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Abstract. In this paper, we study embedding maps by using distance
functions based on complete co-residuated lattices. We construct two em-
bedding maps from the distance space to the two Alexandrov topologies
induced by the distance space. We study the various maps induced by two
maps and give their examples. Moreover, as the topological representation,
we investigate the embedding map. We give an example for an informa-
tion.
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1. Introduction

Ward and Dilworth [1][1] introduced a complete residuated lattice which is
an important mathematical tool as algebraic structures for many valued logics (See
[2, 3, 4, 5, 6]. Bělohlávek [2, 3] investigated information systems and decision rules on
complete residuated lattices. Höhle and Rodabaugh [5] introduced L-fuzzy topolo-
gies with algebraic structure L (cqm, quantales, MV -algebra). Zheng and Wang [7]
introduced a complete co-residuated lattice as a generalization of t-conorm. Jun-
sheng and Qing [8] investigated a (⊙,&)-generalized fuzzy rough set on (L,⊙,&)
where (L,&) is a complete residuated lattice and (L,⊙) is a complete co-residuated
lattice. Kim and Ko [9] introduced the concepts of fuzzy join and meet complete
lattices by using distance spaces instead of fuzzy partially ordered spaces on com-
plete co-residuated lattices. Moreover, Oh and Kim [10, 11, 12, 13, 14, 15] obtained
some properties of Alexandrov fuzzy topologies, distance functions, various fuzzy
connection and fuzzy concept lattices by using distance functions instead of fuzzy
partially orders on complete co-residuated lattices.
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If f : (X,SX) → (Y, SY ) is an embedding map, then f is an injective map
and is a structure-preserving map. The precise meaning of structure-preserving
depends on the kind of mathematical structures SX and SY . In this paper, we
study embedding maps by using distance functions based on complete co-residuated
lattices. In Theorem 3.3, for a distance space (X, dX), we construct two embedding
maps f : (X, dX) → (τdX

, dτdX ) and g : (X, d−1X ) → (τd−1
X
, dτ

d
−1
X

) by f(x) = (dX)x

and g(x) = (dX)x where (dX)x(y) = dX(x, y) and (dX)x(y) = dX(y, x) for all
x, y ∈ X. In Theorems 3.4 and 3.5, we study the various maps induced by two maps.
In Theorem 3.6, as the topological representation, we investigate the embedding
map h : (X, dX) → (τd−1

τ
d
−1
X

, dτ
d
−1
τ
d
−1
X

). In Example 3.8, we give an example for an

information.

2. Preliminaries

Definition 2.1 ([7, 8, 9, 10]). An algebra (L,∧,∨,⊕,⊥,⊤) is called a complete
co-residuated lattice, if it satisfies the following conditions:

(C1) L = (L,∨,∧,⊥,⊤) is a complete lattice where ⊥ is the bottom element and
⊤ is the top element,

(C2) a = a⊕⊥, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L,
(C3) (

∧
i∈Γ ai)⊕ b =

∧
i∈Γ(ai ⊕ b).

Let (L,≤,⊕) be a complete co-residuated lattice. For all x, y ∈ L, define

x⊖ y =
∧

{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z if and only if x ≥ (z ⊖ y).

For α ∈ L and A ∈ LX , we define (α ⊖ A), (α ⊕ A) and αX ∈ LX by: for each
x ∈ L,

(α⊖A)(x) = α⊖A(x), (α⊕A)(x) = α⊕A(x) and αX(x) = α respectively.

Let n(x) = ⊤ ⊖ x. The condition n(n(x)) = x for all x ∈ L is called a double
negative law.

Lemma 2.2 ([7, 8, 9, 10]). Let (L,∧,∨,⊕,⊖,⊥,⊤) be a complete co-residuated
lattice. Then for all x, y, z, xi, yi ∈ L, the following properties hold.

(1) If y ≤ z, x⊕ y ≤ x⊕ z, y ⊖ x ≤ z ⊖ x and x⊖ z ≤ x⊖ y.
(2) (

∨
i∈Γ xi)⊖ y =

∨
i∈Γ(xi ⊖ y) and x⊖ (

∧
i∈Γ yi) =

∨
i∈Γ(x⊖ yi).

(3) (
∧

i∈Γ xi)⊖ y ≤
∧

i∈Γ(xi ⊖ y).
(4) x⊖ (

∨
i∈Γ yi) ≤

∧
i∈Γ(x⊖ yi).

(5) x⊖ x = ⊥, x⊖⊥ = x and ⊥⊖ x = ⊥. Moreover, x⊖ y = ⊥ iff x ≤ y.
(6) y ⊕ (x⊖ y) ≥ x, y ≥ x⊖ (x⊖ y) and (x⊖ y)⊕ (y ⊖ z) ≥ x⊖ z.
(7) x⊖ (y ⊕ z) = (x⊖ y)⊖ z = (x⊖ z)⊖ y.
(8) x⊖ y ≥ (x⊕ z)⊖ (y⊕ z), x⊖ y ≥ (x⊖ z)⊖ (y⊖ z), y⊖ x ≥ (z ⊖ x)⊖ (z ⊖ y)

and (x⊕ y)⊖ (z ⊕ w) ≤ (x⊖ z)⊕ (y ⊖ w).
(9) x⊕ y = ⊥ iff x = ⊥ and y = ⊥.
(10) (x⊕ y)⊖ z ≤ x⊕ (y ⊖ z) and (x⊖ y)⊕ z ≥ x⊖ (y ⊖ z).
(11) (

∨
i∈Γ xi)⊖ (

∨
i∈Γ yi) ≤

∨
i∈Γ(xi ⊖ yi).

