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1. Introduction

In 2020, Kim et al. [1] studied various topological structures via interval-valued
sets proposed by Yao [2]. Recently, Han et al. [3] introduced the notions of interval-
valued ideals, interval-valued positive implicative ideals, interval-valued implicative
ideals and interval-valued commutative ideals in BCK-algebras, and discussed some
of their properties.

A (binary) relation play an important role in congruence, graph theory, and com-
puter science, etc. The category is applied to many fields of mathematics including
abstract algebra. Moreover, it has an important relevance in the study of theoretical
computer science, mathematical fundamentals, and mathematical physics. In par-
ticular, it has already been known ([4, 5, 6, 7]) that the concept of the topological
universe proposed by Nell [8] can be effectively used in various fields of mathematics.
Recently, Lee et al. [9] constructed the category CRelP (H) [resp. CRelR(H)] of
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cubic H-relational spaces and P -preserving [resp. R-preserving] mappings between
them, and discussed their categorical structures in the sense of a topological universe
(See [10, 11, 12, 13] for the further researches).

It is our aim to study the category of relations based on interval-valued sets in a
viewpoint of a topological universe. To do this, we study in two directions. First,
we define an interval-valued relation and obtain its various properties. Second, we
form the category (denoted by IVRel), which is class of interval-valued relational
spaces and the morphisms between them, and find some of its properties. Moreover,
we prove that the full subcategory IVRel

R
of the category IVRel is the topological

universe over Set.

2. Preliminaries

We list basic definitions and two results interval-valued sets needed in next sec-
tions.

Definition 2.1 (See [2]). Let X be an nonempty set. Then the form

[A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+}

is called an interval-valued set (briefly, IVS) or interval set in X, if A−, A+ ⊂ X
and A− ⊂ A+. In this case, A− [resp. A+] represents the set of minimum [resp.
maximum] memberships of elements of X to A. In fact, A− [resp. A+] is a minimum
[resp. maximum] subset of X agreeing or approving for a certain opinion, view,
suggestion or policy. [∅,∅] [resp. [X,X]] is called the interval-valued empty [resp.

whole] set in X and denoted by ∅̃ [resp. X̃]. We will denote the set of all IVSs in
X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
if A = [A−, A+] ∈ IV S(X), then

χ
A
= [χ

A− , χA+ ]

is an interval-valued fuzzy set in X introduced by Zadeh [14]. Thus we can consider
an interval-valued fuzzy set as the generalization of an IVS.

Definition 2.2 (See [2]). Let X be a nonempty set and let A, B ∈ IV S(X). Then

(i) we say that A is contained in B, denoted by A ⊂ B, if A− ⊂ B− and
A+ ⊂ B+,

(ii) we say that A is equal to B, denoted by A = B, if A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted Ac, is an interval-valued set in X defined by:

Ac = [(A+)c, (A−)c],

(iv) the union of A and B, denoted by A ∪ B, is an interval-valued set in X
defined by:

A ∪B = [A− ∪B−, A+ ∪B+],

(v) the intersection of A and B, denoted by A ∩ B, is an interval-valued set in
X defined by:

A ∩B = [A− ∩B−, A+ ∩B+].
282
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Definition 2.3 ([1]). Let X be a nonempty set, let a ∈ X and let A ∈ IV S(X).
Then the form [{a}, {a}] [resp. [∅, {a}]] is called an interval-valued [resp. vanishing]
point in X and denoted by a1 [resp. a0 ]. We will denote the set of all interval-valued
points in X as IV P (X) = IVP (X) ∪ IVV P (X), where IVP (X) [resp. IVV P (X)]
denotes the set of all interval-valued [resp. vanishing] points in X.

(i) We say that a1 belongs to A, denoted by a1 ∈ A, if a ∈ A−.
(ii) We say that a

0
belongs to A, denoted by a

0
∈ A, if a ∈ A+.

Result 2.4 (Theorem 3.14 [1]). Let (Aj)j∈J ⊂ IV S(X) and let a ∈ X.

(1) a
1
∈
⋂
Aj [resp. a

0
∈
⋂
Aj ] if and only if a

1
∈ Aj [resp. a

0
∈ Aj], for each

j ∈ J .
(2) a

1
∈

⋃
Aj [resp. a

0
∈

⋃
Aj ] if and only if there exists j ∈ J such that

a
1
∈ Aj [resp. a

0
∈ Aj ].

Result 2.5 (Theorem 3.15 [1]). Let A,B ∈ IV S(X). Then

(1) A ⊂ B if and only if a1 ∈ A ⇒ a1 ∈ B [resp. a0 ∈ A ⇒ a0 ∈ B] for each
a ∈ X.

(2) A = B if and only if a
1
∈ A ⇔ a

1
∈ B [resp. a

0
∈ A ⇔ a

0
∈ B] for each

a ∈ X.

3. Interval-valued relations

We define an interval-valued relation from X to Y , and study some of its proper-
ties, whereXand Y are nonempty sets. Also we define an interval-valued equivalence
relation on X and an interval-valued partition of X and study some of its properties.

Definition 3.1. LetX, Y be two nonempty sets and let A ∈ IV S(X), B ∈ IV S(Y ).
Then the Cartesian product of A and B, denoted by A×B, is an interval-valued set
in X × Y defined as follows:

A×B = [A− ×B−, A+ ×B+].

Example 3.2. Let X = {a, b, c, d}, Y = {1, 2, 3} be sets. Let A ∈ IV S(X),
B ∈ IV S(Y ) given by:

A = [{a, b}, {a, b, d}], B = [{1}, {1, 2}].

Then clearly, A×B = [{(a, 1), (b, 1)}, {(a, 1), (a, 2), (b, 1), (b, 2), (d, 1), (d, 2)}].

Proposition 3.3. Let X, Y be two nonempty sets. Then the followings hold:

a
1
× b

1
= [{(a, b)}, {(a, b)}] and a

0
× b

0
= [∅, {(a, b)}]

for any a
1
, a

0
∈ X̃ and b

1
, b

0
∈ Ỹ .

In Proposition 3.3, we write a1 × b1 [resp. a0 × b0 ] as (a, b)1 [resp. (a, b)0 ]
and it will be called an interval-valued [resp. vanishing] ordered point in X × Y.
Then by Definition 2.3, IV P (X × Y ) = IVP (X × Y ) ∪ IVV P (X × Y ). In this case,
IV P (X × Y ) will be called the interval-valued Cartesian product of X and Y , and

denoted by X̃ × Ỹ .
283
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Example 3.4. Let X = {a, b, c}, Y = {1, 2}. Then clearly,

X̃ × Ỹ = {(a, 1)
1
, (a, 2)

1
, (b, 1)

1
, (b, 2)

1
, (c, 1)

1
, (c, 2)

1
,

(a, 1)
0
, (a, 2)

0
, (b, 1)

0
, (b, 2)

0
, (c, 1)

0
, (c, 2)

0
}.

