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Abstract. It is generally difficult to compute the level cut sets of type-
2 fuzzy sets, so type-2 fuzzy sets that are more naturally represented and
whose level cut sets can be computed relatively easily are desired. Then,
we introduce a new type-2 fuzzy number called Triangular Shaped Type-
2 Fuzzy Number in this paper. Moreover, we study calculus for type-2
fuzzy-number-valued functions and solve the problem of a fuzzy differential
equation whose initial value is this type-2 fuzzy number.
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1. Introduction

The concept of type-2 fuzzy sets is introduced by Zadeh [1] in 1975. This
event was exactly 10 years after he [2] introduced the concept of (type-1) fuzzy sets.
Also, the concept of fuzzy numbers, a special fuzzy set, was considered. For more
information on type-1 fuzzy numbers, see Appendix A.

Type-2 fuzzy sets are fuzzy sets with ambiguous membership grades. Generally
speaking, membership functions of a fuzzy set are subjectively determined by the
observer, so it is rather natural that membership grades contain ambiguity. We can
say, in other words, the type-2 fuzzy set includes not only the uncertainty of the
data, but also the membership function which indicates the uncertainty. Then, we
consider the membership function of a type-2 fuzzy set by characterizing it like a two-
variable function. In type-2 fuzzy theory, we have to consider two level cut sets, i.e.,
(α, β)-cut sets, where α and β are the level on data and the observer, respectively.
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In 2014, Mazandarani and Najariyan [3] gave the way to represent the (α, β)-cut
set of a special type-2 fuzzy number called “triangular perfect quasi-type-2 fuzzy
number” on the study of type-2 fuzzy differential equation theory. Recently, Bayeğ
et al. [4] conducted a study on this triangular perfect quasi-type-2 fuzzy number.
However, it is not easy to compute the (α, β)-cut set of a type-2 fuzzy set and there
are several research papers on it (e.g., [5, 6]). Related to these studies, we give the
way to represent the (α, β)-cut set of more general type-2 fuzzy numbers. We study
the application of them to type-2 fuzzy differential equation theory in this paper.

As such, type-2 fuzzy set theory is applying to fuzzy differential equation the-
ory (See, e.g., [3, 4, 7]). The concept of fuzzy derivatives was proposed by Chang
and Zadeh [8]. In addition, fuzzy derivatives using the extension principle were
proposed by Dubois and Prade [9], and some other concepts related to fuzzy deriva-
tives were discussed by Puri and Ralescu [10]. Fuzzy initial value problems have
been researched since Kaleva [11], and Bede and Gal [12], and several attempts
have been proposed to define the differentiability of fuzzy functions. Among them,
Hukuhara differentiability and strongly generalized differentiability [12, 10] have at-
tracted particular attention. This concept has been applied to the theory of differ-
ential equations, and hence fuzzy differential equation theory has been established.
These studies can also be found in other references, such as [13, 14, 15, 16, 17]. To
discuss the differentiability of fuzzy functions, the concept of topology needs to be
introduced for them. This is summarized in detail in, e.g., [18, 17].

For the sake of simplicity, “type-n fuzzy differential equations” and “type-n fuzzy
initial value problems” are often abbreviated as “TnFDEs” and “TnFIVPs”, re-
spectively in this paper. (It should be added that [19, 20] are also available for the
studies on the approximation by [0, 1]-valued solutions of (probabilistic) differential
equations.)

