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ABSTRACT. A number of researchers (See [1, 2, 3, 4, 5, 6, 7, 8, 9,

, 11, 12, 13, 14]) have determined the degree of approximation of func-
tions belonging to Lipschitz classes, using Cesaro, Euler and generalized
Norlund and various product summability means. Recently Krasniqi [15]
has determined the degree of approximation of conjugate of functions using
(E,q)(C, o, B) means. Mishra and Khatri [7] also determined the degree of
approximation by using (Np.E1) product means in the Holder metric. In
this paper, we have determined the degree of approximation of functions
belonging to Lipschitz class and weighted class by using (N, p)(C,0, )
means of Fourier series and conjugate series of Fourier series which in par-
ticular becomes (F, q)(C, «, 3).
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1. INTRODUCTION

The theory of approximation is a very extensive field and the study of trigono-
metric approximation by using summability means is of great mathematical interest
and of great practical importance. Deepmala et al. [16] and Mishra et al. (See
[6, 8, 10, 11]) have determined the degree of approximation of functions belonging
to Lipschitz class and Weighted class by using various summability means. Krasniqi
[15] has determined the degree of approximation of functions belonging to Lipschitz
class by (F,q)(C, «, 8) means. Now, the results of Krasniqi (See [15, 17]) have been
generalized by using (N, p)(C, 6, 3) means.
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2. PRELIMINARIES

In this section, we define Fourier series and conjugate series of Fourier series along
with summability means those are widely used throughout the paper as following:

Definition 2.1. Let f(z) be a 27 periodic function and integrable in Lebesgue sense
and let

a :
(2.1) fz) ~ 3 + Z (ayn cos nz + by, sinnx)

n=1

be its Fourier Series with n'* partial sum s, (f;2). The conjugate series of the
Fourier series (2.1) is given by

(2.2) Z (an sinnz — b, cosnzx) .
n=1

Definition 2.2. Let f : R — R be a function. Then L. -norm and L,-norm,
denoted by || f|lcc and || f||p, for f are defined respectively as follows:

2 %
[fllee = sup{[f(x)]: z € R} and || f][, = (/O If(ff)pd$> for p > 1.

The degree of approximation of a function f by a trigonometric polynomial ¢, of
order n under the norm ||.||s is defined by Zygmund [18] with

[tn = flloo = sup{[tn(z) — f(z)| : x € R}
and the best approximation E, (f) of a function f € L, is defined by the equality

A function f € Lipa, if |f(z +t) — f(z)] = O (Jt|*) for 0 < o < 1.
A function f € Lip(a,p), if
27 %
(/ |f(x+t)—f(x)|pdx> =0(Jt|*) for0<a <1, p>1.
0

If £(¢) is a positive increasing function and p > 1, then f € Lip(&(t), p), if

( / i) - f(w)l”dw)p — 0(e().
Also f € W(L,,&(t)), if

(/0 ) — f(x)}sinﬁx|pdx>p —O(E(t)) for B> 0, p> 1.

oo
Definition 2.3. Let Y. u, be a given infinite series with the sequence of n'" partial
n=0
sum {s,} . Let {p,} be a non-negative sequence of constants, real or complex and
let us write

n
Pn=2pk7é07 Vn >0,
k=0
240
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p1=0=P_4, P, — o0 as n — oo.

Then the nt" Cesaro mean of order (6,3),0 + 3 > —1 of the sequence {s,} [17] is
defined by

1 n
0.8 _ 6—1 4B
(2.3) C6h = Yo k:Z:OAn LAY s,
where A%H8 = O(nf*P), 9+ 5> —1and AJTF =1
The series Y u, is said to be (C, 8, 8) summable to s, if
n=0

0.8 _ 6—1 48
Cnﬁ A9+6 ZAnkaksk — s asn — o00.
k=0

The sequence to sequence transformation
1 n

(24) trly(f7 Z‘) = F an—usu(f;x)
" y=0

defines the sequence {t)¥} of Nérlund means of the sequence {s, } generated by the
sequence of coeﬁicients {pn}

The series E u, is said to be summable (N,p) to sum s, if lim tY — s,
n=0 n—00

particularly

(2.5) Pn("*a'fIl) m (a > 0).

