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1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of
an ordinary set. In 1986, Chang [2] was the first to introduce the notion of a fuzzy
topology by using fuzzy sets. After that, many researchers [3, 4, 5, 6, 7, 8, 9, 10, 11,
12] have investigated several properties in fuzzy topological spaces. In particular,
Kandil et al [13], Saleh [14, 15], Samanta and Mondal [16] has applied the concept
of interval-valued fuzzy set (See [17, 18]) to topology.

However, in their definition of fuzzy topology, fuzziness in the notion of openness
of a fuzzy set was absent. In 1992, Samanta et al. [19, 20] introduced the concept of
gradation of openness(closedness) of fuzzy sets in X in two different ways, and gave
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definitions of a fuzzy topology on X. After then, some works have been done by
Ramadan [21], Demirci [22], Chattopadhyay and Samanta [23] and Peters [24, 25].

Moreover, Çoker and Demirci [26], and Samanta and Mondal [27, 28] defined
intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak′s sense [29]
by using intuitionistic fuzzy sets introduced by Atanassov [30]. They mainly dealt
with intuitionistic gradation of openness of fuzzy sets in the sense of Chang. Lim et
al. [31] investigated intuitionistic smooth topological spaces in Lowen′s sense. Kim
et al. [32] studied continuities and neighborhood systems in intuitionistic smooth
topological spaces. Also Choi et al. [33] studied an interval-valued smooth topology
by gradation of openness of interval-valued fuzzy sets introduced by Zadeh [17].
In particular, Ying [34] introduced the concept of the topology (called a fuzzifying
topology) considering the degree of openness of an ordinary subset of a set. In 2012,
Lim et al. [35] studied some properties in ordinary smooth topological spaces (See
[36, 37, 38] for the further topological structures in ordinary smooth topological
spaces).

Now we would like to study the topological structures given by the interval num-
ber as the degree of openness of an ordinary subset of a set. To do this, we intend to
conduct research as follows: We introduce the concepts of ordinary interval-valued
fuzzifying topological spaces and subspaces, and study some of their properties. Sec-
ond, we define an ordinary interval-valued neighborhood system and we show that
it has the same properties in a classical neighborhood system. Third, we introduce
the notions of ordinary interval-valued fuzzifying bases and subbases, and obtain
two characterization of an ordinary interval-valued fuzzifying base and one char-
acterization of an ordinary interval-valued fuzzifying subbase. Finally, we define
an ordinary interval-valued fuzzifying closure and prove that an ordinary interval-
valued fuzzifying topology induced by an ordinary interval-valued fuzzifying closure
operator.

2. Preliminaries

In this section, we list some notations, two definitions and one result needed in the
next sections (See [17]). Throughout this paper, I denotes the closed unit interval
[0, 1].

The set of all closed subintervals of I is denoted by [I], and members of [I] are

called interval numbers and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and
0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a.

We define an order and = on [I] as follows:

(∀ ã, b̃ ∈ [I])(ã ≤ b̃ ⇐⇒ a− ≤ b− and a+ ≤ b+),

(∀ ã, b̃ ∈ [I])(ã = b̃ ⇐⇒ ã ≤ b̃ and b̃ ≤ b̃, i.e., a− = b− and a+ = b+).

To say ã < b̃, we mean ã ≤ b̃ and ã ̸= b̃.

For any ã, b̃ ∈ [I], their minimum and maximum, denoted by ã∧ b̃ and ã∨ b̃, are
defined as follows:

ã ∧ b̃ = [a− ∧ b−, a+ ∧ b+],

ã ∨ b̃ = [a− ∨ b−, a+ ∨ b+].
176
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Let (ãj)j∈J ⊂ [I]. Then its inf and sup, denoted by
∧

j∈J ãj and
∨

j∈J ãj , are
defined as follows: ∧

j∈J

ãj = [
∧
j∈J

a−j ,
∧
j∈J

a+j ],∨
j∈J

ãj = [
∨
j∈J

a−j ,
∨
j∈J

a+j ].

For each ã ∈ [I], its complement, denoted by ãc, is defined as follows:

ãc = [1− a+, 1− a−].

Definition 2.1 ([17]). Let X be a nonempty set. Then a mapping A : X → [I] is
called an interval-valued fuzzy set (briefly, an IVFS) in X. Let [I]X denote the set
of all IVFSs in X. For each A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)] is called
the degree of membership of an element x to A, where A−, A+ ∈ IX are called a
lower fuzzy set and an upper fuzzy set in X respectively. For each A ∈ [I]X , we write

A = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty set and
the interval-valued fuzzy whole set in X, respectively. We define relations ⊂ and =
on [I]X as follows:

(∀ A, B ∈ [I]X)(A ⊂ B ⇐⇒ (x ∈ X)(A(x) ≤ B(x)),

(∀ A, B ∈ [I]X)(A = B ⇐⇒ (x ∈ X)(A(x) = B(x)).

Definition 2.2 ([17]). LetX be a nonempty set, let A ∈ [I]X and let (Aj)j∈J be any
subfamily of [I]X . Then the complement of A, denoted by Ac, and the intersection
and the union of (Aj)j∈J , denoted by

⋂
j∈J Aj and

⋃
j∈J Aj , are defined as follows

respectively: for each x ∈ X,

Ac(x) = [1−A+(x), 1−A−(x)],

(
⋂
j∈J

Aj)(x) =
∧
j∈J

Aj(x),

(
⋃
j∈J

Aj)(x) =
∨
j∈J

Aj(x).

Definition 2.3 ([16]). A ∈ [I]X is called an interval-valued fuzzy point (briefly, an
IVFP) with the support x ∈ X and the value ã ∈ [I] with a+ > 0, denoted by
A = xã, if for each y ∈ X,

xã(y) =

{
ã if y = x
0 otherwise.

The set of all IVFPs in X is denoted by IV FP (X).

For each xã ∈ IV FP (X) and A ∈ [I]X , we say that xã belong to A, denoted by
xã ∈ A, if ã ≤ A(x). It is clear that A =

⋃
xã∈A xã, for each A ∈ [I]X .

Result 2.4 (Theorem 1, [16]). Let X be a set, let A, B, C ∈ [I]X and (Aj)j∈J ⊂
[I]X . Then the followings hold:

(1) 0̃ ⊂ A ⊂ 1̃,
(2) A ∪B = B ∪A; A ∩B = B ∩A,
(3) A ∪ (B ∪ C) = (A ∪B) ∪ C; A ∩ (B ∩ C) = (A ∩B) ∩ C,
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(4) A, B ⊂ A ∪B; A ∩B ⊂ A, B,
(5) A ∩ (

⋃
j∈J Aj) =

⋃
j∈J(A ∩Aj); A ∪ (

⋂
j∈J Aj) =

⋂
j∈J(A ∪Aj),

(6) (0̃)c = 1̃; (1̃)c = 0̃,
(7) ((A)c)c = A,
(8) (

⋃
j∈J Aj)

c =
⋂

j∈J Ac
j; (

⋂
j∈J Aj)

c =
⋃

j∈J Ac
j.

We display the interval-valued fuzzy logical and corresponding set-theoretical no-
tations used in this paper.

(1) [¬α] := 1− [α],
[α → β] := 1 ∧ (1− [α] + [β]) = 1 ∧ [1− α+ + β−, 1− α− + β+],
[∀x α(x)] :=

∧
x∈X [α(x)], [∃x α(x)] :=

∨
x∈X [α(x)],

where X is the universe of discourse.
(2) Let A, B ∈ [I]X and let x ∈ X. Then

[x ∈ A] := A(x), A ⊂ B := ∀ x(x ∈ A → x ∈ B),
A ≡ B := A ⊂ B ∧B ⊂ A.

It can be easily see that [A ≡ B] =
∧

x∈X(1− | A(x)−B(x) |).

3. Ordinary interval-valued topology

In this section, we define an ordinary interval-valued fuzzifying topological space
and obtain some its properties. Throughout this paper, we denote the set of all
subsets of a set X as 2X . For any A ∈ 2X , we can consider A as the interval-valued
fuzzy set in X given by [χ

A
, χ

A
], where χ

A
denotes the characteristic function of A

(See [39]).

Definition 3.1. Let X be a nonempty set. Then a mapping τ = [τ−, τ+] : 2X → [I]
is called an ordinary interval-valued fuzzifying topology (in short, OIVFT) on X, if
it satisfies the following axioms: for any A, B ∈ 2X and each (Aj)j∈J ⊂ 2X ,

(OIVFT1) τ(ϕ) = τ(X) = 1,
(OIVFT2) τ(A ∩B) ≥ τ(A) ∧ τ(B),
(OIVFT3) τ(

⋃
j∈J Aj) ≥

∧
j∈J τ(Aj).

The pair (X, τ) is called an ordinary interval-valued fuzzy fuzzifying topological space
(in short, OIVFTS).

We will denote the set of all ordinary interval-valued fuzzifying topologies on X
as OIV FT (X).

We can easily see that for an OIVFTS (X, τ), (X, τ−, τ+) is an ordinary smooth
bitopological space such that τ− ⊂ τ+ (See [35]).

Let 2 = {0,1}. Then we can consider 2 as the ordinary two point set 2 = {0, 1}
such that 0 = 0 and 1 = 1. Thus τ : 2X → 2 satisfy the axioms in Definition 3.1.
So τ ∈ T (X), where T (X) denotes the set of all classical topologies on X. So we
can see that T (X) ⊂ OIV FT (X).

Example 3.2. (1) Let X = {a, b, c}. We define the mapping τ : 2X → [I] as follows:
τ(ϕ) = τ(X) = 1,
τ({a}) = [0.3, 0.8], τ({b}) = [0.4, 0.7], τ({c}) = [0.3, 0.6],
τ({a, b}) = [0.3, 0.7], τ({b, c}) = [0.4, 0.6], τ({a, c}) = [0.3, 0.8].

Then we can easily see that τ ∈ OIV FT (X).
178
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(2) Let X be a nonempty set. We define the mapping τϕ : 2X → [I] as follows:
for each A ∈ 2X ,

τϕ(A) =

{
1 if either A = ϕ or A = X,
0 otherwise.

Then clearly, τϕ ∈ OIV T (X).
In this case, τϕ [resp. (X, τϕ)] will be called the ordinary interval-valued fuzzifying

indiscrete topology on X [resp. the ordinary interval-valued fuzzifying indiscrete
space].

(3) Let X be a nonempty set. We define the mapping τ
X

: 2X → [I] as follows:
for each A ∈ 2X ,

τ
X
(A) = 1.

Then clearly, τ
X
∈ OIV FT (X).

