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product summability means

J. K. Kushwaha, Laxmi Rathour, Vishnu Narayan Mishra, K. Kumar

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I
@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 24, No. 3, December 2022



Annals of Fuzzy Mathematics and Informatics

Volume 24, No. 3, (December 2022) pp. 239–252

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2022.24.3.239

@FMI
© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

Estimation of degree of approximation of functions
belonging to Lipschitz class by Nörlund Cesãro
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Abstract. A number of researchers (See [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14]) have determined the degree of approximation of func-
tions belonging to Lipschitz classes, using Cesãro, Euler and generalized
Nörlund and various product summability means. Recently Krasniqi [15]
has determined the degree of approximation of conjugate of functions using
(E, q)(C,α, β) means. Mishra and Khatri [7] also determined the degree of
approximation by using (Np.E1) product means in the Hölder metric. In
this paper, we have determined the degree of approximation of functions
belonging to Lipschitz class and weighted class by using (N, p)(C, θ, β)
means of Fourier series and conjugate series of Fourier series which in par-
ticular becomes (E, q)(C,α, β).
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1. Introduction

The theory of approximation is a very extensive field and the study of trigono-
metric approximation by using summability means is of great mathematical interest
and of great practical importance. Deepmala et al. [16] and Mishra et al. (See
[6, 8, 10, 11]) have determined the degree of approximation of functions belonging
to Lipschitz class and Weighted class by using various summability means. Krasniqi
[15] has determined the degree of approximation of functions belonging to Lipschitz
class by (E, q)(C,α, β) means. Now, the results of Krasniqi (See [15, 17]) have been
generalized by using (N, p)(C, θ, β) means.
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2. Preliminaries

In this section, we define Fourier series and conjugate series of Fourier series along
with summability means those are widely used throughout the paper as following:

Definition 2.1. Let f(x) be a 2π periodic function and integrable in Lebesgue sense
and let

(2.1) f(x) ∼ a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx)

be its Fourier Series with nth partial sum sn(f ;x). The conjugate series of the
Fourier series (2.1) is given by

(2.2)

∞∑
n=1

(an sinnx− bn cosnx) .

Definition 2.2. Let f : R → R be a function. Then L∞-norm and Lp-norm,
denoted by ∥f∥∞ and ∥f∥p, for f are defined respectively as follows:

∥f∥∞ = sup{|f(x)| : x ∈ R} and ∥f∥p =

(∫ 2π

0

|f(x)|pdx
) 1

p

for p ≥ 1.

The degree of approximation of a function f by a trigonometric polynomial tn of
order n under the norm ∥.∥∞ is defined by Zygmund [18] with

∥tn − f∥∞ = sup{|tn(x)− f(x)| : x ∈ R}
and the best approximation En(f) of a function f ∈ Lp is defined by the equality

En(f) = min
tn

∥tn − f∥p.

A function f ∈ Lipα, if |f(x+ t)− f(x)| = O (|t|α) for 0 < α ≤ 1.
A function f ∈ Lip(α, p), if(∫ 2π

0

|f(x+ t)− f(x)|pdx
) 1

p

= O (|t|α) for 0 < α ≤ 1, p ≥ 1.

If ξ(t) is a positive increasing function and p ≥ 1, then f ∈ Lip(ξ(t), p), if(∫ 2π

0

|f(x+ t)− f(x)|pdx
) 1

p

= O (ξ(t)) .

Also f ∈ W (Lp, ξ(t)), if(∫ 2π

0

|{f(x+ t)− f(x)} sinβ x|pdx
) 1

p

= O (ξ(t)) for β ≥ 0, p ≥ 1.

Definition 2.3. Let
∞∑

n=0
un be a given infinite series with the sequence of nth partial

sum {sn} . Let {pn} be a non-negative sequence of constants, real or complex and
let us write

Pn =

n∑
k=0

pk ̸= 0, ∀n ≥ 0,
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p−1 = 0 = P−1, Pn −→ ∞ as n −→ ∞.

Then the nth Cesãro mean of order (θ, β), θ + β > −1 of the sequence {sn} [17] is
defined by

(2.3) Cθ,β
n =

1

Aθ+β
n

n∑
k=0

Aθ−1
n−kA

β
ksk,

where Aθ+β
n = O(nθ+β), θ + β > −1 and Aθ+β

0 = 1.

