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Abstract. The paper presents the study of linear extensions on an
ordered multiset structure. Results on linear extensions of a partially or-
dered set are generalized to multisets. A heuristic algorithm for generating
these linear extensions is also presented.
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1. Introduction

The theory of partially ordered sets (or posets for short) has come to an age [1,
2, 3]. A linear extension of a finite poset , P = (S,4),S being a set (usually referred
to as the ground set) and a 4 reflexive, antisymmetric, and transitive relation on S,
is an order preserving bijection α : P → {1, 2, ...|p|} such that x 4 y in P implies
α(x) 4 α(y). Following Szpilrajn’s fundamental result on order extension principle
[4], numerous works have appeared on linear extensions (also known as topological
sorts) of posets [5, 6, 7]. The concept of linear extensions is useful for solving
problems like the scheduling problem, also known as the jump number problem [8].
The quest for optimization has prompted the study of different classes of linear
extensions. This is usually achieved by placing certain restrictions on the methods
by which the linear extensions are constructed (See [9, 10] for greedy linear extensions
and [11] for super greedy linear extensions). A number of algorithms [12, 13, 14, 15]
have been proposed for generating linear extensions of a poset.

This paper generalizes the notion of linear extensions using a partially ordered
multiset structure (or pomset, for short). A multiset is an unordered collection hav-
ing elements that are not necessarily distinct. The theory of multisets addresses
the limitation of distinctness of membership poised by the Cantorian set (See for
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instance [16, 17]). The multiset theory in [16] assumes separate axioms for multi-
plicity arithmetic (i.e., the number of times an object occurs) since multiplicities are
considered as different types of objects from the multisets they support; the author
presented a first-order two-sorted theory. In [18], a different approach is proposed
via a single-sorted multiset theory. In the single-sorted theory, objects and their mul-
tiplicities come from the same domain and satisfy the same axioms. To extend the
theory proposed in [18] and deal with multiplicities separately, new axioms would be
required. The theory MST developed in [16] will be a basis for this study. Multisets
are studied as an extension of set theory, and have applications in different spheres of
mathematics, computer science, economics, formal language, biosystems and philos-
ophy ([19] gave an overview of these applications). Various notions in order theory
are being generalized using multisets [20, 21, 22, 23, 24]. Here, analogous results on
linear extensions are presented in the multiset setting via an ordering that is induced
by the underlying generic set. In section 2, we recall basic definitions on multisets
and outline a structure of the ordered multiset to be used in this work. In the next
section, we present an analogous notion of linear extensions for ordered multisets
and prove related results. Lastly, a heuristic algorithm for generating multiset linear
extensions is proposed in section 4.

2. Multisets and partially ordered multisets

Basic definitions and terminologies on multisets (See [19] for details), and an out-
line of the proposed pomset structure are discussed in this section.

2.1 Multisets
A multiset M over a set S is a cardinal-valued function, i.e.,M :S → ℵ, such that

x ∈ Dom(M) implies M(x) is a cardinal number and M(x) = mM (x) > 0, where
mM (x) is the multiplicity of x in M. A multiset is finite if it contains a finite number
of objects having finite multiplicities, it is infinite if the number of objects or/and
their multiplicities are infinite. In theoretical development infinite multiplicities of
elements are studied, however we will restrict our attention to finite multisets since
this is the case in most applications of multisets. For convenience we will denote an
arbitrary multiset M by [m1x1,m2x2, ...mnxn], where mi denotes the multiplicity
of an object xi in M for i ∈ {1, 2, ..., n}. The notation mixi reads xi is an element
of M with multiplicity mi. All occurrences of an object in a multiset are usually
assumed to be indistinguishable. The root set of M, denoted by M∗, will be the set
{x ∈ S|M(x) > 0} (See separation schema in [16] for details). For any two multisets
M and N in M(S) the multiset M is a submultiset of N, denoted by M ⊆ N , if
M(x) ≤ N(x) for all x ∈ S, and M ⊂ N if and only if M(x) < N(x) for at least one
x. This work also assumes multiplicies to be non-negative integer valued. In different
theories of multisets, multiplicities are assumed to take values from different sets in
the number system. For instance, the multiset theory presented in [25] assumes that
the multiplicity of an object is a positive real number. While [26] studies objects
with multiplicities from the set of integers. In [27], a generalized theory is proposed
by assuming multiplicities to be real number valued. These existing multiset theories
are generalizations of the Zermelo-Fraenkel set theory (ZF) and hence, contain ZF.
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2.2 Pomsets
For a multiset M ∈ M(S), we shall refer to an object in M together with its

multiplicity, i.e., mixi as a point. We need the following definitions (See [20] for
details).

Definition 2.1. For any pair of points mixi and mjxj in M with i, j ∈ {1, 2, ...n},
mixi 4≤ mjxj if and only if xi 4 xj in S. The two points coincide if and only
if xi = xj (See principle of exact multiplicity in [16]). The points mixi and mjxj
are comparable, if (mixi 4≤ mjxj) ∨ (mjxj 4≤ mixi), and otherwise, they are
incomparable and denoted by (mixi||mjxj).

