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1. Introduction

In 1975, Zadeh [1] introduced the concept of interval-valued fuzzy sets as the
generalization of an fuzzy set proposed by himself [2] (Refer to [3]). After then,
Biswas [16] applied it first to group theory (For further researches, refer to [5, 6, 7]).
Jun [8] dealt with interval-valued subalgebras and ideals in BCK-algebras. Also
Maet al. [9] discussed with some kinds of interval-valued ideals in BCI-algebras
and Barbhuiya [10] studied interval-valued ideals in BCK-algebras. Mondal and
Samanta [11] investigated topological structures based on interval-valued fuzzy sets
(For further researches, refer to [12, 13, 14]). Ju and Yuan [15] defined similarity
measures on interval-valued fuzzy sets and applied them to pattern recognitions.
Roy and Biswas [16] dealt with medical diagnoses by using interval-valued fuzzy
relations and Ju [17] applied interval-valued fuzzy relations to medical diagnoses.

As a tool for approximating undefinable or complex concepts, Yao [18] proposed
an interval set (which was called an interval-valued set by Kim et al. [19]) which
is the generalization of an ordinary set and the special case of an interval-valued
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fuzzy set. In particular, Kim et al. [19] studied interval-valued neighborhoods of
two types and some interval-valued closures and interiors. Recently, Cheong et al.
[20] introduced the concept of interval-valued relations and investigated it in the
sense of a category theory.

It is well-known [21] that there are six basic separation axioms which are used in
a classical topological space (X,T ):

Axiom A0. For x ̸= y ∈ X, there is U ∈ T such that either x ∈ U but y ̸∈ U or
x ̸∈ U but y ∈ U .

Axiom A1. For x ̸= y ∈ X, there are U, V ∈ T such that x ∈ U, y ̸∈ U , x ̸∈ V
and y ∈ V.

Axiom A2. For x ̸= y ∈ X, there are U, V ∈ T such that x ∈ U, y ∈ V and
U ∩ V = ∅.

Axiom A3. For each x ∈ X and each closed set C in X such that x /∈ C, there
are U, V ∈ T such that x ∈ U , C ⊂ V and U ∩ V = ∅.

Axiom A4. For each closed set C in X and each x ∈ Cc, there is a continuous
mapping f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for all y ∈ C.

Axiom A5. For any closed sets Ci in X (i = 1, 2) with C1 ∩ C2 = ∅, there are
Ui ∈ T such that U1 ∩ U2 = ∅ and Ci ⊂ U1 (i = 1, 2).

Axiom A6. For any subsetsMi ofX (i = 1, 2) such that (M1∩M̄2)∪(M̄1∩M2) =
∅, there are Ui ∈ T (i = 1, 2) such that Mi ⊂ U1 (i = 1, 2).

The aim of our research is to deal with various interval valued continuities, and
define T0, T1, T2, T3, T4 separation axioms in interval-valued topological spaces
from the point of view mentioned above and study various properties of them. In
order to accomplish our aim, this paper is composed of six sections. In Section 2, we
recall some definitions of interval-valued sets introduced by Yao [18] and three results
obtained by Kim et al. [19]. In Section 3, we define an interval-valued continuity and
find its several properties. In Section 4, we introduce T0, T1, T2 separation axioms
in interval-valued topological spaces and obtain some of their properties, and give
some examples. In Section 5, we propose the notions of T3 and T4 separation
axioms in interval-valued topological spaces and find two characterizations of each
concept. In Section 6, we define an interval-valued subspace and deal with some of
its properties. In Section 7, Since there is a typo in the Definition 4.11 in [19], we
correct it.

2. Preliminaries

In this section, we recall basic concepts and three results related to interval-valued
sets introduced by Yao [18] and Kim et al. [19].

Definition 2.1 ([18, 19]). Let X be an non-empty set. Then the form

[A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+}

is called an interval-valued set (briefly, IVS) or interval set in X, if A−, A+ ⊂ X
and A− ⊂ A+. In this case, A− [resp. A+] represents the set of minimum [resp.
maximum] memberships of elements of X to A. In fact, A− [resp. A+] is a minimum
[resp. maximum] subset of X agreeing or approving for a certain opinion, view,
suggestion or policy. [∅,∅] [resp. [X,X]] is called the interval-valued empty [resp.
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whole] set in X and denoted by ∅̃ [resp. X̃]. We will denote the set of all IVSs in
X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
if A = [A−, A+] ∈ IV S(X), then

χ
A
= [χ

A− , χ
A+ ]

is an interval-valued fuzzy set in X introduced by Zadeh [1]. Thus we can consider
an interval-valued fuzzy set as the generalization of an IVS.

Definition 2.2 ([18, 19]). Let X be a non-empty set and let A, B ∈ IV S(X). Then
(i) we say that A contained in B, denoted by A ⊂ B, if A− ⊂ B− and A+ ⊂ B+,
(ii) we say that A equal to B, denoted by A = B, if A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted Ac, is an interval-valued set in X defined by:

Ac = [(A+)c, (A−)c],

(iv) the union of A and B, denoted by A∪B, is an interval-valued set in X defined
by:

A ∪B = [A− ∪B−, A+ ∪B+],

(v) the intersection of A and B, denoted by A∩B, is an interval-valued set in X
defined by:

A ∩B = [A− ∩B−, A+ ∩B+].

The followings are (i1), (i2), (i3), (k1), (k2) and (k3) in [18].

Result 2.3. Let X be a non-empty set and let A, B, C ∈ IV S(X). Then

(1) ∅̃ ⊂ A ⊂ X̃,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ⊂ A ∪B and B ⊂ A ∪B,
(4) A ∩B ⊂ A and A ∩B ⊂ B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

The followings are (I1)–(I8) in [18].

Result 2.4. Let X be a non-empty set and let A, B, C ∈ IV S(X). Then
(1) (Idempotent laws) A ∪A = A, A ∩A = A,
(2) (Commutative laws) A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws) A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ ∅̃ = A, A ∩ ∅̃ = ∅̃,

(8b) A ∪ X̃ = X̃, A ∩ X̃ = A,

(8c) X̃
c = ∅̃, ∅̃c = X̃,

(8d) A ∪Ac ̸= X̃, A ∩Ac ̸= ∅̃ in general (See Example 3.7 in [19]).
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Definition 2.5 ([19]). Let (Aj)j∈J be a family of members of IV S(X). Then
(i) the intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is an IVS in X defined by:⋂

j∈J

Aj = [
⋂
j∈J

A−
j ,

⋂
j∈J

A+
j ],

(ii) the union of (Aj)j∈J , denoted by
⋃

j∈J Ãj , is an IVS in X defined by:⋃
j∈J

Aj = [
⋃
j∈J

A−
j ,

⋃
j∈J

A+
j ].

Result 2.6 (Proposition 3.9, [19]). Let A ∈ [X] and let (Aj)j∈J be a family of
members of IV S(X). Then

(1) (
⋂

j∈J Aj)
c =

⋃
j∈J Ac

j , (
⋃

j∈J Aj)
c =

⋂
j∈J Ac

j ,

(2) A ∩ (
⋃

j∈J Aj) =
⋃

j∈J(A ∩Aj), A ∪ (
⋂

j∈J Aj) =
⋂

j∈J(A ∪Aj).

Definition 2.7 ([19]). Let X be a non-empty set, let a ∈ X and let A ∈ IV S(X).
Then the form [{a}, {a}] [resp. [∅, {a}]] is called an interval-valued [resp. vanishing]
point in X and denoted by a1 [resp. a0 ]. We will denote the set of all interval-valued
points in X as IVP (X).

(i) We say that a
1
belongs to A, denoted by a

1
∈ A, if a ∈ A−.

(ii) We say that a
0
belongs to A, denoted by a

0
∈ A, if a ∈ A+.

Result 2.8 (Proposition 3.11, [19]). Let X be a non-empty set and let A ∈ IV S(X).
Then

A = A
1
∪A

0
,

where A
1
=

⋃
a1∈A a

1
and A

0
=

⋃
a
0
∈A a

0
.

In fact, A
1
= [A−, A−] and A

0
= [∅, A+]

For a set X, let IV S∗(X) = {A ∈ IV S(X) : A− = A+}. Then from the above
Result, A = A1 for each A ∈ IV S∗(X).

Result 2.9 (Theorem 3.14, [19]). Let (Aj)j∈J ⊂ IV S(X) and let a ∈ X.
(1) a1 ∈

⋂
Aj [resp. a

0
∈
⋂

Aj] if and only if a
1
∈ Aj [resp. a

0
∈ Aj] for each

j ∈ J .
(2) a

1
∈
⋃
Aj [resp. a

0
∈
⋃

Aj] if and only if there exists j ∈ J such that a
1
∈ Aj

[resp. a
0
∈ Aj.

Result 2.10 (Theorem 3.15, [19]). Let A, B ∈ IV S(X). Then
(1) A ⊂ B if and only if a1 ∈ A ⇒ a1 ∈ B [resp. a0 ∈ A ⇒ a0 ∈ B] for each

a ∈ X.
(2) A = B if and only if a

1
∈ A ⇔ a

1
∈ B [resp. a

0
∈ A ⇔ a

0
∈ B] for each

a ∈ X.

Definition 2.11 ([19]). Let X be a non-empty set and let τ be a non-empty family
of IVSs on X. Then τ is called an interval-valued topology (briefly, IVT) on X, if it
satisfies the following axioms:

(IVO1) ∅̃, X̃ ∈ τ ,
(IVO2) A ∩B ∈ τ for any A, B ∈ τ ,
(IVO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ .
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In this case, the pair (X, τ) is called an interval-valued topological space (briefly,
IVTS) and each member of τ is called an open interval-valued set (briefly, OIVS) in
X. A IVS A is called a closed interval-valued set (briefly, CIVS) in X, if Ac ∈ τ .

It is obvious that {∅̃, X̃} is an IVT on X, and will be called the interval-valued
indiscrete topology on X and denoted by τ

IV,0
. Also IV S(X) is an IVT on X, and

will be called the interval-valued discrete topology on X and denoted by τ
IV,1

. The
pair (X, τ

IV,0
) [resp. (X, τ

IV,1
)] will be called the interval-valued indiscrete [resp.

discrete] space.

We will denote the set of all IVTs on X as IV T (X). For an IVTS (X, τ), we will
denote the set of all CIVSs in X with respect to τ as τ c.

Definition 2.12 ([19]). Let X be a non-empty set and let τ1, τ2 ∈ IV T (X). Then
we say that τ1 is contained in τ2 or τ1 is coarser than τ2 or τ2 is finer than τ1, if
τ1 ⊂ τ2, i.e., A ∈ τ2 for each A ∈ τ1.

It is obvious that τ
IV,0
⊂ τ ⊂ τ

IV,1
for each τ ∈ IV T (X).

3. Interval-valued continuities

In this section, we define an interval-valued continuity and find its various prop-
erties. First of all, we recall the image and the preimage of an IVS under a mapping,
and the interval-valued closure and interior.

Definition 3.1 ([19]). Let X, Y be two non-empty sets, let f : X → Y be a
mapping and let A ∈ IV S(X), B ∈ IV S(Y ).

(i) The image of A under f , denoted by f(A), is an IVS in Y defined as:

f(A) = [f(A−), f(A+)].

(ii) The preimage of B under f , denoted by f−1(B), is an IVS in X defined as:

f−1(B) = [f−1(B−), f−1(B+)].

It is obvious that f(a1) = f(a)1 and f(a0) = f(a)0 for each a ∈ X.

Result 3.2 (Proposition 3.17, [19]). Let X, Y be two non-empty sets, let f : X → Y
be a mapping, let A, A1, A2 ∈ IV S(X), (Aj)j∈J ⊂ IV S(X) and let B, B1, B2 ∈
IV S(Y ), (Aj)j∈J ⊂ IV S(Y ). Then

(1) if A1 ⊂ A2, then f(A1) ⊂ f(A2),
(2) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B2),
(3) A ⊂ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂ B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃
j∈J Bj) =

⋃
j∈J f−1(Bj),

(6) f−1(
⋂

j∈J Bj) =
⋂

j∈J f−1(Bj),

(7) f(
⋃

j∈J Aj) =
⋃

j∈J f(Aj),

(8) f(
⋂

j∈J Aj) ⊂
⋂

j∈J f(Aj) and if f is injective, then f(
⋂

j∈J Aj) =
⋂

j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂ f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1(∅̃) = ∅̃, f−1(X̃) = X̃,
59
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(12) f(∅̃) = ∅̃ and if f is surjective, then f(X̃) = X̃,
(13) if g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)), for each

C ∈ IV S(Z).

Definition 3.3 ([19]). Let (X, τ) be an IVTS and let A ∈ IV S(X).
(i) The interval-valued closure of A w.r.t. τ , denoted by IV cl(A), is an IVS in X

defined as:

IV cl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The interval-valued interior of A w.r.t. τ , denoted by IV int(A), is an IVS in
X defined as:

IV int(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

It is obvious that IV cl(A) [resp. IV int(A)] is the smallest IVCS in X containing
A [resp. the largest IVOS in X contained in A.

Result 3.4 (Proposition 6.4, [19]). Let (X, τ) be an IVTS and let A ∈ IV S(X).
Then

IV int(Ac) = (IV cl(A))c and IV cl(Ac) = (IV int(A))c.

Result 3.5 (Theorem 6.8, [19]). Let X be an IVTS and let A ∈ IV S(X). Then
(1) A ∈ CIV S(X) if and only if A = IV cl(A),
(2) A ∈ OIV S(X) if and only if A = IV int(A).

