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ABSTRACT. This paper analyses the fuzzy degree of a particular genetic
hypergroup (H, ®), associated to non-Mendelian inherence. It is considered
a sequence of membership functions and of join spaces, obtained starting
with a hypergroupoid (H,®) (See [1]). The fuzzy grade is the minumum
natural number ¢ such that two consecutive associated join spaces, of the
above mentioned sequence, H; and H;41 are isomorphic.
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1. INTRODUCTION

Theory of hyperstructures is a field of algebra, more than 70 years old and very
rich in applications, for instance in geometry, fuzzy and rough sets, automata, cryp-
tography, codes, probabilities, graphs and hypergraphs (See [2]). Connections be-
tween hypergroups and genetics were analyzed in [3, 4]. We analyze here one of these
connections, namely between hypergroup theory with non-Mendelian inherence.

2. PRELIMINARIES

First, recall some basic definitions in hypergroups, that we shall use in what
follows:

A hyperoperation on a nonempty set H is a map o : H x H — P*(H), where
P*(H) denotes the set of nonempty subsets of H.

For subsets A, B of H, set Ao B = UaeA;beBa ob, and for h € H write ho A
and Ao h for {h} o A and Ao {h}.

The pair (H, o) is a hypergroup, if for all a,b, c of H we have

(aob)oc=ao(boc) and aoH=Hoa=H.
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If only the associativity is satisfied, then (H, o) is a semihypergroup. The condition
aoH = Hoa= H for all a of H is called the reproductive law.

A nonempty subset K of H is a subhypergroup, if K o K C K and for all a € K,
Koa=K=ao0oK.

A commutative hypergroup (H,o) is a join space, if the following implication
holds: for all a,b,c,d,z of H,

a€box,c€dor=ao0dNboc#a.

A semijoin space is a commutative semihypergroup satisfying the join condition.

Join spaces are an important tool in the study of graphs and hypergraphs, binary
relations, fuzzy and rough sets and in the reconstruction of several types of non-
euclidean geometries, such as the descriptive, spherical and projective geometries.
Several interesting books have been written on hyperstructures and their applica-
tions (See for instance [2, 5, 6, 7]).

Let us recall now the fuzzy degree notion. In 2003, Corsini proved that with every
hypergroupoid (H,®) one can associate a fuzzy subset, as follows (See [1]):

Vue H, Q(u) ={(z,y) € H* |u ez y},
q(u) =| Q(u) |,
alu) = Z 1/lz®y],

(z,1)€Q(u)
p(u) = a(u)/q(u). (%)
Now we can associate a new join space structure (H,o,) denoted also by (H, o),
which is associated to the fuzzy set u as follows:

zoy = {z| min{u(z), u(y)} < pu(z) < maz{p(z), u(y)} ()

In this manner we obtain a sequence of join spaces and fuzzy sets and the fuzzy
degree of the starting hypergroup is the minimum natural number for which the
hypergroups associated to fuzzy sets as in (*) are isomorphic.

This problem has been studied using fuzzy sets endowed with two membership
functions by Cristea [8], in connection with reduced hypergroups by Stefanescu-
Cristea [9] and for various classes of hypergroups: Corsini-Cristea for i.p.s. hyper-
groups (a particular case of Canonical hypergroups) [10], and 1-hypergroups (hy-
pergroups for which the heart is a singleton) [11], Corsini, Leoreanu, Iranmanesh
for hypergroups associated with hypergraphs (See [12]). Atanassov’s intuitionistic
fuzzy grade of hypergroups was analized in [13].

In this paper we consider the above construction for a particular genetic hyper-
group, in order to obtain its fuzzy degree in several particular cases, that occour in
genetics.