In this case, τ
X
[resp. (X, τ

X
)] will be called the ordinary interval-valued fuzzifying

discrete topology on X [resp. the ordinary interval-valued fuzzifying discrete space].
(4) Let X be an infinite set and let ã ∈ [I]\{0,1} be fixed. We define the mapping

τ
ã
: 2X → [I] as follows: for each A ∈ 2X ,

τ
ã
(A) =

{
1 if either A = ϕ or Ac is finite,
ã otherwise.

Then we can easily see that τ
ã
∈ OIV FT (X).

In this case, τ
ã
will be called the ã-ordinary interval-valued fuzzifying finite com-

plement topology on X. τ
ã
is of interest only when X is a finite set, because if X is

infinite, then τ
ã
= τ

X
.

(5) Let X be an infinite set and let ã ∈ [I]\{0,1} be fixed. We define he mapping
τ
c,ã

: 2X → [I] as follows: for each A ∈ 2X ,

τ
c,ã

(A) =

{
1 if either A = ϕ or Ac is countable,
ã otherwise.

Then clearly, τ
c,ã

∈ OIV FT (X).
In this case, τ

c,ã
will be called the ã-ordinary interval-valued fuzzifying countable

complement topology on X.
(6) Let T be the topology generated by S = {(a, b] : a, b ∈ R, a < b} as a subbase,

let T0 be the family of all open sets of R w.r.t. the usual topology of R and let
ã ∈ [I] \ {0,1} be fixed. We define the mapping τ (R,ã) : 2R → [I] as follows: for each
A ∈ IR,

τ (R,ã)(A) =

 1 if A ∈ T0,
ã if A ∈ T \ T0,
0 otherwise.

Then we can easily see that τ (R,ã) ∈ OIV FT (X).
(7) Let T ∈ T (X). We define the mapping τ

T
: 2X → [I] as follows : for each

A ∈ 2X ,

τ
T
(A) =

{
1 if A ∈ T,
0 otherwise.
179
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Then it is easily seen that τ
T
∈ OIV FT (X). Moreover, we can see that if T is the

classical indiscrete topology, then τ
T
= τϕ and if T is the classical discrete topology,

then τ
T
= τ

X
.

Definition 3.3. Let X be a nonempty set. Then a mapping C = (µC , νC) : 2
X → [I]

is called an ordinary interval-valued fuzzifying cotopology (in short, OIVCT) on X,
if it is satisfies the following conditions: for any A,B ∈ 2X and each {Aj}j∈J ⊂ 2X ,

(OIVCT1) C(ϕ) = C(X) = 1,
(OIVCT2) C(A ∪B) ≥ C(A) ∧ C(B),
(OIVCT3) C(

⋂
j∈J Aj) ≥

∧
j∈J C(Aj).

The pair (X, C) is called an ordinary interval-valued fuzzifying cotopological space (in
short, OIVFCTS). The set of all OIVFCTs in X is denoted by OIV FCT (X).

The following is the immediate result of Definitions 3.1 and 3.3.

Proposition 3.4. We define two mappings f : OIV FT (X) → OIV FCT (X) and
g : OIV FCT (X) → OIV FT (X) as follows, respectively:

[f(τ)](A) = τ(Ac), ∀ τ ∈ OIV FT (X), ∀ A ∈ 2X

and
[g(C)](A) = C(Ac), ∀ C ∈ OIV FCT (X), ∀ A ∈ 2X .

Then f and g are well-defined. Moreover, g◦f = idOIV FT (X) and f◦g = idOIV FCT (X).

Remark 3.5. For each τ ∈ OIV FT (X) and each C ∈ OIV FCT (X), let f(τ) = Cτ
and g(C) = τC . Then, from Proposition 3.4, we can see that τCτ

= τ and CτC = C.

Definition 3.6. Let τ1 , τ2 ∈ OIV FT (X) and let C1, C2 ∈ OIV FCT (X). Then
(i) we say that τ

1
is finer than τ

2
or τ

2
is coarser than τ

1
, denoted by τ

2
≤ τ

1
, if

τ
2
(A) ≤ τ

1
(A) for each A ∈ 2X ,

(ii) we say that C1 is finer than C2 or C2 is coarser than C1, denoted by C2 ≤ C1,
if C2(A) ≤ C1(A) for each A ∈ 2X .

We can easily see that τ
1
is finer than τ

2
if and only if Cτ1 is finer than Cτ2 , and

(OIV FT (X),≤) and (OIV FCT (X),≤) are posets, respectively.
From Example 3.2 (2) and (3), it is obvious that τϕ is the coarsest ordinary

interval-valued topology on X and τX is the finest ordinary interval-valued topology
on X.

Proposition 3.7. If (τj)j∈J ⊂ OIV FT (X), then
⋂

j∈J τj ∈ OIV FT (X),

where [
⋂

j∈J τj ](A) =
∧

j∈J τj(A) ∀ A ∈ 2X .

Proof. From Definitions 2.2 and 3.1, it is obvious. □

From Definition 3.6 and Proposition 3.7, we have the following.

Proposition 3.8. (OIV FT (X),≤) is a meet complete lattice with the least element
τϕ and the greatest element τ

X
.

Definition 3.9. Let (X, τ) be an OIV FT s and let ã ∈ [I]. We define two families
[τ ]ã and [τ ]∗ã as follows, respectively:

(i) [τ ]ã = {A ∈ 2X : τ(A) ≥ ã},
(ii) [τ ]∗ã = {A ∈ 2X : τ(A) > ã}.
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In this case, [τ ]ã [resp. [τ ]∗ã] is called the ã-level [resp. strong ã-level] set of τ .

We can easily see that [τ ]0 = 2X is the classical discrete topology on X and
[τ ]∗1 = ϕ. Moreover, it is obvious that for any ã ∈ [I], [τ ]∗ã ⊂ [τ ]ã.

Lemma 3.10. Let τ ∈ OIV FT (X) and let ã, b̃ ∈ [I]. Then
(1) [τ ]ã ∈ T (X),

(2) if ã ≤ b̃, then [τ ]̃b ⊂ [τ ]ã,

(3) [τ ]ã =
⋂
b̃<ã

[τ ]̃b, where ã ∈ [I] \ {0},

(1)
′
[τ ]∗ã ∈ T (X), where ã ∈ [I] \ {1},

(2)
′
if ã ≤ b̃, then [τ ]∗

b̃
⊂ [τ ]∗ã,

(3)
′
[τ ]∗ã =

⋃
b̃>ã

[τ ]∗
b̃
, where ã ∈ [I] \ {1}.

Proof. The proofs of (1), (1)
′
, (2) and (2)

′
are obvious from Definitions 3.1 and 3.9.

(3) From (2), it is obvious that ([τ ]ã)ã∈[I]\{0} is a descending family of classical

topologies on X. Then clearly, [τ ]ã ⊂
⋂
b̃<ã

[τ ]̃b for each ã ∈ [I] \ {0}.

Suppose A /∈ [τ ]ã. Then τ−(A) < a− or τ+(A) < a+. Thus

∃b−, b+ ∈ I \ {0} such that τ−(A) < b− < a− or τ+(A) < b+ < a+.

So, in either cases, A /∈ [τ ]̃b for some b̃ ∈ [I] \ {0} such that b̃ < ã, i.e., A /∈
⋂
b̃<ã

[τ ]̃b.

Hence
⋂
b̃<ã

[τ ]̃b ⊂ [τ ]ã. Therefore [τ ]ã =
⋂
b̃<ã

[τ ]̃b.

(3)
′
The proof is similar to (3). □

Remark 3.11. From (1) and (2) in Lemma 3.10, we can see that for each τ ∈
OIV T (X), ([τ ]ã)ã∈[I] is a family of descending classical topologies (will be called
the ã-level classical topologies on X w.r.t. τ).

Lemma 3.12. (1) Let (τ
ã
)ã∈[I] be a descending family of classical topologies on

X such that τ0 is the classical discrete topology on X. We define the mapping
τ : 2X → [I] as follows: for each A ∈ 2X ,

τ(A) =
∨

A∈τ
ã

ã.

Then τ ∈ OIV FT (X).
(2) If τ

ã
=

⋂
b̃<ã τb̃ for each ã ∈ [I] \ {0}, then [τ ]ã = τ

ã
.

(3) If τ
ã
=

⋃
b̃>ã τb̃ for each ã ∈ I] \ {1}, then [τ ]∗ã = τ

ã
.

Proof. (1) It is obvious that ∅, X ∈ τ
ã
for each ã ∈ [I]. Then by the definition of

τ , τ(∅) = τ(X) = 1. Thus the condition (OIVFT1) holds.

Suppose A, B ∈ 2X such that τ(A) = ã and τ(B) = b̃. If ã = 0 or b̃ = 0,
then τ−(A ∩ B) ≥ 0 ≥ τ−(A) ∧ τ−(B), τ+(A ∩ B) ≥ 0 ≥ τ+(A) ∧ τ+(B). Thus
τ(A∩B) ≥ τ(A)∧ τ(A)∧ τ(B). So without loss of generality, we assume that ã > 0,
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b̃ > 0, i.e., ã, b̃ ∈ [I] \ {0} and let ε > 0. Then by the definition of τ , there are
c̃1, c̃2 ∈ [I] \ {0} such that

a− − ε < c−1 ≤ a−, a+ − ε < c+1 ≤ a+, b− − ε < c−2 ≤ b−, b+ − ε < c+2 ≤ b+

and A ∈ τ
c̃1
, B ∈ τ

c̃2
. Let c− = c−1 ∧c

−
2 , c

+ = c+1 ∧c
+
2 and d− = a−∧b−, d+ = a+∧b+.

Then clearly, c̃ ∈ [I] \ {0} such that c̃ ≤ ã and c̃ ≤ b̃. Since (τ
ã
)ã∈[I] is a descending

family of classical topologies on X, τ
ã
⊂ τ

c̃
and τ

b̃
⊂ τ

c̃
. Since A ∈ τ

ã
and B ∈ τ

b̃
,

A, B ∈ τ
c̃
. Thus A ∩B ∈ τ

c̃
. So we have

τ−(A ∩B) ≥ c− > d− − ε, τ+(A ∩B) ≥ d+ > a+ − ε.

Since ε > 0 is arbitrary,

τ−(A ∩B) ≥ c− = d− = a− ∧ b−, τ+(A ∩B) ≥ d+ = a+ ∧ b+.

Hence τ(A ∩B) ≥ τ(A) ∧ τ(B). Therefore, in either cases, the condition (OIVFT2)
holds.

