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Abstract. In this paper, a new method is proposed to solve fuzzy
fractional linear problems with triangular fuzzy coefficients. It consists
of a combination of two resolution approaches in order to deduce a more
efficient hybrid method. Indeed, this hybridization combines Veeramani-
Sumathi method and Dinckelbach’s theorem. To solve fuzzy fractional
linear problems, our new method proceeds in four stages. First, it trans-
forms fuzzy fractional linear program into a deterministic fractional linear
multiobjective program. Then, it transforms this second form into a linear
mono-objective program. Thereafter, it solves the obtained last form of
the problem by using the Danztig’s simplex method. Finally, it uses the
arithmetic fuzzy operations to bring back the obtained solution in the fuzzy
set. For our new method, a theorem have been produced to highlight the
justification of the theoretical mathematical foundations and two didactic
examples are been solved to prove its numerical performances.
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1. Introduction

Areas such as financial planning, production planning, business management,
marketing, media selection, university planning, students admission, health care and
hospital planning, and so one, are often faced with decision problems that consist in
optimizing the ratios such as department/equity, profit/cost, inventory/sales, real
cost/standard cost, performance/employee, student/cost, nurse/patient ratio, and
so one[1, 2, 3, 4, 5, 6]. The problems listed above are effectively solved through
linear fractional modelling. In practice, all coefficients are not generally accurate
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because of measurement or variation errors due to the market conditions. There-
fore, these situations are well modelled by fuzzy linear fractional programming.

Many researchers have worked on methods for solving fuzzy fractional linear prob-
lems, but it is difficult to find a successful and universal method in order to help the
decision-maker. This is why there are several proposed methods, in the literature,
about the single objective fractional linear programs resolution [1, 7, 8, 9, 10, 11].

For example, Veeramani and Sumathi [12] proposed a method to solve the prob-
lems of mono-objective blurred linear fractional programming. It starts with trans-
forming the problem into an equivalent deterministic multiobjective linear fractional
programming problem and then solves each objective function separately. There-
after, based on the solutions obtained, they define a level of imprecision and aspi-
ration for each objective, which allows them to back into a fuzzy set to provide the
solution of the initial problem. But, this method used by Veeramani and Sumathi,
which consists of separately optimizing the objective functions after defuzzification,
is not optimal because it does not consider that the objectives are fractional and
can be conflicting.

In the literature, there are many techniques of linearization of fractional objective
functions. One of them is the theorem proposed by Dinckelbach. The principle of its
transformation has been the subject of several works aimed at confirming its effec-
tiveness. In the multiobjective context, the formula consists of linearization followed
by aggregation.

In the work, we have developed a new approach to solve fuzzy fractional linear
optimization problems, based on the work of Veeramani and Sumathi. It is a combi-
nation of the defuzzification technique proposed by Veeramani and Sumathi and the
theorem proposed Dinckelbach [13, 14, 15]. Our new method can be summarized
in four essential steps: the conversion of the fuzzy fractional linear program into a
deterministic multiobjective program; the transformation of the problem of the ob-
tained deterministic multiobjective program into a mono-objective linear problem;
the resolution through Danzig’s simplex and the conversion of the deterministic so-
lution to the fuzzy solution by using fuzzy arithmetic operations. We formulated
and demonstrated three theorems and gave two examples to justify the performance
of the method. Our numerical results are greatly improved compared to those of
two other methods taken from the literature [16, 17].

For a better presentation of this work, we will present the preliminaries in Section
2. Session 3 will be dedicated to the presentation of our results, and Session 4 will
be devoted to conclusion.

2. Preliminaries

This section presents some notions on triangular fuzzy numbers that we will
need for the rest of the work. The main elements of this section is taken from
[2, 9, 11, 18, 19, 20, 21, 22].
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2.1. Definitions.