3. CONNECTIONS BETWEEN HYPERGROUPS AND GENETICS

In [3], Tahan and Davvaz analysed some examples of five different types of non-
Mendelian inheritance : Epistasis, Supplementary gene, Inhibitory gene, Comple-
mentary gene, Supplementary and complementary gene) and connect them to hy-
pergroup theory. We analyse here the first type Epistasis, which provides us the
most interesting hypergroup structure among the above mentioned types.
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Consider the epistasis of dominant gene in the coat color of dogs. There are
two allelomorphic pairs Aa and Bb, where A and B are dominant over a and b
respectively. Summarizing this experiment, we obtain:

P: AABB ® aabb
Fy: AaBb

and
F1 & F1 : AaBb® AaBb

F5 : White, Black, Broun.
A1 denotes White, A denotes Black and A3 denotes Brown.

Set H = {A;, As, As}. We obtain the following hypergroup:

(24 A1 A2 Ag

A, | H H H

Ao | H | {Az, A3} | {42, A3}

A3 H {A27A3} {Ag}
Table 1

In what follows, we generalize the above hypergroup to a hypergoup of n elements,
where n > 3 in the next manner: H = {Ay, As, ..., A,,} and

[ A1 A2 A3 An
A | H H H H
As | H | {Ag, A3, AL} | {Ag, As, - ALY | -+ | {Ag, A3, L AL}
A3 H {AQ’A?” ’An} {AS’...7An}, {A?”...,An}
An H {A2aA37 aAn} {ASa"' 7An} {An}

Table 2

Let us present some properties of this hypergroup.

Theorem 3.1. (1) The hyperoperation & is commutalive.

) Foralll1 <i<j<k<n wehave A; @ (A; @ A) = {A;, ..., Ap}.

) (H,®) is a join space.

) (H ®) is reqular reversible, but it is not a feeble canonical hypergroup.

) The only complete part of (H,®) is H.

) (H,®) it is not complete.

) The subhypergroups of (H,®) have the form Sy = {A; | i > k}, where
1 < k <n. All these subhypergroups are not closed, except for S, =

(2
(3
(4
(5
(6
(7

Proof. (3) The element A,, belongs to any hyperproduct, so the join space condition
is satisfied.

(4) All elements of H are identities. Since for all 1 < 4, j < n, we have A; €
A; ® A;. Moreover, the set of all inverses of an element is H. The hypergroup
is not feebly canonical since Ay, As are inverses of an arbitrary element A, but
AR A, # A ® A,.

127



Fotea et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 125-138

(6) The hypergroup is not complete since for instance As ® Az # H, which is the
complete closure of As ® As, because the heart of H is H itself. O

Applying Corsini’s construction (*) for the studied hypergroup we obtain the
following calculations.

4. STEP 1

QA1) ={(41,A),(A, A1) | A€ H} whence ¢1(A41) = |Q(A1)] =2n — 1.

Q(Az2) = Q(A1) U{(A2,4),(A,Az) | A € H} whence q1(A2) = |Q(A2)] = 2n —
14+2n—-3=4n—4.

Q(As) = Q(A2) U{(A3,A),(A,A3) | A € H} whence q1(As) = |Q(A3)] = 2n —
1+2n—-3+2n—-5=6n—9.

Q(Ar) = Q(Ar—1) U{(Ar,A),(A, Ax) | A € H} whence ¢1(Ax) = [Q(Ar)| =
2n—1+2n—3+2n—5+...+2n— (2k — 1) = 2nk — k2.
Then for all natural number k, 1 < k < n,

q1(Ag) = 2nk — k2. (1)

Finally, q1(A,) = n?. For any A € H, we have

p1(A) = a1(A)/qi(A). (2)
Moreover, we have ay(A;1) = (2n — 1)/n, whence p1(A;) = 1/n. Also, we have
a1(Az) = (2n—1)/n+ (2n —3)/(n —1) = (4n* — 6n +1)/n(n — 1).
Thus p1(As) = (4n? —6n +1)/4n(n — 1)% > pu1(A1) = 1/n. So p1(As2) > p1(Ay).
Generally,
ar(Ag) = a1 (Ag-1) + 2(n — (k= 1)) = 1)/(n — (k= 1)) (3)
whence, by adding all the above equalities (2) for all 1 < j < k, we obtain
a(Ag) =a1(A1) +(2n—3)/(n— 1)+ (2n—5)/(n —2) + -
- +2n—(k-1))-1)/(n—(k—-1))
= Zj:O 2(n—j)—1)/(n—j)
=2k — "0 1/(n— j). Denote 37, 1/j = H,.
For k = n, we obtain a;(A,) = 2n—2?;01 1/(n—j) = 2n— H,,, where H,, is roughly
estimated to v + logn and v = 0.57721 is the Euler-Mascheroni constant. Hence
i (An) = (2n — Hy) /. (4)
For 1 < k < n, we have ay(Ay) = 2k — (H,, — H,,—) which is roughly estimated to
2k — (log n+~v —log (n—k) —v) =2k —log n/(n — k).
Hence ay(Ag) = 2k —log n/(n — k). Therefore for all 1 < k < n,
pi1(Ay) = (2k — Hy + Hpi) /[k(2n — k). ()