The series
∞∑

n=0
un is said to be (C, θ, β) summable to s, if

Cθ,β
n =

1

Aθ+β
n

n∑
k=0

Aθ−1
n−kA

β
ksk −→ s as n −→ ∞.

The sequence to sequence transformation

(2.4) tNn (f ;x) =
1

Pn

n∑
ν=0

pn−νsν(f ;x)

defines the sequence {tNn } of Nörlund means of the sequence {sn} generated by the
sequence of coefficients {pn}.

The series
∞∑

n=0
un is said to be summable (N, p) to sum s, if lim

n→∞
tNn −→ s,

particularly

(2.5) Pn =

(
n+ α− 1

α− 1

)
=

Γ(n+ α)

Γ(n+ 1)Γα
, (α > 0).

The (N, p) transform of the (C, θ, β) transform, defines (N, p)(C, θ, β) transform and
we shall denote it by (NC)p,θ,βn . Then we can write

(2.6) NC =
1

Pn

n∑
ν=0

pn−ν
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
ksk.

Throughout the paper, we use the following notations:

V p,θ,β
n =

1

2πPn

[
n∑

ν=0

pn−ν

{
1

Aθ+β
ν

(
ν∑

k=0

Aθ−1
ν−kA

β
k

sin(k + 1
2 )t

sin( t2 )

)}]
,

Ṽ p,θ,β
n =

1

2πPn

[
n∑

ν=0

pn−ν

{
1

Aθ+β
ν

(
ν∑

k=0

Aθ−1
ν−kA

β
k

cos(k + 1
2 )t

sin( t2 )

)}]
,

ϕx(t) = f(x+ t) + f(x− t)− 2f(x),

φx(t) = f(x+ t)− f(x− t).
241



Kushwaha et al./Ann. Fuzzy Math. Inform. 24 (2022), No. 3, 239–252

3. Major Section

We need following Lemmas to prove our Theorems.

Lemma 3.1. |V p,θ,β
n (t)| = O(2n+ 1) for 0 ≤ t ≤ 1

n+1 .

Proof. Since 0 ≤ t ≤ 1
n+1 , sin(

t
2 ) ≥ ( t

π ) and sinnt ≤ n sin t, we get

|V p,θ,β
n (t)| =

1

πPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k

sin(k + 1
2 )t

2 sin( t2 )

}∣∣∣∣∣
≤ 1

πPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k

(2k + 1)sint/2

2 sin( t2 )

}∣∣∣∣∣
=

1

2πPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k(2k + 1)

}∣∣∣∣∣
=

1

2πPn

∣∣∣∣∣
n∑

ν=0

pn−ν(2ν + 1)

∣∣∣∣∣
= O(2n+ 1).

□

Lemma 3.2. |V p,θ,β
n (t)| = O

(
1
t

)
for 1

n+1 ≤ t < π.

Proof. Since sin ( t2 ) ≥ ( t
π ), we get

|V p,θ,β
n (t)| =

1

πPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k

sin(k + 1
2 )t

2 sin( t2 )

}∣∣∣∣∣
≤ 1

2πPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k

1

(t/π)

}∣∣∣∣∣
=

1

2tPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k

}∣∣∣∣∣
= O

(
1

t

)
.

□

Lemma 3.3. |V p,θ,β

n (t)| = O
(
1
t

)
for sin ( t2 ) ≥ ( t

π ),
1

n+1 ≤ t < π.
242
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Proof. Since sin ( t2 ) ≥ ( t
π ),

1
n+1 ≤ t < π, we get

|V p,θ,β

n (t)| =
1

πPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
k

cos(k + 1
2 )t

2 sin( t2 )

}∣∣∣∣∣
≤ 1

2tPn

∣∣∣∣∣
n∑

ν=0

pn−ν
Re

Aθ+β
ν

{
ν∑

k=0

Aθ−1
ν−kA

β
ke

i(k+ 1
2 )t

}∣∣∣∣∣
=

1

2tPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
ke

ikt

∣∣∣∣∣ ∣∣∣ei t
2

∣∣∣
=

1

2tPn

∣∣∣∣∣
n∑

ν=0

pn−ν
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
ke

ikt

∣∣∣∣∣
=

1

2tpn

n∑
ν=0

pn−ν
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
k

∣∣eikt∣∣
=

1

2tPn

n∑
ν=0

pn−ν

= O

(
1

t

)
.