Definition 3.6. Let (X, τ), (Y, δ) be IVTSs and let f : X → Y be a mapping.
Then f is said to be interval-valued continuous, if f−1(V ) ∈ τ for each V ∈ δ.

Proposition 3.7. Let X, Y, Z be IVTSs and let f : X → Y and g : Y → Z be
mappings.

(1) The identity mapping id : X → X is interval-valued continuous.
(2) If f, g are interval-valued continuous, then g◦f is interval-valued continuous.

Proof. From Definition 3.6 and Result 3.2 (13), the proofs are easy. □

Remark 3.8. Let IVTop be the collection of all IVTSs and all interval-valued
mappings between them. Then we can easily see that IVTop forms a concrete
category from Proposition 3.7.

Definition 3.9 ([19]). Let (X, τ) be an IVTS, a ∈ X and let N ∈ IV S(X). Then
(i) N is called an interval-valued neighborhood (briefly, IVN) of a1 , if there exists

U ∈ τ such that

a
1
∈ U ⊂ N, i.e., a ∈ U− ⊂ N−,

(ii) N is called an interval-valued vanishing neighborhood (briefly, IVVN) of a
0
, if

there exists U ∈ τ such that

a
0
∈ U ⊂ N, i.e., a ∈ U+ ⊂ N+.

We will denote the set of all IVNs [resp. IVVNs] of a1 [resp. a0 ] by N(a1) [resp.
N(a

0
)].
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Definition 3.10. Let X, Y be IVTSs, let a ∈ X and let f : X → Y be a mapping.
Then f is said to be:

(i) interval-valued point-wise continuous (briefly, IVPC) at a
1
, if f−1(V ) ∈ N(a

1
)

for each V ∈ N(f(a)
1
),

(ii) interval-valued vanishing point-wise continuous (briefly, IVVPC) at a
0
, if

f−1(V ) ∈ N(a
0
) for each V ∈ N(f(a)

0
).

Theorem 3.11. Let (X, τ), (Y, δ) be two IVTSs. Then a mapping f : X → Y is
interval-valued continuous if and only if it is IVPC at each a

1
and IVVPC at each

a
0
.

Proof. Suppose f is interval-valued continuous and let V ∈ N(f(a)
1
) for any a

1
.

Then there is U ∈ δ such that f(a)
1
∈ U ⊂ V . Thus Result 3.2 (2), we have

a
1
∈ f−1(U) ⊂ f−1(V ) and f−1(U) ∈ τ.

So f is IVPC at a1 . Similarly, the second part is proved.
Conversely, suppose the necessary condition hold and let V ∈ δ such that f(a)

1
∈

V and f(a)
0
∈ V for any a

1
, a

0
. Then by the hypotheses and Result 2.9, there

are U
1
, U

0
∈ τ such that f(a)

1
∈ U

1
⊂ V

1
, f(a)

0
∈ U

0
⊂ V

0
and U = U

1
∪ U

0
,

V = V
1
∪ V

0
. Thus Result 3.2 (2), we get

a
1
∈ f−1(U

1
) ⊂ f−1(V

1
) and a

0
∈ f−1(U

0
) ⊂ f−1(V

0
).

So by Result 3.2 (5), we have
f−1(V ) = f−1(V

1
) ∪ f−1(V

0
)

=
(⋃

a
1
∈f−1(V

1
) f

−1(U
1
)
)
∪
(⋃

a
0
∈f−1(V

0
) f

−1(U
0
)
)
.

Hence f−1(V ) ∈ τ . Therefore f is interval-valued continuous. □

Definition 3.12 ([19]). Let (X, τ) be an IVTS.
(i) A subfamily β of τ is called an interval-valued base (briefly, IVB) for τ , if for

each A ∈ τ , A = ∅̃ or there is β
′ ⊂ β such that A =

⋃
β

′
.

(ii) A subfamily σ of τ is called an interval-valued subbase (briefly, IVSB) for τ ,

if the family β = {
⋂
σ

′
: σ

′
is a finite subset of σ} is an IVB for τ .

There are other equivalent formulations of cubic crisp continuity that are useful
at various times, and its proof is almost similar to classical case.

Theorem 3.13. Let (X, τ), (Y, δ) be IVTSs, let f : X → Y be a mapping and let
β, σ be a base and subbase for τ , respectively. Then the followings are equivalent:

(1) f is interval-valued continuous,
(2) f−1(C) ∈ τ c for each C ∈ δc,
(3) f(IV cl(A)) ⊂ IV cl(f(A)) for each A ∈ IV S(X),
(4) IV cl(f−1(B) ⊂ f−1(IV cl(B)) for each B ∈ IV S(Y ),
(5) f−1(B) ∈ τ for each B ∈ β,
(6) f−1(S) ∈ τ for each S ∈ σ.

Definition 3.14. Let (X, τ), (Y, δ) be IVTSs. Then a mapping f : X → Y is said
to be interval-valued open [resp. closed], if f(A) ∈ δ for each A ∈ τ [resp. f(C) ∈ δc

for each C ∈ τ c].

From Result 3.2 (13) and Definition 3.14, we have the following.
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Proposition 3.15. Let X, Y, Z be IVTSs and let f : X → Y and g : Y → Z be
mappings. If f, g are interval-valued open [resp. closed], then so is g ◦ f .

We give a necessary and sufficient condition for a mapping to be cubic crisp open.

Theorem 3.16. Let (X, τ), (Y, δ) be IVTSs and let f : X → Y . Then f is interval-
valued open if and only if f(IV int(A)) ⊂ IV int(f(A)) for each A ∈ IV S(X).

Proof. Suppose f is interval-valued open and let A ∈ IV S(X). Since IV int(A) ∈ τ ,
f(IV int(A)) ∈ δ by the hypothesis. Since IV int(A) ⊂ A, f(IV int(A)) ⊂ f(A) by
Result 3.2 (1). On the other hand, IV int(f(A)) is the largest OIVS in X contained
in f(A). Then we have f(IV int(A)) ⊂ IV int(f(A)).

Conversely, suppose the necessary condition holds and let U ∈ τ. Then by Re-
sult 3.5 (2), U = IV int(U). Thus by the hypothesis, f(U) = f(IV int(U)) ⊂
IV int(f(U)). On the other hand, it is obvious that IV int(f(U)) ⊂ f(U). So f(U) =
IV int(f(U)). Hence f(U) ∈ δ. Therefore f is interval-valued open. □

Proposition 3.17. Let (X, τ), (Y, δ) be IVTSs and let f : X → Y be a mapping.
If f is interval-valued continuous, then IV int(f(A))) ⊂ f(IV int(A)) for each A ∈
IV S(X).

Proof. Suppose f is interval-valued continuous and letA ∈ IV S(X). Since f(IV int(A)) ∈
δ, f−1(f(IV int(A))) ∈ τ by the hypothesis. Since f is injective, from Result 3.2
(3), we have

f−1(f(IV int(A))) ⊂ f−1(f(A)) = A.

On the other hand, IV int(A) is the largest OIVS in X contained in A. Then
f−1(f(IV int(A))) ⊂ IV int(A). Thus IV intf(A)) ⊂ f(IV int(A)). □

The following is the immediate result of Theorem 3.16 and Proposition 3.17.

Corollary 3.18. Let X, Y be IVTSs and let f : X → Y be a mapping. If f is
interval-valued continuous, open and injective, then f(IV int(A)) = IV int(f(A)) for
each A ∈ IV S(X).

The following gives a necessary and sufficient condition for a mapping to be
interval-valued closed.

Theorem 3.19. Let (X, τ), (Y, δ) be IVTSs and let f : X → Y be a mapping.
Then f is interval-valued closed if and only if IV cl(f(A)) ⊂ f(IV cl(A)) for each
A ∈ IV S(X).

Proof. Suppose f is interval-valued closed and let A ∈ IV S(X). Then clearly,
A ⊂ IV cl(A). Since IV cl(A) ∈ τ c, f(IV cl(A)) ∈ δc by the hypothesis. Thus
IV cl(f(A)) ⊂ f(IV cl(A)).

Conversely, suppose the necessary condition holds and let C ∈ τ c. Since C =
IV cl(C), we have

IV cl(f(C)) ⊂ f(IV cl(C)) = f(C) ⊂ IV cl(f(C)).

Then f(C) = IV cl(f(C)). Thus f(C) ∈ δc. So f is interval-valued closed. □

Theorem 3.20. X, Y be IVTSs and let f : X → Y be a mapping. Then f is
interval-valued continuous and closed if and only if f(IV cl(A)) = IV cl(f(A)) for
each A ∈ IV S(X).
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Proof. Let A ∈ IV S(X). Then from Theorem 3.13 (3), we have

f is interval–valued continuous if and only f(IV cl(A)) ⊂ IV cl(f(A)).

Also, by Theorem 3.19, IV cl(f(A)) ⊂ f(IV cl(A)). Thus the result holds. □

Definition 3.21. Let X, Y be IVTSs and let f : X → Y be a mapping. Then f is
called an interval-valued homeomorphism, if it is bijective, interval-valued continuous
and open.

We would like very often to know if there is an IVT on a setX such that a mapping
or a family of mappings of X into an IVTS Y is interval-valued continuous. The
following Propositions answer this question.

Proposition 3.22. Let X be a set, let (Y, δ) be an IVTS and let f : X → Y be
a mapping. Then there is a coarsest IVT τ on X such that f is interval-valued
continuous.

Proof. Let τ = {f−1(V ) ∈ IV S(X) : V ∈ δ}. Then we can easily check that τ
satisfies the conditions (IVO1), (IVO2) and (IVO3). Thus τ is an IVT on X. By
the definition of τ , it is clear that f : (X, τ) → (Y, δ) is interval-valued continuous.
It is easy to prove that τ is the coarsest IVT on X such that f : (X, τ) → (Y, δ) is
interval-valued continuous. □

Proposition 3.23. Let X be a set, let (Y, δ) be an IVTS and let (fj : X → Y )j∈J

be be a family of mappings, where J is an index set. Then there is a coarsest IVT τ
on X such that fj is interval-valued continuous for each j ∈ J .

Proof. Let σ = {f−1
j (V ) ∈ IV S(X) : V ∈ δ, j ∈ J}. Then we can easily check that

τ is the IVT on X having σ as its IVSB. Thus τ is the coarsest IVT on X such that
fj : (X, τ)→ (Y, δ) is interval-valued continuous for each j ∈ J . □

The following gives the dual of Proposition 3.22.

Proposition 3.24. Let (X, τ) be an IVTS, let Y be a set and let f : X → Y be
be a mapping. Then there is a finest IVT δ on Y such that f is interval-valued
continuous.

Proof. Let δ = {V ∈ IV S(X) : f−1(V ) ∈ τ}. Then we can easily check that δ is the
is the finest IVT on Y such that f : (X, τ)→ (Y, δ) is interval-valued continuous. □

Definition 3.25. Let (X, τ) be an IVTS, let Y be a set and let f : X → Y be be
a sujective mapping. Then δ = {V ∈ IV S(X) : f−1(V ) ∈ τ} is called the interval-
valued quotient topology (briefly, IVQT) on Y induced by f . The pair (Y, δ) is called
an interval-valued quotient space (briefly, IVQS) and f is called an interval-valued
quotient mapping (briefly, IVQM).

From Proposition 3.24, it is obvious that δ ∈ IV T (Y ). Moreover, it is easy to see
that if (Y, δ) is an IVQS of (X, τ) with IVQM f , then for an IVS C in Y , C ∈ δc if
and only if f−1(C) ∈ τ c.

Let (X, τ), (Y, η) be IVTSs and let f : X → Y be be a sujective mapping. Then
the following gives conditions on f such that η = δ, where δ is the IVQT on Y
induced by f .
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Proposition 3.26. Let (X, τ), (Y, η) be IVTSs, let f : (X, τ) → (Y, η) be be an
interval-valued continuous surjective mapping and let δ is the IVQT on Y induced
by f . If f is interval-valued open or closed, then η = δ.

Proof. Suppose f is interval-valued open and let let δ is the IVQT on Y induced
by f . Then clearly by Proposition 3.24, δ is the finest IVT on Y for which f is
interval-valued continuous. Thus η ⊂ δ. Let U ∈ δ. Then clearly f−1(U) ∈ δ by the
definition of δ. Since f is interval-valued open and surjective, U = f(f−1(U)) ∈ η.
Thus δ ⊂ η. So η = δ.

The proof that if f is interval-valued closed, then η = δ is similar. □

Proposition 3.27. The composition of two IVQMs is an IVQM.

Proof. Let f : (X, τ) → (Y, δ) and g : (Y, δ) → (Z, γ) be two IVQMs. Let η be
the IVQM on Z induced by g ◦ f . We prove that η = γ. Let V ∈ γ. Since
g : (Y, δ) → (Z, γ) is an IVQM, g−1(V ) ∈ δ. Since f : (X, τ) → (Y, δ) is an IVQM,
(g ◦f)−1(V ) = f−1(g−1(V )) ∈ τ . Then V ∈ η. Thus γ ⊂ η. Moreover, we can easily
show that η ⊂ γ. Thus η = γ. So g ◦ f is an IVQM. □

The following is a basic result about IVQS.