Finally, let (Aj)j∈J ⊂ 2X , let τ(Aj) = ãj for each j ∈ J and let ã =
∧

j∈J ãj . If

ã = 0, then τ−(
⋃

j∈J Aj) ≥
∧

j∈J τ−(Aj) and τ+(
⋃

j∈J Aj) ≥
∧

j∈J τ+(Aj). Thus

τ(
⋃

j∈J Aj) ≥ ∧j∈Jτ(Aj). Suppose ã > 0 and let ε > 0 such that a− > ε. Then

clearly, 0 < a−− ε < a−j and 0 < a+− ε < a+j for each j ∈ J. Thus Aj ∈ τ
[a−−ε,a+−ε]

for each j ∈ J. Since τ
[a−−ε,a+−ε]

is a topology on X,
⋃

j∈J Aj ∈ τ
[a−−ε,a+−ε]

. By the

definition of τ , we get

τ−(
⋃
j∈J

Aj) ≥ a− − ε, τ+(
⋃
j∈J

Aj) ≥ a+ − ε.

Since ε is arbitrary, we have

τ−(
⋃
j∈J

Aj) ≥ a− =
∧
j∈J

τ−(Aj), τ+(
⋃
j∈J

Aj) ≥ a+ =
∧
j∈J

τ+(Aj).

So τ(
⋃

j∈J Aj) ≥
∧

j∈J τ(Aj). Hence, in either cases, the condition (OIVFT3) holds.

Therefore τ ∈ OIV FT (X).
(2) Suppose τ

ã
=

⋂
b̃<ã τb̃ for each ã ∈ [I] \ {0} and let A ∈ [τ ]

ã
. Then clearly,

τ(A) ≥ ã. By the definition of τ , τ(A) =
∨

A∈τ
c̃
c̃ = d̃ ≥ ã, where c̃ ∈ [I] \ {0}. Let

ε > 0. Then there is b̃ ∈ [I] \ {0} such that d− − ε < b−, d+ − ε < b+. Thus we get

a− − ε ≤ d− − ε < b−, a+ − ε ≤ d+ − ε < b+.

So A ∈ τ
[a−−ε,a+−ε]

. Since ε is arbitrary, A ∈ τ
ã
. Hence [τ ]

ã
⊂ τ

ã
. It is clear that

τ
ã
⊂ [τ ]

ã
. Therefore [τ ]

ã
= τ

ã
.

(3) The proof is similar to (2). □

From Lemmas 3.10 and 3.12, we have the following result.

Proposition 3.13. Let τ ∈ OIV FT (X) and let [τ ]ã be the ã-level classical topology
on X w.r.t. τ . We define the mapping η : 2X → [I] as follows: for each A ∈ 2X ,

η(A) =
∨

A∈[τ ]ã

ã.

Then η = τ.
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The fact that an ordinary interval-valued topological space fully determined by
it′s decomposition in classical topologies is restated in the following Theorem.

Theorem 3.14. Let τ1 , τ2 ∈ OIV FT (X). Then τ1 = τ2 if and only if [τ1 ]ã = [τ2 ]ã
for each ã ∈ [I] or alternatively, if and only if [τ

1
]∗ã = [τ

2
]∗ã for each ã ∈ [I].

Remark 3.15. In a similar way, we can construct an ordinary interval-valued fuzzi-
fying cotopology C on a set X, by using the ã-levels,

[C]ã = {A ∈ 2X : C(A) ≥ ã} and [C]∗ã = {A ∈ 2X : C(A) > ã}

for each ã ∈ [I].

Definition 3.16. Let T ∈ T (X) and let τ ∈ OIV FT (X). Then τ is said to be
compatible with T , if T = S(τ), where S(τ) = {A ∈ 2X : τ(A) > 0}.

Example 3.17. (1) Let T0 be the classical indiscrete topology on X. Then clearly,

S(τϕ) = {A ∈ 2X : τϕ(A) > 0} = {ϕ,X} = T0.

Thus τϕ is compatible with T0.
(2) Let T1 be the classical discrete topology on X. Then clearly,

S(τ
X
) = {A ∈ 2X : τ

X
(A) > 0} = 2X = T1.

Thus τ
X

is compatible with T1.
(3) Let X be a nonempty set and let ã ∈ [I] \ 1 be fixed. We define the mapping

τ : 2X → [I] as follows: for each A ∈ 2X ,

τ(A) =

{
1 if either A = ϕ or A = X,
ã otherwise.

Then clearly, τ ∈ OIV FT (X) and τ is compatible with T1.

Furthermore, every classical topology can be considered as an ordinary interval-
valued topology in the sense of the following result.

Proposition 3.18. Let (X, τ) be a classical topological space and and let ã ∈ [I]\{0}
be fixed. Then there exists τ ã ∈ OIV FT (X) such that τ ã is compatible with τ .
Moreover, [τ ã]ã = τ .

In this case, τ ã is called ã-th ordinary interval-valued fuzzifying topology on X
and (X, τ ã) is called an ã-th ordinary interval-valued fuzzifying topological space.

Proof. Let ã ∈ [I]\{0} be fixed and we define the mapping τ ã : 2X → [I] as follows:
for each A ∈ 2X ,

τ ã(A) =

 1 if either A = ϕ or A = X,
ã if A ∈ τ \ {ϕ,X},
0 otherwise.

Then we can easily see that τ ã ∈ OIV FT (X) and [τ ã]ã = τ . Moreover, by the
definition of τ ã,

S(τ ã) = {A ∈ 2X : τ ã(A) > 0} = τ.

Thus τ ã is compatible with τ . □
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Proposition 3.19. Let (X,T ) be a classical topological space and let C(T ) be the

set of all OIVFTs on X compatible with T , let T̃ = T \ {ϕ,X} and let [I]T̃0 be the

set of all mappings f : T̃ → [I] satisfying the following conditions:

(i) f(A) ̸= 0 for each A ∈ T̃ ,

(ii) f(A ∩B) ≥ f(A) ∧ f(B) for any A, B ∈ T̃ ,

(iii) f(
⋃

j∈J Aj) ≥
∧

j∈J f(Aj) for any (Aj)j∈J ⊂ T̃ .

Then there is a one-to-one correspondence between C(T ) and the set [I]T̃0 .

Proof. We define the mapping F : [I]T̃0 → C(T ) as follows: for each f ∈ [I]T̃0 ,

F (f) = τf ,

where τ
f
: 2X → [I] is the mapping defined by: for each A ∈ 2X ,

τ
f
(A) =


1 if either A = ϕ or A = X,

f(A) if A ∈ T̃ ,
0 otherwise.

Then we easily see that τ
f
∈ C(T ).

Now we define the mapping G : C(T ) → [I]T̃0 as follows: for each τ ∈ C(T ),

G(τ) = fτ ,

where fτ : T̃ → [I] is the mapping defined by: for each A ∈ T̃ ,

fτ (A) = τ(A).

Then clearly, fτ ∈ [I]T̃0 . Furthermore, we can see that F ◦G = idC(T ) and G ◦ F =

id
[I]T̃0

. Thus C(T ) is equipotent to [I]T̃0 . This completes the proof. □

Proposition 3.20. Let (X, τ) be an OIVFTS and let Y ⊂ X. We define the mapping
τ
Y
: 2Y → [I] as follows: for each A ∈ 2Y ,

τ
Y
(A) =

∨
B∈2X , A=B∩Y

τ(B).

Then τ
Y
∈ OIV T (Y ) and τ

Y
(A) ≥ τ(A) for each A ∈ 2Y .

In this case, (Y, τ
Y
) is called an ordinary interval-valued fuzzifying subspace of

(X, τ) and τ
Y
is called the induced ordinary interval-valued fuzzifying topology on Y

by τ.

Proof. It is obvious that the condition (OIVFT1) holds, i.e., τY (ϕ) = τY (Y ) = 1.
Let A,B ∈ 2Y . Then

τ
Y
(A) ∧ τ

Y
(B) = (

∧
C1∈2X , A=Y ∩C1

τ(C1)) ∧ (
∧

C2∈2X , B=Y ∩C2
τ(C2))

=
∧

C1, C1∈2X , A∩B=Y ∩(C1∩C2)
[τ(C1) ∧ τ(C2)]

≤
∧

C1, C1∈2X , A∩B=Y ∩(C1∩C2)
τ(C1 ∩ C2)

= τ
Y
(A ∩B).

Thus the condition (OIVFT2) holds.
Now let (Aj)j∈J ⊂ 2Y . Then

τ
Y
(
⋃

j∈J Aj) =
∧

Bj∈2X , (
⋃

j∈J Bj)∩Y=
⋃

j∈J Aj
τ(
⋃

j∈J Bj)

≥
∧

Bj∈2X , (
⋃

j∈J Bj)∩Y=
⋃

j∈J Aj
[
∧

j∈J τ(Bj)]
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=
∧

ȷ∈J [
∧

Bj∈2X , (
⋃

ȷ∈J Bj)∩Y=
⋃

j∈J Aȷ
τ(Bj)]

=
∧

j∈J τ
Y
(Aj).

Thus the condition (OIVT3) holds. So τ
Y
∈ OIV FT (Y ).

Furthermore, we can easily see that for each A ∈ 2Y , τ
Y
(A) ≥ τ(A). This

completes the proof. □

The following is the immediate result of Proposition 3.20.

Corollary 3.21. Let (Y, τ
Y
) be an ordinary interval-valued fuzzifying subspace of

(X, τ) and let A ∈ 2Y .
(1) CY (A) =

∨
B∈2X ,A=B∩Y C(B), where CY (A) = τ

Y
(Y −A).

(2) If Z ⊂ Y ⊂ X, then τ
Z
= (τ

Y
)
Z
.

4. Ordinary interval-valued fuzzifying neighborhood structures

Definition 4.1. Let (X, τ) be an OIVFTS and let x ∈ X. Then a mapping Nx :
2X → [I] is called the ordinary interval-valued fuzzifying neighborhood system of x,
if for each A ∈ 2X ,

[A ∈ Nx] = Nx(A) =
∨

x∈B⊂A

τ(B).

Example 4.2. Let X = {a, b, c} and let (X, τ) be the OIVFTS defined in Example
3.2 (1). Then

Na({a}) =
∨

a∈B⊂{a} τ(B) = τ({a}) = [0.2, 0.7],

Na({a, b}) =
∨

a∈B⊂{a,b} τ(B) = τ({a}) ∨ τ({a, b})
= [0.2, 0.7] ∨ [0.3, 0.7] = [0.3, 0.7],

Na({a, c}) =
∨

a∈B⊂{a,c} τ(B) = τ({a}) ∨ τ({a, c})
= [0.2, 0.7] ∨ [0.3, 0.8] = [0.3, 0.8],

Na(X) =
∨

a∈B⊂X τ(B) = τ({a}) ∨ τ({a, b}) ∨ τ({a, c})
= [0.2, 0.7] ∨ [0.3, 0.7] ∨ [0.3, 0.8] = [0.3, 0.8].