□

Now we prove following Theorems.

Theorem 3.4. If f is a 2π-periodic function and belonging to Lipα class. Then it’s
degree of approximation by (N, p)(C, θ, β) product summability method of Fourier
series is given by

∥(NC)p,θ,βn − f∥ = O

(
1

(n+ 1)α

)
, 0 < α < 1,

where (NC)p,θ,βn denotes the (N, p)(C, θ, β) transform of partial sums of the Fourier
series.

Proof. Let sk(x) be the partial sums of the series (2.1). Then we have

sk(x)− f(x) =
1

2π

π∫
0

ϕx(t)
sin(k + 1

2 )t

sin( t2 )
dt.

Thus (C, θ, β) transform Cθ,β
ν (x) of sk(x) is given by

(3.1) Cθ,β
ν (x)− f(x) =

1

2πAθ+β
ν

 π∫
0

ϕx(t)

(
ν∑

k=0

Aθ−1
ν−kA

β
k

sin(k + 1/2)t

sin(t/2)

)
dt

 .

Now, taking (N, p) transform of above, we get

(NC)p,θ,βn − f(x) = 1
Pn

[
n∑

ν=0
pn−ν

1

2πAθ+β
ν

{
π∫
0

ϕx(t)

(
ν∑

k=0

Aθ−1
ν−kA

β
k
sin(k+1/2)t

sin(t/2)

)
dt

}]
243
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=
π∫
0

ϕx(t)V
p,θ,β
n (t)dt

=

(
1/(n+1)∫

0

+
π∫

1/(n+1)

)
ϕx(t)V

p,θ,β
n (t)dt.

So we have

(3.2) (NC)p,θ,βn − f(x) = I1 + I2.

Now applying Lemma 3.1, we get

|I1| ≤
1/(n+1)∫

0

|ϕx(t)||V p,θ,β
n (t)|dt

= O

 1/(n+1)∫
0

tα.(2n+ 1)dt


= O

[
(2n+ 1)

(
tα + 1)

α+ 1

)1/(n+1)

0

]

= O

[
(2n+ 1)

(α+ 1)

(
1

(n+ 1)α+1
− 0

)]
= O

(
2n+ 1

(n+ 1)α+1

)
≤ O

[
(2n+ 2)

(n+ 1)α+1

]
, i.e.,

(3.3) |I1| ≤ O

(
1

(n+ 1)α

)
for 0 < α < 1.

Also, applying Lemma 3.2, we get

|I2| ≤
π∫

1/n+1

(
|(ϕx(t))||V p,θ,β

n |
)
dt

= O

 π∫
1/(n+1)

tα.
1

t

 dt

= O

 π∫
1/(n+1)

tα−1dt


= O

[
tα

α

]π
1/(n+1)

, i.e.,

(3.4) |I2| ≤ O

(
1

(n+ 1)α

)
for 0 < α < 1.
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Hence by (3.3) and (3.4) in the equation (3.2), we have

∥(NC)p,θ,βn − f∥ = O

(
1

(n+ 1)α

)
for 0 < α < 1.

□

Theorem 3.5. If f is a 2π-periodic function and belonging to W (Lp, ξ(t)) class,
then it’s degree of approximation by (N, p)(C, θ, β) means of Fourier series is given
by

∥(NC)p,θ,βn − f(x)∥p = O

(
(n+ 1)r+

1
p ξ

(
1

n+ 1

))
provided that ξ(t) satisfies the following conditions

(3.5)

{
ξ(t)

t

}
is a decreasing sequence,

(3.6)


1/(n+1)∫

0

(
t|ϕx(t)|
ξ(t)

)p

sinrp(t/2)dt


1/p

= O

(
1

(n+ 1)

)
,

(3.7)


π∫

1/(n+1)

(
t−δ|ϕx(t)|

ξ(t)

)p

dt


1/p

= O
(
(n+ 1)δ

)
,

where δ is an arbitrary number such that q(1− δ)− 1 > 0, 1
p + 1

q = 1, 1 ≤ p < ∞,

condition (3.6) and (3.7) hold uniformly in x and (NC)p,θ,βn are (N, p)(Cθ,β
n ) means

of the Fourier series (2.1).