Theorem 3.28. Let (X, τ), (Z, η) be two IVTSs, let Y be a set, let f : X → Y be
a surjective mapping and let δ be the IVQT on Y induced by f . Then g : (X, τ) →
(Z, η) is interval-valued continuous if and only if g ◦ f : (X, τ)→ (Z, η) is interval-
valued continuous

Proof. Suppose g is interval-valued continuous. Since f : (X, τ)→ (Y, δ) is interval-
valued continuous, g◦f : (X, τ)→ (Z, η) is interval-valued continuous by Proposition
3.7 (2).

Suppose g ◦ f is interval-valued continuous and let V ∈ η. Then clearly, (g ◦
f)−1(V ) ∈ τ and (g◦f)−1(V ) = f−1(g−1(V )). Thus by the definition of δ, g−1(V ) ∈
δ. So g is interval-valued continuous. □

In order to consider the product of IVTSs, we give the definition for the product
of two IVSs.

Definition 3.29. Let X, Y be sets and let A ∈ IV S(X), B ∈ IV S(Y ). Then the
interval-valued product set (briefly, IVPS) of A and B, denoted by A×B, is an IVS
in X × Y defined as:

A×B = [A− ×B−, A+ ×B+].

Example 3.30. Let X = {a, b, c}, Y = {0, 1, 2}, A = [{a}, {a, b}] ∈ IV S(X) and
let B = [{0}, {0, 2}] ∈ IV S(Y ). Then we can easily check that

A×B = [{(a, 0)}, {(a, 0), (a, 2), (b, 0), (b, 2)}].

Result 3.31 (Theorem 4.12, [19]). Let X be a non-empty set and let β ⊂ IV S(X).
Then β is an IVB for an IVT τ on X if and only if it satisfies the followings:

(1) X̃ =
⋃
β,

(2) if B1, B2 ∈ β and a1 ∈ B1 ∩B2 [resp. a0 ∈ B1 ∩B2], then there exists B ∈ β
such that a

1
∈ B ⊂ B1 ∩B2 [resp. a

0
∈ B ⊂ B1 ∩B2].
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Result 3.32 (Proposition 4.14, [19]). Let X be a non-empty set and let σ ⊂ IV S(X)

such that X̃ =
⋃
σ. Then there exists a unique IVT τ on X such that σ is an IVSB

for τ .

Proposition 3.33. Let (X, τ1), (Y, τ2) be two IVTSs and let β = {U × V : U ∈
τ1, V ∈ τ2}. Then β is an IVB for an IVT τ on X × Y .

In this case, τ is called the interval-valued product topology (briefly, IVPT) on
X × Y and the pair (X × Y, τ) is called an interval-valued product space (briefly,
IVPS) of X and Y .

Proof. It is obvious that X̃ ∈ τ1, Ỹ ∈ τ2. Then X̃ × Y = X̃ × Ỹ ∈ β. Thus

X̃ × Y =
⋃
β. So Result 3.31 (1) holds.

Now suppose B1 = U1×V1, B2 = U2×V2 ∈ β, where U1, U2 ∈ τ1 and V1, V2 ∈ τ2.
For any (a, b) ∈ X × Y , let (a, b)

1
, (a, b)

0
∈ B1 ∩B2. Then we have

(3.1) B1 ∩B2 = (U1 × V1) ∩ (U2 × V2) = (U1 × U2) ∩ (V1 × V2).

Since U1, U2 ∈ τ1 and V1, V2 ∈ τ2, U1×U2 ∈ τ1 and V1×V2 ∈ τ2. Thus B1∩B2 ∈ β.
So Result 3.31 (2) holds. Hence β is an IVB for an IVT τ on X × Y . □

Proposition 3.34. Let (X1, τ1), (X2, τ2) be two IVTSs and let (X1×X2, τ) be the
IVPS. Then the projections π1 : X1×X2 → X1 and π2 : X1×X2 → X2 are interval-
valued continuous. Furthermore, τ is the coarsest IVT for which both projections
are interval-valued continuous.

Proof. Let Ui ∈ τi. Then we have

(3.2) π−1
1 (U1) = [U−

1 ×X2, U
+
1 ×X2] = U1 × X̃2,

(3.3) π−1
2 (U2) = [X1 × U−

2 , X2 × U+
2 ] = X̃1 × U2.

Thus π−1
1 (U1), π−1

2 (U2) ∈ τ . So by Definition 3.6, π1 and π2 are interval-valued
continuous.

Let δ be an IVT on X1 ×X2 such that π1 and π2 are interval-valued continuous.
Let β be the IVB given in Proposition 3.33 for τ and let B ∈ β. Then there are
U1 ∈ τ1 and U2 ∈ τ2 such that B = U1 × U2. Since π1 and π2 are interval-valued
continuous with respect to δ , π−1

1 (U1), π−1
2 (U2) ∈ δ. On the other hand,

π−1
1 (U1) ∩ π−1

2 (U2) = (U1 × X̃2)) ∩ X̃1 × U2 [By (3.2) and (3.3)]
= [U−

1 ×X2, U
+
1 ×X2] ∩ [X1 × U−

2 , X1 × U+
2 ]

= [U−
1 × U−

2 , U+
1 × U+

2 ]
= U1 × U2.

Thus we have

(3.4) π−1
1 (U1) ∩ π−1

2 (U2) = U1 × U2.

By (3.4), B ∈ δ. So β ⊂ δ. Since β is the IVB for τ , τ ⊂ δ. Hence τ is coarser than
δ. □

Proposition 3.35. Let (X1, τ1), (X2, τ2) be two IVTSs, and let π1 : X1×X2 → X1

and π2 : X1 ×X2 → X2 be the projections. Then the family of IVSs

σ = {π−1
1 (U) ∈ IV S(X1 ×X2) : U ∈ τ1} ∪ {π−1

2 (V ) ∈ IV S(X1 ×X2) : V ∈ τ2}
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is an IVSB for the IVPT τ on X1 ×X2.

Proof. It is clear that ˜X1 ×X2 = X̃1 × X̃2 =
⋃
σ. Then by Result 3.32, there is a

unique IVT τ
′
on X1 × X2 such that σ is an IVSB for τ

′
. Since σ ⊂ τ , arbitrary

unions of finite intersections of members of σ is also belong to τ . Thus τ
′ ⊂ τ. Let

β be the base for τ given in Proposition 3.33 and let U × V ∈ β. Then by (3.4),

U × V is the intersection of two members of σ. Thus U × V ∈ τ
′
. So τ ⊂ τ

′
. Hence

τ = τ
′
. This completes the proof. □

Proposition 3.35 is used to provide a characterization of interval-valued continuity
for mappings for which the range is an IVPS.

Theorem 3.36. Let (X, τ), (Y1, δ1), (Y2, δ2) be IVTSs and let f : X → Y1×Y2 be a
mapping. Then f is interval-valued continuous if and only if πi ◦f is interval-valued
continuous for each i = 1, 2.

Proof. Suppose f is interval-valued continuous. Then by Proposition 3.34, πi is
interval-valued continuous for each i = 1, 2. Thus by Proposition 3.7 (2), πi ◦ f is
interval-valued continuous for each i = 1, 2.

Conversely, suppose πi ◦ f is interval-valued continuous for each i = 1, 2. Let σ
be the IVSB for the IVPT on Y1 × Y2 given in Proposition 3.35 and let π−1

i (Ui) ∈
σ. Then clearly, f−1(π−1

i (Ui)) = (πi ◦ f)−1(Ui). Thus by the hypothesis, (πi ◦
f)−1(Ui) ∈ τ , i.e., f−1(π−1

i (Ui)) ∈ τ . So by Theorem 3.13 (6), f is interval-valued
continuous. □

The following is an immediate result of Theorem 3.36.

Corollary 3.37. Let (X, τ), (Y1, δ1), (Y2, δ2) be IVTSs, let f1 : X → Y1 and
f2 : X → Y2 be mappings. Let f : X → Y1 × Y2 be the mapping defined by: for each
x ∈ X,

f(x) = (f1(x), f2(x)).

Then f is interval-valued continuous if and only if f1 and f2 are interval-valued
continuous.

The following is a generalization of Proposition 3.35.

Proposition 3.38. Let ((Xj , τj))j∈J be an index family of IVTSs. For each j ∈ J ,

let σj = {π−1
j (Uj) ∈ IV S(X) : Uj ∈ τj} and let σ =

⋃
j∈J σj, where X = Πj∈JXj

and πj : X → Xj is the projection associated by j. Then σ is an IVSB for the IVT
τ on X.

In this case, τ is called an interval-valued product topology (briefly, IVPT) on
X. The pair (X, τ) is called the interval-valued product space (briefly, IVPS) of
((Xj , τj))j∈J .

Proof. The proof is similar to Proposition 3.35. □

The following is a generalization of Proposition 3.34.

Proposition 3.39. Let ((Xj , τj))j∈J be an index family of IVTSs and let τ be the
IVPT on X = Πj∈JXj. Let πj : X → Xj is the projection associated by j for each
j ∈ J . Then πj is interval-valued continuous for each j ∈ J . Moreover, τ is the
coarsest IVT for which πj is interval-valued continuous.
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Proof. The proof is similar to Proposition 3.34. □

From the above Proposition, we can easily see that the concrete category IVTop

has the initial structure.
The following is a generalization of Theorem 3.36.

Theorem 3.40. Let ((Yj , τj))j∈J be an index family of IVTSs and let δ be the IVPT
on Y = Πj∈JYj. Let (X, τ) be an IVTS and let f : X → Y be a mapping. Then f
is interval-valued continuous if and only if πj ◦ f is interval-valued continuous for
each j ∈ J .

Proof. The proof is similar to Proposition 3.36. □

4. T0-, T1-, T2-spaces in interval-valued topological spaces

In this section, we define T0, T1 and T2 separation axioms in IVTSs, and discuss
with their properties and give some examples.

Definition 4.1. Let (X, τ) be an IVTS. Then (X, τ) is said to be:
(i) T0(i), if ∀x, y ∈ X (x ̸= y) ∃U ∈ τ such that either x1 ∈ U, y1 ̸∈ U or

y
1
∈ U, x

1
̸∈ U , i.e., either x ∈ U−, y /∈ U− or y ∈ U−, x /∈ U−,

(ii) T0(ii), if ∀x, y ∈ X (x ̸= y) ∃U ∈ τ such that either x
0
∈ U, y

0
̸∈ U or

y
0
∈ U, x

0
̸∈ U , i.e., either x ∈ U+, y /∈ U+ or y ∈ U+, x /∈ U+,

(iii) T0(iii), if ∀x, y ∈ X (x ̸= y) ∃U ∈ τ such that either x1 ∈ U ⊂ yc
1
or

y1 ∈ U ⊂ xc
1
, i.e., either x ∈ U−, U+ ⊂ {y}c or y ∈ U−, U+ ⊂ {x}c,

(iv) T0(iv), if ∀x, y ∈ X (x ̸= y) ∃U ∈ τ such that either x0 ∈ U ⊂ yc
0
or

y0 ∈ U ⊂ xc
0
, i.e., either x ∈ U+, U− ⊂ {y}c or y ∈ U+, U− ⊂ {x}c,

(v) T0(v), if ∀x, y ∈ X (x ̸= y) ∃U ∈ τ such that either x
1
̸∈ U or y

1
̸∈ U , i.e.,

either x /∈ U− or y /∈ U−,
(vi) T0(vi), if ∀x, y ∈ X (x ̸= y) ∃U ∈ τ such that either x

0
̸∈ U or y

0
̸∈ U , i.e.,

either x /∈ U+ or y /∈ U+.

From Definition 4.1, we can easily see that the following result holds.

Proposition 4.2. Let (X, τ) be an IVTS. Then the following implications hold:

T0(v) � T0(vi)

6 6

T0(i) � T0(i)+T0(ii) - T0(ii)

?
6

?

T0(iii) T0(iv)

Proof. We prove only that T0(i)+T0(ii) ←→ T0(iii). The remainder’s proof is easy.
Suppose X is T0(i) and T0(ii). Then we can easily show that X is T0(iii).
Suppose X is T0(iii) and let x ̸= y ∈ X. Then there is U ∈ τ such that

either x ∈ U− ⊂ U+ ⊂ {y}c or y ∈ U− ⊂ U+ ⊂ {x}c.
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Thus either x1 ∈ U , y /∈ U− and x0 ∈ U , y /∈ U+ or y1 ∈ U , x /∈ U− and y0 ∈ U ,
x /∈ U+. So we get

either x
1
∈ U, y

1
/∈ U or y

1
∈ U, x

1
/∈ U

and

either x0 ∈ U, y0 /∈ U or y0 ∈ U, x0 /∈ U.

Hence X is T0(i) and T0(ii). □

Remark 4.3. (1) Let (X, τ) be an IVTS such that τ ⊂ IV S∗(X). Then in Definition
4.1, T0(i), T0(ii), T0(iii) and T0(iv) are coincide, and so are T0(v) and T0(vi).

(2) The converses of the above Proposition do not hold, in general (It is seen the
Example 4.4).

Example 4.4. (1) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C, X̃},

where A = [{a, b}, X], B = [{b, c}, X], C = [{b}, X].
Then (X, τ) is T0(i) but not T0(ii). Also (X, τ) is T0(v) but not T0(vi).

(2) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C, X̃},

where A = [∅, {a, c}], B = [∅, {b, c}], C = [∅, {c}].
Then (X, τ) is T0(ii) but not T0(i). Also (X, τ) is T0(vi) but not T0(v).