We have the similar to that of Lemma 3.1 in [34].

Lemma 4.3. Let (X, τ) be an OIVFTS and let A ∈ 2X . Then∧
x∈A

∨
x∈B⊂A

τ(B) = τ(A).

Proof. It is clear that
∧

x∈A

∨
x∈B⊂A τ(B) ≥ τ(A). Now let Bx = {B ∈ 2X : x ∈

B ⊂ A} and let f ∈ Πx∈ABx. Then clearly,
⋃

x∈A f(x) = A. Thus∧
x∈A

τ(f(x)) ≤ τ(
⋃
x∈A

f(x)) = τ(A).

So ∧
x∈A

∨
x∈B⊂A

τ(B) =
∨

f∈Πx∈ABx

∧
x∈A

τ(f(x)) ≤ τ(A).

Hence
∧

x∈A

∨
x∈B⊂A τ(B) = τ(A). □

185



Shi et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 175–203

Example 4.4. Let X = {a, b, c} and let (X, τ) be the OIVFTS defined in Example
3.2 (1). Let A = {a, b}. Then∧

x∈A

∨
x∈B⊂A τ(B) = (τ({a}) ∨ τ(A)) ∧ (τ({b}) ∨ τ(A))

= ([0.2, 0.7] ∨ [0.3, 0.7]) ∧ ([0.4, 0.5] ∨ [0.2, 0.7])
= [0.3, 0.7] ∧ [0.4, 0.7] = [0.3, 0.7]
= τ(A).

Thus we can confirm that Lemma 4.3 holds.

We have the similar to Theorem 3.1 in [34].

Proposition 4.5. Let (X, τ) be an OIVFTS, let A ∈ 2X and let x ∈ X. Then

⊨ (A ∈ τ) ↔ ∀(x ∈ A → ∃B(B ∈ Nx ∧B ⊂ A)),

i.e.,

[A ∈ τ ] = [∀(x ∈ A → ∃B(B ∈ Nx ∧B ⊂ A)],

i.e.,

[A ∈ τ ] =
∧
x∈A

∨
B⊂A

Nx(B).

Proof. From Lemma 4.3, it is obvious. □

Definition 4.6. Let A be an interval-valued fuzzy set in 2X . Then A is said to be
normal, if there is A0 ∈ 2X such that A(A0) = 1.

We will denote the set of all normal interval-valued fuzzy sets in 2X as [I]2
X

N .

From the following result, we can see that an ordinary interval-valued fuzzy neigh-
borhood system has the same properties in a classical neighborhood system.

Theorem 4.7. Let (X, τ) be an OIVFTS and let N : X → [I]2
X

N be the mapping
given by N (x) = Nx for each x ∈ X. Then N has the following properties:

(1) for any x ∈ X, A ∈ 2X , ⊨ A ∈ Nx → x ∈ A,
(2) for any x ∈ X, A,B ∈ 2X , ⊨ (A ∈ Nx) ∧ (B ∈ Nx) → A ∩B ∈ Nx,
(3) for any x ∈ X, A,B ∈ 2X , ⊨ (A ⊂ B) → (A ∈ Nx → B ∈ Nx),
(4) for any x ∈ X, ⊨ (A ∈ Nx) → ∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈

Ny)).

Conversely, if a mapping N : X → [I]2
X

N satisfies the above properties (2) and
(3), then there is an ordinary interval-valued fuzzifying topology τ : 2X → [I] on X
defined as follows: for each A ∈ 2X ,

A ∈ τ := ∀x(x ∈ A → A ∈ Nx),

i.e.,

[A ∈ τ ] = τ(A) =
∧
x∈A

Nx(A).

In particular, if N satisfies the above properties (1) and (4) also, then for each
x ∈ X, Nx is an ordinary interval-valued fuzzifying neighborhood system of x with
respect to τ .
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Proof. (1) Since A ∈ 2X , we can consider A as a special interval-valued fuzzy set in
x represented by A = [χA, χA]. Then [x ∈ A] = A(x) = 1. On the other hand,

[A ∈ Nx] =
∨

x∈C⊂A

τ(C) ≤ 1.

Thus [A ∈ Nx] ≤ [x ∈ A].
(2) By the definition of Nx, [A ∩B ∈ Nx] =

∨
x∈C⊂A∩B τ(C). Then

Nx(A ∩B) =
∨

x∈C⊂A∩B τ(C)
=

∨
x∈C1⊂A, x∈C2⊂B τ(C1 ∩ C2)

≥
∨

x∈C1⊂A, x∈C2⊂B [τ(C1) ∧ τ(C2)] [By Definition 3.1]

=
∨

x∈C1⊂A τ(C1) ∧
∨

x∈C2⊂B τ(C2)

= Nx(A) ∧Nx(B)
= [(A ∈ Nx) ∧ (B ∈ Nx)].

Thus [A ∩B ∈ Nx] ≥ [(A ∈ Nx) ∧ (B ∈ Nx)].
(3) From the definition of Nx, we can easily show that [A ∈ Nx] ≤ [B ∈ Nx].
(4) [∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny))]

=
∨

C⊂A[Nx(C) ∧
∧

y∈C Ny(C)]

=
∨

C⊂A[Nx(C) ∧
∧

y∈C

∨
y∈D⊂C τ(D)] [By Definition 4.1]

=
∨

C⊂A[Nx(C) ∧ τ(C)] [By Lemma 4.3]
=

∨
C⊂A τ(C)

≥
∨

x∈C⊂A τ(C)
= [A ∈ Nx]. [By Definition 4.1]

Then [∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny))] ≥ [A ∈ Nx].
Conversely suppose N satisfies the above properties (2) and (3) and let τ : 2X →

[I] be the mapping defined as follows: for each A ∈ 2X ,

τ(A) =
∧
x∈A

Nx(A).

Then clearly, τ(ϕ) = 1. Since Nx is an interval-valued normal set in 2X , there is
A0 ∈ 2X such that Nx(A0) = 1. Thus Nx(X) = 1. So τ(X) =

∧
x∈X Nx(X) = 1.

Hence τ satisfies the axiom (OIVFT1).
Let A, B ∈ 2X . Then

τ(A ∩B) =
∧

x∈A∩B Nx(A ∩B)
≥

∨
x∈A∩B(Nx(A) ∧Nx(B)) [By (2)]

=
∧

x∈A∩B Nx(A) ∧
∧

x∈A∩B Nx(B)
≥

∧
x∈A Nx(A) ∧

∧
x∈B Nx(B)

= τ(A) ∧ τ(B).
Thus τ satisfies the axiom (OIVFT2).

Now let (Aj)j∈J ⊂ 2X . Then
τ(
⋃

j∈J Aj) =
∧

x∈
⋃

j∈J Aj
Nx(

⋃
j∈J Aj)

=
∧

j∈J

∧
x∈Aj

Nx(
⋃

j∈J Aj)

≥
∧

j∈J

∧
x∈Aj

Nx(Aj) [By (3)]

=
∧

j∈J τ(Aj).

Thus τ satisfies the axiom (OIVFT3). So τ ∈ OIV T (X).
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Now suppose N satisfies additionally the above properties (1) and (4). Then from
the proof of Theorem 3.2 in [34], we can easily prove that Nx is the ordinary interval-
valued fuzzifying neighborhood system of x with respect to τ for each x ∈ X. This
completes the proof. □

5. Ordinary interval-valued fuzzifying bases and subbases

Definition 5.1. Let (X, τ) be an OIVFTS and let B : 2X → [I] be a mapping
such that B ⊂ τ , i.e., B(A) ≤ τ(A) for each A ∈ 2X . Then B is called an ordinary
interval-valued fuzzifying base for τ , if for each A ∈ 2X ,

B(A) =
∨

{Bj}j∈J⊂2X , A=
⋃

j∈J Bj

∧
j∈J

B(Bj).

Example 5.2. (1) Let X be a set and let B : 2X → [I] be the mapping defined by:

B({x}) = 1 ∀x ∈ X.

Then B is an ordinary interval-valued fuzzifying base for τ
X
.

(2) Let X = {a, b, c}, let ã ∈ [I] \ {1} be fixed and let B : 2X → [I] be the
mapping as follows: for each A ∈ 2X ,

τ(A) =

{
1 if either A = {a, b} or {b, c} or X,
ã otherwise.

Then B is not an ordinary interval-valued fuzzifying base for an OIVFT on X.
Assume that B is an ordinary interval-valued fuzzifying base for an OIVFT τ on

X. Then clearly, B ⊂ τ . Thus τ({a, b}) = τ({b, c}) = 1. So

τ({b}) = τ({a, b} ∩ τ({b, c}) ≥ τ({a, b} ∧ τ({b, c} = 1.

Hence τ({b}) = 1. On the other hand, by the definition of B,

τ({b}) =
∨

{Aj}ȷ∈J⊂2X , {b}=
⋃

j∈J Aj

∧
j∈J

B(Aj) = ã.

This is a contradiction. Therefore B is not an ordinary interval-valued fuzzifying
base for an τ on X

Theorem 5.3. Let (X, τ) be an OIVFTS and let B : 2X → [I] be a mapping such
that B ⊂ τ . Then B is an ordinary interval-valued fuzzifying base for τ if and only
if for each x ∈ X and each A ∈ 2X ,

Nx(A) ≤
∨

x∈B⊂A

B(B).

Proof. (⇒): Suppose B is an ordinary interval-valued fuzzifying base for τ . Let
x ∈ X and let A ∈ 2X . Then

Nx(A) =
∨

x∈B⊂A τ(B) [By Definition 4.1]
=

∨
x∈B⊂A

∨
{Bj}j∈J⊂2X , B=

⋃
j∈J Bj

∧
j∈J B(Bj). [By Definition 5.1]

If x ∈ B ⊂ A and B =
⋃

j∈J Bj , then there is j0 ∈ J such that x ∈ Bj0 . Thus∧
j∈J

B(Bj) ≤ B(Bj0) ≤
∨

x∈B⊂A

B(B).
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So Nx(A) ≤
∨

x∈B⊂A B(B).

(⇐): suppose the necessary condition holds. Let A ∈ 2X , where A =
⋃

j∈J Bj

and (Bj)j∈J ⊂ 2X . Then
τ(A) ≥

∧
j∈J τ(Bj) [By the axiom (OIVFT3)]

≥
∧

j∈J B(Bj). [Since B ⊂ τ ]
Thus

(5.3.1) τ(A) ≥
∨

{Bj}j∈J⊂2X , A=
⋃

j∈J Bj

∧
j∈J

B(Bj).