Definition 2.1. Let X be a set. A fuzzy subset ã of X is characterized by a
membership function µã : X → [0, 1] and represented by a set of ordered pairs.
That is defined as follows:

(2.1) ã = {(x, µã(x))/x ∈ X},
where µã(x) ∈ [0, 1] represents extent to which x belongs to ã.

Remark 2.2. ã is the graph of the membership function µã.

Definition 2.3. A fuzzy set ã of X is convex, if

µã(λx1 + (1− λ)x2) ≥ min
(
µã(x1), µã(x2)

)
for all x1, x2 ∈ X and for all λ ∈ [0, 1].

Definition 2.4. A triangular fuzzy number ã is denoted by (a(1), a(2), a(3)) with
a(1) < a(2) < a(3) is a fuzzy set where the membership function µã(x) can be defined
as:

(2.2) µã(x) =


x− a(1)

a(2) − a(1)
if a(1) ≤ x < a(2)

a(3) − x

a(3) − a(2)
if a(2) ≤ x < a(3)

0 else.

Definition 2.5. Let N(R) be the set of all triangular fuzzy numbers with values in
R. A ranking is a function F : N(R) → R, which maps each fuzzy number into the
real line, where a natural order exists. Let ã = (a(1), a(2), a(3)) is a triangular fuzzy

number. Then F (ã) =
a(1) + 2a(2) + a(3)

4
.

The ranking function allows to compare two triangular fuzzy numbers. Let us
consider two triangular fuzzy numbers ã and b̃ with ã = (a(1), a(2), a(3)) and b̃ =
(b(1), b(2), b(3)). Then, we are define relations as follow:

⋄ ã ≈ b̃ if and only if F (ã) = F (b̃),

⋄ ã ⪰ b̃ if and only if F (ã) ≥ F (b̃),

⋄ ã ⪯ b̃ if and only if F (ã) ≤ F (b̃),

⋄ ã ≻ b̃ if and only if F (ã) > F (b̃).

Remark 2.6. Let ã = (a(1), a(2), a(3)) and b̃ = (b(1), b(2), b(3)) be any two positive

triangular fuzzy numbers. ã ⪯ b̃ if and only if a(1) ≤ b(1), a(2) ≤ b(2) and a(3) ≤ b(3).

2.2. Operations. Let ã = (a(1), a(2), a(3)) and b̃ = (b(1), b(2), b(3)) be two triangular
fuzzy numbers, where a(1), a(2), a(3), b(1), b(2), b(3) ∈ R∗

+. Then the arithmetic
operations are defined by:

⋄ ã⊕ b̃ = (a(1) + b(1), a(2) + b(2), a(3) + b(3)),

⋄ ã⊖ b̃ = (a(1) − b(3), a(2) − b(2), a(3) − b(1)),

⋄ kã =

 (ka(1), ka(2), ka(3)) if k ≥ 0,

(ka(3), ka(2), ka(1)) if k < 0,
113
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⋄ ã

b̃
=

(
a(1)

b(3)
,
a(2)

b(2)
,
a(3)

b(1)

)
.

2.3. Fuzzy fractional linear optimization program. The fractional linear pro-
gram with triangular fuzzy coefficients can be written as follows:

(2.3)



max Z̃ =

n∑
j=1

c̃jxj + p̃

n∑
j=1

d̃jxj + q̃

,

subject to
n∑

j=1

ãijxj ⪯ b̃i, i = 1,m,

xj ≥ 0, j = 1, n,

where c̃j = (c
(1)
j , c

(2)
j , c

(3)
j ), d̃j = (d

(1)
j , d

(2)
j , d

(3)
j ), ãi = (a

(1)
ij , a

(2)
ij , a

(3)
ij ), b̃i = (b

(1)
i , b

(2)
i , b

(3)
i ),

p̃ = (p(1), p(2), p(3)), q̃ = (q(1), q(2), q(3)) for i = 1,m and j = 1, n. Let

S = {x ∈ Rn
+/
∑

ãijxj ⪯ b̃i, i = 1,m j = 1, n}.