Theorem 4.1. For1 < i< j <n, we have p1(A;) < pi(4;).
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Proof. Indeed, for 1 < k < n — 1, we have the following equivalences:
pa(Ag) < pa(Ags1)
< (2k—Hp+Hy—p)/[kCn—kK)] < (2k+2—H,+ Hp——1)/[(k+1)(2n — k —1)]
<2/2n—k)—T,/k(2n — k)
<2/2n—k-1)—[T,+1/(n—kK)]/(k+1)(2n—k—1), where T,, = H, — H,_p.
Indeed, H,, — Hy,_x—1 =T, + 1/(n — k). Then we get
pa(Ag) < pa(Ags1)
<2/2n—k)—2/2n—k—1) <T,[1/k2n—k) - 1/(k+ 1)(2n — k — 1))
—1/[(n—k)(k+1)2n—k—1)
& =2/2n—k)2n—k—1) < Ty
—1/[(n—k)(k+1)2n—k—1)
S 1/[n=k)k+D)2n—-k—-1)]—-2/2n—k)(2n—k—1)
<T,[1/k(2n —k)—1/(k+1)(2n — k — 1)]
S k@2n—-2k—-1)/[(n—k)(k+1)2n—k—1)(2n — k)]
>To[1/(k+1)(2n — k —1) — 1/k(2n — k)], which is true since
the lefthand term is positive, while the righthand term is negative.
Let us check now that p(A,—1) < u(Ay).
Indeed, (2(n — 1) — Hy + Hy_(n_1))/[(n — 1)(2n — (n — 1))] < (2 — Hy)/n?
& (2n—1-H,)/(n> —1) < (2n — H,)/n?
& (=n+2)/[n(n? — 1)] < H,/[n*(n? — 1)], which is true for n > 3.
Thus we obtain the conclusion. O

]
1/k(2n — k) —1/(k +1)(2n — k — 1)]
]

Now, taking account of (**) we obtain a new hypergroup (H,o;) in which for all
A; € H we have

Ajor A; = {a;} and for all 1 < i < j < n we have A; 01 A; = Aj01 A; =
{Ai, Ai+1; veey AJ} Then

o1 Al A2 Ag An
Ay | Ay | {A Ao} | {A A  As) |- o
A2 A2 {A27A3} {A27A37"' 7An}
As As (A3, A}
An ATL
Table 3
5. STEP 2

Applying (*), we obtain the following:

q@2(A1) =2n—1, ¢2(A2) =2-2-(n—1) =1 =4n -5,
@2(A3)=2-3-(n—2)—1=6n—-13, ¢2(44) =2-4-(n—3)—1=8n—25 and
for1<k<n

@A) =2-k-(n—k+1)—1. (6)
Particularly, ¢2(A,) = 2n — 1 = q(A1), ¢2(An—1) = ¢2(A2) =4(n—1) — 1,
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@(An—2) =q2(A3) =2-3-(n—2) - 1.