On the other hand,
τ(A) =

∧
x∈A

∨
x∈B⊂A τ(B) [By Lemma 4.3]

=
∧

x∈A Nx(A) [By Definition 4.1]
≤

∧
x∈A

∨
x∈B⊂A B(B) [By the hypothesis]

=
∨

f∈Πx∈ABx

∧
x∈A B(f(x)),

where Bx = {B ∈ 2X : x ∈ B ⊂ A}. Furthermore, A =
⋃

x∈A f(x) for each
f ∈ Πx∈ABx. So∨

f∈Πx∈ABx

∧
x∈A

B(f(x)) =
∨

{Bj}j∈J⊂2X , A=
⋃

j∈J Bj

∧
j∈J

B(Bj).

Hence

(5.3.2) τ(A) ≤
∨

{Bj}j∈J⊂2X , A=
⋃

j∈J Bj

∧
j∈J

B(Bj).

By (5.3.1) and (5.3.2), τ(A) =
∨

{Bj}j∈J⊂2X , A=
⋃

j∈J Bj

∧
j∈J B(Bj). Therefore B is

an ordinary interval-valued fuzzifying base for τ . □

Theorem 5.4. Let B : 2X → [I] be a mapping. Then B is an ordinary interval-
valued fuzzifying base for some OIVT τ on X if and only if it has the following
conditions:

(1)
∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
ȷ∈J B(Bj) = 1,

(2) for any A1, A2 ∈ 2X and each x ∈ A1 ∩A2,

B(A1) ∧ B(A2) ≤
∨

x∈A⊂A1∩A2

B(A).

In fact, τ : 2X → [I] is the mapping defined as follows: for each A ∈ 2X ,

τ(A) =

{
1 if A = ϕ∨

{Bj}j∈J⊂2X , A=
⋃

j∈J Bj

∧
j∈J B(Bj) otherwise.

In this case, τ is called the ordinary interval-valued fuzzifying topology on X
induced by B.

Proof. (⇒): Suppose B is an ordinary interval-valued fuzzifying base for some
OIVFT τ on X. Then by Definition 5.1 and the axiom (OIVFT1),∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
j∈J

B(Bj) = τ(X) = 1.

Thus the condition (1) holds.
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Let A1, A2 ∈ 2X and let x ∈ A1 ∩A2. Then

B(A1) ∧ B(A2) ≤ τ(A1) ∧ τ(A2) ≤ τ(A1 ∩A2) ≤ Nx(A1 ∩A2) ≤
∨

x∈A⊂A1∩A2

B(A).

Thus B(A1) ∧ B(A2) ≤
∨

x∈A⊂A1∩A2
B(A). So the condition (2) holds.

(⇐): Suppose the necessary conditions (1) and (2) are satisfied. From the defini-
tion of τ and the condition (1), it is obvious that τ(X) = τ(ϕ) = 1. Then τ satisfies
the axiom (OIVFT1).

Let (Aj)j∈J ⊂ 2X and let Bj = {{Bδj : δj ∈ Jj} :
⋃

δj∈Jj
Bδj = Aj}. Let

f ∈ Πα∈ΓBα. Then clearly,
⋃

j∈J

⋃
Bδj

∈f(j) Bδj =
⋃

j∈J Aj . Thus

τ(
⋃

j∈J Aj) =
∨⋃

δ∈J Bδ=
⋃

j∈J Aj

∧
δ∈J B(Bδ)

≥
∨

f∈Πj∈JBj

∧
j∈J

∧
Bδj

∈f(j) B(Bδj )

=
∧

j∈J

∨
{Bδj

:δj∈Jj}∈Bj

∧
δj∈Jj

B(Bδj )

=
∧

j∈J τ(Aj).

So τ satisfies the axiom (OIVFT3).
Now let A, B ∈ 2X and suppose τ(A) > ã and τ(B) > ã, for ã ∈ [I]. Then there

are {Aȷ1 : j1 ∈ J1} and {Bj2 : j2 ∈ J2} such that
⋃

j1∈J1
Aj1 = A,

⋃
j2∈J2

Bj2 = B,

and B(Aj1) > ã for each j1 ∈ J1 and B(Bj2) > ã for each j2 ∈ J2. Let x ∈ A ∩ B.
Then there are j1x ∈ J1 and j2x ∈ J2 such that x ∈ Aj1x ∩ Bj2x . Thus from the
assumption,

ã < B(Aj1x) ∧ B(Bj2x) ≤
∨

x∈C⊂Aj1x∩Bj2x

B(C).

Moreover, there is Cx such that x ∈ Cx ⊂ Aj1x ∩Bȷ2x ⊂ A∩B and B(Cx) > ã. Since⋃
x∈A∩B Cx = A ∩B, we obtain

ã ≤
∧

x∈A∩B

B(Cx) ≤
∨

⋃
j∈J Bj=A∩B

∧
j∈J

B(Bj) = τ(A ∩B).

Now let b̃ = τ(A) ∧ τ(B) and let n be any natural number, where b̃ ∈ [I].

Then τ(A) > b̃ − 1
n and τ(B) > b̃ − 1

n , where b̃ − 1
n = [b− − 1

n , b
+ + 1

n ]. Thus

τ(A ∩ B) ≥ b̃ − 1
n . So τ(A ∩ B) ≥ b̃ = τ(A) ∧ τ(B). Hence τ satisfies the axiom

(OIVFT2). This completes the proof. □

Example 5.5. (1) Let X = {a, b, c} and let ã ∈ [I] \ {1} be fixed. We define the
mapping B : 2X → [I] as follows: for each A ∈ 2X ,

B(A) =

{
1 if A = {b} or {a, b} or {b, c}
ã otherwise.

Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4.
Thus B is an ordinary interval-valued base for an OIVFT τ on X. In fact, τ : 2X →
[I] is defined as follows: for each A ∈ 2X ,

τ(A) =

{
1 if A ∈ {ϕ, {b}, {a, b}, {b, c}, X}
ã otherwise.
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(2) Let ã ∈ [I] \ {1} be fixed. We define the mapping B : 2R → [I] as follows: for
each A ∈ 2R,

B(A) =

{
1 if A = (a, b) for a, b ∈ R with a ≤ b
ã otherwise.

Then it can be easily seen that B satisfies the conditions (1) and (2) in Theorem
5.4. Thus B is an ordinary interval-valued fuzzifying base for an OIVT τã on R.

In this case, τ
ã
will be called the ã-ordinary interval-valued fuzzifying usual topol-

ogy on R and we will write τ
ã
= Uã.

(3) Let ã ∈ [I] \ {1} be fixed. We define the mapping B : 2R → [I] as follows: for
each A ∈ 2R,

B(A) =

{
1 if A = [a, b) for a, b ∈ R with a ≤ b
ã otherwise.

Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4.
Thus B is an ordinary interval-valued fuzzifying base for an OIVFT τl on R.

In this case, τ
l
will be called the ã-ordinary interval-valued fuzzifying lower-limit

topology on R.

Definition 5.6. Let τ1, τ2 ∈ OIV FT (X), and let B1 and B1 be ordinary interval-
valued fuzzifying bases for τ1 and τ2 respectively. Then we say that B1 and B1 are
equivalent, if τ1 = τ2.

Theorem 5.7. Let τ1, τ2 ∈ OIV FT (X), and let B1 and B1 be ordinary interval-
valued fuzzifying bases for τ1 and τ2 respectively. Then τ1 is coarser than τ2 if and
only if for each x ∈ X and each A ∈ 2X , if x ∈ A, then B1(A) ≤

∨
x∈B⊂A B2(B).

Proof. (⇒): Suppose τ1 is coarser than τ2. For each x ∈ X, let x ∈ A ∈ 2X . Then
B1(A) ≤ τ1(A) [Since B1 is an ordinary interval-valued fuzzifying base for τ1]

≤ τ2(A) [By the hypothesis]
=

∨
{Aj}j∈J⊂2X , A=

⋃
j∈J Aj

∧
j∈J B2(Aj).

[Since B2 is an ordinary interval-valued fuzzifying base for τ2]
Since x ∈ A and A =

⋃
j∈J Aj , there is j0 ∈ J such that x ∈ Aj0 . Thus∨

{Aj}j∈J⊂2X , A=
⋃

j∈J Aj

∧
j∈J

B2(Aj) ⪯ B2(Aj0) ≤
∨

x∈B⊂A

B2(B).

So B1(A) ≤
∨

x∈B⊂A B2(B).

(⇐): Suppose the necessary conditions hold. Let A ∈ 2X . Then
τ1(A) =

∧
x∈A

∨
x∈B⊂A B1(B) [By Lemma 4.3]

≤
∧

x∈A

∨
x∈B⊂A

∨
x∈C⊂B B2(C) [By the hypothesis]

=
∨

x∈C⊂A

∧
x∈A B2(C)

=
∨

{Cx}x∈A⊂2X , A=
⋃

x∈A Cx

∧
x∈A B2(Cx)

= τ2(A).
Thus τ1 ≤ τ2. So τ1 is coarser than τ2. This completes the proof. □

The following is the immediate result of Definition 5.6 and Theorem 5.7.
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Corollary 5.8. Let B1 and B1 be ordinary interval-valued fuzzifying bases for two
ordinary interval-valued fuzzy topologies on a set X respectively. Then B1 and B1

are equivalent if and only if
(1) for each B1 ∈ 2X and each x ∈ B1, B1(B1) ≤

∨
x∈B2⊂B1

B2(B2),

(2) for each B2 ∈ 2X and each x ∈ B2, B2(B2) ≤
∨

x∈B1⊂B2
B1(B1).

It is obvious that every ordinary interval-valued fuzzifying topology itself forms
an ordinary interval-valued fuzzifying base. Then the following provides a sufficient
condition for one to see if a mapping B : 2X → [I] such that B ⊂ τ is an ordinary
interval-valued base for τ , where τ ∈ OIV FT (X).

Proposition 5.9. Let (X, τ) be an OIVTS and let B : 2X → [I] be a mapping
such that B ⊂ τ . Then for each x ∈ X and each A ∈ 2X such that x ∈ A and
τ(A) ≤

∨
x∈B⊂A B(B), B is an ordinary interval-valued fuzzifying base for τ .

Proof.
∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
j∈J B(Bj)

≤
∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
j∈J τ(Bj) [Since B ⊂ τ ]

≤
∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj
τ(
⋃

j∈J Bj) [By the axiom (OIVFT3)]

= τ(X)
=

∧
x∈X

∨
x∈B⊂X τ(B) [By Lemma 4.3]

≤
∧

x∈X

∨
x∈B⊂X

∨
x∈C⊂B B(C) [By the hypothesis]

=
∨

x∈C⊂X

∧
x∈X B(C)

=
∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
j∈J B(Bj).