The (N, p) transform of the (C, 8, 8) transform, defines (N, p)(C, 0, 3) transform and
we shall denote it by (NC)2%#. Then we can write

n

1 0-1 B
(2.6) NC—PHZOpn VAe+aZA LAY

Throughout the paper, we use the following notations:

1 sin(k + 1)t ]
vaeﬁ - e A9 1A572
" 2P, Zp {AGH} (Z sin(%) ’

Lvy=0

n - 27TPn pn v A0+6 k bl

¢x(t) = flz +1) + [z — 1) = 2f(2),

pu(t) = f(z +1) = flz —1).
241
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3. MAJOR SECTION

We need following Lemmas to prove our Theorems.

Lemma 3.1. [VPOP(t)| = O2n+1) for 0<t < n+1

Proof. Since 0 <t < +1’ sin($) > (L) and sinnt < nsint, we get

(k+ $)t
P05 (4 AP-1 Bbm
W0l = S { S
- 2k + 1)sint /2
< AP~ Aﬁ(—
= A9+,8 {Z k 2Sin(%) }
1 1 0—1 48
= 55 an_yw ZAW,CA,C(%H)
" lv=0 v k=0
1 n
" lv=0
= O(2n+1).

Lemma 3.2. [VP%A(t)] =0 (1)

Proof. Since sin () > (L), we get

1 |w— - sin(k + 1)t
Vrfﬂﬁt = B Pn—v Ae_l B 2
VROl = oy |2 g | 2 A )
1| 1 - 1
< - AYLAY
< g S | S A
RS 1 " 01 48
- VAgw{MAV_kAkH

I
Q
7 N
S
N——

Lemma 3.3. |Vp’0’ﬁ(t)| =0 (3) forsin(%) > (L)

n

7n+1§t<7r
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Proof. Since sin (£) > (£), n+1 <t <m we get

(k+ 1)
Z”" g {ZA fzan

2

1
s AG 1A,3 7(k+ )t
s Do {2
1
_ .. A0 1AB ikt
2P, Uz:op AO-&-ﬂZ v—k

_ 1 1 0—1 4B ikt
= %P, Zp"—szAu—kAke

= 2ipn £ an VA0+B Z AR [e™]

v

n

7rP

IN

Now we prove following Theorems.

Theorem 3.4. If f is a 2w-periodic function and belonging to Lipa class. Then it’s
degree of approzimation by (N,p)(C,0,5) product summability method of Fourier
series is given by

1
e - 11 =0 (ot

where (NC)2:98 denotes the (N, p)(C, 0, 8) transform of partial sums of the Fourier
series.

),0<a<1,

Proof. Let si(x) be the partial sums of the series (2.1). Then we have

sele) = 1) = o= [ o)™t 2y

21 sin(L
J @

Thus (C, 6, B) transform C%8(zx) of s(x) is given by

0.0(p) _ x:; [ - 6—1 ﬂw
(31)  CYP(x) - f(x) 2m A0 O/%(t) (kZ_OAV—’“A’“ sin(t/2) )dt

Now, taking (N, p) transform of above, we get

(NCYOP — (@) = 7 | 32 pucw st 4 [ 60(0) (32 A0LAT sl 20 ) gy
(O 2w A, 0 =0
243
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So we have
(3.2) (NCYPOB — f(x) =1, + Iy.
Now applying Lemma 3.1, we get
1/(n+1)
o< [ eyt

1/(n+1)
= 0 / t"‘.(2n + 1)dt
0

i $o 1 1/(n+1)
- 0 (2n+1)(ail))
0

- ¢ T(ZL 5 ()
- o(@rirn)

[ (2n+2) )
O _7(71—&— 7)o+t | ie.,

IN

Also, applying Lemma 3.2, we get

T

< [ (eaoivpet)a

1/n+1

1
1/(n+1)

™

= 0 / et

1/(n+1)

T
= O ] , le.,
LY 11/(n+1)

1
244
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Hence by (3.3) and (3.4) in the equation (3.2), we have

|(NC)£’9’ﬁ—f|=O( > for0<a<l1.

(n+ 1)

O

Theorem 3.5. If f is a 2w-periodic function and belonging to W(L,,&(t)) class,
then it’s degree of approximation by (N,p)(C,0, ) means of Fourier series is given
by

n+1

I(NCY"P = f(a)], = O ((” 17 ( 1 ))

provided that £(t) satisfies the following conditions

(3.5) {6(:)} is a decreasing sequence,
1/(n+1) ) 1/p
(3.6) 0/ <t§?g>|) S (t/2)dt S =0 ((n i 1)> ,
. 1/p
(3.7) / <W)pdt =0 ((n+1)°),
1/(n+1)

where § is an arbitrary number such that ¢(1 — ) —1 > 0, % + % =1, 1<p<oo,
condition (5.6) and (3.7) hold uniformly in x and (NC)2# are (N,p)(C%#) means
of the Fourier series (2.1).