If n = 2s, where s is a natural number, s > 2 then

02(Ay) = @x(Ag1) = 25(s+ 1) — 1. (7)
If n = 2s+ 1, where s is a natural number, s > 1 then
32(As) = q2(Asy2) = 2s(s +2) — 1 (8)
and
@2(Asp1) =2(s+1)% — 1. (9)

For any A € H we have
p2(A) = az(A4)/q2(A). (10)

Let us calculate now ag(Ag) for 1 < k < n.
Case 1
For n = 2s we have:

az(A1) = aa(Ags) =14+2/2+2/3+ - +2/n=142/2+2/3+---4+2/(2s)
CM2(A3) = OéQ(AQS,Q) = 1+4/2+6/3+6/4++6/(28—2)+4/(28—1)+2/(2S)

ag(As) = aa(Asy1) =144/246/3+ -+ (2s—2)/(s— 1)+ 2s/s
+2s/(s+ 1)+ (25 —2)/(s +2) +--- +2/(2s).

It follows that

p2(A1) = p2(Azs), p2(A2) = p2(Azs—1), -, p2(As) = pa(As1). (11)
By calculations, we get that pa(Ay) > pa(Az) > -+ > pa(As).

Case 2

For n = 25 4+ 1 we have:
CVQ(Al) = Oé2(A25+1) =1 +2/2+2/3+ +2/(2S+ 1)
CMQ(A;),) = OéQ(Agsfl) = 1+4/2+6/3+6/4++6/(28—1)+4/(28)+2/(28+1)

ag(As) = ag(Ast2) =14+4/2+6/3+---+ (25 —2)/(s — 1)+ 2s/s
+2s/(s+1)+2s/(s+2)+(25—2)/(s+3)+---+4/25+2/(25+1)
ao(Asy1) =144/24+6/3+--+2s/s+(25s+2)/(s+ 1)+ 2s/(s+ 2)+
o 44/254+2/(25 +1).
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It follows that

p2(Ar) = pa(Azsi), p2(Az2) = p2(Azs), -
By calculations, we get that pg(A1) > pa(Az) > - > po(As) > po(Astr).

We can conclude this step as follows:

Theorem 5.1.
(1) For n =2s we have:

,M2(As) = Mz(As+2)-

,U2(A1) = uz(Azs), Mz(Az) = NQ(AQS—l)a T ,MQ(AS) = ,uz(As-s-l)

and pa(Ar) > pa(Az) > -+ > pa(Ay).
(2) Forn=2s+ 1 we have:

p2(A1) = pa(Azsi1), p2(Az) = po(Aszs), -
and po(Ar) > pa(Az) > -+ > pa(As) > pa(Asyr).

: 7//62(145) = M2(As+2)

(12)

Now, taking account of (**), we obtain a new hypergroup (H, o3) in which for all
A; € H we have A; o9 A; = {A;, Apt1—:}. Moreover, for all 1 <i < j < n we have

Aj oo Aj = Aj 09 A; = {Ai; An+1—i; Ai+17An—i,’

Denote A; = {4;, Ap+1-i}. Hence
A; 09 A; = Ai, A; o9 AJ‘ = Aj 09 A; = Al @] AZ‘AJrl @] UAJ‘.

v aAja An+1—j}'

In what follows we analyze separately the cases n even and n odd.

6. STEP 3
Case n = 2s.
02 Aq Ay A, As+1 Aose_q Az,
Aq Al | AfU Ay AiU---UA, | AyU---U A, A; U Ay Ay
Aq As AsU---UA; | AgU---UA, Aq A; U Ay
A, A, A, AiU---UA,
Agiq A, A, AiU---UA,
Ags Al A1UA2 A1U~'~UAS A1U---UAS A1UA2 A1
Table 4

Notice a double symmetry of the table horizontally and vertically. Then we have:
q3(A1) =4(2s — 1) = 8s — 4 = g5(Aas),
q3(A2) = 4[2-2(s — 1) — 1] = 4(4s — 5) = q3(A2s-1).
g3(Ak) =42 k- (s —k+1) = 1] = q3(Azs—41), for 1 <k < s.
Particularly, ¢3(As) = 4(2s — 1) = ¢3(Ast1) = ¢3(A1). Similarly, g3(As—1) =
q3(Az) and so on, similarly as in Step 2.
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According to (%),
VA€ H, puz(A) = asz(A)/qz(A). (13)

Let us calculate now as(A).