Remark 2.2. By definition 2.1, it follows that ′ 4≤′ is a partial order if and only
if ′ 4′ is a partial order. The generic set (S,4) is assumed to be partially ordered,
by implication M = (M,4≤) will be a pomset. The strict ordering on M will be
denoted by ′ ≺<′.

Definition 2.3. The ordering 4≤ is a linear multiset order, if it is a partial multiset
order and any two points mixi and mjxj in M are comparable under 4≤.

Definition 2.4. A point mixi in M is said to be minimal (resp. maximal), if there
is no point mjxj in M for which mjxj ≺< mixi (resp. mixi ≺< mjxj ) holds. If a
pomset has a unique minimal (resp. maximal) point, then it is called the minimum
(resp. maximum) point of M.

Definition 2.5. For a submultiset N of M, the upset (↑N) and downset (↓N) of N
with respect to 4≤ are defined as follows:

↑ N = {mjxj ∈ M | ∃nixi ∈ N, with nixi 4≤ mjxj}
and

↑ N = {mjxj ∈ M | ∃nixi ∈ N, with njxj 4≤ mixi}.

3. Multiset linear extensions

In this section, an analogous definition of linear extensions is presented with some
results.

Definition 3.1. Let M = (M,4≤M) and N = (M,4≤N ) be two pomsets defined
over partially ordered sets P and Q respectively. Then 4≤N is called a multiset
order extension of 4≤M, if mixi 4≤M mjxj implies that mixi 4≤N mjxj , i.e.,
the relation 4≤M is contained in 4≤N . A multiset extension of 4≤M that is a
linear multiset order is called a multiset linear extension.

We have the following result.

Theorem 3.2. Let M = (M,4≤M) be a pomset and mixi,mjxj be any two points
in M with mixi||mjxj in M. Then there exists a pomset N extending M such that
mixi 4≤N mjxj.

To prove theorem 3.2, we will first outline the proofs of the following two com-
plementary results.

Lemma 3.3. Let P be a poset and let x, y be incomparable elements in P. Then
there exists a poset Q extending P such that x 4Q y
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Proof. This proof is a direct consequence of Szpilrajn’s extension theorem [4]:

Every partial order is contained into a total order.

We include this proof for the sake of convenience for the reader.
Let Q = P∪ (↓ x× ↑ y), i.e.,Q is obtained from P by adjoining P with all pairs of

points (u,v) for which u 4P x and y 4P v. Since x 4Q y, we need to show that the
ordering on Q is a partial order. Now ↓ x∩ ↑ y = �, since if z is in this intersection,
then y 4P z and z 4P x would yield y 4P x, a contradiction. The ordering on Q is
reflexive since P ⊆ Q. To show that the order on Q is antisymmetric, suppose that
u 4Q v and v 4Q u with u 6= v. By the definition of Q, either u 4P v or, u 4P x
and y 4P v. Similarly, either v 4P u or, v 4P x and y 4P u. Suppose u 4P v. Then
v 4P u cannot hold. Otherwise, we will have u = v, which is a contradiction. Thus
v 4P x and y 4P u. However, y 4P u 4P v 4P x gives a contradiction, i.e., y 4P x.
Similarly, the case v 4P u gives a contradiction. Suppose, u 4P x and y 4P v also,
v 4P x and y 4P u, which contradicts the fact that ↓ x∩ ↑ y = �. So u 4P v and
v 4P u must imply that u = v.

To show transitivity, assume that u 4Q v and v 4Q w. Now, either u 4P v or,
u 4P x and y 4P v. Also, either v 4P w or, v 4P x and y 4P w. Again we have
to consider the following cases. First assume that u 4P v, if also v 4P w, then the
claim follows from transitivity of P. Now suppose that v 4P x and y 4P w. Also
u 4P x, and this implies that u ∈↓ x and w ∈↑ y hence u 4Q w as required. Next,
suppose that u 4p x and y 4P v. Now, if v 4P w, then also y 4P w and this implies
that u ∈↓ x and w ∈↑ y, hence u 4Q w. The case v 4P x and y 4P w gives a
contradiction since ↓ x∩ ↑ y = �. �

Lemma 3.4 (Necessary and sufficient condition for a pomset N to be a multiset
extension of M). Suppose M and N are two pomsets defined over posets P and
Q, respectively, where P and Q have a common ground set, then N is a multiset
extension of M if and only if Q is an extension of P

Proof. LetM = (M,4≤M), and N = (M,4≤N ) be pomsets over P and Q, respec-
tively. Suppose N is a multiset extension of M. Then by definition, we have

(3.1) mixi 4≤M mjxj =⇒ mixi 4≤N mjxj .

Also,

(3.2) mixi 4≤M mjxj ⇐⇒ xi 4P xj(Since M is defined over the poset P).

Similarly,

(3.3) mixi 4≤N mjxj ⇐⇒ xi 4Q xj .