Remark 3.5. (1) Let X1, X2, · · · , Xn be nonempty set. Then we can define
the interval-valued Cartesian product of X1, X2, · · · , Xn as follows:

n∏
i=1

X̃i = IV P (

n∏
i=1

Xi) = IVP (

n∏
i=1

Xi) ∪ IVV P (

n∏
i=1

Xi).

Each member of IVP (
∏n

i=1Xi) [resp. IVV P (
∏n

i=1Xi)] is called an interval-
valued [resp. vanishing] n-ordered point in

∏n
i=1Xi.

(2) Let (Xj)j∈J be a collection of arbitrary sets. Then we can define the interval-
valued Cartesian product of (Xj)j∈J as follows:∏

j∈J

X̃j = IV P (
∏
j∈J

Xj) = IVP (
∏
j∈J

Xj) ∪ IVV P (
∏
j∈J

Xj).

Each member of IVP (
∏

j∈J Xj) [resp. IVV P (
∏

j∈J Xj)] is called an interval-

valued [resp. vanishing] arbitrary-ordered point in
∏

j∈J Xj .

Proposition 3.6. Let X be a nonempty set. Then A × ∅̃ = ∅̃ = ∅̃ × A for each
A ∈ IV S(X).

Proposition 3.7. Let X be a nonempty set and let A, B, C ∈ IV S(X). Then the
followings hold:

(1) A× (B ∩ C) = (A×B) ∩ (A× C),
(2) A× (B ∪ C) = (A×B) ∪ (A× C).

Definition 3.8. Let X, Y be two nonempty sets. Then ρ = [ρ−, ρ+] is called an
interval-valued relation from X to Y , if ρ ∈ IV S(X × Y ), i.e., ρ−, ρ+ ⊂ X × Y . If
ρ ∈ IV S(X ×X), then ρ is called an interval-valued relation on X. We will denote

the interval-valued empty [resp. whole] relation on X as ∅̇ [resp. Ẋ] and the set of
all interval-valued relations on X as IV R(X).

Example 3.9. Let X = {a, b, c, d, e}. Consider the interval-valued set ρ in X ×X
given by:

ρ = [{(a, a), (a, b), (b, c), (d, e), (e, e)}, {(a, a), (a, b), (n, a), (b, c), (c, d), (d, e), (e, e)}].
Then clearly, ρ ∈ IV R(X).

Remark 3.10. (1) If ρ is a classical relation on a set X, then [∅, ρ], [ρ, ρ] ∈
IV R(X).

(2) If ρ = [ρ−, ρ+] is an interval-valued relation on a set X, then χρ = [χ
ρ−
, χ

ρ+
]

is an interval-valued fuzzy relation on X in the sense of Roy and Biswas [15].
Moreover, ρ− and ρ+ are classical relations on X.

(3) If ρ ∈ IV R(X), then ρ−, ρ+ ∈ B(X), where B(X) denotes the set of all
classical relations on X (See [16]).

From (1) and (2), we can consider an interval-valued relation as a generalization
of a classical relation and a special case of an interval-valued fuzzy relation.
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Theorem 3.11. Let X, Y be two nonempty sets. Then ρ is an interval-valued

relation from X to Y if and only if there is R ⊂ X̃ × Ỹ such that ρ =
⋃

R.

Proof. The proof is obvious from Proposition 3.3 and Definition 3.8. □

Example 3.12. Let X = {a, b, c}. Then we have

X̃ × X̃ = {(a, a)
1
, (a, b)

1
, (a, c)

1
, (b, a)

1
, (b, b)

1
, (b, c)

1
,

(c, a)
1
, (c, b)

1
, (c, c)

1
, (a, a)

0
, (a, b)

0
, (a, c)

0
,

(b, a)0 , (b, b)0 , (b, c)0 , (c, a)0 , (c, b)0 , (c, c)0}.
Consider R ⊂ X̃ × X̃ given by:

R = {(a, a)
1
, (b, a)

1
, (c, a)

0
, (c, c)

0
}.

Then we easily check that⋃
R = [{(a, a), (b, a)}, {(a, a), (b, a), (c, a), (c, c)}].

Thus
⋃
R ∈ IV R(X). Furthermore, Ẋ =

⋃
(X̃ × X̃) = [X ×X,X ×X].

Since an interval-valued relation from a set X to a set Y is an interval-valued set
in X × Y , we can define the inclusion ρ ⊂ σ, the intersection ρ ∩ σ, the union ρ ∪ σ
and the complement ρc for any interval-valued relations ρ and σ same as Definition
2.2. Then we obtain the following results.

Proposition 3.13 (See (i1)–(i3) and (k1)–(k3), [2]). Let X be a nonempty set and
let ρ, σ, τ ∈ IV R(X). Then

(1) ∅̇ ⊂ ρ ⊂ Ẋ,
(2) if ρ ⊂ σ and σ ⊂ τ , then ρ ⊂ τ ,
(3) ρ ⊂ ρ ∪ σ and σ ⊂ ρ ∪ σ,
(4) ρ ∩ σ ⊂ ρ and ρ ∩ σ ⊂ σ,
(5) ρ ⊂ σ if and only if ρ ∩ σ = ρ,
(6) ρ ⊂ σ if and only if ρ ∪ σ = σ.

Proposition 3.14 (See (I1)–(I8), [2]). Let X be a non-empty set and let ρ, σ, τ ∈
IV R(X). Then

(1) (Idempotent laws) ρ ∪ ρ = ρ, ρ ∩ ρ = ρ,
(2) (Commutative laws) ρ ∪ σ = σ ∪ ρ, ρ ∩ σ = σ ∩ ρ,
(3) (Associative laws) ρ ∪ (σ ∪ τ) = (ρ ∪ σ) ∪ τ, ρ ∩ (σ ∩ τ) = (ρ ∩ σ) ∩ τ ,
(4) (Distributive laws) ρ ∪ (σ ∩ τ) = (ρ ∪ σ) ∩ (ρ ∪ τ),

ρ ∩ (σ ∪ τ) = (ρ ∩ σ) ∪ (ρ ∩ τ),
(5) (Absorption laws) ρ ∪ (ρ ∩ σ) = ρ, ρ ∩ (ρ ∪ σ) = ρ,
(6) (DeMorgan’s laws) (ρ ∪ σ)c = ρc ∩ σc, (ρ ∩ σ)c = ρc ∪ σc,
(7) (ρc)c = ρ,
(8) (8a) ρ ∪ ∅̇ = ρ, ρ ∩ ∅̇ = ∅̇,

(8b) ρ ∪ Ẋ = Ẋ, ρ ∩ Ẋ = ρ,

(8c) Ẋ
c = ∅̇, ∅̇c = Ẋ,

(8d) ρ ∪ ρc ̸= Ẋ, ρ ∩ ρc ̸= ∅̇ in general (See Example 3.7, [1]).

