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Abstract. In this article, we have solved the type-2 fuzzy differential
equation. The nonlinear type-2 triangular fuzzy numbers(NT2TFNs) are
taken, and their different arithmetic properties are manifested. We have
taken the type-2 fuzzy initial and type-2 fuzzy boundary value problem.
Type-2 fuzzy differential inclusion concepts solve the differential equations.
Numerical examples with solution graphs have also been provided to illus-
trate the outcomes of the proposed theory.
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1. Introduction

Information, by its very nature, contains uncertainty. Today, accessing and pro-
cessing sometimes hazy, imperfect, loud, partial, or occasionally conflicting infor-
mation is a significant component of real world managerial scenarios. fuzzy logic is
just an example of the robust tools in the field of computer intelligence that was
made possible by developing soft computing techniques. Fuzzy differential equation
(FDE) is an important tool for modelling uncertain systems [1]. It is possible to
think of fuzzy differential equations (FDEs) as an instance of differential equations
that have been fuzzy logic-generalized. When specific coefficients, parameters, or
boundary conditions are thought of as belonging to a category of fuzzy sets, the
resulting differential equation is referred to as a fuzzy differential equation. A fuzzy
differential equation is simplified to a differential equation whose uncertain parame-
ters, coefficients, and conditions are viewed as the degranulation of the precise ends.
The outcome of granular precision in the setting of FDEs is of the sort of possibility
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distribution. As a result, a fuzzy differential equation can also be referred to as
a probabilistic differential equation. After introducing the fuzzy set by Zadeh [2],
Chang and Zadeh [3] defined the fuzzy derivative, which later preceded the literature
on fuzzy differential equations. Following their path, the calculus of fuzzy valued
functions gained the research community’s attention resulting innovation of differ-
ent definitions of fuzzy derivatives, including the Hukuhara derivative by Puri and
Ralescu [4].

Despite being presented in various ways, it has been demonstrated that all of
these fuzzy derivatives are analogous, given that the lower and higher level cuts of
the relevant fuzzy function are continuous. After that, Kaleva [5, 6] and Seikkala
[7] developed the FDE theory. Hukuhara and Seikkala derivatives are the two most
well-known fuzzy derivatives among those given. Hukuhara and Seikkala derivative
definitions differ in that Seikkala derivative is based on derivatives of the lower and
upper-level cuts of the relevant fuzzy function. In contrast, Hukuhara derivative is
defined essentially based on what is known as the Hukuhara difference (H-difference).
Investigations on the existence and distinctness of the solution for FDEs under the H-
derivative and Seikkala derivative was done in several worthy works [8, 9, 10, 11, 12].
Also, Dubois and Prade used the extension principle for solving FDE [13]. However,
the research findings have shown that these derivatives have several significant draw-
backs, the most critical of which is that the diameter of the fuzzy function being
studied must essentially be non-decreasing. This restriction causes the determined
solution of an FDE to frequently differ from what could be intuitively deduced from
the features of the system or phenomenon that the FDE is modelling. P. Diamond
[14] has shown that the solutions of FDE using H-derivative is sometimes unbounded
as t → ∞. So, it does not reflect the rich behaviour of uncertain systems and it is
quite different from the crisp solution. Hullermeier [15] overcame this problem by
introducing Fuzzy Differential Inclusion (FDI). In FDI, he replaced FDE by a family
of differential equations at each α− level for 0 ⩽ α ⩽ 1, where the solution is defined
by the α− level sets. Recently, Min et al. [16] discussed the existence of the solutions
for fuzzy implicit differential inclusions generalizing some established results of fuzzy
differential equations and inclusions. The applications of fuzzy differential equations
are also found in different literature. Several authors are already shown interest in
modelling inventory control problems [17, 18, 19, 20], diabetes modelling [21, 22],
mechanics problem [23], Arms Race problem [24, 25], Bio mathematical modelling
[26, 27, 28, 29, 30] (See the work [31] for more theoretical development).

Fuzzy sets have long been used as an effective tool in many fields, including pat-
tern recognition, medicinal applications, engineering difficulties, etc. Although using
fuzzy sets makes sense in many situations, it does not appear acceptable in more
uncertain settings. While occasionally, an object’s membership in the universe of
discourse is unknown, fuzzy sets assign each member of the primary domain a single
value from the range [0, 1] as their membership value. This characteristic allowed the
researchers to discover type-2 fuzzy sets with fuzzy membership functions rather than
single values. As type-2 fuzzy differential inclusion can handle more uncertainties
than FDE, it earns the interests of many researchers [32, 33, 34, 35, 36, 37, 38, 39].
Despite a few noted developments in this direction, we observed that there are no
such works in which the differential inclusion method has been manifested in a type
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2 fuzzy setting. Making an end to this hiatus, we have studied the Type-2 fuzzy dif-
ferential inclusion(T2FDI) by replacing T2FDE by a family of differential equations
at each (α− α̃)-level sets in this article. The solution of T2FDI has been obtained as
(α − α̃)-level sets. We have considered an initial value problem and a second order
boundary value problem to solve them by using T2FDI. Numerical examples with
graphical representations of the solutions has been shown. As mentioned earlier,
type-2 fuzzy sets generalize the uncertainty carried by fuzzy sets, and fuzzy dif-
ferential inclusions replace the fuzzy differential equation with broader perspectives;
this present work contributes a significant content amalgamating two noted theories.

The remaining of this article is designed as follows. Section 2 presents some
preliminaries on type-2 fuzzy sets. In section 3, non-linear type-2 fuzzy numbers
are defined, and their arithmetic properties are introduced. Section 4 is about the
theory of type 2 fuzzy differential inclusions. The conclusions at the end of this
study are made in section 5.

2. Preliminaries

This present article focus to demonstrate the solution of the uncertain differential
equation using differential inclusion method for type-2 fuzzy valued variables. Thus,
a few fundamental definitions of type-2 fuzzy sets in this part are connected to the
work introduced.