(3) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, X̃},

where A = [{a}, {a, c}], B = [{b}, {b, c}], C = [{a}, {a}],
D = [{a, b}, X], E = [∅, {c}].

Then (X, τ) is T0(iv) but not T0(iii).
(4) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D, X̃},

where A = [{a, b}, X], B = [{a, c}, X], C = [{a}, X], D = [{b}, X].
Then (X, τ) is T0(iv) but not T0(ii).

(5) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G,H, I, X̃},

whereA = [{a}, {a, b}], B = [{c}, {a, c}], C = [{b}, X], D = [{a, b}, X], E = [{a, c}, X],
F = [{b, c}, X], G = [∅, {a}], H = [∅, {a, c}], I = [∅, {a, b}].

Then (X, τ) is T0(i) but not T0(iii).

Remark 4.5. Let (X, τ) be an ordinary space such that τ is not indiscrete and let
τ1, τ2 be two IVTs on X (See Remark 4.2 (2) in [19]) given by:

τ1 = {[G,G] : G ∈ τ}, τ2 = {∅̃, X̃}
⋃
{[∅, G] : G ∈ τ}.

If (X, τ) is T0, then (X, τ1) is T0(i), T0(ii), T0(iii), T0(iv), T0(iv), T0(v) and T0(vi),
and (X, τ2) is T0(ii), T0(iv) and T0(vi).
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From Remark 4.2 (1) in [19]), it is obvious that for each IVTS (X, τ), there are
two ordinary topologies τ− and τ+ defined as follows:

τ− = {U− ∈ 2X : U ∈ τ}, τ+ = {U+ ∈ 2X : U ∈ τ}.

From Definition 4.1 and the above comments, we have the following.

Theorem 4.6. Let (X, τ) be an IVTS.
(1) (X, τ) is T0(i) if and only if (X, τ−) is T0.
(2) (X, τ) is T0(ii) if and only if (X, τ+) is T0.

Definition 4.7. An ITS X is said to be a:
(i) T1(i)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x1 ∈ U, y1 /∈ U and x1 /∈ V, y1 ∈ V,

i.e., x ∈ U−, y /∈ U− and x /∈ V −, y ∈ V −,

(ii) T1(ii)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x0 ∈ U, y0 /∈ U and x0 /∈ V, y0 ∈ V,

i.e., x ∈ U+, y /∈ U+ and x /∈ V +, y ∈ V +,

(iii) T1(iii)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x1 ∈ U ⊂ yc
1
and y1 ∈ V ⊂ xc

1
,

i.e., x ∈ U−, U+ ⊂ {y}c and y ∈ V −, V + ⊂ {x}c,
(iv) T1(iv)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x0 ∈ U ⊂ yc
0
and y0 ∈ V ⊂ xc

0
,

i.e., x ∈ U+, U− ⊂ {y}c and y ∈ V +, V − ⊂ {x}c,
(v) T1(v)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

y1 /∈ U and x1 /∈ V, i.e., y /∈ U− and x /∈ V −,

(vi) T1(vi)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

y0 /∈ U and x0 /∈ V, i.e., y /∈ U+ and x /∈ V +

(vii) T1(vii)-space, if ∀x ∈ X, x
1
∈ τ c,

(viii) T1(viii)-space, if ∀x ∈ X, x0 ∈ τ c.

From Definition 4.1, we can easily see that the following result holds.

Proposition 4.8. Let (X, τ) be an ITS. Then the following implications are true:

T1(v) � T1(vi)

6 6

T1(i) � T1(i)+T1(ii) - T1(ii)

?
6

?

T1(vii)� T1(iii) T1(iv)
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Remark 4.9. (1) Let (X, τ) be an IVTS such that τ ⊂ IV S∗(X). Then in Definition
4.7, T1(i), T1(ii), T1(iii) and T1(iv) are coincide, and so are T1(v) and T1(vi), T1(vii)
and T1(viii) respectively.

(2) The converses of the above Proposition do not hold, in general (This situation
is illustrated in the Example 4.10).

Example 4.10. (1) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G, X̃},

where A = [{a, c}, X], B = [{b}, X], C = [{a}, X], D = [{c}, X],
E = [{a, b}, X], F = [{b, c}, X], G = [∅, X].

Then (X, τ) is T1(i) but not T1(ii).
(2) Let X = {a, b} and consider the IVT τ on X given by:

τ = {∅̃, A,B, X̃},

where A = [∅, {b, c}], B = [∅, {a, c}].
Then (X, τ) is T1(v) but not T1(i).

(3) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F, X̃},

where A = [∅, {c}], B = [{c}, {c}], C = [∅, {a}], D = [{c}, {a, c}],
E = [{a, c}, {a, c}], F = [∅, {a, c}].

Then (X, τ) is T1(Vi) but not T1(ii).
(4) Let X = {a, b, c} and consider the family σ of IVSs in X given by:

σ = {A,B,C,D,E, F,G,H, I, X̃},

where A = [{a}, {a, b}], B = [{b}, {b, c}], C = [{a}, {a}], D = [∅, {a, c}],
E = [{a, b}, X], F = [∅, {b}], G = [∅, {a}], H = [{a}, X], I = [{a}, {a, c}].

Let τ be the IVT on X having the IVSB σ. Then (X, τ) is T1(iV) but not T1(iii).
(5) Let X = {a, b, c, d} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G, X̃},

where A = [{a}, X], B = [{b}, X], C = [{c}, X], D = [{a, b}, X],
E = [{b, c}, X], F = [{a, b, c}, X], G = [∅, X].

Then (X, τ) is T1(V) but not T1(vi).
(6) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G,H, I, X̃},

where A = [{a}, {a, b}], B = [{b}, X], C = [{c}, X], D = [{a, b}, X],
E = [{a, c}, X], F = [{b, c}, X], G = [∅, {a, b}], H = [∅, X], I = [{a}, X].

Then (X, τ) is T1(i) but not T1(iii).
(7) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G, X̃},

where A = [{a, c}, X], B = [{b, c}, X], C = [{b}, X], D = [{a, b}, X],
E = [{c}, X], F = [{a}, X], G = [∅, X].

Then (X, τ) is T1(iv) but not T1(ii).
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(8) Let X be the set of all natural numbers and the IVSs An in X given by:

A1 = [{2, 3, 4, · · · }, X],

A2 = [{3, 4, 5, · · · }, X \ {1}],
· · · · · · · · ·

An = [{n+ 1, n+ 2, n+ 3, · · · }, X \ {1, 2, 3, · · · , n− 1}].
Let τ = {∅̃, X̃}

⋃
{An : n = 1, 2, 3, · · · }. Then we can easily check that τ ∈ IV T (X)

and (X, τ) is T1(vi) but not T1(ii).
(9) Let X = {a, b, c} and let τ be the IVT on X given by:

τ = {∅̃, A1, A2, A3, A4, A5, A6, A7, X̃},

where A1 = [{a, b}, {a, b}], A2 = [{b, c}, {b, c}], A3 = [{c}, {a, c}], A4 = [{b}, {b}],
A5 = [∅, {a}], A6 = [{c}, {c}], A7 = [{b, c}, X].

Then we can easily see that (X, τ) is T1(ii) but not T1(i). On the other hand,⋃
{U ∈ τ : x

0
∈ U ⊂ bc

0
} = A3 ∪A5 ∪A6 = [{c}, {a, c}] ̸= bc

0
.

Thus bc
0
/∈ τ . So b0 /∈ CIV S(X). Hence (X, τ) is not T1(Viii).

The followings are immediate results of Definition 4.7.

Theorem 4.11. Let (X, τ) be an IVTS.
(1) (X, τ) is T1(i) if and only if (X, τ−) is T1.
(2) (X, τ) is T1(ii) if and only if (X, τ+) is T1.

The followings are immediate results of Definitions 4.1 and 4.7.

Proposition 4.12. Let X be an IVTS.
(1) If X is T1(i), then it is T0(i).
(2) If X is T1(ii), then it is T0(ii).
(3) If X is T1(iii), then it is T0(iii).
(4) If X is T1(iv), then it is T0(iv).
(5) If X is T1(v), then it is T0(v).
(6) If X is T1(vi), then it is T0(vi).

Each converse of the above Proposition is not true, in general (See Example 4.13).

Example 4.13. (1) Let X = {a, b, c} and consider the IVT τ defined by:

τ = {∅̃, A,B,C,D,E, F, X̃},

where A = [{a, b}, {a, b}], B = [{b, c}, {b, c}], C = [{c}, {a, c}], D = [{b}, {b}],
E = [∅, {a}], F = [{c}, {c}].

Then (X, τ) is a T0(i) but not T1(i).
(2) Let X = {a, b, c} and consider the IVT τ defined by:

τ = {∅̃, A,B,C,D,E, F,G, X̃},

where A = [{a, c}, X], B = [{b, c}, X], C = [{b}, X], D = [{a, b}, X],
E = [{c}, X], F = [{a}, X], G = [∅, X].

Then (X, τ) is a T0(ii) but not T1(ii).
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(3) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C, X̃},
where A = [{a, b}, X], B = [{b, c}, X], C = [{b}, X].
Then (X, τ) is T0(iii) but not T1(iii).

(4) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C, X̃},
where A = [{a, b}, X], B = [{c}, X], C = [∅, X].
Then (X, τ) is T0(iv) but not T1(iv).

(5) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F, X̃},
where A = [{a}, {a, c}], B = [{b}, {a, b}], C = [{a, c}, X],

D = [∅, {a}], E = [∅, {a, b}], F = [{a, b}, X].
Then (X, τ) is T0(v) but not T1(v).

(6) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F, X̃},
where A = [∅, {a, b}], B = [∅, {b}], C = [∅, {a, c}],

D = [∅, {a}], E = [∅, {b}], F = [∅, X].
Then (X, τ) is T0(vi) but not T1(vi).

Definition 4.14. Let X be a non-empty set. Then the interval-valued diagonal ∆X

of X is an IVS in X ×X defined as follows:

∆X = [{(x1, x2) : x1 = x2}, {(x1, x2) : x1 = x2}].

Remark 4.15. For a set X, let IV S∗(X) = {A ∈ IV S(X) : A− = A+}. Then from
Result 2.9, A = A1 for each A ∈ IV S∗(X). From Remark 4.2 (1), we can easily see
that if τ ∈ IV T (X) such that τ ⊂ IV S∗(X) and A ∈ τ , then A− ∈ τ−. Moreover,
it is obvious that ∆X ∈ IV S∗(X).

Definition 4.16. An ITS (X, τ) is said to be a:
(i) T2(i)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x
1
∈ U, y

1
∈ V and U ∩ V = ∅̃,

i.e., x ∈ U−, y ∈ V − and U+ ∩ V + = ∅,

(ii) T2(ii)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x0 ∈ U, y0 ∈ V and U ∩ V = ∅̃,

i.e., x ∈ U+, y ∈ V + and U+ ∩ V + = ∅,

(iii) T2(iii)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x1 ∈ U, y1 ∈ V and U ⊂ V c,

i.e., x ∈ U−, y ∈ V − and U− ⊂ V +c
, U+ ⊂ V −c

,

(iv) T2(iv)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x
0
∈ U, x

0
∈ V and U ⊂ V c,
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i.e., x ∈ U+, y ∈ V + and U− ⊂ V +c
, U+ ⊂ V −c

,

(v) T2(v)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x1 ∈ U ⊂ yc
1
, y1 ∈ V ⊂ xc

1
and U ∩ V = ∅̃,

i.e., x ∈ U− ⊂ U+ ⊂ {y}c, y ∈ V − ⊂ V + ⊂ {x}c and U+ ∩ V + = ∅,

(vi) T2(vi)-space, if ∀x, y ∈ X (x ̸= y) ∃U, V ∈ τ such that

x
0
∈ U ⊂ yc

0
, y

0
∈ V ⊂ xc

0
and U ∩ V = ∅̃,

i.e., x ∈ U+, U− ⊂ {y}c, y ∈ V +, V − ⊂ {x}c and U+ ∩ V + = ∅,

(vii) T2(vii)-space, if ∆X is a CIVS in the IVTS (X ×X, τX×X).

Proposition 4.17. Let (X, τ) be an IVTS. Then the following implications are true:

𝑇2(𝑣) 𝑇2(𝑣𝑖)

𝑇2(𝑖) 𝑇2(𝑖𝑖)

𝑇2(𝑖𝑖𝑖) 𝑇2(𝑖𝑣)

𝑇2(𝑣𝑖𝑖)

Proof. We prove only the case of T2(i) =⇒ T2(vii). The proofs of remainder’s
implications are easy from Definition 4.16. Let τ

X×X
be the IVPT on X×X and let

(a, b)
1
∈ ∆c

X . Then by the definition of ∆X , a ̸= b. Since (X, τ) is T2(i), there are
Ua1

, Vb1
∈ τ such that a

1
∈ U, b

1
∈ V and U ∩ V = ∅̃. Thus a ∈ U−

a
1
and b ∈ V −

b1
,

i.e., (a, b) ∈ U−
a
1
× V −

b1
. So we get

(a, b)
1
∈ [U−

a
1
× V −

b
1
, U+

a
1
× V +

b
1
] = Ua

1
× Vb

1
.

In fact, from Remark 4.15, U−
a
1
×V −

b1
= U+

a
1
×V +

b1
]. It is clear that Ua1

×Vb1
∈ τ

X×X
.

Furthermore, we can easily check that

Ua
1
× Va

1
⊂ ∆c

X ⇐⇒ U−
a1
× V −

b
1
⊂ {(x, y) : x = y}.