Since τ ∈ OIV FT (X), τ(X) = 1. Thus
∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
j∈J B(Bj) = 1.

So the condition (1) of Theorem 5.4 holds.
Now let A1, A2 ∈ 2X and let x ∈ A1 ∩A2. Then

B(A1) ∧ B(A2) ≤ τ(A1) ∧ τ(A2) [Since B ⊂ τ ]
≤ τ(A1 ∩A2) [By the axiom (OIVFT2)]
≤

∨
x∈A⊂A1∩A2

B(A). [By the hypothesis]

Thus the condition (2) of Theorem 5.4 holds. So, by Theorem 5.4, B is an ordinary
interval-valued base for τ . This completes the proof. □

Definition 5.10. Let (X, τ) be an OIVFTS and let φ : 2X → [I] be a mapping.
Then φ is called an ordinary interval-valued fuzzifying subbase for τ , if φ⊓ is an
ordinary interval-valued fuzzifying base for τ , where φ⊓ : 2X → [I] is the mapping
defined as follows: for each A ∈ 2X ,

φ⊓(A) =
∨

{Bj}<2X , A=
⋂

j∈J Bj

∧
j∈J

φ(Bj),

where {Bj} < 2X means that {Bj} is a finite subset of 2X .

Example 5.11. Let ã ∈ [I] \ {1} be fixed. We define the mapping φ : 2R → [I] as
follows: for each A ∈ 2R,

φ(A) =

{
1 if A = (a,∞) or (∞, b) or (a, b)
ã otherwise,
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where a, b ∈ R such that a ≤ b. Then we can easily see that φ is an ordinary
interval-valued fuzzifying subbase for the ã-ordinary interval-valued fuzzifying usual
topology Uã on R.

Theorem 5.12. Let φ : 2X → [I] be a mapping. Then φ is an ordinary interval-
valued fuzzifying subbase for some OIVFT if and only if∨

{Bj}j∈J⊂2X , X=
⋃

j∈J BJ

∧
j∈J

φ(Bj) = 1.

Proof. (⇒): Suppose φ is an ordinary interval-valued fuzzifying subbase for some
OIVFT. Then by Definition 5.10, it is clear that the necessary condition holds.

(⇐): Suppose the necessary condition holds. We only show that φ⊓ satisfies the
condition (2) in Theorem 5.4. Let A, B ∈ 2X and x ∈ A ∩B for each x ∈ X. Then

φ⊓(A) ∧ φ⊓(B)
= (

∨⋂
j1∈J1

Bj1
=A

∧
j1∈J1

φ(Bj1)) ∧ (
∨⋂

j2∈J2
Bα2

=B

∧
j2∈J2

φ(Bj2))

=
∨⋂

j1∈J1
Bj1

=A

∨⋂
j2∈J2

Bj2
=B(

∧
j1∈J1

φ(Bj1) ∧
∧

j2∈J2
φ(Bj2))

≤
∨⋂

j∈J Bj=A∩B

∧
j∈J φ(Bj)

= φ⊓(A ∩B).
Since x ∈ A ∩ B, φ⊓(A) ∧ φ⊓(B) ≤ φ⊓(A ∩ B) ≤

∨
x∈C⊂A∩B φ⊓(C). Thus φ⊓

satisfies the condition (2) in Theorem 5.4. This completes the proof. □

Example 5.13. Let X = {a, b, c, d, e} and let ã ∈ [I] \ {1} be fixed. We define the
mapping φ : 2X → [I] as follows: for each A ∈ 2X ,

φ(A) =

{
1 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
ã otherwise.

Then X = {a} ∪ {b, c, d} ∪ {c, e} and φ⊓({a}) = φ⊓({b, c, d}) = φ⊓({c, e}) = 1.
Thus ∨

{Bj}j∈J⊂2X , X=
⋃

j∈J Bj

∧
j∈J

φ(Bj) = 1.

So by Theorem 5.12, φ is an ordinary interval-valued fuzzifying subbase for some
OIVFT.

The following is an immediate result of Corollary 5.8 and Theorem 5.12.

Proposition 5.14. φ1, φ2 : 2X → [I] be two mappings such that∨
{Bj}j∈J⊂2X , X=

⋃
j∈J Bj

∧
j∈J φ1

(Bj) = 1

and ∨
{Bj}j∈J⊂2X , X=

⋃
j∈J Bj

∧
j∈J

φ2(Bj) = 1.

Suppose the two conditions hold:
(1) for each S1 ∈ 2X and each x ∈ S1, φ1(S1) ≤

∨
x∈S2⊂S1

φ2(S2),

(2) for each S2 ∈ 2X and each x ∈ S2, φ2(S2) ≤
∨

x∈S1⊂S2
φ1(S1).

Then φ1 and φ2 are ordinary interval-valued fuzzifying subbases for the same ordi-
nary interval-valued fuzzifying topology on X.
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6. Ordinary interval-valued fuzzifying derived sets and closures

Definition 6.1. Let (X, τ) be an OIVTS and let A ∈ 2X . Then A
′
is called the

ordinary interval-valued fuzzifying derived set of A, denoted by A
′
, is an interval-

valued fuzzy set in X defined as follows: for each x ∈ X,

x ∈ A
′
:= ∀B(B ∈ Nx → B ∩ (A− {x} ≠ ϕ), i.e.,

A
′
(x) =

∧
B∩(A−{x}), B∈2X

(1−Nx(B)) =
∧

B∩(A−{x}), B∈2X

[1−N+
x (B), 1−N−

x (B)].

Example 6.2. (1) Let X = {a, b, c}, let A = {a, b} and let (X, τ) be the OIVFTS
defined in Example 3.2 (1). Then

A
′
(a) =

∧
B∩(A−{a}), B∈2X [1−N+

a (B), 1−N−
a (B)]

= [1−N+
a ({a}), 1−N−

a ({a})] ∧ [1−N+
a ({c}), 1−N−

a ({c})]
∧[1−N+

a ({a, c}), 1−N−
a ({a, c})]

and from Example 4.2,

Na({a}) = [0.2, 0.7], Na({a, c})] = [0.3, 0.8].

On the other hand, we have Na({c}) =
∨

a∈B⊂{c} τ(B) = τ(ϕ) = [1, 1]. Thus

A
′
(a) = [1− 0.7, 1− 0.2] ∧ [1− 1, 1− 1] ∧ [1− 0.8, 1− 0.3] = [0.0].

Similarly, we have A
′
(a) = [0, 0] = A

′
(b) and A

′
(c) = [0.4, 0.7]. So

A
′
= {(a, [0, 0]), (b, [0, 0]), (c, [0.4, 0.7])}.

(2) Let (X, τϕ) be the interval-valued fuzzifying indiscrete space (See Example
4.2 (2)). Suppose X has at least two points. Let x ∈ X and let A ∈ 2X . Then there
is ϕ ̸= B ∈ 2X such that B ∩ A − {x} = ϕ. Since B ̸= X, τϕ(B) = [0, 0]. Thus by

the definition of A
′
, A

′
(x) = [1, 1]. So A

′
= 1.

Suppose X is a singleton set {x}. Then clearly, we have B = ϕ such that B ∩
A− {x} = ϕ. Thus τϕ(B) = τϕ(ϕ) = [1, 1]. So A

′
(x) = [0, 0]. Hence A

′
= 0.

(3) Let (X, τ
X
) be the interval-valued fuzzifying discrete space (See Example 4.2

(3)). Let A ∈ 2X and let x ∈ X. Consider B ∈ 2X such that B∩A−{x} = ϕ. Then

clearly, by the definition of τ
X
, τ

X
(B) = [1, 1]. Thus A

′
(x) = [0, 0]. So A

′
= 0.

Lemma 6.3. Let (X, τ) be an OIVFTS and let A ∈ 2X . Then for each x ∈ X,

A
′
(x) = 1−Nx(A

c ∪ {x}).

Proof. From Definition 6.1, it is clear. □

Theorem 6.4. For each A ∈ 2X , |= A ∈ C ↔ A
′ ⊂ A, i.e., C(A) = [A

′ ⊂ A],
where for each B ∈ [I]X and each A ∈ 2X , [B ⊂ A] =

∧
x∈Ac(1−B(x)).

Proof. Let x ∈ X. Then
[A

′ ⊂ A] =
∧

x∈Ac(1−A
′
(x))

=
∧

x∈Ac Nx(A
c ∪ {x}) [By Lemma 6.3]

=
∧

x∈Ac Nx(A
c) [Since x ∈ Ac]

=
∧

x∈Ac

∨
x∈C⊂Ac τ(C) [By Definition 4.1]

= τ(Ac)
194



Shi et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 175–203

= C(A) [By Proposition 3.4]
= [A ∈ C]. □

Definition 6.5. Let (X, τ) be an OIVTS and let A ∈ 2X . Then the ordinary
interval-valued fuzzifying closure of A, denoted by Ā, is an interval-valued fuzzy set
in X defined as follows: for each x ∈ X,

x ∈ Ā := ∀B(B ⊃ A) ∧ (B ∈ C) → x ∈ B), i.e.,

Ā(x) =
∧

x ̸∈B⊃A, B∈2X

(1− C(B)).

In fact, we can think that the ordinary interval-valued fuzzifying closure “−” is a
mapping − : 2X → [I]X .

Lemma 6.6. Let (X, τ) be an OIVFTS and let A ∈ 2X . Then for each x ∈ X,

Ā(x) = 1−Nx(A
c).

Proof. It follows directly from Proposition 3.4. □

Theorem 6.7. Let (X, τ) be an OIVTS, let x ∈ X and let A ∈ 2X . Then

(1) |= Ā ≡ A ∪A
′
,

(2) |= x ∈ Ā ↔ ∀B(B ∈ Nx → A ∩B ̸= ϕ),
(3) |= A ≡ Ā ↔ A ∈ C.

Proof. (1) The proof is straightforward form Lemma 6.6.
(2) [∀B(B ∈ Nx → A ∩B ̸= ϕ)] =

∧
A∩B=ϕ(1−Nx(B))

= 1−
∨

A∩B=ϕ Nx(B)

= 1−
∨

x∈C⊂B⊂Ac τ(C)
= 1−Nx(A

c)
= Ā(x). [By Lemma 6.6]

(3) It follows from Theorem 6.4 and (1). □

In order to distinguish an interval-valued fuzzy set from an ordinary set, we will

denote interval-valued fuzzy sets as Ã, B̃, · · · , etc. For each Ã ∈ [I]X and ã ∈ [I],

ãÃ is the interval-valued fuzzy set in X defined as follows: for each x ∈ X,

(ãÃ)(x) = ã ∧ Ã(x) = [a− ∧ Ã−(x), a+ ∧ Ã+(x)].