Definition 2.1. Fuzzy set: [2] Let U be a given collection which is taken to be

the universal discourse. A fuzzy set Ã is denoted by an ordered pair

Ã = {(x, µA(x)) |x ∈ U}.

In the ordered pair, x is an element of Ã and µA(x) is representing the measure of

belonging of x in the set Ã. µA(x) is called the membership function having range
[0, 1]. The membership function substitutes the characteristic function of the crisp
set for generalizing it introducing fuzzy set.

Further generalization can be made by introducing type-2 fuzzy set. The mem-
bership values are real numbers lying in [0, 1] in classical fuzzy set. Now, the notion
is extended to a wider phenomena in which the membership values are themselves
fuzzy sets. This extension defines type 2 fuzzy sets as following.

Definition 2.2. Type-2 fuzzy set: [40] Let Ã be a classical fuzzy set defined on
U with its membership function µA(x) = u. If, furthermore, the membership value

µA(x) = u is a fuzzy set on [0, 1], then Ã is called a type-2 fuzzy set (T2FS) in U
and it is defined as

(2.1) Ã = {((x, u), µÃ(x, u)) : x ∈ U, u ∈ [0, 1]}.
In equation 2.1, µÃ(x, u) is representing the type-2 membership function (T2MF) of

the type-2 fuzzy set Ã defined in U and µÃ(x, u) always belongs to [0, 1].

Example 2.3. Let U = {x1, x2, x3} be discrete universe of discourse with primary
membership grades as follows: µA(x1) = {0, 0.2} = u1, µA(x2) = {0.2, 0.4, 0.6} = u2

and µA(x3) = {0.6, 0.8, 1} = u3.
35
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Suppose u1, u2 and u3 are all fuzzy sets on [0, 1]. Also, let the secondary mem-
bership grades of u1 is given by

µA(x1, 0) = 1, µA(x1, 0.2) = 0.3.

Let the secondary membership grades of elements of u2 is given by

µA(x2, 0.2) = 0.6, µA(x2, 0.4) = 1, µA(x3, 0.6) = 0.7.

Let the secondary membership grades of elements of u3 is given by

µA(x3, 0.6) = 0.4, µA(x3, 0.8) = 0.7, µA(x3, 1) = 1.

Then the type-2 fuzzy set Ã can be described by

(1/0 + 0.3/0.2)/x1 + (0.6/0.2 + 1/0.4 + 0.7/0.6)/x2 + (0.4/0.6 + 0.7/0.8 + 1/1)/x3.

Definition 2.4. Support of a T2FS: [41] The support of a T2FS Ã given by
equation 2.1 is denoted by Ju

x and it is defined as

(2.2) Ju
x = [u : u ∈ [0, 1], µÃ(x, u) > 0].

Example 2.5. Suppose a T2FS is given by Ã = (1/0 + 0.3/0.2)/x1 + (0.6/0.2 +
1/0.4 + 0.7/0.6)/x2 + (0.4/0.6 + 0.7/0.8 + 1/1)/x3. Then its support is Ju

x =
{u1, u2, u3}.

Definition 2.6. α̃-plane of T2FS: [42] Let Ã be a T2FS in the universal discourse
U . Then its α̃-plane is defined as

Ãα̃ = {((x, u), µÃ(x, u));µÃ(x, u) ≥ α̃, α̃ ∈ [0, 1]}.

Example 2.7. If we take α̃ = 0, then Ã0 = {((x1, 0), 1), ((x1, 0.2), 0.3), ((x2, 0.2), 0.6),
((x2, 0.4), 1), ((x3, 0.6), 0.7), ((x3, 0.6), 0.4), ((x3, 0.8), 0.7), ((x3, 1), 1)}.
If α̃ = 0.5, then Ã0.5 = {((x1, 0), 1), ((x2, 0.2), 0.6), ((x2, 0.4), 1), ((x3, 0.6), 0.7),
((x3, 0.8), 0.7), ((x3, 1), 1)}.
If α̃ = 1, then Ã1 = {((x1, 0), 1), ((x2, 0.4), 1), ((x3, 1), 1)}.

Definition 2.8. Footprint of uncertainty (FOU): [41] Let Ã be a T2FS in the
universal discourse U . Following is the set denoting the footprint of uncertainty

Ã0 = {((x, u), µÃ(x, u)) ≥ 0}.

Definition 2.9. Type-2 triangular fuzzy number (T2TFN): A Type-2 tri-

angular fuzzy number (T2TFN) Ã is denoted by Ã = (a1, a2, a3,m, b1, b2, b3) with
seven real numbers, where a1 ≤ a2 ≤ a3 ≤ m ≤ b1 ≤ b2 ≤ b3; m, ai, bi ∈ R for
i = 1, 2, 3. Here, (a1,m, b3), (a3,m, b1) and (a2,m, b2) are three triangular fuzzy
numbers (TFNs) and their membership functions are called upper, lower and pri-

mary membership function respectively. Let, Ã1 = (a1,m, b3), Ã2 = (a2,m, b2) and

Ã3 = (a3,m, b1), then the following membership profiles are provided:

(2.3) µA1
(x) =


x−a1

m−a1
; if a1 ≤ x ≤ m

b3−x
b3−m ; if m ≤ x ≤ b3

0; otherwise,
36
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(2.4) µA2(x) =


x−a2

m−a2
; if a2 ≤ x ≤ m

b3−x
b3−m ; if m ≤ x ≤ b2

0; otherwise,

(2.5) µA3
(x) =


x−a3

m−a3
; if a3 ≤ x ≤ m

b3−x
b3−m ; if m ≤ x ≤ b1

0; otherwise.

α-cuts of Ã1 is Ã1α = [Lα
A1

, Rα
A3

], α-cuts of Ã2 is Ã2α = [Lα
A2

, Rα
A2

] and α-cuts of

Ã3 is Ã3α = [Lα
A3

, Rα
A1

].

To put it another way, the type-2 triangular fuzzy number previously defined is
sometimes referred as the linear type-2 triangular fuzzy number (LT2TFN).