For example, suppose that we have a highly experienced expert and an inexpe-
rienced student measure the temperature of a certain substance and ask them to
indicate the membership function of temperature (More specifically, see Section 5
of [3]). Then, there is a possibility that different membership functions will be ex-
pressed. In such a case, by applying the type-2 fuzzy concept, we can express the
appearance of measurements of a highly experienced expert and an inexperienced
student in a ”coherent” form. To be more specific, the appearance of measurements
of a highly experienced expert can be expressed as the principal set (Definition 2.6)
of the type-2 fuzzy set and that of an inexperienced student expressed as vertical
slices (Definition 2.3) of the type-2 fuzzy set. The footprint (Definition 2.6) of the
type-2 fuzzy set represents the appearance of the measurement of the student with
the worst measurement accuracy. Moreover, type-2 fuzzy sets are useful if the exact
form of the membership function is not known, or if the grade of the membership
function itself is ambiguous or inaccurate. Since there are so many problems where
the exact form of the membership function cannot be determined, type-2 fuzzy sets
are suitable for dealing with high levels of uncertainty that involve more complicated
calculations. Also, the parameters and variables appearing in differential equations
in real problems are usually very imprecise, but we may well be able to model them
by type-2 fuzzy theory and hence T2FDEs.
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This paper is organized as follows: Section 2 gives some basic knowledge of type-2
fuzzy sets or numbers, which is necessary for this paper. To discuss type-2 fuzzy
sets, basic knowledge of type-1 fuzzy sets is required, which are summarized in an
appendix at the end of this paper (Appendix A). So, refer to it as needed. Section
3 gives the definition of a new type-2 fuzzy number which we will call a “triangular
shaped type-2 fuzzy number”. Moreover, we will define the operations for it and
compute the (α, β)-cut set of it. We also derive some theorems on type-2 fuzzy
differentiation. Section 4 gives how to solve a concrete problem on a T2FDE. For
this purpose, we will define the “type-2 fuzzy solution” as the solution of the T2FDE.
Section 5 gives the conclusion of this paper.

Throughout this paper, we propose some new notations (e.g., †, ‡) that seem
better because type-2 fuzzy theory tends to be complicated in notations.

2. Preparation

We prepare definitions of terms, notations and known results on type-2 fuzzy
theory required in this paper.

For convenience, we use a notation such as “the fuzzy set A : X → [0, 1]” and
basically write A(x) for the membership grade of A. “Crisp” means “non-fuzzy”.

2.1. Type-2 fuzzy sets. We first introduce type-2 fuzzy sets in our way. E1(X)
denotes the type-1 fuzzy space on X (See Appendix A.1). The definitions that
appear below (Definitions 2.1-2.7) are listed primarily with reference to [3, 21].

Definition 2.1. Ã is a type-2 fuzzy set on X, if the membership function of Ã is
defined by

µÃ : I × Jx → [0, 1] ( (x, u) 7→ µÃ(x, u) ),(2.1)

where I ⊂ X is the universe for the primary variable x ∈ X and Jx ⊂ [0, 1] is the

interval determined for each x ∈ I. Ã is also denoted by

Ã = {(x, u;µÃ(x, u)) : x ∈ I, u ∈ Jx} =

∫
x∈I

∫
u∈Jx

µÃ(x, u)/(x, u).(2.2)

In (2.2), “
∫

” means a continuous union for sets, not an integral. As well, “/” means

a marker, not a division. If Ã is discrete, we rewrite “
∫

” to “
∑

”.

Definition 2.2. Let Ã be a type-2 fuzzy set with µÃ : I × Jx → [0, 1]. Then I

and Jx for each x ∈ I are called the primary domain and secondary domain of Ã
respectively.

As with type-1, type-2 fuzzy numbers are special type-2 fuzzy sets. In order to
discuss a type-2 fuzzy number we think is ideal, we would like to propose a new
type-2 fuzzy number whose bottom (called “footprint” later) is a parallelogram.

Definition 2.3. Let Ã be a type-2 fuzzy set with µÃ : I × Jx → [0, 1]. By fixing

x ∈ I arbitrarily, one type-1 fuzzy set appears. We call it the vertical slice of Ã.
Then its membership function is denoted by

νx
Ã

: Jx → [0, 1]
33



Someyama et al. /Ann. Fuzzy Math. Inform. 24 (2022), No. 1, 31–54

and called the secondary membership function of Ã at x. This νx
Ã

characterizes Ã:

Ã =

∫
x∈X

(∫
u∈Jx

νx
Ã

(u)/u

)/
x,

and then νx
Ã

(u) is called the secondary membership grade of Ã.

Remark 2.4. Vertical slices and secondary membership functions are often treated
equally, and hence “secondary membership functions” are also called “vertical slices”
in this paper.

There are two kinds of cutting with respect to β and what is important is what
to cut with respect to β.

Definition 2.5 (Cutting for vertical slices). Let Ã be a type-2 fuzzy set on X. Then

SÃ(x|β) :=

{
{u ∈ Jx : νx

Ã
(u) ≥ β} β ∈ (0, 1],

cl({u ∈ Jx : νx
Ã

(u) > 0}) β = 0

is called the β-cut set of the vertical slice of Ã.