(12) (
∧

i∈Γ xi)⊖ (
∧

i∈Γ yi) ≤
∨

i∈Γ(xi ⊖ yi).
302
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(13) If L satisfies a double negative law and n(x) = ⊤ ⊖ x, then n(x ⊕ y) =
n(x)⊖ y = n(y)⊖ x and x⊖ y = n(y)⊖ n(x).

Definition 2.3 ([9, 10]). A subset τ ⊂ LX is called an Alexandrov topology on X,
if it satisfies the following conditions:

(A1) if Ai ∈ τ for all i ∈ I, then
∨

i∈I Ai,
∧

i∈I Ai ∈ τ ,
(A2) if A ∈ τ and α ∈ L, then αX , A⊖ α,A⊕ α ∈ τ .
The pair (X, τ) is called an Alexandrov topological space on X.

Definition 2.4 ([9, 10]). Let (L,∧,∨,⊕,⊖,⊥,⊤) be a complete co-residuated lat-
tice. Let X be a set. A function dX : X ×X → L is called a distance function, if it
satisfies the following conditions: for any x, y, z ∈ X,

(M1) dX(x, x) = ⊥,
(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z),
(M3) If dX(x, y) = dX(y, x) = ⊥, then x = y.
The pair (X, dX) is called a distance space.

Theorem 2.5 ([9, 10]). Let (X, dX) be a distance space. Define

τdX
= {A ∈ LX | A(x)⊕ dX(x, y) ≥ A(y)},

τd−1
X

= {A ∈ LX | A(x)⊕ dX(y, x) ≥ A(y)}.

Then τdX
and τd−1

X
are Alexandrov topologies such that

τdX
= {

∧
x∈X

A(x)⊕dX(x,−) | A ∈ LX} and τd−1
X

= {
∧
x∈X

A(x)⊕dX(−, x) | A ∈ LX}.

Remark 2.6 ([9, 10]). (1) Let dX : X ×X → [0,∞] be a distance function. Then
(X, dX) is called a pseudo-quasi-metric space.

(2) Let (L,∧,∨,⊕,⊖,⊥,⊤) be a complete co-residuated lattice. Define a function

dL : L× L → L by dL(x, y) = x⊖ y.

Then by Lemma 2.3 (5) and (6), (L, dL) is a distance space.
Also for τX ⊂ LX , define a function

dτX : τX × τX → L by dτX (A,B) =
∨
x∈X

(A(x)⊖B(x)).

Then (τX , dτX ) is a distance space.

In this paper, we assume that (L,∧,∨,⊕,⊖,⊥,⊤) is a complete co-residuated
lattice.

3. Some properties of embedding maps in complete co-residuated
lattices

Definition 3.1. Let (X, dX) and (Y, dY ) be distance spaces. Then a map f : X → Y
is called embedding, if dX(x, y) = dX(f(x), f(y)) for all x, y ∈ X.

Remark 3.2. Let f : X → Y be an embedding map. For f(x) = f(y), we have
dX(f(x), f(y)) = ⊥ = dX(x, y). By (M3), x = y.
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Theorem 3.3. Let (X, dX) be a distance space. Define f : (X, dX) → (τdX
, dτdX )

and g : (X, d−1X ) → (τd−1
X
, dτ

d
−1
X

) by f(x) = (dX)x and g(x) = (dX)x where (dX)x(y) =

dX(x, y) and (dX)x(y) = dX(y, x) for all x, y ∈ X. Then the following properties
hold.

(1) Two maps f and g are well-defined and are embedding.
(2) A ∈ τdX

if and only if dτdX (A, f(−)) = A(−) =
∧

z∈X(A(z)⊕ f(z)(−)).

(3) B ∈ τd−1
X

if and only if dτ
d
−1
X

(B, g(−)) = B(−) =
∧

z∈X(B(z)⊕ g(z)(−)).

Proof. (1) Let x, y, z ∈ X. Since

f(x)(y)⊕ dX(y, z) = dX(x, y)⊕ dX(y, z) ≥ dX(x, z) = f(x)(z),
g(x)(y)⊕ d−1X (y, z) = dX(y, x)⊕ dX(z, y) ≥ dX(z, x) = g(x)(z),

we have f(x) ∈ τdX
and g ∈ τd−1

X
. Then f and g are well-defined.