This implies that ∆c
X =

⋃
(a,b)

1
∈∆c

X

(
Ua

1
× Vb

1

)
. Hence ∆c

X ∈ τ
X×X

, i.e., ∆X ∈
τ c
X×X

. Therefore (X, τ) is T2(Vii). □

Remark 4.18. (1) Let (X, τ) be an IVTS such that τ ⊂ IV S∗(X). Then in
Definition 4.16, T1(i), T1(ii), T1(iii), T1(iv), 1(v) and T1(vi) are coincide.

(2) Let (X, τ) be an ordinary space such that τ is not indiscrete. It is obvious
that if (X, τ) is T2, then (X, τ1) is T2(i), T2(ii), T2(iii), T2(iv), T2(v) and T2(vi),
and (X, τ2) is T2(ii), T2(iv) and T2(vi).
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(3) The converses of Proposition 4.17 does not hold in general (See Example 4.19).

Example 4.19. (1) Let X = {a, b} and consider the IVT τ on X given by:

τ = {∅̃, A,B, X̃},

where A = [∅, {a}], B = [∅, {b}]. Then (X, τ) is T2(ii) but neither T2(i) nor T2(v).
(2) Let X = {a, b, c} and consider the family σ of IVSs τ on X given by:

σ = {A,B,C,D},

where A = [∅, {a}], B = [{b}, {b, c}], C = [{a}, {a, b}], D = [∅, {c}].
Let τ be the IVT on X generated by the IVSB σ. Then we can easily check that
(X, τ) is T2(iv) but neither T2(iii) nor T2(i).

(3) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G,H, I, J,K, X̃},

where A = [∅, {a, c}], B = [∅, {b}], C = [{a}, {a}], D = [∅, {b, c}],
E = [∅, {c}], F = [∅, {a, b}], G = [{a}, {a, b}], H = [{a}, X],
I = [{a}, {a, c}], J = [∅, {a}], K = [∅, X].

Then (X, τ) is T2(vi) but not T2(v).
(4) Let X = {a, b, c, d} and consider the family σ of IVSs τ on X given by:

σ = {A,B,C,D,E, F,G,H, I, J,K,L},

where A = [{a}, {a, c, d}], B = [{b}, {b, c}], C = [{b}, {a, b, d}],
D = [{c}, {c, d}], E = [{a}, {a, b, c}], F = [{d}, {b, c, d}],
G = [{b}, {a, b, c}], H = [{d}, {a, c, d}], I = [{c}, {a, b, c}],
J = [{d}, {a, b, d}], K = [{a}, {a, b, d}], L = [{c}, {b, c, d}],

Let τ be the IVT on X generated by the IVSB σ. Then we can easily check that
(X, τ) is T2(iii) but not T2(i).

(5) Let X = {a, b} and consider the IVT τ on X given by:

τ = {∅̃, A,B, X̃},

where A = [{b}, X], B = [∅, {b}]. Then (X, τ) is T2(iv) but not T2(ii).

The followings are immediate results of Definition 4.16.

Proposition 4.20. Let (X, τ) be an IVTS.
(1) If (X, τ) is T2(i), then (X, τ−) is T2.
(2) If (X, τ) is T2(ii), then (X, τ+) is T2.

The converse of the above Proposition does not true in general (See Example
4.21).

Example 4.21. (1) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G, X̃},

where A = [{a}, X], B = [{b}, X], C = [{c}, X], D = [{a, b}, X],
E = [{a, c}, X], F = [{b, c}, X], G = [∅, X].

Then clearly, τ− = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}. Thus we can easily see
that (X, τ−) is T2 but not (X, τ) T2(i).
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(2) Let X = {a, b, c, d} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E,E, F,G,H, I, J,K,L,M,N,O, X̃},
where A = [∅, {a}], B = [∅, {c}], C = [∅, {d}], D = [{b}, {b, d}],

E = [∅, {a, c}], F = [∅, {a, d}], G = [{b}, {a, b, d}),
H = [∅, {c, d}], I = [{b}, {b, c, d}].

Then clearly,

τ+ = {∅, {a}, {c}, {d}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {b, c, d}, X}.
Thus we can easily see that (X, τ2) is T2 but not (X, τ) T2(ii).

The followings are immediate results of Definitions 4.7 and 4.16.

Proposition 4.22. Let (X, τ) be an IVTS.
(1) If (X, τ) is T2(i), then it is T1(iii).
(2) If (X, τ) is T2(ii), then it is T1(ii).
(3) If (X, τ) is T2(iii), then it is T1(iii).
(4) If (X, τ) is T2(iv), then it is T1(iv).
(5) If (X, τ) is T2(v), then it is T1(iii).
(6) If (X, τ) is T2(vi), then it is T1(vi).

Proposition 4.23. Let (X, τ) be an IVTS.
(1) If (X, τ) is T2(i), then it is T1(i).
(2) If (X, τ) is T2(v), then it is T1(v).

The converses of the above two Propositions are not true in general (See Example
4.24).

Example 4.24. (1) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G,H, X̃},
where A = [{a}, {a, c}], B = [{b}, {a, b}], C = [{c}, {b, c}], D = [{a, b}, X],

E = [∅, {a}], F = [∅, {b}], G = [∅, {c}], H = [{a, c}, X].
Then clearly, (X, τ) is T1(i) but not T2(i).

(2) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F,G, X̃},
where A = [{a}, {a, c}], B = [{b}, {a, b}], C = [{c}, {b, c}], D = [{a, b}, X],

E = [∅, {a}], F = [∅, {b}], G = [∅, {c}], H = [∅, {c}],
I = [∅, {a}], J = [{a}, {a}], K = [{b}, {b}], L = [∅, {b}],
M = [{c}, {c}], N = [∅, {a, b}], O = [{a, b}, X], P = [{a, c}, {a, c}],
Q = [{a}, X], S = [{a, b}, X], T = [{c}, X], U = [{a, b}, {a, b}].

Then clearly, (X, τ) is T1(iii) but not T2(i). Also it is neither T2(iii) nor T2(v).
(3) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, X̃},
where A = [∅, {b, c}], B = [∅, {a, b}], C = [∅, {c}], D = [∅, {b}], E = [∅, X].
Then (X, τ) is T1(ii) but not T2(ii).

(4) Let (X, τ) be the IVTS given in Example 4.10 (7). Then we can easily check
that (X, τ) is T1(iv) but not T2(iv).
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(5) Let (X, τ) be the IVTS given in Example 4.10 (5). Then clearly, (X, τ) is
T1(v) but not T2(v).

(6) Let (X, τ) be the IVTS given in Example 4.10 (8). Then clearly, (X, τ) is
T1(vi) but not T2(vi).

Proposition 4.25. Let (X, τ) be T2(i) and let x ∈ X. Then
x

1
=

⋂
{N ∈ CIV S(X) : N ∈ N(x

1
)} and thus x

1
= IV cl(x

1
).

Proof. Suppose (X, τ) is T2(i) and for each x ∈ X, let⋂
{N ∈ CIV S(X) : N ∈ N(x

1
)} = C = [C−, C+].

Assume that there is a distinct IVP y
1
∈ C, i.e., y ∈ C−.

Case 1: Suppose {x} ⫋ C−. Then there is y ∈ C− such that x ̸= y. Since

(X, τ) is T2(i), there are U, V ∈ τ such that x
1
∈ U, y

1
∈ V and U ∩ V = ∅̃.

Thus x
1
∈ U ⊂ V c. So V c is a closed interval-valued neighborhood of x

1
. From our

assumption, y
1
∈ V c. Since y

1
∈ V and y

1
∈ V c, y ∈ V − ∩ V +c

= ∅. This is a
contradiction. Hence C = {x1}.

Case 2: Suppose {x} ⫋ C+ and C− = {x}. Then we have the same result in
Case 1. This completes the proof. □

Definition 4.26. LetX, Y be two non-empty sets and let f : X → Y be a mapping.
Then the graph of f , denoted by G(f), is an IVS in X ×X defined as follows:

G(f) = [{(x, f(x)) : x ∈ X}, {(x, f(x)) : x ∈ X}].

Proposition 4.27. Let (X, τ), (Y, δ) be IVTSs such that (Y, δ) is T2(i). If f :
(X, τ)→ Y, δ) is interval-valued continuous, then G(f) is a CIVS in (X ×Y, τ × δ).

Proof. It is obvious that G(f) ∈ IV S∗(X × Y ). Let (a, b)
1
∈ [G(f)]c. Then

clearly, (a, b) ∈ {(x, f(x)) : x ∈ X}c, i.e., b ̸= f(a). Since (Y, δ) is T2(i), there
are U

b
1
, V

f(a1 )
∈ δ such that

b
1
∈ U

b
1
, f(a

1
) ∈ V

f(a1 )
and U

b
1
∩ V

f(a1 )
= ∅̃.

Since f is interval-valued continuous, we get

f−1(V
f(a

1
)
) = [f−1(V −

f(a1 )
), f−1(V +

f(a
1
)
)] ∈ τ.

It is clear that f−1(V
f(a1 )

)× U
b1
∈ τ × δ, where τ × δ denote the IVPT on X × Y .

Since G(f) ∈ IV S∗(X × Y ), we can easily see that

G(f)c =
⋃

(a,b)1∈G(f)c

(
f−1(V

f(a1 )
)× Ua1

)
.

Thus G(f)c ∈ τ × δ. So G(f) ∈ (τ × δ)c. □

Proposition 4.28. Let (X, τ), (Y, δ) be IVTSs such that (Y, δ) is T2(i) and let C
be the IVS in X ×X given by:

C = [{(x1, x2) ∈ X ×X : f(x1) = f(x2)}, {(x1, x2) ∈ X ×X : f(x1) = f(x2)}].
If f : (X, τ)→ (Y, δ) is interval-valued continuous, then C is a CIVS in the product
space (X ×X, τ × τ).
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Proof. Assume that (a, b)1 ∈ Cc. Then clearly, (a, b) /∈ C−, i.e., f(a) ̸= f(b). Since
(Y, δ) is T2(i), there are U, V ∈ δ such that f(a1) = f(a)1 ∈ U , f(b1) = f(b)1 ∈ V
and U ∩ V = ∅̃. Since f is interval-valued continuous, f−1(U), f−1(V ) ∈ τ ,
a

1
∈ f−1(U) and b

1
∈ f−1(V ). Thus (a, b)

1
∈ f−1(U) × f−1(V ) ⊂ Cc. Since

C ∈ IV S∗(X ×X), from Remark 4.15, Cc = Cc
1
. So Cc ∈ τ × τ. Hence C is a CIVS

in (X ×X, τ × τ). □

Proposition 4.29. Let (X, τ), (Y, δ) be IVTSs, let C be the IVS in X ×X given
in Proposition 4.28 and let f : X → Y be interval-valued open and surjective. If
C ∈ (τ × τ)c, then (Y, δ) is T2(i).

Proof. Suppose C ∈ (τ × τ)c and let c, d ∈ Y such that c ̸= d. Since f is surjective,
there are a, b ∈ X such that f(a) = c and f(b) = d. Then clearly, a ̸= b, i.e.,
(a, b)

1
/∈ C by the definition of C. By the hypothesis, Cc ∈ τ × τ . Thus there are

U, V ∈ τ such that a1 ∈ U , b1 ∈ V and (U × V ) ∩ C = ∅̃. Since f is interval-
valued open, f(U), f(V ) ∈ δ. Furthermore, f(a

1
) ∈ f(U), f(b

1
) ∈ f(V ) and

f(U) ∩ f(V ) = ∅̃. So (Y, δ) is T2(i). □

From Propositions 4.28 and 4.29, we obtain the following Corollary.

Corollary 4.30. Let (X, τ), (Y, δ) be IVTSs, let C be the IVS in X ×X given in
Proposition 4.28 and let f : X → Y be interval-valued open and surjective. Then
(Y, δ) is T2(i) if and only if C ∈ (τ × τ)c.

Proposition 4.31. Let (X, τ), (Y, δ) be IVTSs.
(1) If (X, τ) and (Y, δ) are T1(i), then so is (X × Y, τ × δ).
(2) If (X, τ) and (Y, δ) are T1(ii), then so is (X × Y, τ × δ).

Proof. (1) Suppose (X, τ) and (Y, δ) are T1(i) and let (x1, y1), (x2, y2) ∈ X × Y
such that (x1, y1) ̸= (x2, y2), say x1 ̸= x2. Since (X, τ) is T1(i), there are U, V ∈ τ
such that x11

∈ U, x21
̸∈ U and x21

∈ V, x11
̸∈ V . Then we have

U × Ỹ = [U− × Y,U+ × Y ], V × Ỹ = [V − × Y, V + × Y ] ∈ τ × δ

satisfying the following properties:

(x1, y1)1 ∈ U × Ỹ , (x2, y2)1 ̸∈ U × Ỹ

and

(x1, y1)1 ̸∈ V × Ỹ , (x2, y2)1 ∈ V × Ỹ .