Figure 1. 0-cut set of the vertical slice

Definition 2.6 (Cutting for type-2 fuzzy sets). Let Ã be a type-2 fuzzy set on X.
Then for β ∈ [0, 1],

Ãβ :=
⋃
x∈I

SÃ(x|β)

is called the β-plane of Ã. In particular, Ã1 and Ã0 are called the principal (or

principle) set and footprint (set) of Ã respectively. If the β-plane of Ã is the interval-
valued fuzzy set, we denote

Ãβ =
〈
Aβ , Aβ

〉
(2.3)

for convenience, where two type-1 fuzzy sets Aβ and Aβ are called the lower mem-

bership function (briefly, LMF) and upper membership function (briefly, UMF) on Ã
respectively.
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Definition 2.7. Let Ã be a type-2 fuzzy set on X. Then, the coupling, which

becomes the crisp set, of α-cut sets of Aβ and Aβ is called the (α, β)-cut set of Ã:

[Ã]αβ :=
〈

[Aβ ]α, [Aβ ]α

〉
(2.4)

for any α ∈ [0, 1].

As with type-1, it is sufficient to discuss β-planes or (α, β)-cut sets of type-2 fuzzy

sets. This is because the level cut sets make up the original type-2 fuzzy set Ã:

Proposition 2.8 (Hamrawi, [5]). For any type-2 fuzzy set Ã on X, one has

Ã =
⋃

β∈[0,1]

β
⋃

α∈[0,1]

αÃαβ ,

where αÃαβ : X → {0, α} is a type-1 fuzzy set.

Example 2.9. Let Ã be a type-2 fuzzy set on R. The principal set Ã1 is given by

Ã1(x) = max{1− |x− 1|, 0}

and the secondary membership function νx
Ã

is given by

νx
Ã

(u) = max{1− 4|u− Ã1(x)|, 0}, u ∈ [0, 1].

The graph of νx
Ã

can be seen in Figure 2. Let us compute the concrete β-plane of

Figure 2. Graph of νx
Ã

Ã. Set β = 0.5. Then, we have

Aβ = max

{
7

8
− |x− 1|, 0

}
,

Aβ = min

{
max

{
9

8
− |x− 1|, 0

}
, 1

}
.
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Their α-cut sets for (α, β) = (0.3, 0.5) is obtained as

[Aβ ]α =

[
17

40
,

63

40

]
= [0.425, 1.575],

[Aβ ]α =

[
7

40
,

73

40

]
= [0.175, 1.825].

Figure 3. LMF (red line) and UMF (blue line) of the type-2 fuzzy
set whose core is 1 and their α-cut sets

2.2. Operations for type-2 fuzzy sets. In order to solve T2FDEs, for example,
one must define the equality and (arithmetic) operations for type-2 fuzzy sets. We
list their definitions with reference to [3] below.

Definition 2.10 (Equality for type-2 fuzzy sets). Let Ã and B̃ be type-2 fuzzy sets

on X. Then Ã = B̃ if and only if SÃ(x|β) = SB̃(x|β) for all x ∈ I and β ∈ [0, 1].

Definition 2.11 (Linearity for type-2 fuzzy sets). Let Ã and B̃ be type-2 fuzzy sets

on X and let k ∈ R. The sum Ã+ B̃ of Ã and B̃ is defined by

[Ã+ B̃]αβ :=
〈

[Aβ +Bβ ]α, [Aβ +Bβ ]α

〉
=
〈

[Aβ ]α + [Bβ ]α, [Aβ ]α + [Bβ ]α

〉
.

Moreover, the scalar multiple kÃ of Ã is defined by

[kÃ]αβ :=
〈

[kAβ ]α, [kAβ ]α

〉
=
〈
k[Aβ ]α, k[Aβ ]α

〉
.

Example 2.12. We consider only the example about the sum operation of type-2
fuzzy sets. Let 2̃ and 3̃ be a type-2 fuzzy set on R. Their principal sets 2̃1, 3̃1 and
the secondary membership functions νx

2̃
, νx

3̃
are given by

νx
2̃

(u) = max{1− 4|u− 2̃1(x)|, 0},

νx
3̃

(u) = max{1− 4|u− 3̃1(x)|, 0}
36
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where

2̃1(x) = max{1− |x− 2|, 0},

3̃1(x) = max{1− |x− 2|, 0}.