Proof. As done in Theorem 3.4, we shall write following

(NC)p,θ,βn − f(x) =

 1/(n+1)∫
0

+

π∫
1/(n+1)

ϕx(t)V
p,θ,β
n (t)dt, i.e.,

(3.8) (NC)p,θ,βn − f(x) = I
′

1 + I
′

2.
245
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Further, Using Hölder inequality and ϕ ∈ W (Lp, ξ(t)), Condition (3.6) , sin t ≥ ( 2tπ ),
Lemma 3.1 and second mean value theorem of integral calculus, we have

|I
′

1| ≤


1/(n+1)∫

0

(
t|ϕx(t)|
ξ(t)

)p

sinrp(t/2)dt


1/p

1/(n+1)∫
0

(
ξ(t)|V p;θ,β

n (t)|
sinr(t/2)

)q

dt


1/q

= O

(
1

(n+ 1)

)
1/(n+1)∫

0

(
ξ(t).(2n+ 1)

tr

)q

dt


1/q

= O

(
(2n+ 1)

(n+ 1)
ξ

(
1

n+ 1

))
1/(n+1)∫

ϵ

1

trq
dt


1/q

,

(
0 < ϵ <

1

n+ 1

)

= O

(
(2n+ 1)

(n+ 1)
ξ

(
1

n+ 1

))[(
t−rq+1

−rq + 1

)1/(n+1)

ϵ

]1/q

= O

(
(2n+ 1)

(n+ 1)
ξ

(
1

n+ 1

))[
(n+ 1)rq−1 − (ϵ)−rq+1

−rq + 1

]1/q
≤ O

(
ξ( 1

n+1 )

(n+ 1)
1
q−r−1

)
.

Since 1
p + 1

q = 1,

(3.9) |I
′

1| ≤ O

(
(n+ 1)r+1/pξ

(
1

(n+ 1)

))
.

Again, using Hölder’s inequality, |sint| ≤ 1, sin t ≥ 2π
t , condition (3.5) and (3.7),

Lemma 3.2 and Second mean value theorem of integral calculus, we get

|I ′

2| ≤

{
π∫

1/(n+1)

(
t−δ|ϕx(t)|

ξ(t)

)p
sinrp(t/2)dt

}1/p{
π∫

1/(n+1)

(
ξ(t)|V p,θ,β

n (t)|
t−δ sinr(t/2)

)q
dt

}1/q

= O
(
(n+ 1)δ

){ π∫
1/(n+1)

(
ξ(t)

tr+1−δ

)q
dt

}1/q

= O
(
(n+ 1)δ

){ (n+1)∫
1/π

(
ξ(1/y)
yδ−1−r

)q
dy
y2

}1/q

= O
(
(n+ 1)δξ

(
1

n+1

)){ (n+1)∫
1/π

dy
yq(δ−1−r)+2

}1/q

= O
(
(n+ 1)δξ

(
1

n+1

))[{
y−q(δ−r−1)−1

−q(δ−r−1)−1

}(n+1)

1/π

]1/q
= O

(
(n+ 1)δξ

(
1

n+1

)) [
(n+1)(r−δ+1)q−1−(π)(δ−r−1)+1

(r−δ+1)q−1

]1/q
246
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≤ O
(
(n+ 1)δξ

(
1

n+1

)){
(n+ 1)(r−δ+1)q−1)

}1/q
= O

(
(n+ 1)δξ

(
1

n+1

)){
(n+ 1)r−δ+1− 1

q

}
, i.e.,

(3.10) |I
′

2| ≤ O

(
(n+ 1)r+

1
p ξ

(
1

n+ 1

))
for

1

p
+

1

q
= 1.

Now, combining (3.8), (3.9) and (3.10), we get

∥(NC)
p;θ,β
n − f(x)∥p = O

(
(n+ 1)r+

1
p ξ

(
1

n+ 1

))
.

