : A(z) = [xa(z), xa(z)] = a} C [Bla,
where [A]lz =@, if z € A and [4]z ¢ if x ¢ A. Thus by Definition 6.9,

U c U aBl =

ae(l aell]
Since AC AUBand BC AU BZ AUB and Bc AUB. So
AUBcC AUB.

Hence AUB = AU B. -
(4) Since A € [I]*, by Lemma 6.10, A = J, . Z(x)[ﬂ]A(m) Then for each y € X,

Ay =\

zeX

(@) A Al (W)]-

N

For any z € X, let K, = [Z]Z(z)' Then

Alx) N2 (y) < Nsek, A2) A Ka(y)
= Nver (1= NL(A%) A (1= N (K2)
=1- \/zeKI VL (A%) VN (KZ)]-
By the procedure of proof of Theorem 5.3 in [34],

{D:{zy} CDCA}tC{B:ye BC A} for each z € K,

and
{D:yeDCA® z2¢ D, foreach ze K,} C{C:yeC C K.}
Thus
Ver, IW=(49) VN, (K7)]

= V.ek,[Viepca-7(B)V \/yeCch 7(C)]

> V.ex. Vi srcpcac T(D) V' Vyepcac, s¢b for cach zex, T(D)

= \/yeDcAc (D)

=Ny(4°). B
Furthermore, A(z) A K, (y) < A(y ) for each z € X. So

A(y) \/ @ () < A(y).
ex

Hence A C A. g

Lemma 6.12. Let (X,7) be an OIVFTS and let A € [I)X. Then cl(A) = Uzepald }2

Proof. [Alz D [;1]2 for each @ € [I]. Then cl(A) D Uzein ald ] For each @ € [I], let
€[0,a,) x[0,a) (n =1, 2, ---) such that a, 1 @, i.e, a; T a~ and ¢} T a*.
Then clearly, [A]% O [A]z. Thus [A];;; > [Ala. So U2 a‘;mﬁ > [A]s. Hence

U aldlz > U (U @ldl=) > U [4lz = c(4)
ae(l] ae[l] n=1 ae(l]
Therefore cl(A) = el 'd[g]g O
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Lemma 6.13. Let (X,7) be an OIVFS, let A € [I|X and let a € [I]. Then

alel(A)]; < alAls.

Proof. Let x € [cl(ﬁ)}% Then
= [ WARl@) = \/ A [A@)] > @
bell]

bell]

Thus there is by € [I] such that by A [ }bo( x) > a, ie., bp > a and [/T]Z;B(m) > a.
So [Alz(z) > [Al; (z) > @ Hence (a[Alz)(x) = @ A [Ala(z) = @ = (@[cl(A)]%)(x).
Therefore a[cl(A)]z C a[Als. O

Lemma 6.14. Let (X,7) be an OIVFTS, let A € [I)X and let a € [I]. Then
acl(A) = cl(ad).
Proof. Let:l; € [I] such that b~ € [0,a™) and b* € [0,a™). Then
[aAl; = {z € X : [aA](z) > b}
={reX: a/\A( ) > b}
={reX: A(z) > b} [Since b < @

= (Al
Thus
(6.14.1) [’d/T]fl; = [g]~, for each b € [I] such that b~ € [0,a”) and b* € [0,a™).

Now let} € [I] such that b~ € (a—,1] and b" € (a™,1]. Then
[aAl; ={z € X : [@A)(z) > b}
={reX: a/\A( )>b}
={zreX: a>bA( ) > b}
= ¢. [Since @ < b]

Thus

(6.14.2)  [aAl; = ¢, for each b€ [I] such that b~ € (a7, 1] and b™ € (a™, 1].