Example 3.15. Let X = {a, b, c}. Consider the interval-valued relation on X given
by:

ρ = [{(a, a), (b, c)}, {(a, a), (a, b), (b, c)}] ∈ IV R(X).
285
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Then clearly, we have

ρc = [{(a, c), (b, a), (b, b), (c, a), (c, b), (c, c)}, {(a, b), (a, c), (b, a), (b, b), (c, a), (c, b), (c, c)}].
Thus we get

ρ ∩ ρc = [∅, {(a, b)}] ̸= ∅̇,
ρ ∪ ρc = [{(a, a), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}, X] ̸= Ẋ.

Definition 3.16. Let X, Y be two nonempty sets, let (a, b)1 , (a, b)0 ∈ X̃ × Ỹ and
let ρ be an interval-valued relation from X to Y .

(i) We say that (a, b)
1
belongs to ρ, denoted by (a, b)

1
∈ ρ, if (a, b) ∈ ρ−.

(ii) We say that (a, b)0 belongs to ρ, denoted by (a, b)0 ∈ ρ, if (a, b) ∈ ρ+.

Proposition 3.17 (See Proposition 3.11 [1]). Let X, Y be two nonempty sets, let
ρ be an interval-valued relation from X to Y and let

ρ
IV P

=
⋃

(a,b)
1
∈ρ

(a, b)
1
, ρ

IV V P
=

⋃
(a,b)

0
∈ρ

(a, b)
0
.

Then ρ = ρ
IV P

∪ ρ
IV V P

. In fact, ρ
IV P

= [ρ−, ρ−] and ρ
IV V P

= [∅, ρ+].

Theorem 3.18 (See Proposition 3.14 [1]). Let X be a nonempty set, let (ρj)j∈J ⊂
IV R(X) and let (x, y) ∈ X ×X.

(1) (x, y)
1
∈

⋂
j∈J ρj [resp. (x, y)

0
∈

⋂
j∈J ρj ] if and only if (x, y)

1
∈ ρj [resp.

(x, y)
0
∈ ρj ] for each j ∈ J .

(2) (x, y)
1
∈

⋃
j∈J ρj [resp. (x, y)

0
∈

⋃
j∈J ρj ] if and only if (x, y)

1
∈ ρj [resp.

(x, y)
0
∈ ρj ] for some j ∈ J .

Theorem 3.19 (See Proposition 3.16 [1]). Let X be a nonempty set and let ρ, σ ∈
IV R(X). Then ρ ⊂ σ if and only if (x, y)

1
∈ ρ ⇒ (x, y)

1
∈ σ [resp. (x, y)

0
∈ ρ ⇒

(x, y)
0
∈ σ] for each (x, y) ∈ X ×X.

Let ρ be an interval-valued relation from a set X to a set Y . Then we write
(a, b)1 , (a, b)0 ∈ ρ as a1ρb1 and a0ρb0 , and may be read: “a1 is ρ-related to a1” and
“a

0
is ρ-related to a

0
”.

Definition 3.20. Let ρ be an interval-valued relation from a set X to a set Y . Then
the domain and the image of ρ, denoted byDom(ρ) and Im(ρ), are an interval-valued
set in X and Y defined as follows:

Dom(ρ) =
⋃
{a

1
∈ X̃ : (a, b)

1
∈ ρ for some b

1
∈ Ỹ }

∪
⋃
{a0 ∈ X̃ : (a, b)0 ∈ ρ for some b0 ∈ Ỹ },

Im(ρ) =
⋃
{b

1
∈ Ỹ : (a, b)

1
∈ ρ for some a

1
∈ X̃}

∪
⋃
{b0 ∈ Ỹ : (a, b)0 ∈ ρ for some a0 ∈ X̃}.

Remark 3.21. Let ρ be the interval-valued relation from a set X to a set Y . Then
from Definition 3.20, we can easily see that

Dom(ρ) = Dom(ρ−) ∪Dom(ρ+), Im(ρ) = Im(ρ−) ∪ Im(ρ+),

where

Dom(ρ−) = {a ∈ X : (∃b ∈ Y )(a, b) ∈ ρ−}, Dom(ρ+) = {a ∈ X : (∃b ∈ Y )(a, b) ∈ ρ+},
286
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Im(ρ−) = {b ∈ Y : (∃a ∈ X)(a, b) ∈ ρ−}, Im(ρ+) = {b ∈ Y : (∃a ∈ Y )(a, b) ∈ ρ+}.

Example 3.22. Let ρ be the interval-valued relation from X = {a, b, c} to Y =
{1, 2, 3} given by:

ρ = [{(a, 1), (b, 2)}, {(a, 1), (b, 1), (b, 2), (c, 1)}.
Then clearly, Dom(ρ) = [{a, b}, {a, b, c}] and Im(ρ) = [{1, 2}, {1, 2}].

Proposition 3.23. Let ρ, σ ∈ IV R(X). If ρ ⊂ σ, then Dom(ρ) ⊂ Dom(σ) and
Im(ρ) ⊂ Im(σ)

Proof. The proof is obvious from Theorem 3.19 and Definition 3.20. □

Definition 3.24. Let ρ, σ ∈ IV R(X). Then the product of ρ and σ, denoted by
σ ◦

IV
ρ, is an interval-valued relation on X defined as follows:

σ ◦
IV
ρ =

⋃
{(x, y)

1
∈ X̃ × X̃ : (∃z

1
∈ X̃) (x, z)

1
∈ ρ, (z, y)

1
∈ σ}

∪
⋃
{(x, y)

0
∈ X̃ × X̃ : (∃z

0
∈ X̃) (x, z)

0
∈ ρ, (z, y)

0
∈ σ}.

In fact, we can easily see that

σ ◦
IV
ρ = [σ− ◦ ρ−, σ+ ◦ ρ+],

where σ− ◦ ρ− and σ+ ◦ ρ+ denote the product of classical relations.

Proposition 3.25. Let ρ, σ, τ ∈ IV R(X). If ρ ⊂ σ, then ρ ◦
IV
τ ⊂ σ ◦

IV
τ and

τ ◦
IV
ρ ⊂ τ ◦

IV
σ.

Proposition 3.26 (See Proposition 4.4, [16]). (IV R(X), ◦
IV

) is a semigroup.

Definition 3.27. Let ρ = [ρ−, ρ+] be an interval-valued relation from a set X to
a set Y . Then the inverse of ρ, denoted by ρ−1 = [(ρ−)−1, (ρ+)−1], is an interval-
valued relation from Y to X such that b

1
ρ−1a

1
, b

0
ρ−1a

0
if and only if a

1
ρb

1
, a

0
ρb

0
,

i.e.,

ρ−1 =
⋃

{(b, a)
1
∈ Ỹ × X̃ : (a, b)

1
∈ ρ} ∪

⋃
{(b, a)

0
∈ Ỹ × X̃ : (a, b)

0
∈ ρ}.

