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Abstract. In the medicine, the reference intervals are obtained help of
statistical methods. These intervals are evaluated by physicians according
to their vocational knowledge and thus disease is identified. The reference
intervals must be obtained accurately as they are the basis of the analysis
of situation and treatment. Are your reference intervals correct for your
patient or is it suitable for the detection of diseases or do medical chart
records and reference intervals provide complete and accurate information
about the diseases they represent? In this paper, the entropy values in
the reference intervals were calculated for normal, partially degraded and
full degraded bone mineral density of diabetic and nondiabetics patients
and were given entropy images using by fuzzy sets and its entropy concept.
Thus, we have measured entropies of reference intervals and given entropy
images. Also, we have calculated entropy values for T and Z scores and
it has been noticed that entropy values very high in some bone mineral
intervals.
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1. Introduction

Let’s start with this famous sentence: ”Everything in medicine is fuzzy” (See
Kazem Sadegh-Zadeh, [1], p.17). In the diagnosis of diseases, physical examination
findings of the patient, preliminary information as well as a series of laboratory
tests and imaging methods are used. Then the results are interpreted. The treat-
ment method is determined. In these processes, there are many fuzzy situations
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and we know that fuzzy sets are widely used in medicine. In medicine, the mathe-
matical models were constructed using by fuzzy logic, fuzzy sets and its membership
functions. These mathematical models have made an important methodological con-
tribution to medical research (See [2, 3, 4, 5, 6]). One of the earliest mathematical
models was created by Sanchez [7, 8].

Some therapy methods, for example endocrine therapy or chemotherapy, can have
harmful effects on bone cells and can lead to rapid bone loss. As a result, the risk of
bone fracture increases. Therefore, the images or graphs and various measurement
ranges are important in bone density measurement as well as in many areas of
medicine. Medical graphs contains medically data for patients. A good medical
graph, chart or numeric values will represent a clear picture of the patient related
to illness.

These images or graphs also provides vital information to allow healthcare prac-
titioners to make sound decisions based on the information contained in the records.
For example the ECG and EEG devices display a graphical image of heart rates and
brain waves, respectively and the DXA devices gives numerical values. In medicine,
paramedics must be able to interpret graphs very well in order to make the right
decision. For instance, knowledge of ventilator waveforms for lungs is important for
clinicians and sometimes graphs can be difficult to interpret and it can take long
time (See [9, 10] and [11]). Even an infinitesimal amount of mistake can cause colos-
sal difference in the diagnosis process, or some significant data can stay unnoticed,
especially in the case of junior doctors. Some times, instead of just observing wave
graphics, numerical data obtained from these diagrams are more reliable and easy
to understand. In this respect, both graphical representation and numerical values
have an important place in diagnosis as they complement each other. Recently,
Şengönül et al. [12, 13] have made investigations in the same direction by using
fuzzy sets and the entropy concept.

In this paper, the reference intervals of bone mineral density were transformed
into fuzzy sets and calculated the entropy values to find the uncertainty contained
in the reference interval of diabetes and nondiabetic, so the doctors can keep in view
patient treatment using entropy values. Finally, for better observations of patients,
with the help of the entropy functions, medical images were given for some bone
diseases at diabetes. These images were obtained by using Wolfram Mathematica
7.0.

Now, to explain the main topic of this article, we will summarize the entropy
concept for any fuzzy set and related concepts . After we will make some compu-
tations but these computations are completely different than Czogala and Leski’s
computations [14].

Let X be nonempty crisp set, R and N for the set of all real and natural numbers,
respectively. According to Zadeh, a fuzzy subset of X is

∅ ̸= {(x,m(x)) : x ∈ X } ⊆ X × [0, 1]

for some function m : X → [0, 1] [15]. Let us consider a function m : R → [0, 1]
as a subset of a nonempty base space R. In this case, the function m(x) is called
the membership function of the fuzzy set F . Let suppose that m(x) be membership
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function of the fuzzy set F and the function h : [0, 1] → [0, 1] satisfies the following
properties:

(1) Monotonically increasing at [0, 1
2 ] and decreasing at [ 12 , 1],

(2) h(x) = 0 if x = 0,
(3) h(x) = 1 if x = 1

2 .