We assume that the feasible region S is nonempty and bounded and the denom-
inator

n∑
j=1

d̃jxj + q̃ ≻ 0̃.

Definition 2.7. Any vector x ∈ Rn
+ that satisfies the constraints, i.e., x ∈ S is a

feasible solution of the fuzzy fractional linear optimization problem.

Remark 2.8. Let x ∈ S. Then Z̃(x) is called a fuzzy objective value of the fuzzy
fractional linear optimization problem.

Definition 2.9. Let F be a ranking function defined on N(R). A vector x ∈ S is
said to be the optimal solution of the fuzzy fractional linear optimization problem,if
there does not exist an x ∈ S such as F (Z̃(x)) ≤ F (Z̃(x)).

2.4. Deterministic fractional multi-objective optimization program. A frac-
tional linear multiobjective optimization program is presented as follows:

(2.4)



max

Zk(x) =

n∑
j=1

ckjxj + pk

n∑
j=1

dkjxj + qk
=

Pk(x)

Qk(x)
, k = 1,K

 ,

subject to
Ax ≤ b,
x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, ckj , dkj , x ∈ Rn, pk and qk ∈ R, ∀k = 1, · · · ,K,
∀j = 1, · · · , n.
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Definition 2.10 ([23])). The problem (2.4) is said to be: (i) concave-convex, if the
functions Pk, k = 1, 3 are concave and the functions Qk, k = 1, 3 and constraints are
convex,

(ii) convex-concave, if the functions Pk, k = 1, 3 and the constrained functions are
convex, and the functions Qk, k = 1, 3 are concave.

In the sequel, let Ω = {x ∈ Rn
+/Ax ≤ b} be the set of feasible solutions. It is

compact, convex and non-empty.

Definition 2.11 ([24]). A point x ∈ Ω is said to be strongly efficient (S-efficient), if
there is no x ∈ Ω such as Zk(x) ≥ Zk(x), ∀k = 1,K and Zj(x) > Zj(x) for at least
one j ̸= k. This solution also said to be Pareto optimal.

Definition 2.12 ([24]). A point x ∈ Ω is said to be weakly efficient (W-efficient),
if there is no x ∈ Ω such that Zi(x) > Zi(x) ∀i = 1,K. This solution also called
weakly Pareto optimal.

Remark 2.13. Let P be the set of Pareto optimal solutions, and P the set of weakly
Pareto optimal solutions. We have P ⊆ P .

Definition 2.14. The ideal point y∗ = (y∗1 , y
∗
2 , ..., y

∗
p) is the vector whose each

coordinates y∗k correspond to the optimum solution of the objective function Zk

under the constraints of initial problem. That is y∗k = max
x∈Ω

(Zk(x)), k = 1, p.

Theorem 2.15 ([13, 14, 15]). (Dinkelbach’s theorem)

Z∗
k =

Pk(x
∗)

Qk(x∗)
= max

{
Pk(x)

Qk(x)
/x ∈ Ω

}
if and only if f(Z∗

k) = f(Z∗
k , x

∗) = max{Pk(x)−

Z∗
kQk(x)/x ∈ Ω} = 0.

This theorem proposed by Dinkelbach [14] converts fractional linear multiobjec-
tive optimization problem in nonfractional linear multiobjective problem.

3. Main results

This section is devoted to the presentation of our new method, the didactic ex-
amples dealt with and the result analysis.