Let x, y ∈ X. Since

dτdX (f(x), f(y)) =
∨

z∈X(f(x)(z)⊖ f(y)(z))

=
∨

z∈X(dX(x, z)⊖ dX(y, z)) = dX(x, y),
dτ

d
−1
X

(g(x), g(y)) =
∨

z∈X(g(x)(z)⊖ g(y)(z))

=
∨

z∈X(dX(z, x)⊖ dX(z, y)) = dX(y, x) = d−1X (x, y),

f and g are embedding.
(2) SupposeA ∈ τdX

. Then A(x)⊕dX(x, z) ≥ A(z) impliesA(x) ≥ A(z)⊖dX(x, z)
and

∨
z∈X(A(z)⊖ dX(x, z)) ≥ A(x)⊖ dX(x, x) = A(x). Thus

dτdX (A, f(x)) =
∨

z∈X(A(z)⊖ dX(x, z)) =
∨

z∈X(A(z)⊖ g(z)(x)) = A(x)

=
∧

z∈X(A(z)⊕ dX(z, x)) =
∧

z∈X(A(z)⊕ f(z)(x)).

Conversely, suppose A =
∧

z∈X(A(z) ⊕ f(z)(−)). Then by (1), f(z) ∈ τdX
and

(A(z)⊕ f(z)(−)) ∈ τdX
. Thus A ∈ τdX

.
(3) Suppose B ∈ τd−1

X
. Then

dτ
d
−1
X

(B, g(x)) =
∨

z∈X(B(z)⊖ f(z)(x)) = B(x)

=
∧

z∈X(B(z)⊕ dX(x, z)) =
∧

z∈X(B(z)⊕ g(z)(x)).

Conversely, suppose B =
∧

z∈X(B(z)⊕ g(z)(−)). Then by (1), we have

g(z) ∈ τd−1
X

and (B(z)⊕ g(z)(−)) ∈ τd−1
X
.

Thus B ∈ τd−1
X
. □

Theorem 3.4. Let (X, dX) be a distance space. Define f : (X, dX) → (τdX
, dτdX )

by f(x) = (dX)x. Then the following properties hold.
(1) Define fs⊘ : τdX

→ τdτdX
and f←⊕ : τdτdX

→ τdX
by

fs⊘(A)(B) =
∨

x∈X(A(x)⊖ dτdX (B, f(x))),

f←⊕ (α)(x) =
∧

z∈X(α(f(z))⊕ dX(z, x)).

Then fs⊘ and f←⊕ are well-defined and

fs⊘(A)(f(−)) = A, f←⊕ (fs⊘(A)) = A.
304
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(2) Define f⊕ : τdX
→ τdτdX

and fs←
⊘ : τdτdX

→ τdX
by

f⊕(A)(B) =
∧

x∈X(dτdX ((f(x), B)⊕A(x)),

fs←
⊘ (α)(−) =

∨
z∈X(α(f(z))⊖ dX(−, z)).

Then f⊕ and fs←
⊘ are well-defined and

f⊕(A)(f(−)) = A, fs←
⊘ (f⊕(A)) = A.

Moreover, if A ∈ τdX
, then fs←

⊘ (f⊕(A)) = f←⊕ (fs⊘(A)).
(3) Define (dτdX )f(y) : τdX

→ L by (dτdX )f(y)(C) = dτdX (f(y), C). Then (dτdX )f(y) ∈
τdτdX

and f←⊕ ((dτdX )f(y)) = f(y) = fs←
⊘ ((dτdX )f(y)). Moreover,

dτdτdX
(fs⊘(A), (dτdX )f(y)) = A(y) = dτdX (A, f←⊕ ((dτdX )f(y))),

dτdτdX
(dτdX )f(y), f

⊕(A)) = dτdX (f(y), A) = dτdX (fs←
⊘ ((dτdX )f(y), A).

Proof. (1) Let A, B, C ∈ τdX
. Then we have

fs⊘(A)(B)⊕ dτdX (B,C)⊕ dτdX (C, f(x))

≥ fs⊘(A)(B)⊕ dτdX (B, f(x))

=
∨

x∈X(A(x)⊖ dτdX (B, f(x)))⊕ dτdX (B, f(x))

≥ A(x).
Thus fs⊘(A)(B)⊕ dτdX (B,C) ≥ A(x)⊖ dτdX (C, f(x)). So fs⊘(A) ∈ τdτdX

. Hence

fs⊘ is well-defined.
Let α ∈ τdτdX

. Then we get

f←⊕ (α)(x)⊕ dX(x, y) =
∧

z∈X(α(f(z))⊕ dX(z, x))⊕ dX(x, y)
≥

∧
z∈X(α(f(z))⊕ dX(z, y)) = f←⊕ (α)(y).

Thus f←⊕ (α) ∈ τdX
. So f←⊕ is well-defined.

Now let A ∈ τdX
. Then we have

fs⊘(A)(f(−)) =
∨

x∈X(A(x)⊖ dτdX (f(−), f(x)))

=
∨

x∈X(A(x)⊖ dτdX (f(−), f(x)))

=
∨

x∈X(A(x)⊖ dX(−, x)) = A(−).

Thus f←⊕ (fs⊘(A))(−) =
∧

z∈X(fs⊘(A)(f(z))⊕ dX(z,−)) = A(−).
(2) Let A, B, C ∈ τdX

. Then we get

f⊕(A)(B)⊕ dτdX (B,C) =
∧

x∈X(dτdX ((f(x), B)⊕A(x))⊕ dτdX (B,C)

≥
∧

x∈X(dτdX ((f(x), C)⊕A(x)) = f⊕(A)(C).

Thus f⊕(A) ∈ τdτdX
. So f⊕ is well-defined.