This Completes the proof. □

Theorem 3.6. If f̃ is a conjugate of a function which is 2π-periodic and belonging to
Lipα class. Then it’s degree of approximation by (N, p)(C, θ, β) means of conjugate
series of Fourier series is given by

∥(ÑC)p,θ,βn − f̃(x)∥ = O

(
1

(n+ 1)α

)
, 0 < α < 1,

where (ÑC)p,θ,βn denotes the (N, p)(C, θ, β) transform of partial sums of the conju-
gate series of Fourier series (2.2).

Proof. Let s̃k(x) be the partial sums of the series (2.2). Then we have

s̃k(x)− f̃(x) =
1

2π

 π∫
0

φx(t)

(
cos(k + 1

2 )t

sin( t2 )

)
dt

 .

Thus (C, θ, β) transform C̃θ,β
ν (x) of s̃k(x) is given by

(3.11) C̃θ,β
ν (x)− f̃(x) =

1

2πAθ+β
ν

 π∫
0

φx(t)

(
ν∑

k=0

Aθ−1
ν−kA

β
k

cos(k + 1/2)t

sin(t/2)

)
dt

 .

On the other hand, we have the followings:

C̃θ,β
ν (x)−

(
− 1

2π

π∫
0

φx(t))cot(t/2)dt

)

=
1

2πAθ+β
ν

 π∫
0

φx(t)

(
ν∑

k=0

Aθ−1
ν−kA

β
k

cos (k + 1/2)t

sin (t/2)

)
dt

 ,

C̃θ,β
ν (x)−

(
− 1

2π

1/(n+1)∫
0

φx(t))cot(t/2)dt− 1
2π

π∫
1/(n+1)

φx(t))cot(t/2)dt

)

=
1

2πAθ+β
ν

 1/(n+1)∫
0

+

π∫
1/(n+1)

φx(t)

ν∑
k=0

Aθ−1
ν−kA

β
k

cos (k + 1/2)t

sin (t/2)
dt,
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C̃θ,β
ν (x)−

(
− 1

2π

π∫
1/(n+1)

φx(t))cot(t/2)dt

)

=
1

2π

 1/(n+1)∫
0

φx(t))

[
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
k

(
cos(k + 1/2)t

sin(t/2)
− cot (t/2)

)]
dt


+

1

2πAθ+β
ν

π∫
1/(n+1)

φx(t)

ν∑
k=0

Aθ−1
ν−kA

β
k

cos (k + 1/2)t

sin (t/2)
dt,

C̃θ,β
ν (x)− f̃n(m)

=
1

2π

 1/(n+1)∫
0

φx(t))

{
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
k

(
cos(k + 1/2)t− cos (t/2)

sin(t/2)

)}
dt



+
1

2πAθ+β
ν

 π∫
1/(n+1)

φx(t)

ν∑
k=0

Aθ−1
ν−kA

β
k

cos (k + 1/2)t

sin (t/2)
dt



=
1

2π

 1/(n+1)∫
0

φx(t))

{
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
k

(
2sin (k + 1)t/2.sin(−kt/2)

sin(t/2)

)}
dt



+
1

2πAθ+β
ν

 π∫
1/(n+1)

φx(t)

ν∑
k=0

Aθ−1
ν−kA

β
k

cos (k + 1/2)t

sin (t/2)
dt

 .

Now taking (N, p) transform of above equation, we get

(ÑC)p,θ,βν (x)− f̃n(m)

=
−1

pn

n∑
ν=0

pn−ν
1

π

 1/(n+1)∫
0

φx(t))

{
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
k

(
sin(k + 1)t/2.sin (kt/2)

sin(t/2)

)}
dt



+
1

pn

n∑
ν=0

pn−ν
1

2πAθ+β
ν

 π∫
1/(n+1)

φx(t)

ν∑
k=0

Aθ−1
ν−kA

β
k

cos (k + 1/2)t

sin (t/2)
dt


Now applying Lemma 3.3, |sinnt| ⩽ n|sin t|, we get
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|(ÑC)p,θ,βν (x)− f̃n(m)|