In fact, for each A ∈ 2X and each ã ∈ [I], we can easily see that ãA is the interval-
valued fuzzy set in X given by:

ãA = ã[χ
A
, χ

A
].

Then for each x ∈ X,

(ãA) =

{
ã if x ∈ A
0 otherwise.

Definition 6.8. Let Ã ∈ [I]X and let ã ∈ [I]. Then [Ã]ã and [Ã]∗ã are subsets of X
defined as follows:

(i) [Ã]ã = {x ∈ X : Ã(x) ≥ ã} is called the ã-level subset of X [32],

(ii) [Ã]∗ã = {x ∈ X : Ã(x) > ã} is called the ã-strong level subset of X.
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It is obvious that for any ã, b̃ ∈ [I] such that ã ⪯ b̃,

[Ã]ã ⊃ [Ã]̃b, [Ã]∗ã ⊃ [Ã]∗
b̃
.

Definition 6.9. Let (X, τ) be an OIVFTS and let − : 2X → [I]X be the ordinary
interval-valued fuzzifying closure mapping. Let cl : [I]X → [I]X be the mapping

(will be called the extension of −) defined as follows: for each Ã ∈ [I]X ,

cl(Ã) =
⋃

ã∈[I]

ã[Ã]ã.

Suppose cl satisfies the following Kuratovski closure axioms: for any Ã, B̃ ∈ [I]X ,
(i) cl(0) = 0,

(ii) Ã ⊂ cl(Ã),

(iii) cl(Ã ∪ B̃) = cl(Ã) ∪ cl(B̃),

(iv) cl(cl(Ã)) ⊂ cl(Ã).
Then − : 2X → [I]X is called an ordinary interval-valued fuzzifying closure operator.

Lemma 6.10. Let (X, τ) be an OIVFTS and let Ã ∈ [I]X . Then

cl(Ã) =
⋃
x∈X

Ã(x)[Ã]Ã(x).

Proof. It follows directly from Definition 6.1 □

Proposition 6.11. Let (X, τ) be an OIVFTS. Then − satisfies the following Kura-
tovski closure axioms: for any A, B ∈ 2X ,

(1) ϕ = ϕ,
(2) A ⊂ A,

(3) (A ∪B) = A ∪B,

(4) A ⊂ A.

Proof. (1) ϕ(x) = 1−Nx(ϕ
c) [By Lemma 6.6]

= 1−Nx(X)
= 1−

∨
x∈B⊂X τ(B)[By Definition 4.1]

= 1− τ(X) = 1− 1
= [0, 0] = [χϕ, χϕ](x).

Thus ϕ = ϕ.
(2) The proof is straightforward from Theorem 6.7 (1).

(3) (A ∪B)(x) = 1−Nx((A ∪B)c)
= 1−Nx(A

c ∩Bc)
= 1−

∨
x∈C⊂Ac∩Bc τ(C)

= 1−
∨

x∈C1⊂Ac, x∈C2⊂Bc τ(C1 ∩ C2)

≤ 1−
∨

x∈C1⊂Ac, x∈C2⊂Bc [(τ(C1) ∧ (τ(C2)]

= (1−
∨

x∈C1⊂Ac τ(C1) ∨ (1−
∨

x∈C2⊂Bc τ(C2)

= (1−Nx(A
c)) ∨ (1−Nx(B

c))
= A(x) ∨B(x)
= (A ∪B)(x).

Then A ∪B ⊂ A ∪B.
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Suppose A, B ∈ 2X such that A ⊂ B and let ã ∈ [I]. Then

[A]ã = {x ∈ X : A(x) = [χA(x), χA(x)] ≥ ã} ⊂ [B]ã,

where [A]ã = ã, if x ∈ A and [A]ã = ϕ, if x ̸∈ A. Thus by Definition 6.9,

A =
⋃

ã∈[I]

ã[A]ã ⊂
⋃

ã∈[I]

ã[B]ã = B.

Since A ⊂ A ∪B and B ⊂ A ∪B, A ⊂ A ∪B and B ⊂ A ∪B. So

A ∪B ⊂ A ∪B.

Hence A ∪B = A ∪B.
(4) Since A ∈ [I]X , by Lemma 6.10, A =

⋃
x∈X A(x)[A]A(x). Then for each y ∈ X,

A(y) =
∨
x∈X

[A(x) ∧ [A]A(x)(y)].

For any x ∈ X, let Kx = [A]A(x). Then

A(x) ∧Kx(y) ≤
∧

z∈Kx
A(z) ∧Kx(y)

=
∧

z∈Kx
[(1−Nz(A

c)) ∧ (1−Ny(K
c
x))]

= 1−
∨

z∈Kx
[Nz(A

c) ∨Ny(K
c
x)].

By the procedure of proof of Theorem 5.3 in [34],

{D : {z, y} ⊂ D ⊂ Ac} ⊂ {B : y ∈ B ⊂ Ac} for each z ∈ Kx

and
{D : y ∈ D ⊂ Ac, z ̸∈ D, for each z ∈ Kx} ⊂ {C : y ∈ C ⊂ Kc

x}.
Thus ∨

z∈Kx
[Nz(A

c) ∨Ny(K
c
x)]

=
∨

z∈Kx
[
∨

z∈B⊂Ac τ(B) ∨
∨

y∈C⊂Kc
x
τ(C)]

≥
∨

z∈Kx
[
∨

{y,z}⊂D⊂Ac τ(D) ∨
∨

y∈D⊂Ac, z ̸∈D for each z∈Kx
τ(D)

=
∨

y∈D⊂Ac τ(D)

= Ny(A
c).

Furthermore, A(x) ∧Kx(y) ≤ A(y) for each x ∈ X. So

A(y) =
∨
x∈X

[A(x) ∧ [A]A(x)(y) ≤ A(y).

Hence A ⊂ A. □

Lemma 6.12. Let (X, τ) be an OIVFTS and let Ã ∈ [I]X . Then cl(Ã) =
⋃

ã∈[I] ã[Ã]∗ã.

Proof. [Ã]ã ⊃ [Ã]∗ã for each ã ∈ [I]. Then cl(Ã) ⊃
⋃

ã∈[I] ã[Ã]∗ã. For each ã ∈ [I], let

ãn ∈ [0, a−n ) × [0, a+n ) (n = 1, 2, · · · ) such that ãn ↑ ã, i.e., a−n ↑ a− and a+n ↑ a+.

Then clearly, [Ã]∗ãn
⊃ [Ã]ã. Thus [Ã]∗ãn

⊃ [Ã]ã. So
⋃∞

n=1 ãn[Ã]∗ãn
⊃ [Ã]ã. Hence⋃

ã∈[I]

ã[Ã]∗ã ⊃
⋃

ã∈[I]

(

∞⋃
n=1

ãn[Ã]∗ãn
) ⊃

⋃
ã∈[I]

[Ã]ã = cl(Ã).

Therefore cl(Ã) =
⋃

ã∈[I] ã[Ã]∗ã. □
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Lemma 6.13. Let (X, τ) be an OIVFS, let Ã ∈ [I]X and let ã ∈ [I]. Then

ã[cl(Ã)]∗ã ⊂ ã[Ã]ã.

Proof. Let x ∈ [cl(Ã)]∗ã. Then

[cl(Ã)](x) = [
⋃
b̃∈[I]

b̃[Ã]̃b](x) =
∨
b̃∈[I]

[b ∧ [Ã]̃b(x)] > ã.

Thus there is b̃0 ∈ [I] such that b0 ∧ [Ã]b̃0(x) > ã, i.e., b0 > ã and [Ã]b̃0(x) > ã.

So [Ã]ã(x) ≥ [Ã]b̃0(x) > ã. Hence (ã[Ã]ã)(x) = ã ∧ [Ã]ã(x) = ã = (ã[cl(Ã)]∗ã)(x).

Therefore ã[cl(Ã)]∗ã ⊂ ã[Ã]ã. □

Lemma 6.14. Let (X, τ) be an OIVFTS, let Ã ∈ [I]X and let ã ∈ [I]. Then

ãcl(Ã) = cl(ãÃ).

Proof. Let b̃ ∈ [I] such that b− ∈ [0, a−) and b+ ∈ [0, a+). Then

[ãÃ]̃b = {x ∈ X : [ãÃ](x) ≥ b̃}
= {x ∈ X : ã ∧ Ã(x) ≥ b̃}
= {x ∈ X : Ã(x) ≥ b̃} [Since b̃ < ã]

= [Ã]̃b.
Thus

(6.14.1) [ãÃ]̃b = [Ã]̃b, for each b̃ ∈ [I] such that b− ∈ [0, a−) and b+ ∈ [0, a+).

Now let b̃ ∈ [I] such that b− ∈ (a−, 1] and b+ ∈ (a+, 1]. Then

[ãÃ]̃b = {x ∈ X : [ãÃ](x) ≥ b̃}
= {x ∈ X : ã ∧ Ã(x) ≥ b̃}
= {x ∈ X : ã ≥ b̃, Ã(x) ≥ b̃}
= ϕ. [Since ã < b̃]

Thus

(6.14.2) [ãÃ]̃b = ϕ, for each b̃ ∈ [I] such that b− ∈ (a−, 1] and b+ ∈ (a+, 1].

Let b̃ ∈ [I] such that b̃ ≻ ã. Then clearly, [Ã]̃b ⊂ [Ã]ã. Thus [Ã]̃b ⊂ [Ã]ã. So by

(6.14.2),
⋃

b̃∈[I], b−∈(a−,1], b+∈(a+,1] ã[Ã]̃b ⊂ ã[Ã]ã. Hence

ãcl(Ã) = ã
⋃

b̃∈[I] b̃[Ã]̃b [By Definition 6.9]

=
⋃

b̃∈[I](ã ∧ b̃)[Ã]̃b

= (
⋃

b̃∈[I], b−∈[0,a−], b+∈[0,a+] b̃[Ã]̃b) ∪ (
⋃

b̃∈[I], b−∈(a−,1], b+∈(a+,1] ã[Ã]̃b)

=
⋃

b̃∈[I], b−∈[0,a−], b+∈[0,a+] b̃[Ã]̃b [By (6.14.1) and (6.14.2)]

=
⋃

b̃∈[I] b̃[ãÃ]̃b [By (6.14.2)]

= cl(ãÃ). □

Lemma 6.15. Let Ã(ã), B̃ ∈ [I]X (ã ∈ [I]). If Ã(ã) ⊃ [B̃]ã (ã ∈ [I]) and⋃
ã∈[I] ãÃ

(ã) =
⋃

ã∈[I] ã[B̃]ã, then [Ã(ã) ≡ [B̃]ã] ≥ 1− ã = [1− a+, 1− a−].
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Proof. Ã(ã) ≡ [B̃]ã := (Ã(ã) ⊂ [B̃]ã) ∧ ([B̃]ã ⊂ Ã(ã))

:= [∀x(x ∈ Ã(ã) → x ∈ [B̃]ã)] ∧ [∀x(x ∈ [B̃]ã → x ∈ Ã(ã))].