Let α ∈ τdτdX
. Then we have

fs←
⊘ (α)(x)⊕ dX(x, y)⊕ dX(y, z) ≥ (α(f(z))⊖ dX(x, z))⊕ dX(x, z) ≥ α(f(z))

and

fs←
⊘ (α)(x)⊕ dX(x, y) ≥ α(f(z))⊖ dX(x, z).

Thus fs←
⊘ (α)(x) ⊕ dX(x, y) ≥ fs←

⊘ (α)(y). So fs←
⊘ (α) ∈ τdX

. Hence fs←
⊘ is well-

defined.
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Now let A ∈ τdX
. Then we have

f⊕(A)(f(−)) =
∧

x∈X(dτdX ((dX)x, f(−))⊕A(x) = A(−),

fs←
⊘ (f⊕(A))(−) =

∨
z∈X(f⊕(A)(f(z))⊖ dX(−, z)) = A(−).

(3) Let y ∈ X. Then we have
(dτdX )f(y)(C)⊕ dτdX (C,D) = dτdX (f(y), C)⊕ dτdX (C,D)

≥ dτdX (f(y), D)

= (dτdX )f(y)(D).

Thus (dτdX )f(y) ∈ τdτdX
.

Let x, y ∈ X. Then we get
f←⊕ ((dτdX )f(y))(x) =

∧
z∈X((dτdX )f(y)(f(z))⊕ dX(z, x))

=
∧

z∈X(dτdX (f(y), f(z))⊕ dX(z, x))

=
∧

z∈X(dX(y, z)⊕ dX(z, x))
= dX(y, x) = f(y)(x) [By Theorem 3.3],

fs←
⊘ ((dτdX )f(y))(x) =

∨
z∈X((dτdX )f(y)(f(z))⊖ dX(x, z))

=
∨

z∈X(dτdX (f(y), f(z))⊖ dX(x, z))

=
∨

z∈X(dX(y, z)⊖ dX(x, z))
= dX(y, x) = f(y)(x).

Moreover, for all A ∈ τdX
, we have

dτdτdX
(fs⊘(A), (dτdX )f(y))

=
∨

C∈τdX
(fs⊘(A)(C)⊖ (dτdX )f(y)(C))

=
∨

C∈τdX
((
∨

x∈X(A(x)⊖ dτdX (C, f(x))))⊖ dτdX (f(y), C))

=
∨

x∈X(A(x)⊖
∧

C∈τdX
(dτdX (C, f(x))⊕ dτdX (f(y), C)))

[By Lemma 2.2 (2) and (7)]
=

∨
x∈X(A(x)⊖ dτdX (f(y), f(x)))

=
∨

x∈X(A(x)⊖ dX(y, x)) = A(y),

dτdX (A, f←⊕ ((dτdX )f(y)))

=
∨

x∈X(A(x)⊖ f(y)(x))
=

∨
x∈X(A(x)⊖ dX(y, x)) = A(y).

Thus dτdτdX
(fs⊘(A), (dτdX )f(y)) = A(y) = dτdX (A, f←⊕ ((dτdX )f(y))).

For all A ∈ τdX
and y ∈ X, we get

dτdτdX
((dτdX )f(y), f

⊕(A))

=
∨

C∈τdX
((dτdX )f(y)(C)⊖ f⊕(A)(C))

=
∨

C∈τdX
(dτdX (f(y), C)⊖

∧
x∈X(A(x)⊕ dτdX (f(x), C)))

[By Lemma 2.2 (2) and (7)]
=

∨
x∈X(

∨
C∈τdX

(dτdX (f(y), C)⊖ dτdX (f(x), C))⊖A(x))

=
∨

x∈X(dτdX (f(y), f(x))⊖A(x)) =
∨

x∈X(dX(y, x)⊖A(x))

= dτdX (f(y), A),

dτdX (f←⊕ ((dτdX )f(y)), A)

=
∨

x∈X(dX(y, x)⊖A(x))
306
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= dτdX (f(y), A).

So dτdτdX
(dτdX )f(y), f

⊕(A)) = dτdX (f(y), A) = dτdX (fs←
⊘ ((dτdX )f(y), A). □

Theorem 3.5. Let (X, dX) be a distance space. Define g : (X, d−1X ) → (τd−1
X
, dτ

d
−1
X

)

by g(x) = (dX)x where (dX)x(y) = dX(y, x) for all x, y ∈ X.
(1) Define g⊘ : τd−1

X
→ τdτ

d
−1
X

and gs←⊕ : τd
τ
−1
dX

→ τd−1
X

by

g⊘(A)(B) =
∨

x∈X(A(x)⊖ dτ
d
−1
X

(B, g(x))),

gs←⊕ (β)(x) =
∧

z∈X(β(g(z))⊕ d−1X (z, x)).

Then g⊘ and gs←⊕ are well-defined, and

g⊘(B)(g(−)) = B, gs←⊕ (g⊘(B))(−) = B.

(2) Define gs⊕ : τd−1
X

→ τdτ
d
−1
X

and g←⊘ : τd
τ
−1
dX

→ τd−1
X

by

gs⊕(A)(B) =
∧

x∈X(dτ
d
−1
X

((g(x), B)⊕A(x)),

g←⊘ (β)(x) =
∨

z∈X(β(g(z))⊖ d−1X (x, z)).