Definition 2.10. α̃-plane representation: α̃-plane representation of a T2TFN
Ã is [Aα̃, Aα̃], where α̃ ∈ [0, 1].

The components of a T2TFN Ã in α̃-plane depiction is further given by the
succeeding definition.

Definition 2.11. α-cut representation of α̃-plane: α-cut representation of Aα̃

is [Lα
Aα̃

, Rα
Aα̃

] and α-cut representation of Aα̃ is [L
α

Aα̃
, R

α

Aα̃
], where

Lα
Aα̃

= Lα
A3

− α̃(Lα
A3

− Lα
A2

), Rα
Aα̃

= Rα
A1

+ α̃(Rα
A2

−Rα
A1

),

L
α

Aα̃
= Lα

A1
+ α̃(Lα

A2
− Lα

A1
) , R

α

Aα̃
= Rα

A3
− α̃(Rα

A3
−Rα

A2
),

Lα
A1

= a1 + α(m− a1) , L
α
A2

= a2 + α(m− a2), Lα
A3

= a3 + α(m− a3)

and

Rα
A1

= b1 − α(b1 −m), Rα
A2

= b2 − α(b2 −m), Rα
A3

= b3 − α(b3 −m).

Example 2.12. Let a linear type-2 triangular fuzzy number with its seven entries
is given as Ã = ⟨50, 70, 80, 100, 120, 130.150⟩. Then, using the above two definitions,
its (α− α̃)-cuts are given by

(2.6)


Lα
Aα̃

= 100− 30(1− α) + 10(1− α)(1− α̃) = 80 + 20α− 10α̃+ 10αα̃,

Rα
Aα̃

= 100 + 30(1− α)− 10(1− α)(1− α̃) = 120− 20α+ 10α̃− 10αα̃,

L
α

Aα̃
= 100− 30(1− α)− 20(1− α)(1− α̃) = 50 + 50α+ 20α̃− 20αα̃,

R
α

Aα̃
= 100 + 30(1− α) + 20(1− α)(1− α̃) = 150− 50α− 20α̃+ 20αα̃.

Remark 2.1. In the above example, it is perceived that a T2FN can be easily
represent in its parametric form where α and α̃ ∈ [0, 1] are the parameters. The
pictorial representation of (α − α̃)-cut of the T2FN taken in Example 2.12 is given
in figure 1.
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Figure 1. (α− α̃)-cut of the T2FN taken in Example 2.12

3. Nonlinear type-2 triangular fuzzy number (NT2TFN) and its
arithmetic operations

In this section, we propose some definitions and operations of nonlinear type-2
triangular fuzzy numbers (NT2TFN) with numerical examples. At first the defini-
tion of Type-2 fuzzy number (T2FN) is extended to its non-linear counterpart in
the following definition.Our literature review found that most research had ignored
the non-linearity in the case of type-2 fuzzy numbers and instead concentrated on
linear type-2 fuzzy numbers. When the membership function contains any geometric
concavity or convexity, we usually need non-linear type-2 membership functions. To
identify and control the underlying uncertainties, we must consider non-linear type-2
fuzzy numbers in various circumstances. In this study, a generalized NT2TFN has
been introduced to offer more flexibility on the chosen option.

Definition 3.1. Characterization of membership functions of NT2TFN: A
NT2TFN is characterized by three membership functions (MFs):

(1) upper membership function (UMF),
(2) lower membership function (LMF),
(3) primary membership function (PMF).

Let Ã be a NT2TFN and denoted by Ã = (a1, a2, a3,m, b1, b2, b3; p, q), where
a1 ≤ a2 ≤ a3 ≤ m ≤ b1 ≤ b2 ≤ b3; m, ai, bi ∈ R for i = 1, 2, 3 and p and q (∈ R) are
the left degree of non-linearity (LDNL) and right degree of non-linearity (RDNL)
respectively.
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Here (a1,m, b3; p, q), (a3,m, b1; p, q) and (a2,m, b2; p, q) are three Nonlinear Trian-
gular Fuzzy Numbers (NTFNs) and their MFs are called UMF, LMF and PMF re-

spectively. Let Ã1 = (a1,m, b3; p, q), Ã2 = (a2,m, b2; p, q) and Ã3 = (a3,m, b1; p, q).
Then their MFs are given as follows:

(3.1) µA1(x) =


(

x−a1

m−a1

)p
; if a1 ≤ x ≤ m(

b3−x
b3−m

)q
; if m ≤ x ≤ b3

0; otherwise,

(3.2) µA2(x) =


(

x−a2

m−a2

)p
; if a2 ≤ x ≤ m(

b3−x
b3−m

)q
; if m ≤ x ≤ b2

0; otherwise,

(3.3) µA3(x) =


(

x−a3

m−a3

)p
; if a3 ≤ x ≤ m(

b3−x
b3−m

)q
; if m ≤ x ≤ b1

0; otherwise.

Thus α− cuts of Ã1 is Ã1α = [Lα
A1

, Rα
A3

], α− cuts of Ã2 is Ã2α = [Lα
A2

, Rα
A2

] and α−
cuts of Ã3 is Ã3α = [Lα

A3
, Rα

A1
], where Lα

A1
= a1+α

1
q (m−a1), L

α
A2

= a2+α
1
q (m−a2),

Lα
A3

= a3 + α
1
q (m− a3)

and Rα
A1

= b1 − α
1
q (b1 −m), Rα

A2
= b2 − α

1
q (b2 −m), Rα

A3
= b3 − α

1
q (b3 −m).

Note 3.1. α-cut and α-plane representations of the discussed type of non-linear
type-2 fuzzy number are little bit different. This can be written in the following
way.