In fact, we can easily have

ρ−1 = ρ−1
IV P

∪ ρ−1
IV V P

.

Proposition 3.28. Let ρ be an interval-valued relation from a set X to a set Y .
Then Dom(ρ) = Im(ρ−1) and Im(ρ) = Dom(ρ−1).

Proposition 3.29. Let ρ, σ, ρ1, · · · , ρn ∈ IV R(X).

(1) ρ−1 ∈ IV R(X) and (ρ−1)−1 = ρ.
(2) If ρ ⊂ σ, then ρ−1 ⊂ σ−1.
(3) ρ1 ◦IV

ρ2 ◦IV
· · · ◦

IV
ρn)

−1 = ρ−1
n ◦

IV
· · · ◦

IV
ρ−1
2 ◦

IV
ρ−1
1 .

Definition 3.30. Let X be a nonempty set, let ρ ∈ IV R(X) and let x ∈ X,
A ∈ IV S(X).

(i) ρx
1
, ρx

0
and ρx are interval-valued sets in X defined respectively as follows:

ρx
1
=

⋃
(x,y)1∈ρ

y
1
, ρx

0
=

⋃
(x,y)0∈ρ

y
0
, ρx = ρx

1
∪ ρx

0
,

287
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where y
1
, y

0
∈ X̃. In fact, we can easily see that

ρx = ρ−x ∪ ρ+x,

where ρ−x = {y ∈ X : (x, y) ∈ ρ−}, ρ+x = {y ∈ X : (x, y) ∈ ρ−}.
(ii) ρA is the interval-valued set in X defined by:

ρA =
⋃

a
1
∈A

ρa1 ∪
⋃

a
0
∈A

ρa0 .

In fact, (ρA)− =
⋃

a∈A−(ρ)−a, (ρ)+A =
⋃

a∈A+(ρ)+a.

It is obvious that ρx ̸= ∅̃ if and only if ρx
1
̸= ∅̃ or ρx

0
̸= ∅̃, i.e., x

1
∈ Dom(ρ)

or x
0
∈ Dom(ρ).

Remark 3.31. Let X be a nonempty set, let ρ ∈ IV R(X) and let x ∈ X. Then
ρ−1x is the interval-valued set in X similarly defined as Definition 3.30 (i) and
ρ−1x ̸= ∅̃ if and only if x1 ∈ Im(ρ) or x0 ∈ Im(ρ).

Definition 3.32. Let X be a nonempty set. Then φ is called an interval-valued
partial mapping of X, if it satisfies the following conditions: for any x, y, z ∈ X,

(i) if (x, y)
1
∈ φ and (x, z)

1
∈ φ, then y

1
= z

1
,

(ii) if (x, y)
0
∈ φ and (x, z)

0
∈ φ, then y

0
= z

0
.

We will denote the set of all interval-valued partial mappings of X as IV PM(X).
If φ ∈ IV PM(X) and (x, y)

1
∈ φ [resp. (x, y)

0
∈ φ], then we will write

φ(x
1
) = y

1
[resp.φ(x

0
) = y

0
].

Remark 3.33. (1) If φ ∈ PT (X), then [φ,φ] ∈ IV PM(X), where PT (X)
denotes the set of all partial mappings of X (See [16]).

(2) If φ ∈ IV PM(X), then φ−, φ+ ∈ PT (X).
(3) Let φ ∈ IV PM(X). Then φ−1 need not be an interval-valued partial map-

ping of X (See Example 3.34).

Example 3.34. Let X = {a, b, c}. Consider three interval-valued relations ρ, σ and
φ on X given by:

ρ = [{(a, b), (a, c), (b, c)}, {(a, a), (a, b), (a, c), (b, b), (b, c)}],

σ = [{(a, a), (b, a)}, {(a, a), (b, a), (c, a), (c, b)}],

φ = [{(a, a), (b, a)}, {(a, a), (b, a), (c, b)}].
Then we can easily check that ρ ̸∈ IV PM(X), σ ̸∈ IV PM(X) but φ ∈ IV PM(X).
By Remark 3.33 (2), we can see that

φ− = {(a, a), (b, a)}, φ+ = {(a, a), (b, a), (c, b)} ∈ PT (X).

Furthermore, φ−1 ̸∈ IV PM(X) since (φ−)−1 = {(a, a), (a, b)} ̸∈ PT (X).

Proposition 3.35 (See Proposition 4.16, [16]). IV PM(X) is a subsemigroup of
(IV R(X), ◦

IV
).
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Proof. It is sufficient to prove that ψ ◦
IV
φ ∈ IV PM(X) for any φ, ψ ∈ IV PM(X).

Let φ, ψ ∈ IV PM(X) and suppose (x, y)1 , (x, z)1 ∈ ψ ◦
IV

φ. Then there are

u1 , v1 ∈ X̃ such that

(x, u)1 ∈ ψ, (u, y)1 ∈ φ, (x, v)1 ∈ ψ, (v, z)1 ∈ φ.

Thus by Definition 3.32 (i), u
1
= v

1
and y

1
= z

1
. So ψ ◦

IV
φ satisfies the condition

Definition 3.32 (i). Similarly, we can show that ψ ◦
IV

φ satisfies the condition
Definition 3.32 (ii). Hence ψ ◦

IV
φ ∈ IV PM(X). □

Proposition 3.36 (See Proposition 4.17, [16]). Suppose φ, ψ ∈ IV PM(X). Then

(1) Dom(ψ ◦
IV
φ) = φ−1[Im(φ) ∩Dom(ψ)],

(2) Im(ψ ◦
IV
φ) = ψ[Im(φ) ∩Dom(ψ)],

(3) (ψ ◦
IV
φ)(x

1
) = φ(ψ(x

1
)) and (ψ ◦

IV
φ)(x

0
) = φ(ψ(x

0
)) for any x

1
, x

0
∈

Dom(ψ ◦
IV
φ).

Proof. (1) Let x
1
∈ Dom(ψ ◦

IV
φ). Then there are y

1
, z

1
∈ X̃ such that (x, y)

1
∈

φ, (y, z)
1
∈ ψ. Thus y

1
∈ [Im(φ) ∩ Dom(ψ)] and (y, x)

1
∈ φ−1. So by Definition

3.30, we have

x
1
∈ φ−1y

1
⊂ φ−1[Im(φ) ∩Dom(φ)].

Similarly, we get x0 ∈ φ−1[Im(φ) ∩Dom(ψ)] for each x0 ∈ Dom(ψ ◦
IV
φ). Hence

Dom(ψ ◦
IV
φ) ⊂ φ−1[Im(φ) ∩Dom(ψ)].