Similarly, we can prove the case y1 ̸= y2. Thus (X × Y, τ × δ) is T1(i).
(2) The proof is similar to (1). □

Proposition 4.32. Let (X, τ), (Y, δ) be IVTSs.
(1) If (X, τ) and (Y, δ) are T2(i), then so is (X × Y, τ × δ).
(2) If (X, τ) and (Y, δ) are T2(ii), then so is (X × Y, τ × δ).
(3) If (X, τ) and (Y, δ) are T2(iii), then so is (X × Y, τ × δ).
(4) If (X, τ) and (Y, δ) are T2(vii), then so is (X × Y, τ × δ).
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Proof. (1) Suppose (X, τ) and (Y, δ) are T2(i) and let (x1, y1), (x2, y2) ∈ X × Y
such that (x1, y1) ̸= (x2, y2), say x1 ̸= x2. Since (X, τ) is T2(i), there are U, V ∈ τ
such that x11

∈ U, x21
∈ V and U ∩ V = ∅̃. Then we have

U × Ỹ = [U− × Y,U+ × Y ], V × Ỹ = [V − × Y, V + × Y ] ∈ τ × δ

such that (x1, y1)1 ∈ U × Ỹ and (x2, y2)1 ∈ V × Ỹ . On the other hand,

U × Ỹ ∩ V × Ỹ = [(U− × Y ) ∩ (V − × Y ), (U+ × Y ) ∩ (V + × Y )]
= [(U− ∩ V −)× (Y × Y ), (U+ ∩ V +)× (Y × Y )]
= [∅× Y,∅× Y ] [Since U ∩ V = ∅̃]
= ∅̃.

A similar argument holds in case y1 ̸= y1. Thus (X × Y, τ × δ) is T2(i).
(2) The proof is similar to (1).
(3) Suppose (X, τ) and (Y, δ) are T2(iii) and let (x1, y1), (x2, y2) ∈ X × Y such

that (x1, y1) ̸= (x2, y2), say x1 ̸= x2. Since (X, τ) is T2(iii), there are U, V ∈ τ such
that x11

∈ U, x21
∈ V and U ⊂ V c. Then we have

U × Ỹ = [U− × Y,U+ × Y ], V × Ỹ = [V − × Y, V + × Y ] ∈ τ × δ

such that (x1, y1)1 ∈ U × Ỹ and (x2, y2)1 ∈ V × Ỹ . It is easy to prove that U × Ỹ ⊂
(V × Ỹ )c holds. A similar argument holds in case y1 ̸= y1. Thus (X × Y, τ × δ) is
T2(iii).

(4) We will show that ∆c
X×Y ∈ ((τ × δ) × (τ × δ))c. It is clear that ∆X×Y ∈

IV S∗((X×Y )×(X×Y )). Then it is sufficient to show that for each ((a1, b1), (a2, b2))1 ∈
∆c

X×Y , there is U in (τ × δ)× (τ × δ) such that

((a1, b1), (a2, b2))1 ∈ U ⊂ ∆c
X×Y .

Let ((a1, b1), (a2, b2))1 ∈ ∆c
X×Y . Then clearly, (a1, b1) ̸= (a2, b2), i.e., a1 ̸= a2 or

b1 ̸= b2. Thus we can consider three possible cases:
(i) a1 ̸= a2, b1 = b2; (ii) a1 = a2, b1 ̸= b2; (iii) a1 ̸= a2, b1 ̸= b2.

We prove only (iii). The remainder’s proof are similar. Suppose a1 ̸= a2, b1 ̸= b2.
Then clearly, (a1, a2)1 ∈ ∆c

X ∈ (τ × τ) and (b1, b2)1 ∈ ∆c
Y ∈ (δ × δ). Thus there are

U1, U2 ∈ τ and V1, V2 ∈ δ such that

(a1, a2)1 ∈ U1 × U2 ⊂ ∆c
X and (b1, b2)1 ∈ V1 × V2 ⊂ ∆c

Y .

Now we show that the following holds:

(4.1) ((a1, b1), (a2, b2))1 ∈ (U1 × V1)× (U2 × V2) ⊂ ∆c
X×Y .

(4.1) can be proved in two steps.
Step 1: First, we show that ((a1, b1), (a2, b2))1 ∈ (U1 × V1) × (U2 × V2). From

Definition 2.7, it is obvious that
((a1, b1), (a2, b2))IV P

∈ (U1 × V1)× (U2 × V2)
⇐⇒ ((a1, b1), (a2, b2)) ∈ (U1 × V1)

− × (U2 × V2)
−

⇐⇒ ((a1, b1), (a2, b2)) ∈ (U−
1 × V −

1 )× (U−
2 × V −

2 ).
Then a1 ∈ U−

1 , a2 ∈ U−
2 , b1 ∈ V −

1 , b2 ∈ V −
2 . Thus (a1, b1) ∈ U−

1 × V −
1 and

(a2, b2) ∈ U−
12 × V −

2 . So the result holds.
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Step 2: Second, we prove that (U1× V1)× (U2× V2) ⊂ ∆c
X×Y . In order to show

the inclusion, we must prove that one of the followings hold:

(4.2) (U1 × V1)
− × (U2 × V2)

− ⊂ {((u1, v1, (u2, v2)) : (u1, v1 ̸= (u2, v2}

or

(4.3) (U−
1 × V −

1 )× (U−
2 × V −

2 ) ⊂ {((u1, v1, (u2, v2)) : (u1, v1 ̸= (u2, v2}.

Since U1 × U2 ⊂ ∆c
X and V1 × V2 ⊂ ∆c

Y , we have

U−
1 × U−

2 ⊂ {(u1, u2) ∈ X ×X : u1 ̸= u2}

and

V −
1 × V −

2 ⊂ {(v1, v2) ∈ Y × Y : v1 ̸= v2}.
Then (4.2) holds. Similarly, (4.3) can be proved. Thus by (4.1), we get

∆c
X×Y ∈ ((τ × δ)× (τ × δ)).

So ∆X×Y ∈ ((τ × δ)× (τ × δ))c. Hence (X × Y, τ × δ) is T2(vii). □

The following is the converse of Proposition 4.32.

Proposition 4.33. Let (X, τ), (Y, δ) be IVTSs.
(1) If (X × Y, τ × δ) is T2(i), then so are (X, τ) and (Y, δ).
(2) If (X × Y, τ × δ) is T2(ii), then so are (X, τ) and (Y, δ).
(3) If (X × Y, τ × δ) is T2(iii), then so are (X, τ) and (Y, δ).

Proof. The proofs of (1) and (2) are easy. we prove only (3). Suppose (X×Y, τ × δ)
is T2(iii) and let a, b ∈ X such that a ̸= b. Let us take a fixed y ∈ Y . Then clearly,
(a, y) ̸= (b, y) ∈ X×Y . Since (X×Y, τ×δ) is T2(iii), there are U1×V1, U2×V2 ∈ τ×δ
such that (a, y)1 ∈ U1 × V1, (b, y)1 ∈ U2 × V2 and U1 × V1 ⊂ (U2 × V2)

c. Thus we
have (a, y) ∈ U−

1 × V −
1 , (b, y) ∈ U−

2 × V −
2 and

(4.4) U−
1 ×V

−
1 ⊂ (U+

2 ×V
+
2 )c = U+

2

c×V +
2

c
, U+

1 ×V
+
1 ⊂ (U−

2 ×V
−
2 )c = U−

2

c×V −
2

c
.

So we get a ∈ U−
1 , y ∈ V −

1 , b ∈ U−
2 , y ∈ V −

2 and

(4.5) (U−
1 × V −

1 ) ∩ (U+
2 × V +

2 ) = ∅, (U+
1 × V +

1 ) ∩ (U−
2 × V −

2 ) = ∅.

Moreover, we have

(4.6) (U−
1 × V −

1 ) ∩ (U+
2 × V +

2 ) = (U−
1 ∩ U+

2 )× (V −
1 ∩ V +

2 ),

(4.7) (U+
1 × V +

1 ) ∩ (U−
2 × V −

2 ) = (U+
1 ∩ U−

2 )× (V +
1 ∩ V −

2 ).

From (4.5), (4.6) and (4.7), we have

(4.8) (U−
1 ∩ U+

2 )× (V −
1 ∩ V +

2 ) = ∅, (U+
1 ∩ U−

2 )× (V +
1 ∩ V −

2 ) = ∅.

Since y ∈ V −
1 , y ∈ V −

2 and V −
2 ⊂ V +

2 , y ∈ V −
1 ∩V

+
2 . Similarly, we get y ∈ V +

1 ∩V
−
2 .

From (4.4), U−
1 ⊂ U+

2

c
and U+

1 ⊂ U−
2

c
, i.e., U1 ⊂ U c

2 . Since a ∈ U−
1 and b ∈ U−

2 ,
a

IV P
∈ U1 and b

IV P
∈ U2. Hence (X, τ) is T2(iii). Similarly, the second part is

proved. □
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5. T3-, T4-spaces in interval-valued topological spaces

The properties that are studied in the previous section describe the separation
of pairs of interval-valued points of two types by IVOSs. In this section, in order
to describe the separation of an Interval-valued point from a CIVS by OIVSs, we
define two types T3 and T4 separation axioms in interval-valued topological spaces,
and obtain some properties.

Definition 5.1. (i) A T1(i)-space (X, τ) is called a T3(i)-space, if it satisfies the
following axiom:

[The regular axiom (i)]: for any F ∈ τ c such that x
1
∈ F c, there exist U, V ∈ τ

such that F ⊂ U , x1 ∈ V and U ∩ V = ∅̃.
(ii) A T1(ii)-space (X, τ) is called a T3(ii)-space, if the following conditions:

[The regular axiom (ii)]: for any F ∈ τ c such that x
0
∈ F c, there exist

U, V ∈ τ such that F ⊂ U , x0 ∈ V and U ∩ V = ∅̃.

It is obvious that if Xis T3(i), then it is T2(i).

Example 5.2. (1) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A,B,C,D,E, F, X̃},

where A = [{a}, {a}], B = [{b}, {b}], C = [{c}, {c}], D = [{a, b}, {a, b}],
E = ({a, c}, {a, c}], F = ({b, c}, {b, c}].

Then clearly, (X, τ) is T1(i). In fact, it is T2(i) and τ c = τ . But, we can easily check
that (X, τ) is not T3(i).

(2) Let X = {a, b, c, d} and consider the IVT τ on X given by:

τ = {∅̃, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, X̃},

where A1 = [{a}, {a, d}], A2 = [{b}, {a, b}], A3 = [{c}, {b, c}], A4 = [{d}, {c, d}],
A5 = [∅, {a}], A6 = [∅, {b}], A7 = [∅, {c}], A8 = [∅, {d}],
A9 = [{a, b}, {a, b, d}], A10 = [{a, d}, {a, c, d}], A11 = [{c, d}, {b, c, d}],
A12 = [{b, c}, {a, b, c}], A13 = [{a, c}, X], A14 = [{b, d}, X].

Then clearly, (X, τ) is T1(i) and

τ c = {∅̃, Ac
1, A

c
2, A

c
3, A

c
4, A

c
5, A

c
6, A

c
7, A

c
8, A

c
9, A

c
10, A

c
11, A

c
12, A

c
13, A

c
14, X̃},

where Ac
1 = [{b, c}, {b, c, d}], Ac

2 = [{c, d}, {a, c, d}], Ac
3 = [{a, d}, {a, b, d}],

Ac
4 = [{a, b}, {a, b, c}], Ac

5 = [{b, c, d}, X], Ac
6 = [{a, c, d}, X],

Ac
7 = [{a, b, d}, X], Ac

8 = [{a, b, c}, X], Ac
9 = [{c}, {c, d}],

Ac
10 = [{b}, {b, c}], Ac

11 = [{a}, {a, b}], Ac
12 = [{d}, {a, d}],

Ac
13 = [∅, {b, d}], Ac

14 = [ϕ, {a, c}].
Thus we can easily see that (X, τ) is T3(i).

(3) Let X = {a, b, c, d} and consider the IVT τ on X given by:

τ = {∅̃, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, X̃},

where A1 = [{a, b}, {a, b, c}], A2 = [{c, d}, {a, c, d}], A3 = [{a, d}, {a, b, d}],
A4 = [{b, c}, {b, c, d}], A5 = [∅, {a, c}], A6 = [{a}, {a, b}], A7 = [{b}, {b, c}],
A8 = [∅, {a, d}], A9 = [{c}, {c, d}], A10 = [∅, {b, d}], A11 = [{a, b, d}, X],
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A12 = [{a, b, c}, X], A13 = [{a, c, d}, X], A14 = [{b, c, d}, X).
Then clearly, (X, τ) is T1(ii) and

τ c = {∅̃, Ac
1, A

c
2, A

c
3, A

c
4, A

c
5, A

c
6, A

c
7, A

c
8, A

c
9, A

c
10, A

c
11, A

c
12, A

c
13, A

c
14, X̃},

where Ac
1 = [{d}, {c, d}], Ac

2 = [{b}, {a, b}], Ac
3 = [{c}, {b, c}], Ac

4 = ({a}, {a, d}],
Ac

5 = [{b, d}, X], Ac
6 = [{c, d}, {b, c, d}], Ac

7 = [{a, d}, {a, c, d}],
Ac

8 = [{b, c}, X], Ac
9 = ({a, b}, {a, b, d}], Ac

10 = [{a, c}, X], Ac
11 = [∅, {c}],

Ac
12 = [∅, {d}], Ac

13 = [∅, {b}], Ac
14 = [∅, {a}].

Thus we can easily see that (X, τ) is T3(ii).

Remark 5.3. (1) If τ ⊂ IV S∗(X), then two concepts in Definition 5.1 are coinci-
dent.

(2) Let (X, τo) be an ordinary topological space. Then clearly, τ = {[A,A] : A ∈
τo} ∈ IV T (X) and τ ⊂ IV S∗(X). Thus we can easily check that if (X, τo) is T3,
then (X, τ) is both T3(i) and T3(ii) by (1).