We have as(A1) = as(As) =4[1/2+2/44+2/6 +... +2/(2s — 1) + 2/(2s)],

az(A2) = ag(As—1) = 4[1/2+4/4+...+4/(2s — 2) + 2/(2s)] and so on, similarly
as in Step 2. Notice that [4; oy A;| = 2|A; o1 A;|, for all indices 7,j. Also, we can
distinguish between cases when s is even or odd as in Step 2.

We finally obtain the followings:

If s is even, then ps(A1) = ps(As), pa(A2) = ps(As—1), -+ 13(Asy2) = pa(Args/2)-

If s is odd, then ps(A1) = ps(As), ps(A2) = pa(As—1),-, pu3(A-1y2) =
13 (Ast3)/2)-

Case n =2s+ 1.

Clearly, if n = 2s + 1, then A,y = {A,41}. Notice that this is the only class
containing only one element.

oy | Ay Ay - Ag Agp1 Agyo - Agsy1
Ay Ay |AUAy |- | AU UA; | AU UAg1 | AU UAg | -+ Ay
Ao Ao coo AU rUAg | AgU---UAgyq | AU~ UAg | --- AU A,
A, A, As U Agyq A, e AT U-- U AL
A5+1 Aerl ASUA5+1 AlU"'UAS
A2s+1 Al
Table 5

The column and the line corresponding to element Ag,; represent the axes of sym-
metry of the table. Thus we get

q3(A1) =4(2s — 1) + 4 = 8s = q3(A2s+1),

g3(A2) = 165 — 12 = g3(As;),

@3(Ag) =42 - k- (s —k+1) — 1] +4 = g3(Aas_p42) for 1 <k <s.
Particularly, ¢3(As) = 12s — 4 = ¢3(As+2). Similarly, ¢g3(As—1) = ¢3(As43) and so
on, similarly as in Step 2.

Finally, g5(As41) = 4s+ 1.

Let us calculate now ag(A) for A € H.

We have: as(As) = ag(As12) = [4/24+8/4+ ...8/(2s)] +4/(2s — u)... + 4/(2s —
1) +4/(2s + 1), where u is odd and |{2s — u,...,2s — 1,25 + 1}| = s. Finally,

az(Ay) = az(Aast1) = 4[1/24+2/4 4 ... +2/2s] + 4/(2s + 1) and so on, similarly
as in Step 2.

Moreover, ag(Asy1) = 1+4/3+4/5+ ... +4/(2s + 1). Notice that the element
Aq+1 appears only in column and in line s + 1.

Now, VA € H, u3z(A) = as(A)/q3(A). We have

/,Lg(ASJrl) = 0[3(A5+1)/Q3(As+1) = [1 + 4/3 + 4/5 + ...+ 4/(28 + 1)]/(48 + ].)
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By calculations, we finally obtain that
pa(Asy1) > p3(As) > - > ps(A2) > pa(Ar).
We check that for n € {5, 7} the fuzzy degree of (H,®) is 3.

7. EXAMPLES

Example 7.1. Let n = 6. Then s = 3. We have the following table for o;:

5} A1 A2 Ag AG
A | Ay | {A, Ao} | {Ar, Ag, As) |- - o
Ay Ay {Az, A3} | -+ | {Ag, A, -+, Ag}
As Az {As, -+, Ag}
A Aq

Table 6

By calculation, we have
ua(A1) = pa(Ag) = 3.9/11 = 0.354
Then we obtain the following table:

o | Ay Ay As Ay As Asg

Ay | Ay | AfUAy | AfUASUAs | AfUA U As | AU Ay Ay

A, Ag Ay U As Ay U As Ag AU A,
As Asg Asg AsUAs | AfU A5 U Az
Ay Az As UAs | A UA5U As
Asg Ay A1 U Ay
Ag Ay

Table 7

By calculation, we get

>,u3(A2) A ) 732/28—0261
Denote [A;] = {Al,Ag,A4,A6} [A2] = {A2, A5}. Thus we obtain the following
table:

O3 Al A2 A3 A4 A5 AG
A [ [Ad | H [ [A] | [A] ] H | [AY]
Ay | H |[A9] | H H |[A) | H
As [ [Ad] | H [ [A] | [A] ] H | [Ad]
Ay [[Ad] | H [ A | [A] ] H | [AY]
AT H A B | H |4 H
Ao | [A] | H [[Ad] [[A] | H | [A4]

Table 8

By calculation, we have
/L4(A1) = /L4(A6) = /L4(A3) = /L4(A4) = 666/32 = 0.208
133



Fotea et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 125-138

So (H, o3) is isomorphic to (H,o4) and hence the fuzzy grade is 3.