Conversely, let x
1
∈ φ−1[Im(φ)∩Dom(ψ)]. Then there is z

1
∈ Im(φ)∩Dom(ψ)

such that x1 ∈ φ−1z1 , i.e., (x, z)1 ∈ φ. Since z1 ∈ Dom(ψ), there is y1 ∈ X̃ such
that (z, y)1 ∈ ψ. Thus (x, y)1 ∈ ψ ◦

IV
φ, i.e., x1 ∈ Dom(ψ ◦

IV
φ). Similarly, we have

x
0
∈ Dom(ψ ◦

IV
φ). So φ−1[Im(φ) ∩Dom(ψ)] ⊂ Dom(ψ ◦

IV
φ). Hence the result

holds.
(2) The proof is similar to (1).

(3) (x, z)1 ∈ ψ ◦
IV
φ if and only if there is y1 ∈ X̃ such that (x, y)1 ∈ φ and

(y, z)
1
∈ ψ. Since φ, ψ, ψ ◦

IV
φ ∈ IV PM(X), Definition 3.32, we have y

1
= φ(x

1
)

and z
1
= ψ(y

1
). Thus (ψ ◦

IV
φ)(x

1
) = φ(ψ(x

1
)). Similarly, we have (ψ ◦

IV
φ)(x

0
) =

φ(ψ(x
0
)). □

Definition 3.37. Let f̃ ∈ IV PM(X). Then f̃ is called an interval-valued mapping

from X into X (in briefly, of X), if D(f̃) = X̃. We will denote the set of all

interval-valued mappings of X as IV M(X). It is clear that f̃ ∈ IV M(X), then
f−, f+ ∈ T (X), where T (X) denotes the set of all classical mappings of X (See
[16]).

It is obvious that f̃ ∈ IV M(X) ̸⇒ f̃−1 ∈ IV M(X) in general.

Proposition 3.38. If f̃ , g̃ ∈ IV M(X), then g̃ ◦
IV
f̃ ∈ IVM(X).

The following is an immediate consequence of Propositions 3.35 and 3.38.

Corollary 3.39 (See Proposition 4.18, [16]). (IV M(X), ◦
IV

) is a subsemigroup of
(IV PM, ◦

IV
) and then a subsemigroup of (IV R(X), ◦

IV
).
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Definition 3.40. The interval-valued diagonal relation on X, denoted by △̃X or

△̃, is defined by:

△̃X = [
⋃
x∈X

(x, x)1,
⋃
x∈X

(x, x)1].

From Proposition 3.17, we can easily see that

△̃ = △̃
IV P

= [{(x, x) : x ∈ X}, {(x, x) : x ∈ X}].

Moreover, △̃ ∈ IV M(X), and it will be called an interval-valued identity mapping

and denoted by ĩdX . In fact, ĩdX = [idX , idX ], where idX denotes the classical iden-
tity mapping.

Equivalence relations are very important in modern mathematics, for example,
factor groups in algebra, quotient spaces in topology and modular number systems
in number theory, etc. Now we give the definition for an equivalence relation in
terms of interval-valued sets.

Definition 3.41. Let X be a nonempty set and let ρ ∈ IV R(X). Then R is said
to be interval-valued

(i) reflexive, if x
1
ρx

1
, x

0
ρx

0
for each x ∈ X, i.e., △̃ ⊂ ρ,

(ii) symmetric, if x1ρy1 , x0ρy0 imply y1ρx1 , y0ρx0 for any x, y ∈ X, i.e.,
ρ = ρ−1,

(iii) transitive, if x
1
ρy

1
, y

1
ρz

1
and x

0
ρy

0
, y

0
ρz

0
imply x

1
ρz

1
and x

0
ρz

0
for any

x, y, z ∈ X, i.e., ρ ◦
IV
ρ ⊂ ρ,

(iv) an equivalence relation on X, if it is reflexive, symmetric and transitive.

We will denote the set of all interval-valued equivalence relations onX as IV RE(X).

From Definitions 3.40 and 3.41, it is obvious that △̃ ∈ IV RE(X).

Remark 3.42. (1) If ρ ∈ IV RE(X), then Dom(ρ) = Im(ρ) = X̃.
(2) If ρ ∈ IV RE(X), then ρ−, ρ+ ∈ RE(X), where RE(X) denotes the set of

all classical equivalence relations on X.

Example 3.43. Let X = {a, b, c, d, e} and let ρ = [ρ−, ρ+] be the interval-valued
relation on X given by:

ρ− = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a)},
ρ+ = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (c, a), (a, c), (b, c), (c, b)}.

Then clearly, ρ ∈ IV RE(X).

Definition 3.44. Let Σ = (Aj)j∈J be a family of interval-valued sets in a set
X. Then Σ is called an interval-valued partition of X, if it satisfies the following
conditions:

(i) Σ− = (A−
j )j∈J and Σ+ = (A+

j )j∈J

(ii) Σ− is a classical partition of X.

Example 3.45. Let X = {a, b, c, d, e} and consider two families Σ1 = {A1, A2, A3}
and Σ2 = {B1, B2, B3}of interval-valued sets given by:

A1 = [{a, b}, {a, b, c}], A2 = [{c, d}, {c, d, e}], A3 = [{e}, {b, e}],
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B1 = [{a, b}, {a, b}], B2 = [{c, d}, {c, d}], B3 = [{e}, {e}].
Then we can easily check that Σ1 is not an interval-valued partition but Σ2 is an
interval-valued partition of X.

Remark 3.46. Let Σ = (Aj)j∈J be a family of interval-valued sets in a set X. If
there is j0 ∈ J such that A−

j0
⫋ A+

j0
, then Σ+ = (A+

j )j∈J cannot a partition of X.
Thus Σ is not an interval-valued partition of X. So for Σ to be an interval-valued
partition of X, the sufficient condition “A−

j = A+
j for each j ∈ J” must be added.

Hence in this case, to prove that Σ is an interval-valued partition of X, it is sufficient
to show that Σ− is an partition of X.

In Definition 3.30 (i), if ρ ∈ IV RE(X), then for each x ∈ X, ρx is called an
interval-valued equivalence class determined by x and ρ. The set of all interval-
valued classes in X is denoted by X/ρ, i.e., X/ρ = {ρx ∈ IV S(X) : x ∈ X} and
X/ρ is called the interval-valued quotient set of X by ρ.

Proposition 3.47. Let X be a nonempty set and let ρ ∈ IV RE(X). Suppose
ρ−x = ρ+x for each x ∈ X. Then X/ρ is an interval-valued partition of X.

Proof. The proof is similar to the classical case. □

In Proposition 3.47, if the condition “ρ−x = ρ+x for each x ∈ X” is omitted,
then X/ρ can be not an interval-valued partition of X (See Example 3.48).