On the other hand, since

2β = max

{
7 + β

8
− |x− 2|, 0

}
,

2β = min

{
max

{
9− β

8
− |x− 2|, 0

}
, 1

}
,

3β = max

{
7 + β

8
− |x− 3|, 0

}
,

3β = min

{
max

{
9− β

8
− |x− 3|, 0

}
, 1

}
,

we obtain their α-cut sets as

[2β ]α =

[
9− β

8
+ α,

23 + β

8
− α

]
,

[3β ]α =

[
17− β

8
+ α,

31 + β

8
− α

]
for α ∈ [0, 7/8] and

[2β ]α =

[
7− β

8
+ α,

25 + β

8
− α

]
,

[3β ]α =

[
15− β

8
+ α,

33 + β

8
− α

]
for α ∈ [0, 1]. Then from these, we have

[2̃ + 3̃]αβ =
〈

[2β ]α + [3β ]α, [2β ]α + [3β ]α

〉
=

〈[
13− β

4
+ 2α,

27 + β

4
− 2α

]
,

[
11− β

4
+ 2α,

29 + β

4
− 2α

]〉
.

Thus by this result, we can calculate the LMF and UMF of 2̃ + 3̃ as follows:

(2̃ + 3̃)β = max

{
7 + β

8
− 1

2
|x− 5|, 0

}
,

(2̃ + 3̃)β = min

{
max

{
9 + β

8
− 1

2
|x− 5|, 0

}
, 1

}
.

So we have the secondary membership function

νx
2̃+3̃

(u) = max{1− 4|u− (2̃ + 3̃)1(x)|, 0}

where

(2̃ + 3̃)1(x) = max

{
1− 1

2
|x− 5|, 0

}
is the principal set.
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We consider the type-2 version of H-differences introduced in [3].

Definition 2.13. Let Ã and B̃ be type-2 fuzzy sets on X. If there exists some

type-2 fuzzy set C̃ such that

Ã = B̃ + C̃,

then we call C̃ the T2-H-difference of Ã and B̃, and is denoted by Ã− B̃.

Proposition 2.14 ([3]). Let Ã and B̃ be type-2 fuzzy sets on X. Then,

[Ã− B̃]β =
〈
Aβ −Bβ , Aβ −Bβ

〉
where the differences appearing in the right-hand side are T1-H-differences.

We adopt the following distance to set the type-2 fuzzy topology.

Definition 2.15 ([25]). Let Ã and B̃ be type-2 fuzzy sets on X. A Hung–Yang

distance between Ã and B̃ is defined as

dHY(Ã, B̃) :=

∫
I

Hf(ν
x
Ã
, νx
B̃

) dx,(2.5)

where

Hf(ν
x
Ã
, νx
B̃

) :=

∫ 1

0
βdH(SÃ(x|β), SB̃(x|β)) dβ∫ 1

0
β dβ

= 2

∫ 1

0

βdH(SÃ(x|β), SB̃(x|β)) dβ

and the integrals are in the sense of Riemann. We denote by E2(X) the space of
type-2 fuzzy numbers on X equipped with dHY-topology.

Remark 2.16. See Theorem 2.3 of [3] to make sure E2(X) is a crisp metric space,
i.e., dHY satisfies the metric axiom.

2.3. Triangular shaped type-2 fuzzy numbers and their level cut sets. We
introduce a type-2 version of triangular shaped type-1 fuzzy numbers. It is important
to define the principal set as a symmetric triangular type-1 fuzzy number. The type-2
fuzzy number is the fuzzy number whose membership grade is type-1. So, we decide
to treat membership grades of 1 and 0 not as “about 1” and “about 0” but as crisp
“1” and “0” without fuzziness, and to treat a grade of 0.5 as having the highest
degree of fuzziness. Based on this thought, we propose a new type-2 fuzzy number
as follows.

Definition 2.17. Let Ã be a type-2 fuzzy set on R and a ∈ R its core. Then, Ã
is called a triangular shaped type-2 fuzzy number (shortly, TST2FN) on R, if the

principal set Ã1 is given by

Ã1(x) := max{1− |x− a|, 0}(2.6)

and the secondary membership function νx
Ã

at x ∈ I is given by

νx
Ã

(t) :=


1− |t− Ã1(x)|

min{Ã1(x), 1− Ã1(x)}
if Ã1(x) ∈ (0, 1),{

1 if t = Ã1(x)

0 if t 6= Ã1(x)

}
if Ã1(x) ∈ {0, 1}.