Then gs⊕ and g←⊘ are well-defined, and

gs⊕(A)(g(−)) = A, g←⊘ (gs⊕(A))(−) = A(−).

Moreover, if A ∈ τd−1
X
, then gs←⊕ (g⊘(A)) = g←⊘ (gs⊕(A)).

(3) Define (dτ
d
−1
X

)g(y) : τd−1
X

→ L by (dτ
d
−1
X

)g(y)(C) = dτ
d
−1
X

(g(y), C). Then

(dτ
d
−1
X

)g(y) ∈ τdτ
d
−1
X

and gs←⊕ ((dτ
d
−1
X

)g(y)) = g(y) = g←⊘ ((dτ
d
−1
X

)g(y)). Moreover,

dτdτ
d
−1
X

(g⊘(A), (dτ
d
−1
X

)g(y)) = A(y) = dτ
d
−1
X

(A, gs←⊕ ((dτ
d
−1
X

)g(y)))

and
dτdτ

d
−1
X

((dτ
d
−1
X

)g(y), g
s⊕(A)) = dτ

d
−1
X

(g(y), A)

= dτ
d
−1
X

(gs←⊕ ((dτ
d
−1
X

)g(y)), A).

Proof. (1) Let A, B, C ∈ τd−1
X
. Then we have

g⊘(A)(B)⊕ dτ
d
−1
X

(B,C) ⊕dτ
d
−1
X

(C, g(x)) ≥ g⊘(A)(B)⊕ dτ
d
−1
X

(B, g(x))

=
∨

x∈X(A(x)⊖ dτ
d
−1
X

(B, g(x)))⊕ dτ
d
−1
X

(g(x), B)

≥ A(x).

Thus g⊘(A)(B) ⊕ dτ
d
−1
X

(B,C) ≥ A(x) ⊖ dτ
d
−1
X

(B, g(x)). So g⊘(A) ∈ τdτ
d
−1
X

. Hence

g⊘ is well-defined.
For all β ∈ τdτ

d
−1
X

, we get

gs←⊕ (β)(x)⊕ dX(y, x) =
∧

z∈X(β(g(z))⊕ dX(x, z))⊕ dX(y, x)
≥

∧
z∈X(β(g(z))⊕ dX(y, z)) = gs←⊕ (β)(y).

Then gs←⊕ (β) ∈ τd−1
X
. Thus gs←⊕ is well-defined.
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Now let A, B ∈ τd−1
X
. Then we get

g⊘(A)(g(−)) =
∨

x∈X(A(x)⊖ dτ
d
−1
X

(g(−), g(x)))

=
∨

x∈X(A(x)⊖ d−1X (−, x)) =
∨

x∈X(A(x)⊖ dX(x,−)) = A,
gs←⊕ (g⊘(B))(−) =

∧
z∈X(g⊘(B)(g(z))⊕ dX(−, z))

=
∧

z∈X(B(z)⊕ dX(−, z)) = B.

(2) Let A, B ∈ τd−1
X
. Then we have

gs⊕(A)(B)⊕ dτ
d
−1
X

(B,C) =
∧

x∈X(dτ
d
−1
X

((g(x), B)⊕A(x))⊕ dτ
d
−1
X

(B,C)

≥
∧

x∈X(dτ
d
−1
X

((g(x), C)⊕A(x)) = gs⊕(A)(C).

Thus gs⊕(A) ∈ τdτ
d
−1
X

. So gs⊕ is well-defined.

For all β ∈ τdτ
d
−1
X

, we get

g←⊘ (β)(x)⊕ dX(y, x)⊕ dX(z, y) ≥ (β(g(z))⊖ dX(z, x))⊕ dX(z, x) ≥ β(g(z))

and
g←⊘ (β)(x)⊕ dX(y, x) ≥ β(g(z))⊖ dX(z, y).

Then g←⊘ (β)(x)⊕ dX(y, x) ≥ g←⊘ (β)(y). Thus g←⊘ (β) ∈ τd−1
X
. So g←⊘ is well-defined.

For all A ∈ τd−1
X
,

gs⊕(A)(g(−)) =
∧

x∈X(dτ
d
−1
X

(g(x), g(−))⊕A(x))

=
∧

x∈X(d−1X (x,−)⊕A(x)) = A,
g←⊘ (gs⊕(A))(−) =

∨
z∈X(gs⊕(A)(g(z))⊖ d−1X (−, z))

=
∨

z∈X(A(z)⊖ dX(z,−)) = A(−).

(3) Let y ∈ X. Then we get

(dτ
d
−1
X

)g(y)(C)⊕ dτ
d
−1
X

(C,D) = dτ
d
−1
X

(g(y), C)⊕ dτ
d
−1
X

(C,D)

≥ dτ
d
−1
X

(g(y), D) = (dτ
d
−1
X

)g(y)(D).

Thus (dτ
d
−1
X

)g(y) ∈ τdτ
d
−1
X

.