Example 3.48. Let ρ be the interval-valued equivalence relation on X given in
Example 3.43. Then we can easily calculate that

ρa = [{a, b}, {a, b, c}], ρc = [{c}, {a, b, c}], ρd = [{d}, {d}], ρe = [{e}, {e}].

Since (X/ρ)+ = {ρ+a, ρ+c, ρ+d, ρ+e} is not a partition of X, X/ρ is not an interval-
valued partition of X, where X/ρ = {ρa, ρc, ρd, ρe}.

Proposition 3.49. Let X be a nonempty set and let ρ ∈ IV RE(X). Suppose
ρ−x = ρ+x for each x ∈ X. Then X/ρ is an interval-valued partition of X.

Proof. The proof is similar to the classical case. □

The following is the converse corresponding to Proposition 3.49.

Proposition 3.50. Let X be a nonempty set and let Σ = (Aj)j∈J be an interval-
valued partition of X. We define an interval-valued relation X/Σ on X as follows:
for each (x, y) ∈ X ×X,

x(X/Σ)−y if and only if (∃j ∈ J) x, y ∈ A−
j .

Then X/Σ ∈ IV RE(X). Moreover, X/(X/Σ) = Σ.

Proof. The proof is similar to the classical case. □

Example 3.51. Let us consider the interval-valued equivalence relation X/Σ2 on X
given in Example 3.45. Then clearly by Proposition 3.49, X/Σ2 ∈ IV RE(X). In fact,
(X/Σ2)

− = (X/Σ2)
+ = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d), (e, e)}. Fur-

thermore, we can confirm that X/(X/Σ2) = Σ2.
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4. the category of interval-valued relations

We construct the category of interval-valued relational spaces and the morphisms
between them, and study it in the sense of a topological universe. From Definitions
3.32 and 3.37, we have the following definition.

Definition 4.1. Let X, Y be nonempty sets and let f̃ = [f−, f+] ∈ IV R(X × Y ).

Then f̃ is called an interval-valued mapping from X into Y , denoted by f̃ : X → Y ,
if f−, f+ : X → Y are classical mappings. If f−, f+ are injective [resp. surjective,

bijective], then f̃ is said to be interval-valued injective [resp. surjective, bijective].

Example 4.2. Consider two mappings f−, f+ : R → R defined by: for each x ∈ R,

f−(x) = x+ 1, f+(x) = 2x+ 1.

Then clearly, f̃ = [f−, f+] is an interval-valued mapping. Moreover, f̃ is bijecrive.

Definition 4.3. Let X, Y be two non-empty sets, let f̃ : X → Y be an interval-
valued mapping and let A ∈ IV S(X), B ∈ IV S(Y ).

(i) The image of A under f̃ , denoted by f̃(A), is an IVS in Y defined as:

f̃(A) = [f−(A−), f+(A+)].

(ii) The preimage of B under f̃ , denoted by f̃−1(B), is an IVS in X defined as:

f̃−1(B) = [(f−)−1(B−), (f+)−1(B+)].

It is obvious that f̃(a
1
) = f̃(a)

1
and f̃(a

0
) = f̃(a)

0
for each a ∈ X.

Proposition 4.4. Let X, Y be two non-empty sets, let f̃ : X → Y be an interval-
valued mapping, let A, A1, A2 ∈ IV S(X), (Aj)j∈J ⊂ IV S(X) and let B, B1, B2 ∈
IV S(Y ), (Aj)j∈J ⊂ IV S(Y ). Then

(1) if A1 ⊂ A2, then f̃(A1) ⊂ f̃(A2),

(2) if B1 ⊂ B2, then f̃
−1(B1) ⊂ f̃−1(B2),

(3) A ⊂ f̃−1(f̃(A)) and if f̃ is injective, then A = f̃−1(f̃(A)),

(4) f̃(f̃−1(B)) ⊂ B and if f̃ is surjective, f̃(f̃−1(B)) = B,

(5) f̃−1(
⋃

j∈J Bj) =
⋃

j∈J f̃
−1(Bj),

(6) f̃−1(
⋂

j∈J Bj) =
⋂

j∈J f̃
−1(Bj),

(7) f̃(
⋃

j∈J Aj) =
⋃

j∈J f̃(Aj),

(8) f(
⋂

j∈J Aj) ⊂
⋂

j∈J f̃(Aj) and if f̃ is injective, then f̃(
⋂

j∈J Aj) =
⋂

j∈J f̃(Aj),

(9) if f̃ is surjective, then f̃(A)c ⊂ f̃(Ac).

(10) f̃−1(Bc) = f̃−1(B)c.

(11) f̃−1(∅̃) = ∅̃, f̃−1(X̃) = X̃,

(12) f̃(∅̃) = ∅̃ and if f̃ is surjective, then f̃(X̃) = X̃,

(13) if g̃ : Y → Z is an interval-valued mapping, then (g̃◦
IV
f̃)−1(C) = f̃−1(g̃−1(C))

for each C ∈ IV S(Z).

Proof. The proof is straightforward. □
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Definition 4.5. Let f̃ : X → Y and g̃ : Z → W be any interval-valued mappings.

Then the product of f̃ and g̃, denoted by f̃ × g̃ = [f− × g−, f+ × g+], is an interval-
valued mapping from X × Z into Y ×W defined as follows:

f− × g−, f+ × g+ : X × Z → Y ×W are classical product mappings.

In particular, we write the product mapping f̃ × f̃ : X ×X → Y × Y as f̃2.

Definition 4.6. Let X be a nonempty set and let ρ ∈ IV R(X). Then (X, ρ) is
called an interval-valued relational space (in briefly, IVRS).

It is clear that if (X, ρ) is an IVRS, then (X, ρ−), (X, ρ+) are relational spaces
in the sense of Chung [17].

Definition 4.7. Let (X, ρ), (Y, σ) be two IVRSs and let f̃ : X → Y be an interval-

valued mapping. Then f̃ : (X, ρ) → (Y, σ) is called an interval-valued relation

preserving mapping (briefly, IVRPreM), if f̃2(ρ) ⊂ σ.

Remark 4.8. From Result 2.4, Definition 4.7 and Proposition 4.4 (3), we can easily
see that:

f̃ : (X, ρ) → (Y, σ) is an IVRPreM

if and only if (f̃(x), f̃(y))
1
∈ σ and (f̃(x), f̃(y))

0
∈ σ

for any (x, y)
1
, (x, y)

0
∈ ρ

if and only if ρ ⊂ (f̃−1)2(σ), i.e., ρ− ⊂ (f−
−1

)2(σ−), ρ+ ⊂ (f+
−1

)2(σ+).
In fact, f− : (X, ρ−) → (Y, σ−) and f+ : (X, ρ+) → (Y, σ+) are relation preserving
mappings (See [17]).