(2.7)
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We denote by T 2(R) the space of TST2FNs on R and note that T 2(R) is equipped
with dHY.

Figure 4. Type-2 fuzzy set for “about 2”

Figure 5. Footprint set of “about 2” in the sense of type-2

Remark 2.18. For any Ã ∈ T 2(R), the left and right sides of its footprint are
congruently parallelograms with a width length of 0.5 (See Figure 5). Moreover, the

principal set of Ã consists of diagonals of the two parallelograms (See Figure 5-6).

TST2FNs are relatively easy to compute their level cut sets. Let us find the

(α, β)-cut set of a TST2FN. For convenience, consider Ã ∈ T 2(R) whose core is

a ∈ R. The footprint of Ã is the area consisting of two parallelograms (See the red
area in Figure 7)

min{y, y − 1 + 2|x− a|, −y + 2− 2|x− a|, −y + 1} ≥ 0.

Moreover, the principal set of Ã is

Ã1 = max{1− |x− a|, 0}
39
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Figure 6. Principal set of “about 2” in the sense of type-2

within a − 1 ≤ x ≤ a + 1 (See the blue line in Figure 7). For any β ∈ [0, 1], the

β-plane Ãβ is given as the continuous set of all (x, u) ∈ I × Jx such that

min { (2− β)− |(2− β)(x− a)| − y, 1− β|x− a| − y,
y − β + β|x− a|, −1 + |(2− β)(x− a)|+ y } ≥ 0.

(2.8)

As we can see from Figure 8, this is the area consisting of two parallelograms (blue

area). By (2.8), we can compute the (α, β)-cut set of Ã (See Figure 9). That is, it
can be summarized as follows.

Theorem 2.19. Let Ã ∈ T 2(R) have core a ∈ R and let α, β ∈ [0, 1].

(1) If 0 < α ≤ β/2, then one has

[Ã]αβ =

〈[
a− 2− α− β

2− β
, a− β − α

β

]
,

[
a+

β − α
β

, a+
2− α− β

2− β

]〉
.(2.9)

(2) If β/2 < α ≤ 1− β/2, then one has

[Ã]αβ =

〈[
a− 2− α− β

2− β
, a− 1− α

2− β

]
,

[
a+

1− α
2− β

, a+
2− α− β

2− β

]〉
.(2.10)

(3) If 1− β/2 < α ≤ 1, then one has

[Ã]αβ =

〈[
a− 1− α

β
, a− 1− α

2− β

]
,

[
a+

1− α
2− β

, a+
1− α
β

]〉
.(2.11)

Concrete examples of TST2FNs will be also seen in Section 4.

2.4. Type-2 fuzzy-number-valued functions. Let I ⊂ R. We consider the crisp
function f : I → R. Zadeh’s extension principle derives the type-2 fuzzy function

F̃ : E2(I) → E2(R) via f in the same way as type-1. In what follows, we treat the

case of E2(I) = I and call F̃ : I → E2(R) the type-2 fuzzy-number-valued function

(shortly, T2FNV function). The β-plane and (α, β)-cut set of F̃ : I → E2(R) are
represented by [

F̃ (x)
]
β

=
〈
Fβ(x), Fβ(x)

〉
40
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Figure 7. Footprint and principal set of Ã whose core is 1

Figure 8. β-plane if β ∈ (0, 0.5] and β-plane if β ∈ (0.5, 1)

Figure 9. α-cut set of the β-plane

and [
F̃ (x)

]α
β

=
〈

[Fβ(x)]α, [Fβ(x)]α

〉
,

respectively. Here Fβ , Fβ : I → E1(R) are type-1 fuzzy-number-valued functions

and we denote [
Fβ(x)

]
α

:=
[
Fβ−

(x;α), Fβ
+

(x;α)
]
,[

Fβ(x)
]
α

:=
[
Fβ−(x;α), Fβ+(x;α)

]
41
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for all x ∈ I and any α, β ∈ [0, 1]. For convenience, we also denote crisp function
values Fβ±

(x;α) and Fβ±(x;α) by Fα,β,±(x) and Fα,β,±(x), respectively.

We use daggers †, ‡ introduced in Appendix A.2 as symbols for type-2 fuzzy
derivatives. The following definition was introduced in [3] with reference to the case
of type-1.

Definition 2.20. Let F̃ : I → E2(R) and h > 0 be a crisp number.