Example 7.2. Let n = 8. Then s = 4.

® | Ay Ay As A; Ag

A | H H H H H

Ay | H | Ay, [ Ag Ag, -+ Ag | Ag,--- JAg | Ao, , Ag

Ag | H | Agy,---  Ag Ag, A7, Ag | Ag, A7, Ag | Ag, A7, Ag

A7 | H | Ay, [ Ag Ag, Az, Ag A7, Ag A7, Ag

Ag | H | Ag,--- , Ag Ag, A7, Ag A7, Ag Ag
Table 9

By calculation, we have
(A1) =1/8=0.125 < p1(Az) = 0.1389
< p1(As) =5.562/39 = 0.142

< 1 (Ay) = 7.362/48 = 0.153
< 1y (As) = 9.112/55 = 0.165
< p1(Ag) = 10.778/60 = 0.179
< (A7) = 12.278/63 = 0.194

< u1(Ag) = 13.278/64 = 0.207.
Thus we obtain the next hypergroup structure, according to Step 1:

o1 | Ay Ay As Ag
Ay | Ar | {A Ao} | {Ar, Ap, A3} H
Aa Ay {As, A3} {Ay, A3, -+, Ag}
Az Az {Asz, -+, Ag}
Ag AS
Table 10
Also, by calculation, we have
> 11 (Ag) = p2(As) = 10.42/39 = 0.267.
So we obtain the following table:
O9 A1 A2 A4 A5 A? A8
A | A | A U A, AU UA; | AjU---UAy AL U A, Aq
A, Ao AU - UAs | AsU---UAy A, AL U A,
Ay Ay Ay AU UAy
As A, Ay AjU---U A,
Ag | A1 | AJ U Ay AU UAs | AfU---UAy A; U Ag Ay
Table 11
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On the other hand, we have
n3(A1) = ps(As) = ps(As) = ps(A4s) = 6.32/28 = 0.225

At the next step, we obtain the total hypergroup, acording to (**) that is A;04 A; =

Denote [A1] = {A1, Ay, A5, Ag} and [As] = {Aa, A3, Ag, A7}. This means that

03 Al A2 A3 A4 A5 A6 A7 Ag

AT H | B [[A]|[A]| B | # A

A2 H AQ AQ H H AQ A2 H

A3 H A2 A2 H H A2 A2 H

Ag [ [Ad | H | H |[A]|[A]| H | H | [A]
Table 12

H for all 4, j € {1,---,8}. Hence the fuzzy degree of this hypergroup is 4.

Example 7.3. Let n = 5. Then s = 2. We mention here only the table and calcu-

lations from step 2 on.

02 Ay Ay As Ay As
Ay Ay H — {A;} H H—{A;3} Ay
Ay | H—{As} Ay H- A Ay H - {As3}
Az H H— A {43} H - A H
Ay | H—{A3} Ay H - Ay Ay H - {As3}
As Aq H - {A3} H H - {A;} Aq
Table 13
The we get

> /.tg(Al) = /.tg(A5) = 48/16 =0.3,

which holds also for index 4, i.e., pa(As) > pa(Az) = pa(As) > pa(A1) = pa(A4s).

Thus the fuzzy degree (H,®) is 3.

Example 7.4. Let n =7. Then s = 3.