From (3.1) to (3.3), we have

xi 4P xj ⇐⇒ mixi 4≤M mjxj =⇒ mixi 4≤N mjxj ⇐⇒ xi 4Q xj .

Thus xi 4Q xj whenever xi 4P xj So Q is an extension of P.
Next, suppose Q is an extension of P. Then

(3.4) xi 4Q xj whenever xi 4P xj .
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Since xi, xj are also elements of M, we must have mi,mj ∈ N with M(xi) = mi and
M(xj) = mj .
Thus by definition,

(3.5) xi 4P xj =⇒ mixi 4≤M mjxj for any pair of points mixi,mjxj ∈ M.

Similarly,

(3.6) xi 4Q xj =⇒ mixi 4≤N mjxj , for some pomsetN induced by 4Q .

From (3.4) to (3.6), we have

mixi 4≤N mjxj whenever mixi 4≤M mjxj .

So N is a multiset extension of M. �

We now give the proof of Theorem 3.2.

Proof. Let M = (M,4≤M) be a pomset defined over a partially ordered set P.
Suppose there exist points mixi and mjxj in M with mixi||mjxj in M. Thus by
definition, neither xi 4P xj nor xj 4Q xi holds in P. By Lemma 3.3, there exists
a poset, say Q, extending P such that xi 4Q xj . Let xi and xj be objects in
M, with multiplicities mi and mj , respectively. By definition xi 4Q xj implies
mixi 4≤N mjxj for some pomset N induced by 4Q. Suppose N is the pomset
(M,4≤N ). It follows from Lemma 3.4 that N is a multiset extension of M. �

Theorem 3.5 (A generalization of Theorem 3.2). Every finite pomset has a multiset
linear extension.

Proof. For a pomsetM = (M,4≤M), let U denote the multiset containing all pairs
mixi,mjxj in M with mixi||mjxj in M. By applying the construction in Theorem
3.2 inductively on all pairs mixi,mjxj ∈ ∪, a pomset N with a multiset linear order
4≤N is obtained. The ordering 4≤N contains all extensions of the original multiset
order 4≤M. �

4. The M-LIN Algorithm

Let M = (M,4≤) be a pomset defined over a poset P. Since 4≤ is induced by
4, the subposet (M∗,4) of P will be a generator for (M,4≤). A multiset linear
extension of 4≤ will be 4≤L, with mixi 4≤L mjxj whenever mixi 4≤ mjxj in
M, and (mixi 4≤L mjxj) ∨ (mjxj 4≤L mixi) holds for all mixi,mjxj in M. The
multiset linear extension can be obtained via the following steps:
Given a multiset M

(1) Choose a minimal element x1 in M∗

(2) Let m1 = M(x1)
(3) Choose m1x1 to be minimal in M
(4) Given that m1x1,m2x2, ...,mixi have been chosen, choose a minimal element

xi+1 in M∗ \ {x1, x2, ..., xi}
(5) Let mi+1 = M(xi+1)
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The multiset linear order m1x1 4≤L m2x2 4≤L ... 4≤L mnxn obtained through
this process is a multiset linear extension of 4≤.
The proposed algorithm M-LIN is a heuristic algorithm that constructs multiset
linear extensions [m1x1,m2x2, ...mnxn] of a pomset M. The algorithm is split into
two parts, viz., M-LIN 1 and M-LIN 2.

4.1 M-LIN Algorithm

M-LIN 1 (M [x1, ...xn])
Create Array M∗,M(x)
For i← 0 to len(M)-1
temp← [i]
if temp is not in M∗

M∗[i]← temp
freq← 0
for j← 0 to len(M)-1
if temp=M [j]
freq=freq + 1
end if
end for
multiplicity[]← freq
end if
end for

M-LIN 2
Create Array CM
T=M∗

q=multiplicity
While (len(T)> 0)
x=Min(T)
i=T.index of (x)
Y=q[i]
If (Y > 1)
CM[]← Y.X
Else
CM[]← x
T.Remove(x)
end while
Return CM

The first part of the algorithm i.e., M-LIN 1 creates the root set and multiplicity

arrays. Algorithm M-LIN 2 sorts the root set using a defined ordering and obtains
the multiplicity of the minimal element at each stage. It returns a point mixi. The
final output is a multiset linear extension of the original multiset order.

134



Balogun et al./Ann. Fuzzy Math. Inform. 24 (2022), No. 2, 129–136

5. Conclusions

The proposed heuristic algorithm for generating multiset linear extensions is
decidable. It can be adopted for modeling and solving problems on ordered structures
for which repetition is significant. Ordered multisets are useful for representing
concurrent behaviours (e.g. [28]). For instance, events with a number of repeated
tasks can be modeled using this algorithm, and implemented in order to obtain a
linearization. An algorithm for generating the class of multiset linear extensions
that realizes the pomset M(i.e., the minimum number of multiset linear extensions
whose intersection is M) could also be investigated.
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