• F̃ is (1)-T2-differentiable at some x0 ∈ I if and only if there exist F̃ (x0 +

h)− F̃ (x0) and F̃ (x0)− F̃ (x0 − h) satisfying that the fuzzy limit

F̃ †(x0) := lim
h↓0

F̃ (x0 + h)− F̃ (x0)

h
= lim

h↓0

F̃ (x0)− F̃ (x0 − h)

h
(2.12)

exists.
• F̃ is (2)-T2-differentiable at some x0 ∈ I if and only if there exist F̃ (x0)−
F̃ (x0 + h) and F̃ (x0 − h)− F̃ (x0) satisfying that the fuzzy limit

F̃ ‡(x0) := lim
h↑0

F̃ (x0)− F̃ (x0 + h)

−h
= lim

h↑0

F̃ (x0 − h)− F̃ (x0)

−h
(2.13)

exists.

Here the above differences and limits are due to the meaning of T2-Hukuhara and

dHY, respectively. Moreover, if F̃ is T2-differentiable in both senses at any x ∈ I,

then F̃ † and F̃ ‡ is called the (1)-T2-derivative and (2)-T2-derivative of F̃ respec-
tively.

Remark 2.21. (1) Like Remark A.11, we shall ignore T2-derivatives in the third
and fourth forms. The limits of both the forms become crisp numbers as with type-1.
This thing has already been mentioned in Note 4.1 of [3].

(2) As with type-1, T2-derivatives of order n, n ≥ 2, are obtained by applying
first-order T2-derivatives to (2.12) and (2.13).

Theorem 2.22 ([3]). Let F̃ : I → E2(R) be T2-differentiable on I. Then, the
parametric forms of its T2-derivatives are given by

(1) the (1)-form:[
F̃ †(x)

]α
β

=
〈[
Fβ
†(x)

]
α
,
[
Fβ
†
(x)
]
α

〉
=
〈[
F ′α,β,−(x), F ′α,β,+(x)

]
,
[
F
′
α,β,−(x), F

′
α,β,+(x)

]〉
,

(2) the (2)-form:[
F̃ ‡(x)

]α
β

=
〈[
Fβ
‡(x)

]
α
,
[
Fβ
‡
(x)
]
α

〉
=
〈[
F ′α,β,+(x), F ′α,β,−(x)

]
,
[
F
′
α,β,+(x), F

′
α,β,−(x)

]〉
.

3. Theorems on Type-2 fuzzy differentiation

We study basic properties on type-2 fuzzy differentiation in this section.
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3.1. Continuity of T2FNV functions. We begin by defining the continuity of
T2FNV Functions.

Definition 3.1. Let F̃ : I → E2(R) and h > 0 be a crisp number. F̃ is T2-
continuous on I, if it follows in dHY that

lim
h↓0
{F̃ (x+ h)− F̃ (x)} = lim

h↓0
{F̃ (x)− F̃ (x− h)} = 0(3.1)

for any x ∈ I. We denote by C(I;E2(R)) the space of such T2FNV functions.

Proposition 3.2. If F̃ : I → E2(R) is T2-differentiable on I, then F̃ is T2-
continuous on I.

Proof. Since F̃ is T2-differentiable on I from the assumption, the limit

lim
h↓0

F̃ (x+ h)− F̃ (x)

h
= lim

h↓0

F̃ (x)− F̃ (x− h)

h

exists. By expressing, for any x ∈ I,

F̃ (x+ h)− F̃ (x) =
F̃ (x+ h)− F̃ (x)

h
h(3.2)

F̃ (x)− F̃ (x− h) =
F̃ (x)− F̃ (x− h)

h
h(3.3)

and by letting h ↓ 0 in both sides of these, we have (3.1). �

Remark 3.3. Expressions (3.2) and (3.3) are not always possible if h is fuzzy, since
it is not generally the case that u/u = 1 for any u ∈ E1(R). The above proof was
made because h is crisp.

3.2. Differentiation of four operation rules of T2FNV functions.

Theorem 3.4. Let F̃ , G̃ : I → E2(R) be T2-differentiable on I. Then, F̃ + G̃ : I →
E2(R) is T2-differentiable on I and

(F̃ ± G̃)†(x) = F̃ †(x)± G̃†(x),(3.4)

(F̃ ± G̃)‡(x) = F̃ ‡(x)± G̃‡(x)(3.5)

for x ∈ I, where we assume that H-differences F̃ − G̃ in the equations on “−” of
(3.4) and (3.5).