Let b € [I] such that b = a. Then clearly, [Z]g C [A]s. Thus [g]g C [Als. So by
(6.14.2), UZG[I] be(em 1), bre(at ] a[Al; C a[Alg. Hence
acl(A) = ane[I b[A } [By Definition 6.9]
= Usen@A DAL

(Ube[l] b—€l0,a=], b+t e€[0,at] b[A] )u <Ube[1 b=e(a—,1], bTe(at,1] [A]N)
A]b [By (6.14.1) and (6.14.2)]

- Ube [1], b= €[0,a~], b+ €[0,a*] [
= Usein blaAl; [By (6.14.2)]
= d(ad). O
Lemma 6.15. Let A@, B € [IX (@ € [1]). If A® > [Blz (@ € [I]) and
aern A = Uzepy alBla, then [A® = [Blz] >1~a= [l —a*,1-a"].
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Proof. A® = [B]z := (A@ c [Blz) A ([B]s ¢ A®)
N = [Va(x € A@ 5z € [Blg)] A Va(z € [Blg = x € A@)].
Then [A® = [Bla] = (A, gz, (1 = AP @) A (N, A@ (@) > [Bla())
= /\xe 5,1 — A@(z)). [Since (Asei), A@ () =1
Assume that [A = [Bls] < 1—a. Then there is 2o & [Bls such that A® (zq) >
a. Thus (Ube[l (b))( 0) > @. On the other hand,

(1 BB (w0) = \/ (5 A [Bls(z0)) < @

bel[]] bel1], b-€[0,a-], btelo,at]

Suppose \/b6 1], b-€[0,a-), b+eo, a+)[B] (zo) > G. Then for any b € [I] such that
b= €[0,a”) and bT € [0,a™"), zg € [B]b. Thus

zg € N [B; = [Bla-
belll], b= €[0,a=), b+e[0,at)

This is a contradiction. This completes the proof. O

The following theorem shows that an ordinary interval-valued fuzzifying closure
operator completely determines an OIVFT 7 and that in 7, the operator is the
closure.

Theorem 6.16. Let X be an OIVFTS. Then ~ : 2% — [1]X is an ordinary interval-
valued fuzzifying closure operator.

Conversely, let —* : 2% — [I]% be an ordinary interval-valued fuzzifying closure
operator on X and let 7 : 2% — [I]X be the mapping defined as follows: for each
Ae ¥

Aet =4 = A° ie., 7(A) = [A° = 49,
Then T is an oivt. Moreover, for each A € [I]X, A" = A, where A denotes the
ordinary interval-valued fuzzifying closure with respect to 7.

Proof. (=): Let cl : [I|X — [I]* be the extension of ~. Then we will prove that cl
satisfies the Kuratovski closure axioms.

(1) l(0) = Ugeqny al0Ja
= Uae a0
= U~€[1 a0 [By Proposition 6.11 (1)]

(ii) Let A € [ ]%X. Then by Definition 6.9 and Proposition 6.11 (2),
cd(Ad) = ] Az > | dldls = A.
ae[I] ael(l]

(iil) Let A, Be [1]X. Then clearly, by the procedure of the proof of Proposition
6.11 (3),
(AU B) D c(A)Ud(B).
On the other hand,
cl(AU B) = Uzeq dlAU Blg
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= Uaep @lAJz U [Blz [Since [AU Bl = [A]z U [Bla]
C Uzen/( ~] U [Ba) [ByNProposition 6.11 (3)]
= (Uaern 4la) Y (Uaern Bla)
= cl(A) Ucl(B).
Thus cl(AU B) = cl(A) U cl(B).
(iv) Let A € [I]¥. Then
c(cl(A)) = el 5[01(,1)]% [By Lemma 6.12]
aetn @lUse ) PlAE S
= Uz Usep @A)
e[ @ a[A]% [Since either a < borb <a,say a< g]
= Uzen alA]; [By Lemma 6.14]

&3

[By Proposition 6.11 (3)]

C Uzaepn alAla [By Lemma 6.13]

- UaE 1] a[A]E

C Uzaen @lAla [By Proposition 6.11 (4)]
= cl(A)

Thus cl(cl(A)) C cl(A). So — is an ordinary interval-valued fuzzifying closure oper-
ator.