Definition 3.2. α-cut representation of α̃-planes: Let Ã =
(a1, a2, a3,m, b1, b2, b3; p, q), p, q ∈ R represent a NT2TFN, where p is the left degree
of non-linearity (LDNL) and q is the right degree of non-linearity (RDNL). Then
the

(i) α-cut representation of Aα̃ is [Lα
Aα̃

, Rα
Aα̃

], where

Lα
Aα̃

= Lα
A3

− α̃
1
p (Lα

A3
−Lα

A2
) = a3 +α

1
q (m− a3)− α̃

1
p (a3 − a2)(1−α

1
q ) and

Rα
Aα̃

= Rα
A1

+ α̃
1
p (Rα

A2
−Rα

A1
) = b1 − α

1
q (b1 −m) + α̃

1
p (b2 − b1)(1− α

1
q ).

(ii) α-cut representation of Aα̃ is [L
α

Aα̃
, R

α

Aα̃
], where

L
α

Aα̃
= Lα

A1
+ α̃

1
p (Lα

A2
−Lα

A1
) = a1 +α

1
q (m− a1)+ α̃

1
p (a2 − a1)(1−α

1
q ) and

R
α

Aα̃
= Rα

A3
− α̃

1
p (Rα

A3
−Rα

A2
) = b3 − α̃

1
p (b3 −m)− α̃

1
p (b3 − b2)(1− α

1
q ).

Definition 3.3. Membership function of a generalised triangular type -2
fuzzy number: The generalised membership function of triangular type -2 fuzzy
number defined as

(3.4) µA(u, x) =


(

u(x)−u(x)
Apex−u(x)

)p

; if u(x) ≤ u(x) ≤ Apex(
u(x)−u(x)
u(x)−Apex

)q

; if Apex ≤ u(x) ≤ u(x)

0; otherwise,
39
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where Apex = u(x) + ω(x)(u(x) − u(x)), ω(x) ∈ [0, 1], u(x) = Lower bound of the
triangular type -2 fuzzy number, u(x) = Upper bound of the triangular type -2 fuzzy
number (in this study, Apex = m which is the middle term of the triangular type -2
fuzzy number).

Definition 3.4. Equality of two NT2TFN: Let Ã = (a1, a2, a3,m, b1, b2, b3; p1, p2)

and B̃ = (c1, c2, c3, n, d1, d2, d3; q1, q2) are two NT2TFNs. Then Ã = B̃ if and only
if ai = ci, bi = di for all i = 1, 2, 3, m = n and pj = qj for j = 1, 2.

Definition 3.5. Non negative and non positive NT2TFN: A NT2TFN Ã =
(a1, a2, a3,m, b1, b2, b3; p, q) is said to be non-negative when a1 ≥ 0. On contrary, it
is said to be non-positive when b3 ≤ 0.

Definition 3.6. Addition of NT2TFNs: Addition of two nonlinear type-2 trian-
gular fuzzy number Ã and B̃ is Ã⊕B̃ = C̃ given in term of the secondary membership
function µC̃(z, u) = sup{min{µÃ(x, u), µB̃(y, u)} : x+ y = z}
and if Ã = (a1, a2, a3,m, b1, b2, b3; p1, p2) and B̃ = (c1, c2, c3, n, d1, d2, d3; q1, q2)

NT2TFNs, then C̃ is defined as C̃ = Ã⊕ B̃ = (a1 + c1, a2 + c2, a3 + c3,m+ n, b1 +
d1, b2+d2, b3+d3; p, q), where p = min{p1, q1}, q = min{p2, q2}, Cα̃α = Aα̃α +Bα̃α .
Thus ([

Lα
Cα̃

, Rα
Cα̃

]
;
[
L
α

Cα̃
, R

α

Cα̃

])
=

([
Lα
Aα̃

, Rα
Aα̃

]
;
[
L
α

Aα̃
, R

α

Aα̃

])
+

([
Lα
Bα̃

, Rα
Bα̃

]
;
[
L
α

Bα̃
, R

α

Bα̃

])
=

([
Lα
Aα̃

+ Lα
Bα̃

, Rα
Aα̃

+Rα
Bα̃

]
;
[
L
α

Aα̃
+ L

α

Bα̃
, R

α

Aα̃
+R

α

Bα̃

])
,

where α, α̃ ∈ [0, 1].

Definition 3.7. Scalar multiplication of NT2TFN: A NT2TFN Ã =
(a1, a2, a3,m, b1, b2, b3; p, q) is multiplied by a scalar k as follows

kÃ = (ka1, ka2, ka3, km, kb1, kb2, kb3; p, q), when k ≥ 0 and

kÃ = (kb3, kb2, kb1, km, ka3, ka2, ka1; p, q), when k < 0.

Definition 3.8. Subtraction of NT2TFNs: Subtraction of two NT2TFNs Ã and
B̃ is defined as Ã⊖ B̃ = C̃ where the secondary membership function is defined as
µC̃(z, u) = sup{min{µÃ(x, u), µB̃(y, u)} : x− y = z}
and if Ã = (a1, a2, a3,m, b1, b2, b3; p1, p2) and B̃ = (c1, c2, c3, n, d1, d2, d3; q1, q2) is

defined as C̃ = Ã⊖ B̃ = (a1−d3, a2−d2, a3−d1,m−n, b1− c3, b2− c2, b3− c1; p, q),
where p = min{p1, q1}, q = min{p2, q2} and Cα̃α = Aα̃α +Bα̃α . Then(

[Lα
Cα̃

, Rα
Cα̃

]; [L
α

Cα̃
, R

α

Cα̃
]
)

=
(
[Lα

Aα̃
, Rα

Aα̃
]; [L

α

Aα̃
, R

α

Aα̃
]
)
−

(
[Lα

Bα̃
, Rα

Bα̃
]; [L

α

Bα̃
, R

α

Bα̃
]
)

=
(
[Lα

Aα̃
−Rα

Bα̃
, Rα

Aα̃
− Lα

Bα̃
]; [L

α

Aα̃
−R

α

Bα̃
, R

α

Aα̃
− L

α

Bα̃
]
)
,

where α, α̃ ∈ [0, 1].