3.1. New method. Our method can be summarized in four main step as follows :

Step 1: Defuzzification. Allows to transform the fuzzy fractional linear
problem into deterministic multiobjective optimization problem,

Step 2: Agregation. Consists in transforming the multiobjective optimization
problem into single objective optimization problem,

Step 3: Resolution. Consists in finding the solution of final single-objective
optimization problem,

Step 4: Solution initialization. Corresponds to the transformation of the
obtained solution from deterministic form to fuzzy form.
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Defuzzification.: Let us consider the problem (2.3).
Using the addition on fuzzy numbers, we can rewrite the problem (2.3) as
follows:

(3.1)



max Z̃ =
(
∑

c
(1)
j xj + p(1),

∑
c
(2)
j xj + p(2),

∑
c
(3)
j xj + p(3))

(
∑

d
(1)
j xj + q(1),

∑
d
(2)
j xj + q(2),

∑
d
(3)
j xj + q(3))

=

(
P1(x), P2(x), P3(x)

)(
Q1(x), Q2(x), Q3(x)

) ;
subject to∑

a
(1)
ij xj ≤ b

(1)
i , i = 1,m;∑

a
(2)
ij xj ≤ b

(2)
i , i = 1,m;∑

a
(3)
ij xj ≤ b

(3)
i , i = 1,m;

xj ≥ 0, j = 1, n.

Using the division on fuzzy numbers, we can also rewrite the problem (3.1):

(3.2)



max Z1 =

∑
c
(1)
j xj + p(1)∑
d
(3)
j xj + q(3)

=
P1(x)

Q3(x)
;

max Z2 =

∑
c
(2)
j xj + p(2)∑
d
(2)
j xj + q(2)

=
P2(x)

Q2(x)
;

max Z3 =

∑
c
(3)
j xj + p(3)∑
d
(1)
j xj + q(1)

=
P3(x)

Q1(x)
;

subject to∑
a
(1)
ij xj ≤ b

(1)
i , i = 1,m;∑

a
(2)
ij xj ≤ b

(2)
i , i = 1,m;∑

a
(3)
ij xj ≤ b

(3)
i , i = 1,m;

xj ≥ 0, j = 1, n.

Problem (3.2) is a deterministic fractional linear multi-objective optimiza-
tion program.

Let us denote by Ω the deteministic set associated to the feasible set S.

Remark 3.1. We have Ω ⊂ S.

Proof. Let x ∈ Ω, i.e.,
∑

a
(1)
ij xj ≤ b

(1)
i ,

∑
a
(2)
ij xj ≤ b

(2)
i ,

∑
a
(3)
ij xj ≤ b

(3)
i i =

1,m, j = 1, n. We have
(∑

a
(1)
ij xj ≤ b

(1)
i ,
∑

a
(2)
ij xj ≤ b

(2)
i ,
∑

a
(3)
ij xj ≤ b

(3)
i

)
.

This means that
(∑

a
(1)
ij xj ,

∑
a
(2)
ij xj ,

∑
a
(3)
ij xj

)
≤
(
b
(1)
i , b

(2)
i , b

(3)
i

)
i = 1,m,

j = 1, n, which is also equal to
∑(

a
(1)
ij , a

(2)
ij , a

(3)
ij

)
xj ≤

(
b
(1)
i , b

(2)
i , b

(3)
i

)
, i =

1,m, j = 1, n. This implies that
∑

ãijxj ⪯ b̃i, i = 1,m, j = 1, n. Then
x ∈ S. Thus Ω ⊂ S. □

We formulate the following theorem.

Theorem 3.2. Let x ∈ Ω. If x is a Pareto optimal solution of (3.2), then
x is an optimal solution of the problem (3.1).

116



Sama et al. /Ann. Fuzzy Math. Inform. 25 (2023), No. 2, 111–123

Proof. Let x be a Pareto optimal solution of problem (3.2). Then ∀x ∈ Ω,
we have (

Z1(x), Z2(x), Z3(x)
)
≤
(
Z1(x), Z2(x), Z3(x)

)
.

By replacing each on by its expression, we obtain(
P1(x)

Q3(x)
,
P2(x)

Q2(x)
,
P3(x)

Q1(x)

)
≤
(
P1(x)

Q3(x)
,
P2(x)

Q2(x)
,
P3(x)

Q1(x)

)
.

Using the operations rules defined above, We get(
P1(x), P2(x), P3(x)

)(
Q1(x), Q2(x), Q3(x)

) ≤
(
P1(x), P2(x), P3(x)

)(
Q1(x), Q2(x), Q3(x)

) .
That is equivalent to :

Z̃(x) ≤ Z̃(x).