For all x, y ∈ X,

gs←⊕ ((dτ
d
−1
X

)g(y))(x) =
∧

z∈X((dτ
d
−1
X

)g(y)(g(z))⊕ dX(x, z))

=
∧

z∈X(d−1X (y, z)⊕ dX(x, z)) = dX(x, y) = g(y)(x),
g←⊘ ((dτ

d
−1
X

)g(y))(x) =
∨

z∈X((dτ
d
−1
X

)g(y)(g(z))⊖ dX(z, x))

=
∨

z∈X(dX(z, y)⊖ dX(z, x)) = dX(x, y) = g(y)(x).

So gs←⊕ ((dτ
d
−1
X

)g(y)) = g(y) = g←⊘ ((dτ
d
−1
X

)g(y)).

For all A ∈ τd−1
X
,

dτdτ
d
−1
X

(g⊘(A), (dτ
d
−1
X

)g(y))

=
∨

C∈τ
d
−1
X

(g⊘(A)(C)⊖ (dτ
d
−1
X

)g(y)(C))

=
∨

C∈τ
d
−1
X

((
∨

x∈X(A(x)⊖ d−1τ
d
−1
X

((dX)x, C)))⊖ dτ
d
−1
X

((dX)y, C))

=
∨

C∈τ
d
−1
X

∨
x∈X(A(x)⊖ (dτ

d
−1
X

(C, (dX)x)⊕ dτ
d
−1
X

((dX)y, C))
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=
∨

x∈X(A(x)⊖
∧

C∈τ
d
−1
X

(dτ
d
−1
X

(C, (dX)x)⊕ dτ
d
−1
X

((dX)y, C))

=
∨

x∈X(A(x)⊖ dτ
d
−1
X

((dX)y, (dX)x))

=
∨

x∈X(A(x)⊖ dX(x, y)) = A(y),

dτ
d
−1
X

(A, gs←⊕ ((dτ
d
−1
X

)g(y)))

=
∨

x∈X(A(x)⊖ dX(x, y)) = A(y).

For all A ∈ τd−1
X

and y ∈ X,

dτdτ
d
−1
X

((dτ
d
−1
X

)g(y), g
s⊕(A))

=
∨

C∈τ
d
−1
X

((dτ
d
−1
X

)g(y)(C)⊖ gs⊕(A)(C))

=
∨

C∈τ
d
−1
X

(dτ
d
−1
X

(g(y), C)⊖
∧

x∈X(A(x)⊕ d−1τ
d
−1
X

(C, g(x))))

=
∨

x∈X(
∨

C∈τ
d
−1
X

(dτ
d
−1
X

(g(y), C)d−1τ
d
−1
X

(C, g(x)))⊖A(x))

=
∨

x∈X(dτ
d
−1
X

(g(y), g(x))⊖A(x))

=
∨

x∈X(dX(x, y)⊖A(x)) = dτ
d
−1
X

(g(y), A),

dτ
d
−1
X

(gs←⊕ ((dτ
d
−1
X

)g(y)), A)

=
∨

x∈X(dX(x, y)⊖A(x)) = dτ
d
−1
X

(g(y), A). □

Theorem 3.6. Let τd−1
τ
d
−1
X

= {α ∈ L
τ
d
−1
X | α(A) ⊕ d−1τ

d
−1
X

(A,B) ≥ α(B)}. De-

fine a map h : X → τd−1
τ
d
−1
X

by h(x)(A) = x̂(A) = A(x). Then h : (X, dX) →

(τd−1
τ
d
−1
X

, dτ
d
−1
τ
d
−1
X

) is an embedding map.

Proof. Let A, B, C ∈ τd−1
X
. Then we get

x̂(A)⊕ d−1τ
d
−1
X

(A,B) = x̂(A)⊕ dτ
d
−1
X

(B,A)

= x̂(A)⊕
∨

y∈X(B(y)⊖A(y))

≥ A(x)⊕ (B(x)⊖A(x))
≥ B(x) = x̂(B).

Thus h(x) = x̂ ∈ τd−1
τ
d
−1
X

. So h is well-defined.

Let A ∈ τd−1
X
. Since A(y)⊕ d−1X (y, x) = A(y)⊕ dX(x, y) ≥ A(x), we have

dX(x, y) ≥
∨

A∈τ
d
−1
X

(A(x)⊖A(y))

=
∨

A∈τ
d
−1
X

(x̂(A)⊖ ŷ(A))

= dτ
d
−1
τ
d
−1
X

(x̂, ŷ).
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Let g(z)(x) = dX(x, z). Since g(z)(x)⊕ dX(y, x) ≥ g(z)(y) for all z ∈ X, we have
g(z) ∈ τd−1

X
. For g(z) ∈ τd−1

X
with z ∈ X,

dτ
d
−1
τ
d
−1
X

(x̂, ŷ) =
∨

A∈τ
d
−1
X

(A(x)⊖A(y))

≥
∨

g(z)∈τ
d
−1
X

(g(z)(x)⊖ g(z)(y))

=
∨

z∈X(dX(x, z)⊖ dX(y, z)) = dX(x, y).

Hence dτ
d
−1
τ
d
−1
X

(x̂, ŷ) = dX(x, y). □

Example 3.7. Let ([0, 1],≤,∨,∧,⊕,⊖, 0, 1) be a complete co-residuated lattice de-
fined by n(x) = 1− x, x⊕ y = (x+ y)∧ 1, x⊖ y = (x− y)∨ 0. Let X = {x, y, z} be
a set. Define dX ∈ LX×X by

dX =

 0 0.5 0.8
0.7 0 0.6
0.4 0.6 0

 .