Then we have

® | A Ay Ag Aq

A | H H H H

A2 H A27"'7A7 A27"'7A7 A27"'7A7

AG H A27"' 7A7 A67A7 A67A7

A7 | H | Ay, Ay Ag, A7 Az
Table 14

< 1 (As) = 3.68/24 = 0.153
< p1(As) = 5.49/33 = 0.166
< p1(Ag) = 7.242/40 = 0.181
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< u1(As) = 8.912/45 = 0.198

< u1(Ag) = 10.412/48 = 0.216

< (A7) =11.412/49 = 0.232.
Thus

(A1) < p(A2) < pa(As) < p(As) < pa(As) < pa(Ae) < pa(Az).

So we obtain the next hypergroup structure, according to Step 1:

o | A Ay As Az
Ay | Ay [ {41 A} | {Ar, A, As} H
A A {Az, A3} {Az, As,--- , A7}
Ag AB {A37"' ,A7}
A7 A7

Table 15

On the other hand, we get

> pia(As) = pa(Ag) = 7.073/23 = 0.307
> pip(Ay) = 9.14/31 = 0.294, i.e.,

p2(Ar) = p2(Az) > pa(Az) = p2(Ag) > p2(As) = p2(As) > p2(Ag),

Hence we obtain the following table:

oy | Ay Az Az Ay As Az
A1 | A1 | AfUAy | AJUASUAs | A U---UAs | A UAS U As Ay
As Ay Ay U Az Ay U---UAy Ay U Aj A1 U A,
Az Az Az U Ay Az AT UAs U Az
Ay Ay A3 U Ay AjUASUA3U Ay
Asg A UAs U Ag
A6 Al U AAQ
Aq A,

Table 16

On the other hand, We have
pis(Ay) = 3.7/13 = 0.284
> p3(Az) = pa(As) =
> p3(A1) = pa(Ar)
> p3(A2) = p3(As)

5.3244/7)/24 = 5.89/24 = 0.245

8.03/32 = 0.250
(
8.7/36 = 0.241, i.e.,

p3(As) > ps(As) = ps(As) > ps(Ar) = ps(Az) > ps(Az) = ps(As).
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This means that

o3 A, A, A Ay As A Az
A | A4 AUA, | AjUA; |H—Ay | AjUd; | A UA, A,
Ay | Ay U Ay Ay H-{A}| H |H-{Ay} A, AU Ay
As | Ay UAs | H—{A,)} As As U Ay As H—{A;} | AU A3
A, | H- A4, H AsUA, | {A) | AsU Ay H H— A,
As | Ay UAs | H—{A4} As A3 U Ay As H—{A} | A UA;
Ag | A1 U A, Ay H—{A)} H H—{Ay)} Ay AU A,
A | Ay AyUAy, | AjUAs | H—Ay | AyUds | A UA, Ay

Table 17

Also, we get

p1a(As) = 3.7/13 = 0.284
> pa(Az) = pa(Ag) = ps(Ar) = pa(Ar)
— (5.32 + 4/7) /24 = 5.80/24 = 0.245
> ,U,4(A1) = ,U,4(A7) = ,U,g(AQ) = ,U,3(A6) = 87/36 =0.241, i.e.,

pa(As) > pa(As) = pa(As) > pa(Az) = pa(As) > pa(Ar) = pa(Ag).
We obtain A; o4 A; = A; og A; for all indices ,j, which means that (H,o4) &
(H,02), (H,o05) = (H,o03) and so on. Therefore the fuzzy grade of (H,®) is 3.

8. CONCLUSIONS

Calculating the fuzzy degree of a hypergroup is a topic analyzed from various
particular classes of hypergroups (See [, &, 9, 10, 11, 13]).

In this paper, we analyze a hypergroup that occurs in genetics, so we focused our
study on certain particular cases, as follows:

i If n =6 then the fuzzy degree of (H,®) is 3.
ii If n =8 then the fuzzy degree of (H,®) is 4.
Notice that for n = 2s and s is odd, then the classes [4;] have 4 elements
for all i € {1,..., (s — 1)/2} and [A(s41)/2] has 2 elements in the table of o3,
while if s is even all classes [A;] have 4 elements for all 1 <7 < s.
iii If n =5 then the fuzzy degree of (H,®) is 3.
iv. If n =7 then the fuzzy degree of (H,®) is 3.
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