Definition 3.9. Multiplication of NT2TFNs: Multiplication of two NT2TFNs
Ã and B̃ is Ã⊙ B̃ = C̃ described by the secondary membership function µC̃(z, u) =
sup{min{µÃ(x, u), µB̃(y, u)} : x× y = z}
and if Ã = (a1, a2, a3,m, b1, b2, b3; p1, p2) and B̃ = (c1, c2, c3, n, d1, d2, d3; q1, q2),

40



Tudu et al./Ann. Fuzzy Math. Inform. 25 (2023), No. 1, 33–53

then C̃ = Ã⊙B̃ = (a1c1, a2c2, a3c3,mn, b1d1, b2d2, b3d3; p, q), where p = min{p1, q1},
q = min{p2, q2} and Cα̃α = Aα̃α ·Bα̃α . Thus([

Lα
Cα̃

, Rα
Cα̃

]
;
[
L
α

Cα̃
, R

α

Cα̃

])
=

([
Lα
Aα̃

, Rα
Aα̃

]
;
[
L
α

Aα̃
, R

α

Aα̃

])
·
([

Lα
Bα̃

, Rα
Bα̃

]
;
[
L
α

Bα̃
, R

α

Bα̃

])
=

([
Lα
Aα̃

· Lα
Bα̃

, Rα
Aα̃

·Rα
Bα̃

]
;
[
L
α

Aα̃
· Lα

Bα̃
, R

α

Aα̃
·Rα

Bα̃

])
,

where α, α̃ ∈ [0, 1].

Definition 3.10. Division of NT2TFNs: Division of two NT2TFNs Ã and
B̃ is Ã ⊘ B̃ = C̃ manifested by the secondary membership function µC̃(z, u) =
sup{min{µÃ(x, u), µB̃(y, u)} : x = y × z}
and if Ã = (a1, a2, a3,m, b1, b2, b3; p1, p2) and B̃ = (c1, c2, c3, n, d1, d2, d3; q1, q2),

then C̃ = Ã ⊘ B̃ = (a1

d3
, a2

d2
, a3

d1
, m
n , b1

c3
, b2
c2
, b3
c1
; p, q) where p = min{p1, q1}, q =

min{p2, q2} and Cα̃α =
Aα

α̃

Bα
α̃
. Thus([

Lα
Cα̃

, Rα
Cα̃

]
;
[
L
α

Cα̃
, R

α

Cα̃

])
=

([
Lα

Aα̃
,Rα

Aα̃

]
;
[
L

α
Aα̃

,R
α
Aα̃

])
([

Lα
Bα̃

,Rα
Bα̃

]
;
[
L

α
Bα̃

,R
α
Bα̃

])
=

([
Lα

Aα̃

Rα
Bα̃

,
Rα

Aα̃

Lα
Bα̃

]
;

[
L

α
Aα̃

R
α
Bα̃

,
R

α
Aα̃

L
α
Bα̃

])
,

where α, α̃ ∈ [0, 1].

Example 3.11. Let a NT2TFN is taken as Ã = ⟨50, 70, 80, 100, 120, 130.150; 0.25, 0.5⟩.
Then, using the definition 3.2, its (α− α̃)-cuts are given by

Lα
Aα̃

= 100−30(1−α2)+10(1−α2)(1−α4), Rα
Aα̃

= 100+30(1−α2)−10(1−α2)(1−α4),

L
α

Aα̃
= 100−30(1−α2)−20(1−α2)(1−α4), R

α

Aα̃
= 100+30(1−α2)+20(1−α2)(1−α4).

(a) (b)

Figure 2. (a) and (b) represents the (α − α̃)-cut of nonlinear tri-
angular type-2 fuzzy number taken in the example 3.11
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Example 3.12. Let a NT2TFN is taken as Ã = ⟨50, 70, 80, 100, 120, 130, 150; 4, 2⟩.
Then, using the definition 3.2, its (α− α̃)-cuts are given by

Lα
Aα̃

= 100− 30(1− α0.5) + 10(1− α0.5)(1− α0.25),

Rα
Aα̃

= 100 + 30(1− α0.5)− 10(1− α0.5)(1− α0.25),

L
α

Aα̃
= 100− 30(1− α0.5)− 20(1− α0.5)(1− α0.25),

R
α

Aα̃
= 100 + 30(1− α0.5) + 20(1− α0.5)(1− α0.25).

(a) (b)

Figure 3. (a) and (b) represents the (α − α̃)-cut of nonlinear tri-
angular type-2 fuzzy number taken in example 3.12

Example 3.13. Let, a NT2TFN is taken as Ã = ⟨50, 70, 80, 100, 120, 130, 150; 4, 0.5⟩.
Then, using the definition 3.2, its (α− α̃)-cuts are given by

Lα
Aα̃

= 100− 30(1− α2) + 10(1− α2)(1− α0.25),

Rα
Aα̃

= 100 + 30(1− α2)− 10(1− α2)(1− α0.25),

L
α

Aα̃
= 100− 30(1− α2)− 20(1− α2)(1− α0.25),

R
α

Aα̃
= 100 + 30(1− α2) + 20(1− α2)(1− α0.25).

Example 3.14. Let, a NT2TFN is taken as Ã = ⟨50, 70, 80, 100, 120, 130, 150; 0.5, 4⟩.
Then, using the definition 3.2, its (α− α̃)-cuts are given by

Lα
Aα̃

= 100− 30(1− α0.25) + 10(1− α0.25)(1− α2),

Rα
Aα̃

= 100 + 30(1− α0.25)− 10(1− α0.25)(1− α2),

L
α

Aα̃
= 100− 30(1− α0.25)− 20(1− α0.25)(1− α2),

R
α

Aα̃
= 100 + 30(1− α0.25) + 20(1− α0.25)(1− α2).
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(a) (b)

Figure 4. (a) and (b) represents the (α − α̃)-cut of nonlinear tri-
angular type-2 fuzzy number taken in example 3.13

(a) (b)

Figure 5. (a) and (b) represents the (α − α̃)-cut of non-linear
triangular type-2 fuzzy number taken in example 3.14

Remarks: In figure 2(a) and 2(b) we draw the pictorial representation of Type-
2 nonlinear fuzzy number whereas in figure 3(a) and 3(b) we draw the pictorial
representation of generalized Type-2 non linear fuzzy number. Similarly In figure
4(a) and 4(b) we draw the pictorial view of Type-2 nonlinear fuzzy number whereas
in figure 5(a) and 5(b) we draw the pictorial insight of generalized Type-2 non linear
fuzzy number.