(3) Let (X, τ) be an ordinary space such that τ is not indiscrete let τ1, τ2 be two
IVTs on X given in Remark 4.5. Then we can easily see that if (X, τ) is T3, then
(X, τ1) is T3(i) and (X, τ2) is T3(ii).

Theorem 5.4. Let (X, τ) be an IVTS such that τ ⊂ IV S∗(X). Then
(1) (X, τ) is T3(i) if and only if (X, τ−) is T3.
(2) (X, τ) is T3(i) if and only if (X, τ+) is T3.

Proof. (1) By Theorem 4.11 (1), (X, τ) is T1(i) if and only if (X, τ1) is T1. Then it
is sufficient to prove that (X, τ) satisfies the regular axiom (i) if and only if (X, τ−)
is regular.

Suppose (X, τ) satisfies the regular axiom (i) and let A be any closed set in
(X, τ−) such that x ∈ Ac. Then clearly, Ac ∈ τ−. By the definition of τ−, there is
W ∈ τ such that W = [Ac,W+]. Let F = W c. Then clearly, F = [W+c

, A] ∈ τ c.
Since A is a CIVS in (X, τ−), W+c

= A. Thus F = [A,A] ∈ τ c and W = F c =
[Ac, Ac] ∈ τ . Since x ∈ Ac, x

1
∈ F c. By the hypothesis, there are U, V ∈ τ such

that F ⊂ U, x1 ∈ V and U ∩ V = ∅̃. Since τ ⊂ IV S∗(X), F− = A ⊂ U−, x ∈ V −

and U− ∩ V − = ∅. By the definition of τ−, it is clear that U−, V − ∈ τ−. So
(X, τ−) is regular. Hence (X, τ−) is T3.

Conversely, suppose (X, τ−) is regular and let F ∈ τ c such that x
1
∈ F c. Then

clearly, F c = [F+c
, F−c

] ∈ τ c. By the definition of τ−, F− is closed in (X, τ−)
and x ∈ F+c ∈ τ−. Since τ ⊂ IV S∗(X), F c

F = F−. By the hypothesis, there
are U, V ∈ τ− such that F− ⊂ U, x ∈ V and U ∩ V = ∅. Thus F−c ⊃ U c and
U c ∪ V c = X. Let A = [U,U ], B = [V, V ]. Then clearly, A, B ∈ τ , F ⊂ A, x

1
∈ B

and A ∩B = ∅̃. Thus (X, τ) is T3(i).
(2) The proof is similar to (1). □

Remark 5.5. If the condition “τ ⊂ IV S∗(X)” is taken off, then Theorem 5.4 does
not hold in general (See Example 5.6).

Example 5.6. (1) Let (X, τ) be the T3(i)-space given in Example 5.2 (2). Then
clearly, τ ̸⊂ IV S∗(X) and

τ− = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {a, c}, {b, c}, {c, d}, X}.
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Thus we can easily see that (X, τ−) is not T3.
(2) Let (X, τ) be the T3(ii)-space given in Example 5.2 (3). Then clearly, τ ̸⊂

IV S∗(X) and

τ+ = {∅, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}, {a, b}, {b, c}, {c, d}, {a, d}, {a, c}, {b, d}, X}.
Thus we can easily see that (X, τ+) is not T3.

The following two Theorems characterize T3(i)-space and T3(ii)-space

Theorem 5.7. Let (X, τ) be an IVTS.
(1) If X is T1(i), then it is T3(i) if and only if for each x ∈ X and each U ∈

N(x1), there is V ∈ N(x1) such that IV cl(V ) ⊂ U .
(2) If X is T1(ii), then it is T3(ii) if and only if for each x ∈ X and each

U ∈ N(x
0
), there is V ∈ N(x

0
) such that IV cl(V ) ⊂ U .

Proof. (1) Suppose X is T3(i). Let x ∈ X and let U ∈ N(x1). Then clearly, U c ∈ τ c

and x1 /∈ U c. By hypothesis, there are V, W ∈ τ such that x1 ∈ V , U c ⊂ W and
V ∩W = ∅̃. Thus V ⊂ W c and W c ∈ τ c. So IV cl(V ) ⊂ W c. Since U c ⊂ W ,
W c ⊂ U . Hence V ∈ N(x

1
) such that IV cl(V ) ⊂ U .

Suppose X is T1(i) satisfying the necessary condition. Let F ∈ τ c such that x1 ∈
F c. Then clearly, F c ∈ N(x1). Thus by the hypothesis, there exists V ∈ N(x1) such
that IV cl(V ) ⊂ F c. Since V ⊂ IV cl(V ), V − ⊂ (Icl(V ))− and V + ⊃ (Icl(V ))+. So
we get

V − ∩ (Icl(V ))+
c ⊂ V − ∩ V −c

= ∅ and V + ∩ (Icl(V ))−
c ⊃ V + ∩ V +c

= ∅.

Hence V ∩ (Icl(V ))c = ∅̃, x1 ∈ V and F ⊂ (IV cl(V ))c. Therefore X is T3(i).
(2) The proof is similar to (1). □

Theorem 5.8. Let (X, τ) be an IVTS.
(1) If X is T1(i), then it is T3(i) if and only if for each x ∈ X and each F ∈ τ c

such that x
1
∈ F c, there exist U, V ∈ τ such that F ⊂ U , x

1
∈ V and IV cl(U) ∩

IV cl(V ) = ∅̃.
(2) If X is T1(ii), then it is T3(ii) if and only if for each x ∈ X and each

F ∈ CIV S(X) such that x
0
∈ F c, there exist U, V ∈ τ such that F ⊂ U , x

0
∈ V

and IV cl(U) ∩ IV cl(V ) = ∅̃.

Proof. Suppose X is T3(i). Let x ∈ X and let F ∈ τ c such that x
1
∈ F c. Then

F c ∈ N(x
1
). Thus by Theorem 5.7 (1), there is W ∈ N(x

1
) such that IV cl(W ) ⊂

F c. Again by Theorem 5.7 (1), There is V ∈ N(x
1
) such that IV cl(V ) ⊂ W . Let

U = (IV cl(W ))c ∈ τ . Since IV cl(W ) ⊂ F c, F ⊂ (IV cl(W ))c = U . So we have

IV cl(V ) ∩ IV cl(U) ⊂W ∩ IV cl((IV cl(W ))c) = ∅̃.

Hence U and V are the desired OIVSs in X.
The converse can be easily proved.
(2) The proof is similar to (1). □

Now we deal with the separation of two OIVSs.

Definition 5.9. A T1(i)-space (X, τ) is called an interval-valued normal space or a
T4-space, if for any A, B ∈ τ c such that A∩B = ∅̃, there exist U, V ∈ τ such that
U ∩ V = ∅̃, A ⊂ U and B ⊂ V .
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It is obvious that if X is T4(i), then it is T3(i). But the converse is no true in
general (See Example 5.10 (2)).

Example 5.10. (1) Let X = {a, b, c} and consider the IVT τ on X given by:

τ = {∅̃, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, X̃},
where A1 = [{a}, {a, c}], A2 = [{b}, {b}], A3 = [{a, c}, {a, c}], A4 = [{a, b}, {a, b}],

A5 = [{c}, {c}], A6 = [{b, c}, X], A7 = [{a, b}, X], A8 = [{a}, {a}],
A9 = [∅, {c}], A10 = [∅, {a, c}], A11 = [{c}, {a, c}], A12 = [{a}, {a, c}]
A13 = [{b}, {a, b}], A14 = [{b}, X], A15 = [{a, b}, X], A16 = [{b, c}, {b, c}].

Then clearly, (X, τ) is T1(i) and

τ c = {∅̃, Ac
1, A

c
2, A

c
3, A

c
4, A

c
5, A

c
6, A

c
7, A

c
8, A

c
9, A

c
10, A

c
1, A

c
12, A

c
13, A

c
14, A

c
15, A

c
16, X̃},

where Ac
1 = [{b}, {b, c}], Ac

2 = [{a, c}, {a, c}], Ac
3 = [{b}, {b}], Ac

4 = [{c}, {c}],
Ac

5 = [{a, b}, {a, b}], Ac
6 = [∅, {a}], Ac

7 = [∅, {c}], Ac
8 = [{b, c}, {b, c}],

Ac
9 = [{a, b}, X], Ac

10 = [{b}, X], Ac
11 = [{b}, {a, b}], Ac

12 = [{b}, {b, c}],
Ac

13 = [{c}, {a, c}], Ac
14 = [∅, {a, c}], Ac

15 = [∅, {c}], Ac
16 = [{a}, {a}].

Thus we can easily see that (X, τ) is T4.
(2) For each a ∈ R, let Ua = [(a,∞), (a,∞)] and τ = {Ua : a ∈ R}. Then clearly,

τ is an IVT on R. In fact, we can easily check that (R, τ) is T4(i). On the other
hand, consider C = [(−∞, 0], (−∞, 0]] ∈ IV S(R). Then clearly, C is a CIVS in R)
and 1

1
∈ Cc. Let U ∈ τ such that C ⊂ U . Then U = R. Thus 1

1
∈ U . So (R, τ) is

not T3(i).

The followings characterize T4-space.

Theorem 5.11. Let (X, τ) be an IVTS such that (X, τ) is T1(i). Then (X, τ) is
T4 if and only if for each F ∈ IV C(X) and each U ∈ τ such that F ⊂ U , there
exists V ∈ τ such that F ⊂ V and IV cl(V ) ⊂ U .

Proof. Suppose (X, τ) is T4. Let F ∈ τ c and let U ∈ τ such that F ⊂ U . Then
clearly, F− ⊂ U− and F+ ⊂ U+. Thus F− ∩ U+c

= ∅ and F+ ∩ U−c
= ∅, i.e.,

F ∩ U c = ∅̃. Since U c ∈ τ c, by the hypothesis, there exist V, W ∈ τ such that
V ∩W = ∅̃, F ⊂ V and U c ⊂ W . Since V ∩W = ∅̃, V ⊂ W c and W c ∈ τ c. So
IV cl(V ) ⊂W c. Since U c ⊂W , W c ⊂ U. Hence IV cl(V ) ⊂ U .

Conversely, suppose the necessary condition holds. Let A, B ∈ τ c such that
A∩B = ∅̃. Then clearly, A ⊂ Bc and Bc ∈ τ . Thus by the hypothesis, there exists
V ∈ τ such that A ⊂ V and IV cl(V ) ⊂ Bc. Let U = (IV cl(V ))c. Then clearly,
U ∈ τ , B ⊂ U and U ∩ V = ∅̃. Thus (X, τ) is T4. □

Theorem 5.12. Let (X, τ) be an IVTS such that (X, τ) is T1(i). Then (X, τ) is
T4 if and only if for any A, B ∈ τ c such that A ∩ B = ∅̃, there exists U, V ∈ τ
such that A ⊂ U , B ⊂ V and IV cl(U) ∩ IV cl(V ) = ∅̃.

Proof. Suppose (X, τ) is T4. Let A, B ∈ τ c such that A ∩ B = ∅̃. Then by the
hypothesis, there exist G, H ∈ τ such that G ∩ H = ∅̃, A ⊂ G and B ⊂ H.
Thus by Theorem 5.11, there exist U, V ∈ τ such that A ⊂ U, IV cl(U) ⊂ A and
B ⊂ V, IV cl(V ) ⊂ B. So IV cl(U) ∩ IV cl(V ) ⊂ A ∩ B = ∅̃. Hence IV cl(U) ∩
IV cl(V ) = ∅̃.

The proof of the converse is easy. □
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Proposition 5.13. Let (X, τ) be T4, let (Y, δ) be an IVTS and let f : X → Y be
interval-valued continuous, closed and surjective. Then (Y, δ) is T4.

Proof. Let C, D ∈ δc such that C ∩ D = ∅̃. Then clearly, f−1(C), f−1(D) ∈ τ c

such that f−1(C) ∩ f−1(D) = ∅̃. Since X is T4, there are U, V ∈ τ such that
f−1(C) ⊂ U and f−1(D) ⊂ V . Since f is closed, f(U c), f(V c) ∈ δc. Let M =
[f(U c)]c, N = [f(V c)]c. Then clearly, M, N ∈ δ. Thus we have

f−1(M) = f−1([f(U c)]c = f−1(f(U c))c [By Result 3.2 (10)]
= (U c)c [By Result 3.2 (4), since f is surjective]
= U . [By Result 2.4 (7)]

Similarly, we get f−1(N) = V . So C ⊂ M and D ⊂ N . Moreover, we can easily
check that M ∩N = ∅̃. Hence (Y, δ) is T4. □

6. Interval-valued subspaces

In this section, we define an interval-valued subspace of an IVTS and dealt with
some of its properties.

Proposition 6.1. (X, τ) be an IVTS and let A ∈ IV S(X). Then the family τ
A
of

IVSs in X given by:

τ
A
= {U ∩A : U ∈ τ}

is an IVT on A.
In this case, τ

A
is called the interval-valued relative topology on A and the pair

(A, τ
A
) is called an interval-valued subspace of (X, τ). The members of τ

A
are called

relatively open sets or simply open sets in A.