≤ 1

pn

n∑
ν=0

pn−ν
1

π

 1/(n+1)∫
0

|φx(t))|

{
1

Aθ+β
ν

ν∑
k=0

Aθ−1
ν−kA

β
k

(
(k + 1)| sin(t/2)|.| sin (kt/2)|

|sin(t/2)|

)}
dt


+

π∫
1/(n+1)

|φx(t)|.O
(
1

t

)
dt

=
1

pn

n∑
ν=0

pn−ν

 1/(n+1)∫
0

|φx(t)|.O(ν + 1)dt

+

∫ π

1/(n+1)

tα.O(
1

t
)dt

= O(n+ 1)

1/(n+1)∫
0

tαdt+

π∫
1/(n+1)

tα−1dt

= O(n+ 1)

[
tα+1

α+ 1

]1/(n+1)

0

+

[
tα

α

]π
1/(n+1)

= O

(
1

(n+ 1)
α

)
+O

(
1

(n+ 1)
α

)

= O

(
1

(n+ 1)
α

)
for 0 < α < 1, i.e.,

(3.12) ∥(ÑC)p,θ,βn − f̃(x)∥ = O

(
1

(n+ 1)α

)
for 0 < α < 1.

□

Theorem 3.7. If f̃ is a conjugate of a function which is 2π-periodic and belonging
to W (Lp, ξ(t)) class , then it’s degree of approximation by (N, p)(C, θ, β) means of
conjugate series of Fourier series is given by

∥(ÑC)p,θ,βn − f̃(x)∥p = O

(
(n+ 1)r+1/pξ

(
1

(n+ 1)

))
provided that ξ(t) satisfies following conditions:

(3.13)

{
ξ(t)

t

}
is a decreasing sequence.

(3.14)

{∫ 1/(n+1)

0

(
t|φx(t)|
ξ(t)

)p

sinrp(t/2)dt

}1/p

= O

(
1

(n+ 1)

)
,
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(3.15)

{∫ π

1/(n+1)

(
t−δ|φx(t)|

ξ(t)

)p

dt

}1/p

= O
(
(n+ 1)δ

)
,

where δ is an arbitrary number such that q(1− δ)− 1 > 0, 1
p + 1

q = 1, 1 ≤ p < ∞,

conditions (3.14) and (3.15) hold uniformly in x.

Proof. The proof of this theorem can be done similar to the Theorem 3.6 taking into
account Lemmas 3.1 and 3.2. □

Corollary 3.8. If pn =n Cn−νq
n−ν , then (Ñ, p)(C, θ, β) = (E, q)(C, θ, β), which is

the Case of Krasniqi [15].

Corollary 3.9. As

Pn =

n∑
ν=0

pν

= p0 + p1 + . . . · · ·+ pn

= nC1 +
n C2 . . . · · ·+n Cn

= (1 + 1)n

= 2n for q = 1,

we have (N, p)(C, θ, β) = (E, 1)(C, θ, β).

Corollary 3.10. If θ = 1, β = 0 and all restrictions of Theorem 3.6 hold, then

∥(ÑC)P,1,0
n − f̃∥∞ = O

(
1

(n+ 1)α

)
0 < α < 1.

Corollary 3.11. If θ = 1, β = 0 and all restrictions of Theorem 3.7 hold, then

∥(ÑC)P,1,0
n − f̃∥p = O

(
(n+ 1)r+

1
p ξ

(
1

n+ 1

))
.

Corollary 3.12. If θ = 1, β = 0, r = 0 and ξ(t) = tα, then weighted class reduces
to Lip(α, p), then

∥(ÑC)P,1,0
n − f̃∥p = O

(
1

(n+ 1)α−
1
p

)
.

Corollary 3.13. Let θ = 1, β = 0, r = 0 and ξ(t) = tα. If p → ∞ in above
Corollary, then f ∈ Lip(α, p) reduces to Lipα for 0 < α < 1 and

∥(ÑC)P,1,0
n − f̃∥∞ = O

(
1

(n+ 1)α

)
.

Remark 3.14. We can find similar particular results for degree of approximation
of Fourier series in Theorem 3.5.
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4. Conclusions

Sometimes a series is not summable by any individual summability method. But it
becomes summable by taking product summability means of given series. So working
in this direction we have used (N, p)(C, θ, β) means of Fourier series and conjugate
series of Fourier series which in particular becomes (E, q)(C,α, β).Therefore, many
of the known results may become particular cases of our result. On the bases of
above facts we can say that our result may be useful for the coming researchers in
future.
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