The followings are immediate consequences of Definitions 3.40 and 4.7, and Propo-
sition 4.4 (13).

Proposition 4.9. Let (X, ρ), (Y, σ), (Z, δ) be IVRSs.

(1) The interval-valued identity mapping ĩdX : (X, ρ) → (X, ρ) is an IVPreM.

(2) If f̃ : (X, ρ) → (Y, σ) and g̃ : (Y, σ) → (Z, δ) are IVPreMs, then g̃ ◦
IV
f̃ is

an IVPreM.

From Proposition 4.9, we can see that IVRel forms a concrete category, where
IVRel denotes the the class of all IVRSs and IVRPreMs between them. Every
IVRel-morphism will be called an IVRel-mapping.

Remark 4.10. (1) From Definition 3.32, Proposition 4.5 and Theorem 1.4 in
[17], we can think that the category IVRel composes of two categories
consisting of all relational spaces and relation preserving mappings between
them, say IVRel− and IVRel+. Then we will write

IVRel = [IVRel−, IVRel+].

(2) It is clear that every singleton set has two different interval-valued relations.
Then the category IVRel is not properly fibred. However IVRel is well-
powered and cowell-powered.

Proposition 4.11. The category IVRel is topological over Set, where Set is the
category consisting of all sets and mappings between them. That is, for each set
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X, each family ((Xj , ρj))j∈J of IVRSs and for each family (f̃j : X → Xj)j∈J of
interval-valued mapping (called a source of interval-valued mappings), there is a

ρ ∈ IV R(X) which initial with respect to (X, (f̃j)j∈J , ((Xj , ρj))j∈J) (See [18, 19] for
the definition of a topological category).

Proof. Let X be a set and let ((Xj , ρj))j∈J be a family of IVRSs.

(i) Suppose (f̃j : X → Xj)j∈J is a source of interval-valued mappings. We
define an interval-valued relation ρ on X defined as follows:

ρ =
⋂
j∈J

(f̃−1
j )2(ρj) = [

⋂
j∈J

(f−j
−1

)2ρ−j ,
⋂
j∈J

(f+j
−1

)2ρ+j ].

Then it is well-known (Theorem 1.6 (1) [17]) that f−j : (X, ρ−) → (Xj , ρ
−
j )

and f+j : (X, ρ+) → (Xj , ρ
+
j ) are relation preserving mappings. Thus f̃j :

(X, ρ) → (Xj , ρj) is an IVRel-mapping.
(ii) Suppose (Y, σ) is any IVRS and g̃ : Y → X is an interval-valued mapping

such that g̃ ◦ f̃ : (Y, σ) → (Xj , ρj) is an IVRel-mapping for each j ∈
J . Then from (Theorem 1.6 (1) [17]), g− : (Y, σ−) → (X, ρ−) and g+ :
(Y, σ+) → (X, ρ+) are relation preserving mappings. Thus g̃ : (Y, σ) →
(X, ρ) is an IVRel-mapping. So ρ is the initial interval-valued relation on

X with respect to (f̃j)j∈J . This completes the proof.

□

The following is the dual of Proposition 4.12.

Corollary 4.12. The category IVRel is cotopological over Set. In fact, the final

interval-valued relation ρ on X with respect to a sink (f̃j : Xj → X)j∈J is

ρ =
⋃
j∈J

f̃2j (ρj) = [
⋃
j∈J

f−j
2
ρ−j ,

⋃
j∈J

f+j
2
ρ+j ].

Proof. From (Theorem 1.5 [19]), it is clear that IVRel is cotopological over Set.
However, by (Theorem 1.6 (1) [17]), we can prove directly that ρ is the final interval-

valued relation on X with respect to (f̃j)j∈J . □

Remark 4.13. (1) IVRel is complete and cocomplete (See Proposition [18]
and Theorem 1.6 [19]).

(2) IVRel is well-powered and co-well-powered (See Proposition [18]).
(3) IVRel is Cartesian closed over Set (See Examples 1.9 (a) [20]).

Proposition 4.14. Final episinks in IVRel are preserved by pullbacks.

Proof. From Remark 4.6 (1), it is sufficient to prove that final episinks in IVRel−

and IVRel+ are preserved by pullbacks. Let (g−j : (X, ρ−j ) → (Y, ρ−
Y
))j∈J be any

final episink in IVRel− and let f− : (W,ρ−
W
) → (Y, ρ−

Y
) be any IVRel−-mapping.

For each j ∈ J , let U−
j = {(w, xj) ∈ W × Xj : f−(w) = g−j (xj)}, let ρ−

U
−
j

=

ρ−
W

× ρ−j |U−
j ×U−

j
and let ej and pj denote the usual projections of U−

j . Then

ej : (U−
j , ρ

−
U

−
j

) → (W,ρ−
W
) and pj : (U−

j , ρ
−
U

−
j

) → (Xj , ρ
−
j ) are IVRel−-mappings,

and the following diagram is a pullback square in IVRel−:
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Figure 1. A pullback square in IVRel−

Now we prove that (ej : (U−
j , ρ

−
U

−
j

) → (W,ρ−
W
))j∈J is a final episink in IVRel−.

Let w ∈ W . Since (g−j )j∈J is an episink, there are j ∈ J and xj ∈ Xj such that

g−j (xj) = f−(w). Thus (w, xj) ∈ U−
j and w = ej(w, xj). So (ej)j∈J is an episink.

Suppose ρ∗,−is the final relation on W with respect to (ej)j∈J and let (w,w
′
) ∈

ρ−
W
. Since f− : (W,ρ−

W
) → (Y, ρ−

Y
) is an IVRel−-mapping, we have

(f−(w), f−(w
′
)) ∈ ρ−

Y
.

Since (g−j : (Xj , ρ
−
j ) → (Y, ρ−

Y
) is an episink, by Corollary 4.12, we get

(f−(w), f−(w
′
)) ∈

⋃
j∈J

(g−j × g−j )(ρ
−
j ).

By Result 2.4 (2), there are j ∈ J and (xj , x
′

j) ∈ ρ−j such that

(f−(w), f−(w
′
)) = (g−j (xj), g

−
j (x

′

j)) = (g−j × g−j )(xj , x
′

j).

Then (xj , x
′

j) = ((g−j )
−1 × (g−j )

−1)(f−(w), f−(w
′
)). Thus we have

((w, xj), (w
′
, x

′

j)) = (e−1
j × e−1

j )(w,w
′
) and ((w, xj), (w

′
, x

′

j)) ∈ ρ−
U

−
j

.