4. Type-2 fuzzy differential inclusion

Differential inclusion theory was created to address specific types of uncertainty
not covered by traditional dynamical systems. These uncertainties result from var-
ious factors, such as incomplete information brought on by the difficulties of fully
comprehending a phenomenon or ignorance of the principles governing system con-
trol. Control can be exerted by steering, acceleration, fuel, temperature, weight, or
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other system-affecting factors.

A set of differential equations is used in the mathematical model

(4.1)

{
dx
dt = f(x(t), u(t))

u(t) ∈ U(x(t))
.

In the above equation, x ∈ Rn,u ∈ Rm and U are called state variable, control
and subset of admissible control respectively. As an extension, a fuzzy differential
inclusion can be given by

(4.2)

{
dx
dt ∈ f(t, x(t))

x(0) ∈ X0

in which X0 is a set of fuzzy numbers and x is a fuzzy state variables. Further in
level cut representation, above fuzzy differential inclusion takes the form

(4.3)

{
dx
dt ∈ [f(t, x(t))]α

x(0) ∈ [X0]α

in which [f(t, x(t))]α and [X0]α represents the level sets for the fuzzy valued func-
tion f(t, x(t)) and fuzzy number X0 respectively. The existence of the solution is
provided by the following theorem.

Theorem 4.1[39] Let, X0 be a fuzzy number defined on Rn, ω be an open set on
R×Rn containing 0× [X0]α and f is a fuzzy valued function defined on ω×F (Rn).
Furthermore, let x ∈ [X0]α preserves the bounded criteria. Then, all the solution of
the system given by Equation 4.6 are compact subsets in ZT (R

n), for each aspiration
level. Moreover, these solutions are level cuts of fuzzy subsets in ZT (R

n), which is
a solution of the system given by Equation 4.2.

In this present section, we are going to extend the idea of fuzzy differential in-
clusion in type-2 fuzzy domain. For solving type-2 fuzzy differential equation by
differential inclusion approach we follow the following steps:

(1) First replace the DE with a family of DEs,
(2) Take the (α− α̃)− cut of the fuzzy numbers and the fuzzy functions,
(3) Solve the family of differential equations by any well known method,
(4) The solutions are obtained as (α− α̃)− cut.

4.1. Type-2 fuzzy differential inclusion for Type-2 fuzzy initial value prob-
lem: Let us consider initial valued first order non homogeneous constant coefficient
linear differential equation as

(4.4)

{
dx
dt = px+ q

x(0) = x̃0.

In equation 4.4, x(t) is the state variable which is a smooth function of t, x̃(0) = x̃0 is
a non-linear type-2 fuzzy number and p, q ∈ R are the coefficients of the differential
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equation.

The research has demonstrated that H-derivative and Seikkala derivative deriva-
tives have several severe limitations, the most important of which is that the diameter
of the fuzzy function under study must be non-decreasing. Due to this constraint,
the determined solution of an FDE frequently deviates from what could be inferred
intuitively from the characteristics of the system or phenomena that the FDE is
modelling. The solutions to FDE employing the H-derivative can occasionally be
unbounded as t → ∞. In this way, it differs significantly from the crisp solution
and does not accurately reflect the complex behavior of uncertain systems. In con-
text, fuzzy differential inclusions provide fruitful purposes. As this current article is
employing to demonstrate the properties of nonlinear type-2 fuzzy numbers, here,
in this pocket, we develop type-2 fuzzy differential inclusion technique which would
bring a novel sense to solve type-2 fuzzy differential equation with initial information
availed.

Let x0
α
α̃ =

([
Lα
x0α̃

, Rα
x0α̃

]
;
[
L
α

x0α̃
, R

α

x0α̃

])
is the (α − α̃)-cut of x̃0 on NT2TFN.

Then the differential equation (4.4) of x(t) on NT2TFN is the family of inclusion

(4.5)

{
x′(t) ∈ x(t)p+ q

x(0) ∈ x0
α
α̃.

Let ζα(t) represents the column vector


Lα

xα̃
(t)

Rα
xα̃

(t)

L
α
xα̃

(t)

R
α
xα̃

(t)

.

We consider two scenarios for signs of the coefficient p in discussion.

Case I: when p > 0. Then, the ordinary value problem is obtained

(4.6)



ζ′α(t) =


p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 ζα(t) +


q

q

q

q



ζα(0) =


Lα

x0α̃

Rα
x0α̃

L
α
x0α̃

R
α
x0α̃

 .

It can be easily verified that equation (4.6) has the solution

(4.7)



Lα
xα̃

(t) = ept
{
a3 +

α
1
q

ω
(m− a3)− α̃

1
p

ω
(a3 − a2)(1− α

1
q

ω
) + q

p
− qe−pt

p

}
Rα

xα̃
(t) = ept

{
b1 − α

1
q

ω
(b1 −m) + α̃

1
p

ω
(b2 − b1)(1− α

1
q

ω
) + q

p
− qe−pt

p

}
L

α
xα̃

(t) = ept
{
a1 +

α
1
q

ω
(m− a1)− α̃

1
p

ω
(a2 − a1)(1− α

1
q

ω
) + q

p
− qe−pt

p

}
R

α
xα̃

(t) = ept
{
b3 − α

1
q

ω
(b3 −m) + α̃

1
p

ω
(b3 − b2)(1− α

1
q

ω
) + q

p
− qe−pt

p

}
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Hence the solution to equation (4.4) is xα
α̃ =([

ept
{
a3 +

α
1
q

ω
(m− a3)− α̃

1
p

ω
(a3 − a2)(1− α

1
q

ω
) + q

p
− qe−pt

p

}
,

ept
{
b1 − α

1
q

ω
(b1 −m) + α̃

1
p

ω
(b2 − b1)(1− α

1
q

ω
) + q

p
− qe−pt

p

}]
;[

ept
{
a1 +

α
1
q

ω
(m− a1)− α̃

1
p

ω
(a2 − a1)(1− α

1
q

ω
) + q

p
− qe−pt

p

}
,

ept
{
b3 − α

1
q

ω
(b3 −m) + α̃

1
p

ω
(b3 − b2)(1− α

1
q

ω
) + q

p
− qe−pt

p

}])
.