Proof. Since ∅̃, X̃ ∈ τ , ∅̃ ∩ A = ∅̃, X̃ ∩ A = A ∈ τ
A
. Then τ

A
holds the axiom

(IVO1). Let U ∩A, V ∩A ∈ τ
A
. Then clearly, (U ∩A)∩ (V ∩A) = (U ∩V )∩A and

U ∩ V ∈ τ . Thus (U ∩ A) ∩ (V ∩ A) ∈ τ
A
. So τ

A
holds the axiom (IVO2). Finally,

let (Uj ∩ A)j∈J be any family of members of τ
A
. Then clearly,

⋃
j∈J(Uj ∩ A) =(⋃

j∈J Uj

)
∩ A and

⋃
j∈J Uj ∈ τ . Thus

⋃
j∈J(Uj ∩ A) ∈ τ

A
. So τ

A
holds the axiom

(IVO3). Hence τ
A
is an IVT on A. □

Example 6.2. Let τ = {U ∈ IV S(R) : 0 ∈ U− or U = ∅̃}. Then we can easily
check that τ is an IVT on R. Let A = [1, 2]IV I (See Definition 7.1) and let x

1
∈ A.

Then clearly, 0
1
∪ x

1
= [{0, x}, {0, x}] ∈ τ and (0

1
∪ x

1
)∩A = x

1
. Thus x

1
∈ τ

A
. So

τ
A
is the interval-valued discrete topology.

Remark 6.3. (1) Let (X, τ) be an interval-valued discrete space and let A ∈
IV S(X). Then τ

A
is the discrete topology on A.

(2) Let (X, τ) be an interval-valued indiscrete space and let A ∈ IV S(X). Then
τ
A
is the indiscrete topology on A.
(3) Let (X, τ) be an IVTS and let A, B ∈ IV S(X) such that A ⊂ B. Then

τ
A
= τ

BA
.

(4) Let (X, τ) be an IVTS and let A ∈ IV S(X). Then (A−, τ
A
−) and (A+, τ

A
+)

are classical subspaces of (X, τ−) and (X, τ+), respectively.

The following is an immediate result of Definition 3.12 and Proposition 6.1.
84



Lee et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 1, 55–89

Proposition 6.4. Let (X, τ) be an IVTS, let A ∈ IV S(X) and let β be a base for
τ . Then β

A
= {B ∩A : B ∈ β} is a base for τ

A
.

The following gives a special situation in which every member of the interval-
valued relative topology is also a number of the IVT on X.

Proposition 6.5. Let (X, τ) be an IVTS and let A ∈ τ . If V ∈ τ
A
, then V ∈ τ .

Proof. Suppose V ∈ τ
A
. Then by Proposition 6.1, there is U ∈ τ such that V =

U ∩A. Since A ∈ τ , U ∩A ∈ τ . Thus V ∈ τ . □

Theorem 6.6. Let (A, τ
A
) be an interval-valued subspace of an IVTS (X, τ) and

let C ∈ τ c. Then C is closed in (A, τ
A
) if and only if there is D ∈ τ c such that

C = D ∩A.

Proof. Suppose C is closed in (A, τ
A
). Then by Proposition 6.1, there is U ∈ τ such

that A− C = U ∩A, where A− C = [A− ∩ C+c
, A+ ∩ C−c

]. Thus we have

C = A− (A− C) = A− (U ∩A) = A ∩ (A− U) = A ∩ U c.

Since U c ∈ τ c, the necessary condition holds.
Suppose C ⊂ A and there is D ∈ τ c such that C = D ∩A. Then clearly, Dc ∈ τ .

Moreover, A−C = A− (D ∩A) = A ∩ (A−D) = A ∩Dc. Thus A−C ∈ τ
A
. So C

is closed in (A, τ
A
). □

The following provides a criterion for an interval-valued closed subset of an
interval-valued subspace to be closed in the IVTS.

Proposition 6.7. Let (X, τ) be an IVTS an let A ∈ τ c. If C is closed in (A, τ
A
),

then C ∈ τ c.

When dealing with subspaces of an IVTS, we need to exercise care in taking
closures of an IVS because the closure in the interval-valued subspace may be quite
different from the closure in the IVTS. The following gives a criterion for dealing
with this situation.

Proposition 6.8. Let (A, τ
A
) be an interval-valued subspace of an IVTS (X, τ) and

let B ⊂ A. Then IV cl
(A,τ

A
)
(B) = A ∩ IV cl(B), where IV cl

(A,τ
A

)
(B) denotes the

interval-valued closure in (A, τ
A
).

Proof. The proof is similar to one of classical case. □

Theorem 6.9. Let (A, τ
A
) be an interval-valued subspace of an IVTS (X, τ) and let

U ⊂ A.
(1) Suppose a1 ∈ A. Then U ∈ Nτ

A
(a1) if and only if there is V ∈ N(a1) such

that U = V ∩A, where N
τ
A
(a

1
) denotes the set of all neighborhoods of a

1
with respect

to τ
A
.

(2) Suppose a
0
∈ A. Then U ∈ N

τ
A
(a

0
) if and only if there is V ∈ N(a

0
) such

that U = V ∩A, where Nτ
A
(a0) denotes the set of all neighborhoods of a0 with respect

to τ
A
.

Proof. The proof is similar to one of classical case. □
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Proposition 6.10. (1) Every interval-valued subspace of a T0(j)-space (X, τ)is a
T0(j)-space for each j=i, ii, iii, iv, v, vi.

(2) Every interval-valued subspace of a T1(j)-space (X, τ) is a T1(j)-space for
each j=i, ii, iii, iv, v, vi, vii, viii.

(3) Every interval-valued subspace of a T2(j)-space (X, τ) is a T2(j)-space for
each j=i, ii, iii, iv, v, vi.

Proof. (1) We prove only the cases T0(i), T0(iv) and T0(vi). The remainder’s proofs
are similar.

Suppose A is an interval-valued subspace of a T0(i)-space (X, τ) and let a
1
, b

1
∈ A

such that a ̸= b. Then clearly, a, b ∈ A− and there is U ∈ τ such that either
a ∈ U−, b /∈ U− or b ∈ U−, a /∈ U−. Thus U ∩ A ∈ τ

A
such that either a ∈

U−∩A−, b /∈ U−∩A− or b ∈ U−∩A−, a /∈ U−∩A−. So either a
1
∈ U∩A, b

1
/∈ U∩A

or b
1
∈ U ∩A, a

1
/∈ U ∩A. Hence A is T0(i).

Suppose A is an interval-valued subspace of a T0(iv)-space (X, τ) and let a
0
, b

0
∈

A such that a ̸= b. Then clearly, a, b ∈ A+ and there is U ∈ τ such that either
a ∈ U+, U− ⊂ {b}c or b ∈ U+, U− ⊂ {a}c. Thus U ∩ A ∈ τ

A
such that either

a ∈ U+ ∩ A+, U− ∩ A− ⊂ {b}c or b ∈ U+ ∩ A+, U− ∩ A− ⊂ {a}c. So either
a

0
∈ U ∩A ⊂ bc

0
or b

0
∈ U ∩A ⊂ ac

0
. Hence A is T0(iv).

Suppose A is an interval-valued subspace of a T0(V)-space (X, τ) and let a
1
, b

1
∈

A such that a ̸= b. Then clearly, a, b ∈ A− and there is U ∈ τ such that either
a /∈ U− or b /∈ U−. Thus U ∩A ∈ τ

A
such that either a /∈ U− ∩A− or b /∈ U− ∩A−.

So either a
1
/∈ U ∩A or b

1
/∈ U ∩A. Hence A is T0(v).

(2) We prove only the cases T1(ii) and T1(vii). The remainder’s proofs are similar.
Suppose A is an interval-valued subspace of a T1(ii)-space (X, τ) and let a

0
, b

0
∈

A such that a ̸= b. Then a, b ∈ A+ and there are U, V ∈ τ such that

a ∈ U+, b /∈ U+ and a /∈ V +, b ∈ V +.

Thus U ∩A, V ∩A ∈ τ
A
. Furthermore, we have

a ∈ U+ ∩A+, b /∈ U+ ∩A+ and a /∈ V + ∩A+, b ∈ V + ∩A+.

So we get

a
0
∈ U ∩A, b

0
/∈ U ∩A and b

0
/∈ V ∩A, a

0
∈ V ∩A.

Hence A is T1(ii).
Suppose A is an interval-valued subspace of a T1(Vii)-space (X, τ) and let a

1
∈ A.

Then clearly, a
1
∈ τ c. Since a

1
∈ A, a

1
∩A = a

1
. Thus by Theorem 6.6, a

1
is closed

in (A, τ
A
). So A is T1(Vii).

(3) The proofs are similar to (2). □

Proposition 6.11. Every interval-valued subspace of a T3(j)-space (X, τ) is a
T3(j)-space for each j=i, ii.

Proof. Suppose A is an interval-valued subspace of a T3(i)-space (X, τ). Then by
Proposition 6.10 (2), (A, τ

A
) is T1(i). Let C be closed in (A, τ

A
) such that a1 ∈

(A − C). Then by Theorem 6.6, there is D ∈ τ c such that C = D ∩ A. Since
a

1
∈ (A − C), a

1
∈ Dc. Since X is T3(i), there are U, V ∈ OIV S(X) such that
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D ⊂ U, a1 ∈ V and U ∩ V = ∅̃. Thus U ∩ A and V ∩ A are open in (A, τ
A
).

Moreover, we can easily see that

C ⊂ U ∩A, a
1
∈ V ∩A and (U ∩A) ∩ (V ∩A) = ∅̃.

So A is T3(i). The remainder’s proof is similar. □

Proposition 6.12. Let (X, τ) be a T4-space and let C ∈ CIV S(X). Then (C, τ
C
)

is T4.

Proof. Let F1 and F2 be closed in (C, τ
C
) such that F1 ∩ F2 = ∅̃. Since C ∈ τ c,

F1, F2 ∈ τ c by Proposition 6.7. Since (X, τ) is T4, there are U, V ∈ τ such that
F1 ⊂ U , F2 ⊂ V and U ∩ V = ∅̃. Then we have

F1 ⊂ U ∩ C, F2 ⊂ V ∩ C and (U ∩ C) ∩ (V ∩ C) = ∅̃.

It is clear that U ∩ C and V ∩ C are open in (C, τ
C
). Thus (C, τ

C
) is T4. □

Definition 6.13. A T1(i)-space (X, τ) is said to be interval-valued completely nor-
mal, if for any A, B ∈ IV S(X) such that A ∩ IV cl(B) = IV cl(A) ∩ B = ∅̃, there
are U, V ∈ τ such that A ⊂ U and B ⊂ V .

It is obvious that every interval-valued completely normal space is T4. The fol-
lowing gives a characterization of an interval-valued completely normality.

Theorem 6.14. Let (X, τ) be a T4-space and let C ∈ τ c. Then (C, τ
C
) is T4.

Proof. The proof is similar to one of classical case. □

7. Appendix

In this section, There is a typo in the Definition 4.11 in [19], so we correct it.

Definition 7.1. Let a, b ∈ R such that a ≤ b. Then
(i) (the closed interval) [a, b]IV I = [[a, b], [a, b]],
(ii) (the open interval) (a, b)IV I = [(a, b), (a, b)],
(iii) (the half open interval or the half closed interval)

(a, b]IV I = [(a, b], (a, b]], [a, b)IV I = [[a, b), [a, b)],

(iv) (the half interval-valued real line)

(−∞, a]IV I = [(−∞, a], (−∞, a]], (−∞, a)IV I = [(−∞, a), (−∞, a)],

[a,∞)IV I = [[a,∞), [a,∞)], (a,∞)IV I = [(a,∞), (a,∞)],

(v) (the interval-valued real line) (−∞,∞)IV I = [(−∞,∞), (−∞,∞)] = R̃.

Definition 7.2. An interval-valued bipolar valued fuzzy set A in a nonempty set X
is an object having the form

A = ([AN,−, AN,+], [AP,−, AP,+]),

where [AN,−, AN,+] : X → D[−1, 0] and [AP,−, AP,+] : X → D[0, 1] are mappings.
For each x ∈ X, [AP,−, AP,+](x) = [AP,−(x), AP,+(x)] (called the positive interval-
valued membership degree) and [AN,−, AN,+](x) = [AN,−(x), AN,+(x)] (called the
negative interval-valued membership degree) denotes the satisfaction degree of an
element x to the property corresponding to and to some implicit counter property
of interval-valued bipolar valued fuzzy set A.
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8. Conclusions

In this paper, the topics of interval-valued continuous functions and separation
axioms in interval-valued topological spaces have been extensively investigated, a
detailed study has been done on these subjects and the obtained theorems are sup-
ported with appropriate examples. By accepting the interval-valued continuity re-
sults, we were able to continue our research on the IVTop concrete category later.
As a result, we initially found that the concrete category IVTop has the initial
structure from Proposition 3.39. One of the most important issues in this article is
that there are two new characterizations for each T3 and T4 separation axiom in
interval-valued topological spaces that are given in Theorems 5.7, 5.8 and Theorems
5.11, 5.12. The relationships and transitions between these newly defined separation
axioms are shown with the help of tables, and the non-transition sections are sup-
ported with counter examples. As a possible advancement of the research proposed
here, it can be extended to solve separation axioms in more comprehensive spaces,
such as the hyperspace of interval-valued topological spaces, thereby completing and
enriching the research. The results of this article have specific findings that warrant
further and deeper exploration.

In the future, we expect that one can investigate hyperspace of interval-valued
topological spaces, and topological structures based on interval-valued bipolar valued
fuzzy sets (See Definition 7.2).
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