(«=): Let C : 2% — [I]¥ be the mapping defined as follows: for each A € 2%
AeC:=A" =A, ie, C(A)=[4" = A

(OIVCFT1) By Definition 6.9 (i), ¢ = 0= ¢. Then[¢ =¢| =1. ThusC(¢) =1
Moreover, by Theorem 6.7 (1), X = X, i.e., [X = X]=1. So C(X) = 1. Hence C
satisfies the axiom (OIVCT1).

(OIVCFT2) Let A, B € 2X. Then

C(AUB)=[AUB = AU B]
= [A" UB" = AU B] [By Proposition 6.11 (3)]
>[A" = AA[B = B
=C(A) AC(B).
Thus C satisfies the axiom (OIVCFT2).
(OIVCFT3) The proof i is similar to (c) of Theorem 5.3 in [34].
Finally, we show that A" =4 for each A € 2% where — denotes the ordinary

interval-valued fuzzifying closure with respect to 7. Let A € 2% and let € X.
Then

Ar)=1-N,(A)=1- \/ 7(B)=1- \/ [B° =B

xEBCA® r€EBCA*®
Thus A(z) = A\cpca-(1— [BS = BF)). Since B¢ C B°,
B =B7= N1-B|y)=1-\/ B (y

yeB yEB
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So
(6.16.1) Az)= N VB ).

w€BCA® yeB
Let B={B:2 € B C A°} and let fy : B — |J B be the mapping defined by:
fo(B) =« for each B € B.

Then
A(@) = Apes Vsenpesn BE (f(B)) By (6.16.1)]
=Vienpesn Npes B (f(B))
> Npes B® (fo(B))
= /\BeB F*(1’)
= /\rgAcBu F*(x) [By the definition of B]
> A (z).
Thus A > A".

Now let A € 2%, B € [I]X such that B D A and B =B. Letz € X and for any
positive integer n, let b = 1 — B(z) — [2,1] > 0. Then clearly, z ¢ [B], ;. Since
A=[x,,x.] C E, AC [E]l—i' Thus

\ D" =D)>[B, ; =B,

x¢DDA
On the other hand,
\/ @Bz =B =B=\/ @Bz and [Blz > [Bl
ael(I] acl(I]
By Lemma 6.15, [B], 7 = [E]kb] >b. So
* 11
D =D]|>1-B(x)—|—,—
\/ [0 =D ORI

zZDDA

Let n — oco. Then clearly, VIQDDA[b* = D] > 1 — B(z). Moreover,

A@@)=1- \/ [D" =D]<B(x).
zZDDA

SoAcC A" Hence A=A". O
7. CONCLUSIONS

We defined an ordinary interval-valued fuzzifying topology and level set of an
OIVFT, and obtain some their basic properties and gave some examples. Second,
we introduced the concept of ordinary interval-valued fuzzifying neighborhood sys-
temS and and we proved that an ordinary interval-valued fuzzifying neighborhood
system has the same properties in a classical neighborhood system (See Theorem
4.7). Third, we defined an ordinary interval-valued fuzzifying base and an ordinary
interval-valued fuzzifying subbase, and obtain two characterization of an ordinary
interval-valued fuzzifying base (See Theorems 5.3 and 5.4) and one characterization
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of an ordinary interval-valued fuzzifying subbase (See Theorem 5.12), and gave some
their examples. Finally, we proved that an ordinary interval-valued fuzzifying topol-
ogy induced by an ordinary interval-valued fuzzifying closure operator (See Theorem
6.16).

In the future, by defining the mapping (will be called an interval-valued fuzzifying
toplogy on X) 7 : [I|X — [I] satisfying the following axioms: for any A, B € [I]*
and any (4;);es C 1%,

(i) 7(0) = 7(1) = [1,1],

(ii) T(AN B) > 7(A) AT(B),

(i) 7(Ujes 45) = Njes 7(45),
we will try to obtain various its properties and find some relations among ordinary
interval-valued fuzzifying topologies and interval-valued fuzzifying topologies.

Acknowledgements. The authors would like to thank the referees for their
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