One can show that dX is a distance function.
(1) Define f : (X, dX) → (τdX

, dτdX ) by f(x) = (dX)x. For f(x) = (dX)x =

(0, 0.5, 0.8) ∈ τdX
and f(y) = (dX)y = (0.7, 0, 0.6) ∈ τdX

, we have

dτdX (f(x), f(y)) =
∨
z∈X

(dX(x, z)⊖ dX(y, z)) = dX(x, y) = 0.5.

Since 0.4 = f(x)(x) ⊕ d−1X (x, z) ̸≥ f(x)(z) = 0.8 and 0.5 = f(y)(y) ⊕ d−1X (y, x) ̸≥
f(y)(x) = 0.7, we have f(x) ̸∈ τd−1

X
, f(y) ̸∈ τd−1

X
.

For g(x) = (dX)x = (0, 0.7, 0.4) ∈ τd−1
X

and g(y) = (dX)y = (0.5, 0, 0.6) ∈ τd−1
X
,

we have

dτ
d
−1
X

(g(x), g(y)) =
∨
z∈X

(dX(z, x)⊖ dX(z, y)) = d−1X (x, y) = dX(y, x) = 0.7.

Since 0.5 = g(x)(x)⊕dX(x, y) ̸≥ g(x)(y) = 0.7 and
∧

z∈X(g(y)(z)⊕dX(z,−)) = f(y),
we have g(x) ̸∈ τdX

, g(y) ∈ τdX
.

Let A, B, C ∈ [0, 1]X with

A(x) = 0.3, A(y) = 0.2, A(z) = 0.5, B(x) = 0.6, B(y) = 0.3, B(z) = 0.5,
C(x) = 0.7, C(y) = 0.8, C(z) = 0.1.

Then
A =

∧
x∈X(A(x)⊕ dX(x,−)) =

∧
x∈X(A(x)⊕ dX(−, x))

=
∧

x∈X(A(x)⊕ f(x)) =
∧

x∈X(A(x)⊕ g(x))
=

∨
x∈X(A(x)⊖ f(x)) =

∧
x∈X(A(x)⊖ g(x)),

B =
∧

x∈X(B(x)⊕ dX(x,−)) =
∧

x∈X(B(x)⊕ dX(−, x))
=

∧
x∈X(B(x)⊕ f(x)) =

∧
x∈X(B(x)⊕ g(x))

=
∨

x∈X(B(x)⊖ f(x)) =
∧

x∈X(B(x)⊖ g(x)),

C ̸=
∧

x∈X(C(x)⊕ dX(x,−)) = (0.5, 0.7, 0.1),
C ̸=

∧
x∈X(C(x)⊕ dX(−, x)) = (0.7, 0.7, 0.1),

C ̸=
∨

x∈X(C(x)⊖ dX(x,−)) = (0.7, 0.8, 0.2),
C ̸=

∨
x∈X(C(x)⊖ dX(−, x)) = (0.7, 0.8, 0.3).
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By Theorem 3.3, we have A,B ∈ τdX
, C ̸∈ τdX

, A,B ∈ τd−1
X

and C ̸∈ τd−1
X
. By

Theorem 3.4, we have fs⊘ : τdX
→ τdτdX

and f←⊕ : τdτdX
→ τdX

such that

fs⊘(B)(A) =
∨

x∈X(B(x)⊖ dτdX (A, (dX)x))

= (0.6⊖ 0.3) ∨ (0.3⊖ 0.2) ∨ (0.5⊖ 0.4) = 0.3
fs⊘(B)(f(−)) =

∨
x∈X(B(x)⊖ dτdX (f(−), (dX)x))

=
∨

x∈X(B(x)⊖ dX(−, x)) = B = (0.6, 0.3, 0.5)
f←⊕ (fs⊘(B))(−) =

∧
z∈X(fs⊘(B)(f(z))⊕ dX(z,−))

=
∧

z∈X(B(z)⊕ dX(z,−)) = B = (0.6, 0.3, 0.5).

Also by Theorem 3.4, we have f⊕ : τdX
→ τdτdX

and fs←
⊘ : τdτdX

→ τdX
such that

f⊕(A)(B) =
∧

x∈X(dτdX ((dX)x, B)⊕A(x))

= (0.3⊕ 0.3) ∧ (0.1⊕ 0.2) ∧ (0.3⊕ 0.5) = 0.3,
f⊕(A)(f(−)) =

∧
x∈X(dτdX ((dX)x, f(−))⊕A(x) = A = (0.3, 0.2, 0.5),

fs←
⊘ (f⊕(A))(−) =

∨
z∈X(f⊕(A)(f(z))⊖ dX(−, z)) = A = (0.3, 0.2, 0.5).

For all y ∈ X,

dτdτdX
(fs⊘(A), (dτdX )f(y)) =

∨
C∈τdX

(fs⊘(A)(C)⊖ (dτdX )f(y)(C))

=
∨

x∈X(A(x)⊖ dX(y, x)) = A(y) = 0.2,
f←⊕ ((dτdX )f(y))(x) =

∧
z∈X((dτdX )f(y)(f(z))⊕ dX(x, z))

= dX(y, x) = (0.7, 0, 0.6),
dτdX (A, f←⊕ ((dτdX )f(y))) =

∨
x∈X(A(x)⊖ dX(y, x)) = A(y) = 0.2.