Proof. As done in Theorem 3.4, we shall write following

1/(n+1) T
(NCYP — f(x) = / - / b (VOB (1) dt, ie.,
0 1/(n+1)
(3.8) (NCYOP — f(z) = Iy + I,

245
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Further, Using Holder inequality and ¢ € W (L,,£(t)), Condition (3.6) , sint > (),
Lemma 3.1 and second mean value theorem of integral calculus, we have

1/(n41) DO\ YP (1) tme) OV . 1/q
, o (¢ , £(t)|VP0B (¢
< TP S\WlPn AW
L] < / ( £) ) sin"P(¢/2)dt / ( S0’ (£)2) ) dt
0 0
1/(n+1 a
_ 0 ( <§ Qn—i- 1) > it
n+1) /4
(2n+1 1
N O( n+1) g(n 1 ) thdt 7(0<€<n+1>
(2n+1 rq+1 /(n+1)7 1/
- O( n+1) £<n 1 >[ —rq+1 1
_ 0 2n+ 6 1 (n+ 1)ra-1 (e)—rq+1 1
N (n+1) n+1 —rq+1
< O Tl+1
N (n+1)a g1
Since 1 —|— =
!’ 1
. < r+1/p .
(3.9 <o (e ()

Again, using Holder’s inequality, |sint| < 1,sint > 2”, condition (3.5) and (3.7),
Lemma 3.2 and Second mean value theorem of integral calculus, we get

e 5 P 1/17 . os . 1/q
! B €T AT V’,?v )
Ll < {1/(f+1) (%) s p(t/Q)dt} { J (%@8') dt}
n

1/(n+1)

™ q 1/q
O ((n+1)%) {1/(f+1) (ti(f),(;) dt}
=0 ((n+1)%) {(j/fl)(ja(“)qf%}l/q
n 1/
=0 ((n—|— 1)%¢ (ﬁ)) {ifl)yq(édlyrw} q
=0 () [{ea) ]
=0 (v 1% () [ ]

246
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<O ((n +1)%¢ (%H)) {(n +1 )(r75+1)q—1)}1/q

:o((n+1)6g <%+1)){(n+1)’" 5+1—*} ie.,
(3.10) IQISO((nH)’”*pg( i1>) for %4‘221.

Now, combining (3.8), (3.9) and (3.10), we get

I(NOY™? ~ @)l =0 (<n+ e (ﬁ 1>) |

This Completes the proof. O

Theorem 3.6. Iffis a conjugate of a function which is 2w-periodic and belonging to
Lipa class. Then it’s degree of approzimation by (N, p)(C, 8, 8) means of conjugate
series of Fourier series is given by

NCYOB — f(x = 71 «
IOy = Fol = 0 (s ) 0<a <t

where (]V/C)E;Q’B denotes the (N,p)(C,0,5) transform of partial sums of the conju-
gate series of Fourier series (2.2).

Proof. Let 5;(x) be the partial sums of the series (2.2). Then we have

~ i) — 1 r § cos(.k—i-l)t
(@) — F(o) O/sut)(? Jat

2 sin(%)

Thus (C, 0, 3) transform C%5(z) of 5, (z) is given by

B.11) OO a) = Flo) = s | [ ul <ZA91 Bw>dt
v 0

On the other hand, We have the followings:

COP (x ( fgaz ))cot( t/2)dt>

1 k+1/2)
- — / (ZA ) >dt ,

_ 1/(n+1) T
C98(x) — <217r f @a(t))cot(t/2)dt — & [ gpx(t))cot(t/Q)dt>
1/(n+1)
g ” (k+1/2)
1 / / 1 ,pcos(k+1/2)t
- + o) Y AV A ——— =t
] —kTk
2w Ay / Uiy P sin (t/2)
247
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1/(n+1)

53’5(33)—<—217r J %(t))cot(tﬂ)dt)

1/(n+1)

=5= / Pa(t)) ! > AV AL (M—cot(tﬂ))]dt
k=0

AFH sin(t/2)

1 cos (k+1/2)t
Ae 1 B
- o AYTP / Z sin (¢/2)

1/(n+1) k=0

dt,

1/(n+1)