Thus x is an optimal solution of (3.1). □

Aggregation.: Here, we apply the theorem of Dinckelbach. That allows us to
linearise each objective function in order to transform them in globlal objec-
tive. Thus, the fractional linear multiobjective problem (3.2) is transformed
into the following linear problem:

(3.3)



max

(
Zω =

3∑
i=1

ωi(Pi(x)− Z∗
i Qi(x))

)
subject to∑

a
(1)
ij xj ≤ b

(1)
i , i = 1,m;∑

a
(2)
ij xj ≤ b

(2)
i , i = 1,m;∑

a
(3)
ij xj ≤ b

(3)
i , i = 1,m;

xj ≥ 0, j = 1, n;

where ω = (ω1, ω2, ω3) ∈]0, 1[3 are the weights of the objective functions
such as ω1 + ω2 + ω3 = 1. The linear optimization problem is solved by all
methods of solving linear problems.

Theorem 3.3. Let xω ∈ Ω and ω1, ω2, ω3 ∈ ]0; 1[ such as ω1+ω2+ω3 = 1.
If xω is a Pareto optimal solution of problem (3.3), then xω is also a Pareto
optimal solution of problem (3.2).

Proof. Assume that xω is a Pareto optimal solution of problem (3.3). Then

∀k ∈ {1, 2, 3}, Z∗
k(xω) =

Pk(xω)

Qk(xω)
and we have Pk(xω)− Z∗

kQk(xω) = 0. As

wi ≥ 0, ∀i = 1, 3, later on, we obtain

3∑
k=1

ωk

(
Pk(xω) − Z∗

kQk(xω)
)
= 0.

Suppose that xω is not a Pareto optimal solution of (3.2). Then there is
a x̂ ∈ Ω such that Zi(x̂) ≥ Zi(xω) for all i and Zj(x̂) > Zj(xω) for at

least one j ∈ {1, 2, 3}. Thus we have : for all i,
( Pi(x̂)

Qi(x̂)
≥ Pi(xω)

Qi(xω)
=⇒

Pi(x̂) ≥ Qi(x̂)
Pi(xω)

Qi(xω)
because Qi(x̂) > 0 hence Pi(x̂) − Z∗

i Qi(x̂) ≥ 0
)
and
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at least one j ∈ {1, 2, 3},
( Pj(x̂)

Qj(x̂)
>

Pj(xω)

Qj(xω)
=⇒ Pj(x̂) > Qj(x̂)

Pj(x)

Qj(x)

because Qj(x̂) > 0 hence Pj(x̂)− Z∗
jQj(x̂) > 0

)
As ωi > 0, We still have ωi(Pi(x̂) − Z∗

i Qi(x̂)) ≥ 0 for all i and ωj(Pj(x̂) −
Z∗
jQj(x̂)) > 0 for at least one j = {1, 2, 3}. By summing these two relations

we obtain

3∑
i=1

ωi

(
Pi(x̂)−Z∗

i Qi(x̂)
)
> 0. That allows us to write the following

inequality:

3∑
i=1

ωi

(
Pi(x̂) − Z∗

i Qi(x̂)
)

> 0 =

3∑
i=1

ωi

(
Pi(xω) − Z∗

jQi(xω)
)
.

Hence

3∑
i=1

ωj

(
Pj(x̂)− Z∗

jQj(x̂)
)
>

3∑
i=1

ωj

(
Pj(xω)− Z∗

jQj(xω)
)
. Which is a

contradiction with our assumption. Therefore xω is also a Pareto optimal
of problem (3.2). □

Remark 3.4. The parameter ω is used as the weight values for the objective
functions. Then for two different values of ω we get two different resulting
problems where their resolution gives two different optimal solutions. So, by
varying ω we obtain the whole Pareto optimal set of the initial problem.