Then the function h is called an entropy function and the equality H(m(x)) =
h(m(x)) holds for x ∈ R.

Some well known entropy functions are given as follows:

h1(x) = 4x(1− x), h2(x) = −x lnx− (1− x) ln(1− x), h3(x) = min{2x, 2− 2x}

and

h4(x) =

{
2x, x ∈ [0, 1

2 ]
2(1− x), x ∈ [ 12 , 1].

Note that the function h1 is the logistic function, h2 is called Shannon function and
h3 is the tent function (See [16, 17, 18, 20, 19, 21]).

The similarity of the membership functions does not reflect the conception of
itself, but it will be used for examining the context of the membership functions.
Whether a particular shape is suitable or not can be determined only in the context
of a particular application. However, that many applications are not overly sensitive
to variations in the shape. In such cases, it is convenient to use a simple shape, such
as the triangular shape or Gaussian shape of membership function. Let us define
fuzzy set A on the set R with membership function as follows:

A(x) =


hA

u1−u0
(x− u0), x ∈ [u0, u1)

−hA

u2−u1
(x− u1) + hA, x ∈ [u1, u2]

0, others,

(1.1)

where the notations hA denotes height of the fuzzy sets A, u0, u1, u2 ∈ R and
u0 ≤ u1 ≤ u2. For brief, we write triple (u0, u1 : hA, u2) for fuzzy set A. The
notation F denotes the set of the all fuzzy sets in the form u = (u0, u1 : hA, u2) on
the R.

In the fuzzy set theory, it is known that the fuzziness of a fuzzy set is a important
matter and there are many method to measure the fuzziness of a fuzzy set. At
first, the fuzziness was thought to be the distance between fuzzy set and its nearest
nonfuzzy set. Later, the entropy was used instead of fuzziness [20, 21]. Well, then
what is the entropy? These definitions are given in [12] and [13] but here it will be
summarized.

Let F ∈ F and m(x) be the membership function of the fuzzy set F and consider
the function H : F → R+.

(1) H(F ) = 0 iff F is crisp set,
(2) H(F ) has a unique maximum, if m(x) = 1

2 for all x ∈ R
(3) For F,G ∈ F , if G(x) ≤ F (x) for F (x) ≤ 1

2 and F (x) ≤ G(x) for F (x) ≥ 1
2

then H(F ) ≥ H(G),
(4) H(F c) = H(F ), where F c is the complement of the fuzzy set F .

If the conditions (1)–(4) hold, then H(F ) is called an entropy function of the
fuzzy set F (See [22]).
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Let X be a continuous universal set, F is fuzzy set on X , m(x) be membership
function of F , and h ∈ {h1, h2, h3}. Then the total entropy of the fuzzy set F on
the X is defined as follows:

ηF =

∫
x∈X

h(m(x))p(x)dx,(1.2)

where p(x) is the probability density function of the available data in X [23]. If we
take p(x) = 1 and h = h1 in the (1.2), then the ηF is called a logistic entropy of the
fuzzy set F .

It is known that the value of ηF is depend on support of the fuzzy set F . If the
F is a fuzzy set on the set R with membership function (1.1), then we see that the
logistic entropy of fuzzy set F is equal to

ηF = c(2hF − 4

3
h2
F )ℓ(F )(1.3)

for p(x) = c and h = h1, where ℓ(F ) = max{x− y : x, y ∈ {x ∈ R : m(x) > 0}} [12].
It is known that the T score is an expression of how much the patient’s BMD

(bone mineral density) measurements are above or below the average of the BMD
measurements of young adults of the same sex. Similarly, the Z-score is a comparison
of the bone mineral density of people of the same age, weight, and type as yours.
As we said before, the medical images or graphs and various measurement ranges
are very important in determining the disease especially medical graphs contains
medically data for patients and good medical graph, chart or numeric values will
give a clear picture of the patient related to illness. Clearly, these tools provides
vital information to allow healthcare practitioners to make decisions based on the
information contained in the record. For example, let’s take EEG or ECG graphs.
The ECG and EEG devices display a graphical image of heart rates and brain waves,
respectively and the DXA devices gives numerical values. Likewise, although bone
density is given numerically, it can be displayed graphically.