Then [Ã(ã) ≡ [B̃]ã] = (
∧

x̸∈[B̃]ã
(1− Ã(ã)(x))) ∧ (

∧
x∈[B̃]ã

Ã(ã)(x) ≥ [B̃]ã(x))

=
∧

x ̸∈[B̃]ã
(1− Ã(ã)(x)). [Since (

∧
x∈[B̃]ã

Ã(ã)(x) = 1.]

Assume that [Ã(ã) ≡ [B̃]ã] < 1− ã. Then there is x0 ̸∈ [B̃]ã such that Ã(ã)(x0) >

ã. Thus (
⋃

b̃∈[I] b̃Ã
(̃b))(x0) ≥ ã. On the other hand,

(
⋃
b̃∈[I]

b̃[B̃ ]̃b)(x0) =
∨

b̃∈[I], b−∈[0,a−], b+∈[0,a+]

(̃b ∧ [B̃ ]̃b(x0)) < ã.

Suppose
∨

b̃∈[I], b−∈[0,a−), b+∈[0,a+)[B̃ ]̃b(x0) ≥ ã. Then for any b̃ ∈ [I] such that

b− ∈ [0, a−) and b+ ∈ [0, a+), x0 ∈ [B̃ ]̃b. Thus

x0 ∈
⋂

b̃∈[I], b−∈[0,a−), b+∈[0,a+)

[B̃ ]̃b = [B̃]ã.

This is a contradiction. This completes the proof. □

The following theorem shows that an ordinary interval-valued fuzzifying closure
operator completely determines an OIVFT τ and that in τ , the operator is the
closure.

Theorem 6.16. Let X be an OIVFTS. Then − : 2X → [I]X is an ordinary interval-
valued fuzzifying closure operator.

Conversely, let −∗ : 2X → [I]X be an ordinary interval-valued fuzzifying closure
operator on X and let τ : 2X → [I]X be the mapping defined as follows: for each
A ∈ [I]X ,

A ∈ τ := Ac∗ ≡ Ac, i.e., τ(A) = [Ac∗ ≡ Ac].

Then τ is an oivt. Moreover, for each A ∈ [I]X , A
∗
= A, where A denotes the

ordinary interval-valued fuzzifying closure with respect to τ .

Proof. (⇒): Let cl : [I]X → [I]X be the extension of −. Then we will prove that cl
satisfies the Kuratovski closure axioms.

(i) cl(0) =
⋃

ã∈[I] ã[0]ã

=
⋃

ã∈[I] ãϕ

=
⋃

ã∈[I] ã0 [By Proposition 6.11 (1)]
= 0.

(ii) Let Ã ∈ [I]X . Then by Definition 6.9 and Proposition 6.11 (2),

cl(Ã) =
⋃

ã∈[I]

ã[Ã]ã ⊃
⋃

ã∈[I]

ã[Ã]ã = Ã.

(iii) Let Ã, B̃ ∈ [I]X . Then clearly, by the procedure of the proof of Proposition
6.11 (3),

cl(Ã ∪ B̃) ⊃ cl(Ã) ∪ cl(B̃).

On the other hand,

cl(Ã ∪ B̃) =
⋃

ã∈[I] ã[Ã ∪ B̃]ã
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=
⋃

ã∈[I] ã[Ã]ã ∪ [B̃]ã [Since [Ã ∪ B̃]ã = [Ã]ã ∪ [B̃]ã]

⊂
⋃

ã∈[I](Ã]ã ∪ [B̃]ã) [By Proposition 6.11 (3)]

= (
⋃

ã∈[I] Ã]ã) ∪ (
⋃

ã∈[I] B̃]ã)

= cl(Ã) ∪ cl(B̃).

Thus cl(Ã ∪ B̃) = cl(Ã) ∪ cl(B̃).

(iv) Let Ã ∈ [I]X . Then

cl(cl(Ã)) =
⋃

ã∈[I] ã[cl(Ã)]∗ã [By Lemma 6.12]

=
⋃

ã∈[I] ã[
⋃

b̃∈[I] b̃[A]∗
b̃
]∗ã

=
⋃

ã∈[I]

⋃
b̃∈[I] ãb̃[[A]∗

b̃
]∗ã [By Proposition 6.11 (3)]

=
⋃

ã∈[I] ã[A]∗ã [Since either ã ≤ b̃ or b̃ ≤ ã, say ã ≤ b̃]

=
⋃

ã∈[I] ã[A]∗ã [By Lemma 6.14]

⊂
⋃

ã∈[I] ã[A]ã [By Lemma 6.13]

=
⋃

ã∈[I] ã[A]ã

⊂
⋃

ã∈[I] ã[A]ã [By Proposition 6.11 (4)]

= cl(Ã).

Thus cl(cl(Ã)) ⊂ cl(Ã). So − is an ordinary interval-valued fuzzifying closure oper-
ator.

(⇐): Let C : 2X → [I]X be the mapping defined as follows: for each A ∈ 2X ,

A ∈ C := A
∗ ≡ A, i.e., C(A) = [A

∗ ≡ A].

(OIVCFT1) By Definition 6.9 (i), ϕ
∗
= 0 ≡ ϕ. Then [ϕ

∗ ≡ ϕ] = 1. Thus C(ϕ) = 1.

Moreover, by Theorem 6.7 (1), X
∗ ≡ X, i.e., [X

∗ ≡ X] = 1. So C(X) = 1. Hence C
satisfies the axiom (OIVCT1).

(OIVCFT2) Let A, B ∈ 2X . Then

C(A ∪B) = [A ∪B
∗ ≡ A ∪B]

= [A
∗ ∪B

∗ ≡ A ∪B] [By Proposition 6.11 (3)]

≥ [A
∗ ≡ A] ∧ [B

∗ ≡ B]
= C(A) ∧ C(B).

Thus C satisfies the axiom (OIVCFT2).
(OIVCFT3) The proof is similar to (c) of Theorem 5.3 in [34].

Finally, we show that A
∗
= A for each A ∈ 2X , where − denotes the ordinary

interval-valued fuzzifying closure with respect to τ . Let A ∈ 2X and let x ∈ X.
Then

A(x) = 1−Nx(A
c) = 1−

∨
x∈B⊂Ac

τ(B) = 1−
∨

x∈B⊂Ac

[Bc∗ ≡ Bc].

Thus A(x) =
∧

y∈B⊂Ac(1− [Bc∗ ≡ Bc]). Since Bc ⊂ Bc∗,

[Bc∗ ≡ Bc] =
∧
y∈B

[1−Bc∗](y) = 1−
∨
y∈B

Bc∗(y).
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So

(6.16.1) A(x) =
∧

x∈B⊂Ac

∨
y∈B

Bc∗(y).

Let B = {B : x ∈ B ⊂ Ac} and let f0 : B →
⋃
B be the mapping defined by:

f0(B) = x for each B ∈ B.
Then

A(x) =
∧

B∈B
∨

f∈ΠB∈BB Bc∗(f(B)) [By (6.16.1)]

=
∨

f∈ΠB∈BB

∧
B∈B Bc∗(f(B))

≥
∧

B∈B Bc∗(f0(B))

=
∧

B∈B Bc∗(x)

=
∧

x ̸∈A⊂Bc Bc∗(x) [By the definition of B]
≥ A

∗
(x).

Thus A ⊃ A
∗
.

Now let A ∈ 2X , B̃ ∈ [I]X such that B̃ ⊃ A and B̃
∗
= B̃. Let x ∈ X and for any

positive integer n, let b̃ = 1 − B̃(x) − [ 1n ,
1
n ] ≥ 0. Then clearly, x ̸∈ [B̃]1−b̃. Since

A = [χ
A
, χ

A
] ⊂ B̃, A ⊂ [B̃]1−b̃. Thus∨

x ̸∈D⊃A

[D
∗ ≡ D] ≥ [[B̃]1−b̃

∗
≡ [B̃]1−b̃].

On the other hand,∨
ã∈[I]

ã[B̃]ã
∗
= B̃

∗
= B̃ =

∨
ã∈[I]

ã[B̃]ã and [B̃]ã
∗
⊃ [B̃]ã.

By Lemma 6.15, [[B̃]1−b̃

∗
≡ [B̃]1−b̃] ≥ b̃. So∨

x ̸∈D⊃A

[D
∗ ≡ D] ≥ 1− B̃(x)− [

1

n
,
1

n
].

Let n → ∞. Then clearly,
∨

x ̸∈D⊃A[D
∗ ≡ D] ≥ 1− B̃(x). Moreover,

A(x) = 1−
∨

x̸∈D⊃A

[D
∗ ≡ D] ≤ B̃(x).

So A ⊂ A
∗
. Hence A = A

∗
. □

7. Conclusions

We defined an ordinary interval-valued fuzzifying topology and level set of an
OIVFT, and obtain some their basic properties and gave some examples. Second,
we introduced the concept of ordinary interval-valued fuzzifying neighborhood sys-
temS and and we proved that an ordinary interval-valued fuzzifying neighborhood
system has the same properties in a classical neighborhood system (See Theorem
4.7). Third, we defined an ordinary interval-valued fuzzifying base and an ordinary
interval-valued fuzzifying subbase, and obtain two characterization of an ordinary
interval-valued fuzzifying base (See Theorems 5.3 and 5.4) and one characterization
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of an ordinary interval-valued fuzzifying subbase (See Theorem 5.12), and gave some
their examples. Finally, we proved that an ordinary interval-valued fuzzifying topol-
ogy induced by an ordinary interval-valued fuzzifying closure operator (See Theorem
6.16).

In the future, by defining the mapping (will be called an interval-valued fuzzifying
toplogy on X) τ : [I]X → [I] satisfying the following axioms: for any A, B ∈ [I]X

and any (Aj)j∈J ⊂ [I]X ,

(i) τ(0̃) = τ(1̃) = [1, 1],
(ii) τ(A ∩B) ≥ τ(A) ∧ τ(B),
(iii) τ(

⋃
j∈J Aj) ≥

∧
j∈J τ(Aj),

we will try to obtain various its properties and find some relations among ordinary
interval-valued fuzzifying topologies and interval-valued fuzzifying topologies.

Acknowledgements. The authors would like to thank the referees for their
helpful comments and suggestions.
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