Resolution.: This step consists in the resolution of the problem (3.3). This
problem is linear single-objective optimization. Therefore, we use the Danzig’s
simplex method to deduce the optimal solution of the problem (3.3).

Solution initialisation: In this last step, we use the arithmetic operations
to transform the obtained deterministic solution to the solution of initial
problem which is necessarily fuzzy.

The Algorithm of our method can be write as the following.
Let P̂ and Q̂ be some fuzzy triangular linear functions and

P̂ (x)

Q̂(x)
the fuzzy fractional linear

function. Let Pk and Qk, k = 1, 3 be the deterministic functions from
P̂ (x)

Q̂(x)
by using classical

operations on triangular fuzzy numbers. Then

1. consider the problem max
x∈S

{ P̂ (x)

Q̂(x)

}
,

2. defuzzify with classical operators on triangular numbers. Hence the

form max
x∈Ω

{ Pk(x)

Qk(x)
, k = 1, 3

}
,

3. convert to linear form max
x∈Ω

{
wk

(
Pk(x)− Z∗

kQk(x)
)
, k = 1, 3

}
by using

Dinkelbach’s theorem,

4. put on single-objective form max
x∈Ω

{ 3∑
k=1

wk

(
Pk(x)− Z∗

kQk(x)
)}

by using

weighting sum approach,

4. for fixed value of the ω ∈]0, 1[3, solve max
x∈Ω

{ 3∑
k=1

wk

(
Pk(x)− Z∗

kQk(x)
)}

by Dantzig’s Simplex method.
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3.2. Didactic examples. These examples are taken from [7, 16].

Example 1: Let us consider the following fuzzy fractional linear problem:

(3.4)



max

(
Z̃ =

(3, 5, 7)x1 + (2, 3, 4)x2

(4, 5, 6)x1 + (1, 2, 3)x2 + (0, 1, 2)

)
;

subject to
(2, 3, 4)x1 + (3, 5, 7)x2 ≤ (11, 15, 19);
(4, 5, 6)x1 + (1, 2, 3)x2 ≤ (8, 10, 12);
x1, x2 ≥ 0.

By applying the new method, the fuzzy fractional problem is first trans-
formed into the following deterministic fractional problem:

(3.5)



max Z̃ =
(3x1 + 2x2, 5x1 + 3x2, 7x1 + 4x2)

(4x1 + x2, 5x1 + 2x2 + 1, 6x1 + 3x2 + 1)
;

subject to
2x1 + 3x2 ≤ 11;
3x1 + 5x2 ≤ 15;
4x1 + 7x2 ≤ 19;
4x1 + x2 ≤ 8;
5x1 + 2x2 ≤ 10;
6x1 + 3x2 ≤ 12;
x1, x2 ≥ 0.

Note that the admissible domain is a convex polytope. The existence of
solution is thus guaranteed by the properties of convexity.
Problem (3.5) is equivalent to the following deterministic fractional linear
tri-objective problem:

(3.6)



maxZ1 =
3x1 + 2x2

6x1 + 3x2 + 1
;

maxZ2 =
5x1 + 3x2

5x1 + 2x2 + 1
;

maxZ3 =
7x1 + 4x2

4x1 + x2
;

subject to
2x1 + 3x2 ≤ 11;
3x1 + 5x2 ≤ 15;
4x1 + 7x2 ≤ 19;
4x1 + x2 ≤ 8;
5x1 + 2x2 ≤ 10;
6x1 + 3x2 ≤ 12;
x1, x2 ≥ 0.

We observe that Z1, Z2, Z3 ≥ 0, for x belonging to the feasible domain. We
look for the ideal values: 0.50 ≤ Z1 ≤ 0.53; 1.26 ≤ Z2 ≤ 1.27; Z3 = 4.