A high trabecular bone score indicates dense and well-connected bone microar-
chitecture; Conversely, a low trabecular bone score means that the bone microarchi-
tecture is incomplete and weak.

The bone mineral density defines a measure of the amount of minerals (mostly
calcium and phosphorous) contained in a certain volume of bone. Bone mineral
density measurements are used to diagnose osteoporosis (a condition marked by
decreased bone mass), to see how well osteoporosis treatments are working, and to
predict how likely the bones are to break. Low bone mineral density can occur in
patients treated for different illness. Also BMD is called, bone density and bone
mass (For more, [24, 25, 26, 27, 28, 29]).

2. Some entropy computations and new type visualizations for bmd in
diabetes and nondiabets

Recently, Siddapur et all. [27] have studied and compared on bone mineral den-
sity values. They have observed 30 patients for T scores at type 2 diabetic and
nondiabetic postmenopausal women with osteoporosis. They have determined some
intervals about 30 Type 2 diabetic and 30 nondiabetic postmenopausal women and
these intervals have given as a table in [27]. According to the tables of Siddapur
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et all., if Age ∈ [59.44 ± 7.42], Weight ∈ [62.6 ± 9.04] and Height ∈ [152.95 ± 5.29]
then the BMI ∈ [26.79 ± 3.88], BMD ∈ [0.83 ± 0.06], T score ∈ [−2.84 ± 0.42],
Fasting serum glucose ∈ [164.5± 62.19] and Serum zinc ∈ [62.4± 13.35] for diabet-
ics. Also they have obtained that if Age ∈ [59.36 ± 7.44], Height ∈ [151.03 ± 6.45]
and Weight ∈ [53.73 ± 9.28] then the BMI ∈ [23.56 ± 7.44], BMD ∈ [0.79 ± 0.09],
T score ∈ [−3.22 ± 0.74], Fasting serum glucose ∈ [87.6 ± 7.29] and Serum zinc ∈
[68.2± 13.86] for nondiabetics, where [β ± α] is equal the interval [β − α, β + α].

Using to the data which it was given by Siddapur et all. [27], the entropies
of BMD of the diabetic and nondiabetic are calculated as follows, with respect to
p(x) = 1:

ηdiabetic(BMD) =

∫
x∈[0.77,0.83]

h1(sdiabet(BMD)(x))p(x)dx

(2.1)

+

∫
x∈[0.83,0.88]

h1(sdiabet(BMD)(x))p(x)dx = 0.05 (See Figure 1.),

ηnondiabetic(BMD) =

∫
x∈[0.7,0.79]

h1(snondiabet(BMD)(x))p(x)dx(2.2)

+

∫
x∈[0.79,0.88]

h1(snondiabet(BMD)(x))p(x)dx = 0.075

(See Figure 2.) respectively. Where the notations ηdiabet(BMD), ηnondiabet(BMD)
are denotes membership functions of BMD of diabetic patients and nondiabetic
patients, respectively and membership functions are determined with (1.1), given in
section 4. It is seen that in (2.1) and (2.2) the entropy of BMD of nondiabetic is
hight than diabetic person. That is

0.05 = ηdiabetic(BMD) < ηnondiabetic(BMD) = 0.075.

0.78 0.80 0.82 0.84 0.86 0.88

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.
New type visualizations of BMD of
diabetes according to data of [27].
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Figure 2.
New type visualizations of BMD of

nondiabetes according to data of [27].
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Tunç Çekim et al. /Ann. Fuzzy Math. Inform. 24 (2022), No. 3, 271–280

Similarly to above, we can calculate the entropies of Fasting serum glucose, serum
zinc and T-scores for diabetics and non diabetics as follows:

ηdiabetic(FSG) =

∫
x∈[102.31,164.5]

h1(sdiabet(FSG)(x))p(x)dx

(2.3)

+

∫
x∈[164.5,226.69]

h1(sdiabet(FSG)(x))p(x)dx = 51.825 (See Figure 3.),

ηnondiabetic(FSG) =

∫
x∈[80.31,87.6]

h1(snondiabet(FSG)(x))p(x)dx

(2.4)

+

∫
x∈[87.6,94.89]

h1(snondiabet(FSG)(x))p(x)dx = 6.075 (See Figure 4.).