Case II: when p < 0. Then, we obtain the ordinary value problems

(4.8)



ζ′α(t) =


0 p 0 0

p 0 0 0

0 0 0 p

0 0 p 0

 ζα(t) +


q

q

q

q



ζα(0) =


Lα

x0α̃

Rα
x0α̃

L
α
x0α̃

R
α
x0α̃

 .

If we put A = ept
(
a3 +

α
1
q

ω
(m− a3)− α̃

1
p

ω
(a3 − a2)(1− α

1
q

ω
)

)
, then

B = ept
(
b1 − α

1
q

ω
(b1 −m) + α̃

1
p

ω
(b2 − b1)(1− α

1
q

ω
)

)
,

C = ept
(
a1 +

α
1
q

ω
(m− a1)− α̃

1
p

ω
(a2 − a1)(1− α

1
q

ω
)

)
and

D = ept
(
b3 − α

1
q

ω
(b3 −m) + α̃

1
p

ω
(b3 − b2)(1− α

1
q

ω
)

)
.

It can be easily verified that equation (4.8) has the solution

(4.9)



Lα
xα̃

(t) = e−pt

{
A
2
− B

2
+ e2pt

(
A
2
+ B

2
+ q

p
− qe−pt

p

)}
Rα

xα̃
(t) = e−pt

{
B
2
− A

2
+ e2pt

(
A
2
+ B

2
+ q

p
− qe−pt

p

)}
L

α
xα̃

(t) = e−pt

{
C
2
− D

2
+ e2pt

(
C
2
+ D

2
+ q

p
− qe−pt

p

)}
R

α
xα̃

(t) = e−pt

{
D
2
− C

2
+ e2pt

(
C
2
+ D

2
+ q

p
− qe−pt

p

)}
Hence the solution to equation (4.4) is xα

α̃(t) =([
e−pt

{
A
2
− B

2
+ e2pt

(
A
2
+ B

2
+ q

p
− qe−pt

p

)}
,

e−pt

{
B
2
− A

2
+ e2pt

(
A
2
+ B

2
+ q

p
− qe−pt

p

)}]
;[

e−pt

{
C
2
− D

2
+ e2pt

(
C
2
+ D

2
+ q

p
− qe−pt

p

)}
,

e−pt

{
D
2
− C

2
+ e2pt

(
C
2
+ D

2
+ q

p
− qe−pt

p

)}])
.

Example 4.1. For better understanding of the method discussed in the section 4.1,
we here give an example of initial value problem with the initial condition as non
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linear type-2 fuzzy number.

(4.10)

{
y′(t) = −5y(t)

y(0) = (1, 1.5, 2, 3, 4, 4.5, 5; 0.2, 0.5).

In equation 4.10, the coefficient is negative. Actually, the problem on example
(4.1) is the family of inclusion of the following differential equations

(4.11)



ζ′α(t) =


0 −5 0 0

−5 0 0 0

0 0 0 −5

0 0 −5 0

 ζα(t)

ζα(0) =


Lα

x0α̃

Rα
x0α̃

L
α
x0α̃

R
α
x0α̃

 .

Now, solving the differential inclusion on equation (4.11) we obtained the solution
of the initial value problem on example (4.1) in terms of (α, α̃)-cut as follows

yα
α̃(t) =

([
A+B

2
e−5t+A−B

2
e5t, A+B

2
e−5t−A−B

2
e5t

]
;
[
C+D

2
e−5t+C−D

2
e5t, C+D

2
e−5t−C−D

2
e5t

])
,

where A = 2+α4−0.5α̃2(1−α4), B = 4−α4+0.5α̃2(1−α4), C = 1+2α4−0.5α̃2(1−α4),

and D = 5− 2α4 + 0.5α̃2(1− α4).

(a) (b)

Figure 6. (a) and (b) represents the (α− α̃)− cut of the solution
of the example (4.1) via type-2 fuzzy differential inclusions.

4.2. Type-2 fuzzy differential inclusion for solving type-2 fuzzy boundary
Value Problem: We take a boundary value problem having coefficients to be crisp
constants as follows
(4.12){

y′′(t) + Py′(t) +Qy(t) = R(t)

y′(a) = Ã = (a1, a2, a3,m, b1, b2, b3; p, q), y(b) = B̃ = (c1, c2, c3, n, d1, d2, d3; p, q).
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Here, y(t) is NT2TFN and the state variable which is differential function of t
up to second order at least, P,Q ∈ R are the coefficients of the differential equation

and R(t) is a continuous function of t. Let Aα
α̃ =

([
Lα
Aα̃

, Rα
Aα̃

]
;
[
L
α

Aα̃
, R

α

Aα̃

])
and

Bα
α̃ =

([
Lα
Bα̃

, Rα
Bα̃

]
;
[
L
α

Bα̃
, R

α

Bα̃

])
are the (α− α̃)-cuts of Ã and B̃.

Case I: When P < 0, Q < 0, the differential equation (4.9) is the family of inclusion

(4.13)


ζα(t) ∈



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Q 0 0 0 P 0 0 0

0 Q 0 0 0 P 0 0

0 0 Q 0 0 0 P 0

0 0 0 Q 0 0 0 P


ζα(t) +



R(t)

R(t)

R(t)

R(t)

R(t)

R(t)

R(t)

R(t)


x(a) ∈ xα

α̃(a), y(b) ∈ yα
α̃(b).