Let us choose ω = (
1

3
,
1

3
,
1

3
), the fractional linear tri-objective optimization
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problem is equivalent to the following linear optimization problem:

(3.7)



maxZω = [ 13 ((3x1 + 2x2)− 0.53(6x1 + 3x2 + 2)) + 1
3 ((5x1 + 3x2)

−1.27(5x1 + 2x2 + 1)) + 1
3 ((7x1 + 4x2)− 4(4x1 + x2))];

subject to
2x1 + 3x2 ≤ 11;
3x1 + 5x2 ≤ 15;
4x1 + 7x2 ≤ 19;
4x1 + x2 ≤ 8;
5x1 + 2x2 ≤ 10;
6x1 + 3x2 ≤ 12;
x1, x2 ≥ 0.

By solving the problem we find x1 = 0, x2 = 2.71 and the fuzzy optimal
solution Z̃ω

max = (0.53, 1.27, 4.00).
The comparison with other solutions in the literature is given in the table

below.

Table 1. Results obtained by the proposed method and other methods

Methods Fuzzy optimal solution Z̃ω
max Ranking value

Our method (0.53, 1.27, 4.00) 1.76
Sapan-Edalatpanah-Mandal method (0.50, 1.00, 2.40) 1.72
Taylor series method (0.40, 0.75, 2.19) 1.39

We find that our method gives the best solution through the ranking
function compared to what is proposed by Sapan[16] and methods using
Taylor series [17, 25].

Example 2: Let us consider the following fuzzy fractional linear problem:

(3.8)



max

(
Z̃ =

(4, 6, 8)x1 + (1, 2, 3)x2

(0, 1, 2)x1 + (0, 1, 2)x2 + (1, 2, 3)

)
subject to
(0, 1, 2)x1 + (0, 1, 2)x2 ≤ (3, 7, 11)
(1, 2, 3)x1 + (2, 3, 4)x2 ≤ (7, 17, 27)
x1, x2 ≥ 0

Taking ω1 = ω2 = ω3 = 1
3 and after solving we get x1 = 5.5, x2 = 0 and

Z̃ω
max = (1.57, 4.40, 44.00).

The comparison of this solution and other methods is given in the table
below.

Table 2. Results obtained by the proposed method and other methods

Methods Fuzzy optimal solution Z̃ω
max Ranking value

Our method (1.57, 4.40, 44.00) 13.59
Sapan-Edalatpanah-Mandal method (1.45, 4.00, 32.00) 10.36
Taylor series method (1.45, 4.00, 02.32) 03.09
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We also find that our method provides the best solution compared to
what is proposed by Sapan [16] and methods using Taylor series [17, 25].

3.3. Result analysis. Regarding to our obtained solutions and ranking function
values on theses two didactic examples we can conclude that our method is better
than the two others. Indeed, Sapan, Edalatpanah and Mandal [3, 16, 18] have been
evaluated with various existing methods such: Veeramani and Sumathi method [7],
Pop et al. [26] method, Stanojevic-Stancu Minasian method [27] and Safaei’s method
[28] on the same problems. It appears that the Sapan, Edalatpanah and Mandal
[16, 18] method provides good solutions.

4. Conclusion

In this paper, we have successfully proposed a hybrid approach to solving fuzzy
fractional linear problems. It consisted in combining the algorithm of Veeramani
and Sumathi method with Dinkelbach’s theorem. We have explained the different
stages of this method. Indeed, this method transforms the fuzzy linear fractional op-
timization problem into a deterministic linear fractional multiobjective optimization
problem. Then, this last form is convert to a linear single objective optimization
problem. We finally achieve the solution by using Dantzig’s simplex method. We
have formulated two theorems to prove that the obtained solution by our method is
the best of the feasible set. Moreover, two didactic examples have been efficiently
solved, whose ranking function value has been calculated. For the two didactic
problems, our obtained solutions have been better than for the Sapan-Edaltpanah-
Mandal method and the Taylor series method. That allows us to deduce that our
new method is the best choice for solving the Fuzzy linear fractional optimization
problems.
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Université Norbert Zongo
Koudougou, Burkina Faso
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