100 120 140 160 180 200 220
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Figure 3.
New type visualizations of Fasting Serum
Glucose of diabetes according to data of

[27].
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Figure 4.
New type visualizations of Fasting Serum
Glucose of nondiabetic according to data

of [27].

ηdiabetic(SZ) =

∫
x∈[49.05,62.4]

h1(sdiabet(SZ)(x))p(x)dx

(2.5)

+

∫
x∈[62.4,75.75]

h1(sdiabet(SZ)(x))p(x)dx = 11.125 (See Figure 5.),

ηnondiabetic(SZ) =

∫
x∈[54.34,68.2]

h1(snondiabet(SZ)(x))p(x)dx

(2.6)

+

∫
x∈[68.2,82.06]

h1(snondiabet(SZ)(x))p(x)dx = 11.55 (See Figure 6.).

276
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Figure 5.
New type visualizations of Serum Zinc of

diabetes according to data of [27].
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Figure 6.
New type visualizations of Serum Zinc of
nondiabetes according to data of [27].

It is seen that in (2.5) and (2.6) the entropy of serum zinc of nondiabetic is hight
than diabetic person. That is

11.25 = ηdiabetic(SZ) < ηnondiabetic(SZ) = 11.55.

Similarly, we can write that a comparison between ηdiabetic(FSG) with ηnondiabetic(FSG)
as follows:

51.825 = ηdiabetic(FSG) > ηnondiabetic(FSG) = 6.075.

3. Comments and Results

In generally, according to our computations:

(1) The entropy of the bone mineral density in diabetes is low than non diabetes
person.

(2) The entropy of the serum zinc in diabetes is low than non diabetes person.
(3) The entropy of the fasting serum glucose in diabetes is biggest than non

diabetes person.

4. Entropy functions list of bone mineral density

h1(sdiabet(BMD)(x)) =


4(x−0.77)

0.06
(1−(x−0.77))

0.06 , 0.77 ≤ x < 0.83
(0.89−x)

0.06
(1−(0.89−x))

0.06 , 0.83 ≤ x ≤ 0.89
0, other wise

h1(snondiabet(BMD)(x)) =


4(x−0.7)

0.09
(1−(x−0.7))

0.09 , 0.7 ≤ x < 0.79
(0.88−x)

0.09
(1−(0.88−x))

0.09 , 0.79 ≤ x ≤ 0.88
0, other wise
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h1(sdiabet(FSG)(x)) =


4(x−102.31)

62.19
(1−(x−102.31))

62.19 , 102.31 ≤ x < 164.5
(226.69−x)

62.19
(1−(226.69−x))

62.19 , 164.5 ≤ x ≤ 226.69
0, other wise

h1(snondiabet(FSG)(x)) =


4(x−80.31)

7.29
(1−(x−80.31))

7.29 , 80.31 ≤ x < 87.6
(94.89−x)

7.29
(1−((94.89−x))

7.29 , 87.6 ≤ x ≤ 94.89
0, other wise

h1(snondiabet(SZ)(x)) =


4(x−49.05)

13.35
(1−(x−49.05))

13.35 , 49.05 ≤ x < 62.4
(75.75−x)

13.35
(1−(75.75−x))

13.35 , 62.4 ≤ x ≤ 75.75
0, other wise

h1(snondiabet(SZ)(x)) =


4(x−54.34)

13.86
(1−(x−54.34))

13.86 , 54.34 ≤ x < 68.2
(82.06−x)

13.86
(1−(82.06−x))

3.86 , 68.2 ≤ x ≤ 82.06
0, other wise.
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