Case II: If P > 0, Q > 0, then the differential equation (4.9) is the family of inclusion

(4.14)


ζα(t) ∈



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 Q 0 0 0 P 0 0

Q 0 0 0 P 0 0 0

0 0 0 Q 0 0 0 P

0 0 Q 0 0 0 P 0


ζα(t) +



R(t)

R(t)

R(t)

R(t)

R(t)

R(t)

R(t)

R(t)


x(a) ∈ xα

α̃(a), y(b) ∈ yα
α̃(b),

where ζα(t) represents the vector



Lα
xα̃

(t)

Rα
xα̃

(t)

L
α
xα̃

(t)

R
α
xα̃

(t)

Lα
y
α̃
(t)

Rα
y
α̃
(t)

L
α
yα̃

(t)

R
α
yα̃

(t)


.

Thus the solution of the boundary value problem on equation (4.12) is obtained as

xα
α̃(t) =

([
Lα

xα̃
(t), Rα

xα̃
(t)

]
;
[
L

α
xα̃

(t), R
α
xα̃

(t)
])

, yα
α̃(t) =

([
Lα

y
α̃
(t), Rα

y
α̃
(t)

]
;
[
L

α
yα̃

(t), R
α
yα̃

(t)
])

.

Example 4.2. We take a second ordered differential equation with boundary value
as

(4.15)

{
y′′(t) + 9y(t) = cos(t)

y(π
2
) = (0.5, 1, 1.5, 2, 3, 4, 5; 4, 2), y′(0) = (1, 3, 4, 5, 6, 7, 9; 0.25, 0.5).
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The non linear type-2 fuzzy boundary value problem on example (4.2) is the
family of inclusion of the following differential equations

(4.16)


ζα
α̃ (t) ∈



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 −9 0 0 0 0 0 0

−9 0 0 0 0 0 0 0

0 0 0 −9 0 0 0 0

0 0 −9 0 0 0 0 0


ζα(t) +



0

0

0

0

cos(t)

cos(t)

cos(t)

cos(t)


x(a) ∈ xα

α̃(a), y(b) ∈ yα
α̃(b).

(a) (b)

(c) (d)

Figure 7. (a), (b), (c) and (d) represents the (α − α̃)-cut of the
solution of example (4.2) via type-2 fuzzy differential inclusions.

Now, solving the differential inclusion (4.16) we obtained the solution problem
given in example (4.2) in terms of (α, α̃)− cut as follows yαα̃(t) =([

cost
8

− cos3t
8

+(A
2
+ B

2
)cos3t+(A

4
− B

4
+ E

12
− F

12
)e3t+(A

4
− B

4
− E

12
+ F

12
)e−3t+(E

6
+ F

6
)sin3t,

cost
8

− cos3t
8

+(A
2
+ B

2
)cos3t−(A

4
− B

4
+ E

12
− F

12
)e3t−(A

4
− B

4
− E

12
+ F

12
)e−3t+(E

6
+ F

6
)sin3t

]
;[

cost
8

− cos3t
8

+(C
2
+ D

2
)cos3t+(C

4
− D

4
+ G

12
− H

12
)e3t+(C

4
− D

4
− G

12
+ H

12
)e−3t+(G

6
+ H

6
)sin3t,
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cost
8

− cos3t
8

+(C
2
+ D

2
)cos3t−(C

4
− D

4
+ G

12
− H

12
)e3t−(C

4
− D

4
− G

12
+ H

12
)e−3t+(G

6
+ H

6
)sin3t

])
,([

3sin3t
8

− sint
8

+(E
2
+F

2
)cos3+( 3A

4
− 3B

4
+E

4
−F

4
)e3t+( 3B

4
− 3A

4
+E

4
−F

4
)e−3t−( 3A

2
+ 3B

2
)sin3t,

3sin3t
8

− sint
8

+(E
2
+F

2
)cos3t−( 3A

4
− 3B

4
+E

4
−F

4
)e3t−( 3B

4
− 3A

4
+E

4
−F

4
)e−3t−( 3A

2
+ 3B

2
)sin3t

]
;[

3sin3t
8

− sint
8

+(G
2
+H

2
)cos3t+( 3C

4
− 3D

4
+G

4
−H

4
)e3t+( 3D

4
− 3C

4
+G

4
−H

4
)e−3t−( 3C

2
+ 3D

2
)sin3t,

3sin3t
8

− sint
8

+ (G
2
+ H

2
)cos3t− ( 3C

4
− 3D

4
+ G

4
− H

4
)e3t + ( 3D

4
− 3C

4
+ G

4
− H

4
)e−3t − ( 3C

2
+

3D
2
)sin3t

])
,

where A = 4 + α2 − α̃4(1− α2), B = 6− α2 + α̃4(1− α2), C = 1 + 4α2 − 2α̃4(1− α2),

D = 9−4α2+2α̃4(1−α2), E = 1.5+0.5α0.5+0.5α̃0.25(1−α0.5), F = 3−α0.5+α̃0.25(1−α0.5),

G = 0.5 + 1.5α0.5 − 0.5α̃0.25(1− α0.5) and H = 5− 3α0.5 + α̃0.25(1− α0.5).

5. Conclusion

We have solved the type 2 fuzzy differential equation. The distinct arithmetic
features of the nonlinear type-2 triangular fuzzy numbers (NT2TFNs) are demon-
strated. The type-2 fuzzy initial and boundary value problem have been chosen and
are solved using type-2 fuzzy differential inclusion techniques. Numerical examples
has been shown along with the solution graphs. The uncertainty that fuzzy sets
carry is generalized by type-2 fuzzy sets. Again, the fuzzy differential inclusions
take a more comprehensive approach to the fuzzy differential equation. The current
work makes a substantial contribution by combining two well-known notions.

In future, the type-2 fuzzy differential inclusion methods may be used for solving
intuitionistic type 2 fuzzy differential equation. Case-study based works on suit-
able applications of the type-2 fuzzy differential inclusion techniques may contribute
significant investigations in this direction.
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