(2) Define g : (X, dX) → (τd−1
X
, dτ

d
−1
X

) by g(x) = (dX)x. By Theorem 3.5, we have

g⊘ : τd−1
X

→ τdτ
d
−1
X

and gs←⊕ : τd
τ
−1
dX

→ τd−1
X

such that

g⊘(B)(A) =
∨

x∈X(B(x)⊖ dτ
d
−1
X

(A, g(x)))

=
∨

x∈X(B(x)⊖ dτ
d
−1
X

(A, (dX)x))

= (0.6⊖ 0.3) ∨ (0.3⊖ 0.2) ∨ (0.5⊖ 0.5) = 0.3,
g⊘(B)(g(−)) =

∨
x∈X(B(x)⊖ dτ

d
−1
X

(g(−), g(x)))

=
∨

x∈X(B(x)⊖ d−1X (−, x)) =
∨

x∈X(B(x)⊖ dX(x,−))
= B = (0.6, 0.3, 0.5),

gs←⊕ (g⊘(B))(−) =
∧

z∈X(g⊘(B)(g(z))⊕ dX(−, z))
=

∧
z∈X(B(z)⊕ dX(−, z)) = B = (0.6, 0.3, 0.5).

Also by Theorem 3.5, we have gs⊕ : τd−1
X

→ τdτ
d
−1
X

and g←⊘ : τd
τ
−1
dX

→ τd−1
X

such that

gs⊕(A)(B) =
∧

x∈X(d−1τ
d
−1
X

(B, (dX)x)⊕A(x))

=
∧

x∈X(dτ
d
−1
X

((dX)x, B)⊕A(x))

= (0.4⊕ 0.3) ∧ (0.1⊕ 0.2) ∧ (0.3⊕ 0.5) = 0.3,
gs⊕(A)(g(−)) =

∧
x∈X(dτ

d
−1
X

(g(−), (dX)x)⊕A(x))

=
∧

x∈X(dX(x,−)⊕A(x)) = A = (0.3, 0.2, 0.5),
g←⊘ (gs⊕(A))(−) =

∨
z∈X(gs⊕(A)(g(z))⊖ dX(z, x)) = A = (0.3, 0.2, 0.5)

=
∨

z∈X(A(z)⊖ dX(z,−)) = A(−).
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For all y ∈ X,

dτdτ
d
−1
X

(g⊘(A), (dτ
d
−1
X

)g(y)) =
∨

x∈X(A(x)⊖ dX(x, y)) = A(y) = 0.2,

gs←⊕ ((dτ
d
−1
X

)g(y))(−) = dX(−, y) = (0.5, 0, 0.6),

dτ
d
−1
X

(A, gs←⊕ ((dτ
d
−1
X

)g(y))) =
∨

x∈X(A(x)⊖ dX(x, y)) = A(y) = 0.2,

dτdτ
d
−1
X

((dτ
d
−1
X

)g(y), g
s⊕(A)) =

∨
x∈X(dX(x, y)⊖A(x)) = 0.2

= dτ
d
−1
X

(gs←⊕ ((dτ
d
−1
X

)g(y)), A).

Example 3.8. Let X = {hi | i = {1, 2, 3}} and Y = {e, b, w, c, i} be sets with
hi=house, e=expensive, b= beautiful, w=wooden, c= creative, i=in the green sur-
roundings. Let ([0, 1],⊕,⊖, n, 0, 1) be a complete co-residuated lattice defined in
Example 3.7. Let R ∈ [0, 1]X×Y be the fuzzy information as follows:

R e b w c i
h1 0.9 0.3 0.7 0.9 0.2
h2 0.5 0.8 0.4 0.3 0.5
h3 0.4 0.9 0.8 0.7 0.6

Define dX : X ×X → [0, 1] by

dX(x, y) =
∨
a∈Y

(R(x, a)⊖R(y, a)).

Then
dX h1 h2 h3

h1 0 0.6 0.5
h2 0.5 0 0
h3 0.6 0.4 0

Define f : (X, dX) → (τdX
, dτdX ) by f(x) = (dX)x and g : (X, dX) → (τd−1

X
, dτ

d
−1
X

)

by g(x) = (dX)x. Then f and g are two embedding maps. By a similar method
used in Example 3.7, one can investigate various maps.

4. Conclusion

Let (X, dX) be a distance space. We have constructed two embedding maps
f : (X, dX) → (τdX

, dτdX ) and g : (X, d−1X ) → (τd−1
X
, dτ

d
−1
X

) by f(x) = (dX)x

and g(x) = (dX)x where (dX)x(y) = dX(x, y) and (dX)x(y) = dX(y, x) for all
x, y ∈ X. We have studied their properties and have given their examples. As a
topological representation, we have investigated the embedding map h : (X, dX) →
(τd−1

τ
d
−1
X

, dτ
d
−1
τ
d
−1
X

). Moreover, we have suggested Example 3.8 for an information sys-

tem.
In the future, by using the concepts of embedding maps, information systems and

decision rules can be investigated on co-residuated lattices.
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