1 1 cos(k + 1/2)t — cos (t/2)
5| [ @ {AM 2 AL < Sin(t/2) )}dt

n 1 / ZAG 1 5cos (k+1/2)t &t

o AP o sin (¢/2)
| 2sin (k + 1)t/2.sin(—kt/2)
i + 1)t/2.sin(—kt
== Ay (2 dt
2m 0/ {Ae"‘B Z sin(t/2)
1 / cos (k+1/2)t
+—— AG 1 Bidt
Al | S kZ sin (1/2)

Now taking (NN, p) transform of above equation, we get

(NC)22 (z) — fo(m)
1/(n+1)

;1 1 1 o1 g (sin(k + 1)t/2.sin (Kt /2)
| ] “"w“”{AW,;A”Ak( sin(i/2) )}‘”

) —

(=)

1 « 1 SN cos (k+1/2)t

— n—y —— = (T AP AP T TS gy
+ ZP ’/TA5+’8 /(/ ) ®. ()1;) v—k*“ 'k Sln(t/Q)
1/(n+1 -

Now applying Lemma 3.3, [sinnt| < n|sint|, we get
248
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[(NC)EO (2) — fu(m)|

1/(n+1)
1 & 1 I & (k +1)| sin(t/2)].] sin (kt /2)]
< — Pn—v— / z (¢ 913 A?,,1 AP ( - dt
bl | ] ) {Aw 2 i sin(e/2)
r 1
+ [ leatoto()a
1/(n+1)
Lo 1/(n+1) . )
= — an_u / lp(6)].0(v + 1)dt +/ t*.0(=)dt
Pn v=0 0 1/(n+1) t
1/(n+1) T
=0(n+1) / t*dt + / t*tdt
0 1/(n+1)
taJrl 1/(n+1) +e ™
=0(n+1) [ ] + [}
a+1], @ 11/(n+1)
1 1
(7)o (@)
1 .
= O (W) fOI' O <a< 17 1.e.,
— ~ 1

O

Theorem 3.7. Iff is a conjugate of a function which is 2m-periodic and belonging
to W(Lyp,&(t)) class , then it’s degree of approximation by (N,p)(C,0,3) means of
conjugate series of Fourier series is given by

|(NC"? ~ f(a)ll, = O (<n+ e ((nL)))

provided that £(t) satisfies following conditions:

- (s

is a decreasing sequence.

(3.14) {/01/("“) (W)psinw(tm)dt}l/p =0 ((n i 1)) ;
249
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1/p
s tfts - t p
(3.15) / <W(”)ﬁ —0((n+1)°),
1/(n+1) &(t)
where § is an arbitrary number such that g(1 —§) —1 > 0, % + % =1, 1<p< oo,

conditions (3.14) and (3.15) hold uniformly in x.

Proof. The proof of this theorem can be done similar to the Theorem 3.6 taking into
account Lemmas 3.1 and 3.2. g

Corollary 3.8. If p, =" C,,_,q"™ ", then (ﬁ,}))(c,e,ﬁ) = (E,q)(C,0,B), which is
the Case of Krasnigi [15].

Corollary 3.9. As

n
P, = Zpu
v=0

Pot+pL+...o--+Dn
= "C1+"Cqy...--- 4" Cy
= (1+1)"

2" for q =1,

Corollary 3.10. If0 = 1,8 = 0 and all restrictions of Theorem 5.6 hold, then

N ~ 1
NOPYY — floo =0 —— 1.
(V)40 = Floe =0 (i) 0< <
Corollary 3.11. If0 = 1,8 = 0 and all restrictions of Theorem 5.7 hold, then

ez i, =0 (e ().

Corollary 3.12. If0 =1, §=0, r =0 and &(t) = t*, then weighted class reduces
to Lip(a, p), then

— ~ 1
NOEPY —fl, =0 ——— |-
I(NC)s, Fllp <Oz+1fp>

Corollary 3.13. Let 6§ =1, =0, r = 0 and £(t) = t*. If p — oo in above
Corollary, then f € Lip(«a,p) reduces to Lipa for 0 < a <1 and

—— ~ 1
NC)PLO — mo().
|(NC) - PR
Remark 3.14. We can find similar particular results for degree of approximation

of Fourier series in Theorem 3.5.
250
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4. CONCLUSIONS

Sometimes a series is not summable by any individual summability method. But it
becomes summable by taking product summability means of given series. So working
in this direction we have used (N, p)(C, 0, ) means of Fourier series and conjugate
series of Fourier series which in particular becomes (F, q)(C, «, 8).Therefore, many
of the known results may become particular cases of our result. On the bases of
above facts we can say that our result may be useful for the coming researchers in
future.
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