Since (w,w
′
) ∈ ρ−

W
, (w,w

′
) ∈ ρ∗,−. So ρ−

W
⊂ ρ∗,−. On the other hand, since

(ej : (U−
j , ρ

−
U

−
j

) → (W,ρ∗,−) is final, id−
W

: (W,ρ∗,−) → (W,ρ−
W
) is a relational

preserving mapping. Hence ρ∗,− ⊂ ρ−
W
, i.e., ρ−

W
= ρ∗,−. Therefore final episinks in

IVRel− are preserved by pullbacks. Similarly, we can show that final episinks in
IVRel+ are preserved by pullbacks. This completes the proof. □

Now we consider a subcategory of IVRel which is a topological universe over
Set.

Definition 4.15. Let X be a nonempty set and let ρ ∈ IV R(X). Then (X, ρ) is

called a reflexive relational space, if ρ is reflexive, i.e., △̃ ⊂ ρ.
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It is obvious that the class of all interval-valued reflexive relational spaces and
IVRel-mappings between them forms a full subcategory of IVRel and denoted by
IVRelR.

Definition 4.16 ([8, 18, 19, 21]). Let A be a concrete category.

(i) The A-fibre of a set X is the class of all A-structures on X.
(ii) A is said to be properly fibred over Set, if it satisfies the following conditions:

(iia) (Fibre-smallness) for each set X, the A-fibre is a set,
(iib) (Terminal separator property) for each singleton set X, the A-fibre of

X has precisely one element,
(iic) if ξ and η are A-structures on a set X such that idX : (X, ξ) → (X, η)

and idX : (X, η) → (X, ξ) are A-morphisms, then ξ = η.

The following is an immediate consequence of Definitions 4.15 and 4.16.

Lemma 4.17. IVRelR is properly fired over Set.

Lemma 4.18. IVRelR is closed under the formation of initial sources in IVRel.

Proof. Let (f̃j : (X, ρ) → (Xj , ρj)j∈J be an initial source in IVRel such that
(Xj , ρj) ∈ IVRelR for each j ∈ J. Then by Proposition 4.11,

ρ =
⋂
j∈J

(f̃−1
j )2(ρj) = [

⋂
j∈J

(f−j
−1

)2ρ−j ,
⋂
j∈J

(f+j
−1

)2ρ+j ].

Since ρj is reflexive for each j ∈ J , (x, x) ∈ ρ−j and (x, x) ∈ ρ+j for each j ∈ J and

each x ∈ X. Thus (x, x) ∈
⋂

j∈J(f
−
j

−1
)2ρ−j and (x, x) ∈

⋂
j∈J(f

+
j

−1
)2ρ+j for each

x ∈ X. So (x, x) ∈ ρ− and (x, x) ∈ ρ+. Hence ρ is reflexive. This completes the
proof. □

From Remark 4.13 (2), Theorems 2.5 and 2.6 in [19], we have the following.

Corollary 4.19. (1) IVRelR is a bireflective subcategory of IVRel.
(2) IVRelR is topological over Set.

The following is an immediate consequence of Corollary 4.19 and Theorem 1.5 in
[19].

Corollary 4.20. IVRelR is cotopological over Set.

Proposition 4.21. IVRelR is Cartesian closed over Set.

Proof. From Remark 4.10, we write IVRelR = [IVRelR
−, IVRelR

+]. Then by
Theorem 1.12 in [17], IVRelR

− and IVRelR
+ are Cartesian closed over Set. Thus

IVRelR is Cartesian closed over Set. □

Proposition 4.22. Final covering families in IVRelR are preserved by pullbacks.

Proof. In order to prove this, it is sufficient to show that final covering families in
IVRelR

− [resp. IVRelR
+] are preserved by pullbacks. Let (g−j : (X−

j , ρ
−
j ) →

(Y, ρ−
Y
))j∈J be any final covering in IVRelR

− and let f− : (W,ρ−
W
) → (Y, ρ−

Y
) be

any IVRel−-mapping, where (W,ρ−
W
) is a reflexive relational space. For each j ∈ J ,

let us take Uj , ρ
−
U

−
j

, ej and pj as in the proof of Proposition 4.14. Since IVRelR
−
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is closed under the formation of pullbacks in IVRel− by Theorem 2.4 in [19], it is
enough to prove that (ej)j∈J is final.

Suppose ρ∗,− is the final relation on W with respect to (ej)j∈J and let (w,w
′
) ∈

(W ×W −△̃
W
). Then by similar argument in the proof of Proposition 4.14, we get

(w,w
′
) ∈ ρ−

W
⇐⇒ (w,w

′
) ∈ ρ∗,−, i.e., ρ−

W
= ρ∗,− on W ×W − △̃

W
.

If (w,w) ∈ △̃
W
, then clearly we have

(w,w) ∈ ρ−
W

⇐⇒ (w,w) ∈ ρ∗,−, i.e., ρ−
W

= ρ∗,− on △̃
W
.

Thus in all, ρ−
W

= ρ∗,− on W ×W. Similarly, we can see that ρ+
W

= ρ∗,+ on W ×W.
This completes the proof. □

Proposition 4.23. IVRelR is a topological universe over Set.

Proof. From Lemma 4.17, Corollary 4.20 and Proposition 4.22, we can easily see
that IVRelR satisfies all the conditions of a topological universe. □

Remark 4.24. (1) (The redefinition of Definition 4.3) Let X, Y be two non-empty
sets, let f : X → Y be a mapping and let A ∈ IV S(X), B ∈ IV S(Y ).

(i) The image of A under f , denoted by f(A), is an IVS in Y defined as:

f(A) = [f(A−), f(A+)].

(ii) The preimage of B under f , denoted by f−1(B), is an IVS in X defined as:

f−1(B) = [f−1(B−), f−1(B+)].

It is obvious that f(a
1
) = f(a)

1
and f(a

0
) = f(a)

0
for each a ∈ X.

Then we can see that the image and preimage under mappings have almost similar
properties in Proposition 4.4.

(2) (The redefinition of Definition 4.7) Let (X, ρ), (Y, σ) be two IVRSs and let
f : X → Y be a mapping. Then f : (X, ρ) → (Y, σ) is called an interval-valued
relation preserving mapping (briefly, IVRPreM), if f2(ρ) ⊂ σ, where f2 = f × f.
Then we can easily see that IVRel∗ forms a concrete category, where IVRel∗

denotes the the class of all IVRSs and IVRPreMs between them. Every IVRel∗-
morphism will be called an IVRel∗-mapping. Furthermore, we can prove that the
full subcategory IVRel

R

∗ of IVRel∗ is a topological universe over Set.

5. Conclusions

By defining an (equivalence) relation and a partition via interval-valued sets,
we could discussed their various properties. Furthermore, we formed the concrete
category IVRel of interval-valued relational spaces and the morphisms between
them, and investigated it in the view-point of a topological universe. In particular,
we proved that the full subcategory IVRel

R
of the category IVRel is the topological

universe over Set. In the future, we will apply the concept of interval-valued sets to
group theory, graph theory and various logic algebras.

Acknowledgements. We thank the reviewers for their kind suggestions.
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