Proof. It is obvious for sums from Definition 2.20. We prove only

(F̃ − G̃)†(x) = F̃ †(x)− G̃†(x), x ∈ I.(3.6)

The other case can be shown in the same way. Since F̃ − G̃ exists, there is some

W̃ : I → E2(R) such that

F̃ (x) = G̃(x) + W̃ (x),

F̃ (x± h) = G̃(x± h) + W̃ (x± h)
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where h > 0 is a crisp number. Then, we have

F̃ (x+ h)− F̃ (x) = (G̃(x+ h) + W̃ (x+ h))− (G̃(x) + W̃ (x))

= (G̃(x+ h)− G̃(x)) + (W̃ (x+ h)− W̃ (x))
(3.7)

by virtue of Lemma 3.5 mentioned later. Similarly, we also have

F̃ (x)− F̃ (x− h) = (G̃(x)− G̃(x− h)) + (W̃ (x)− W̃ (x− h)).(3.8)

Since F̃ and G̃ are T2-differentiable on I from the assumption, F̃ (x + h) − F̃ (x),

F̃ (x)− F̃ (x− h), G̃(x+ h)− G̃(x) and G̃(x)− G̃(x− h) exist for any x ∈ I. Thus
the following derivative in dHY exists:

(F̃ − G̃)†(x) = lim
h↓0

W̃ (x+ h)− W̃ (x)

h
= lim

h↓0

W̃ (x)− W̃ (x− h)

h
, x ∈ I.

This limit is F̃ †(x) − G̃†(x), x ∈ I, from (3.7) and (3.8). So we obtain (3.6). This
completes the proof. �

Lemma 3.5. Let uj , vj ∈ E1(R) (j = 1, 2). Suppose that (u1 + v1) − (u2 + v2),
u1 − u2 and v1 − v2 exist. Then, the distributive law for T1-H-differences in the
following sense hold:

(u1 + v1)− (u2 + v2) = (u1 − u2) + (v1 − v2).

Moreover, the same result holds for type-2 fuzzy numbers.

Proof. We prove only for type-1 fuzzy numbers, since the definition of T2-H-differences
for type-2 fuzzy numbers is essentially equal to that for type-1 fuzzy numbers. Then,
by noting that − is the H-difference, the α-cut discussion implies that

[(u1 + v1)− (u2 + v2)]α = [u1 + v1]α − [u2 + v2]α

= ([u1]α + [v1]α)− ([u2]α + [v2]α)

= ([u1]α − [u2]α) + ([v1]α − [v2]α)

= [u1 − u2]α + [v1 − v2]α

= [(u1 − u2) + (v1 − v2)]α

for any α ∈ [0, 1], and finish the proof. �

Remark 3.6. We can generally have the similar results to Theorem 3.4 for any
order N ∈ N ∪ {0}.

Theorem 3.7. Let f : I → R be differentiable, let G̃ : I → E2(R) be T2-
differentiable on I and let x ∈ I.

(1) If f(x)f ′(x) > 0 and G̃ is (1)-T2-differentiable, then fG̃ is (1)-T2-differentiable
and

(fG̃)†(x) = f ′(x)G̃(x) + f(x)G̃†(x).(3.9)

(2) if f(x)f ′(x) < 0 and G̃ is (2)-T2-differentiable, then fG̃ is (2)-T2-differentiable
and

(fG̃)‡(x) = f ′(x)G̃(x) + f(x)G̃‡(x).(3.10)
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3.3. Differentiation of composite T2FNV functions. We finally consider the
composition of crisp and type-1 / type-2 fuzzy functions and its derivative.

Theorem 3.8. Let f : I → R be differentiable and g̃ : R→ E1(R) T1-differentiable.
We consider the type-1 fuzzy composite function g̃ ◦ f : I → E1(R). Suppose that
T1-H-differences

(g̃ ◦ f)(x+ h)− (g̃ ◦ f)(x) and (g̃ ◦ f)(x)− (g̃ ◦ f)(x− h)

exist for any x ∈ I and h > 0 sufficiently small. Then g̃ ◦ f is T1-differentiable on
I and

(g̃ ◦ f)† = g̃†(f(x))f ′(x),(3.11)

(g̃ ◦ f)‡ = g̃‡(f(x))f ′(x).(3.12)

Moreover, the same result holds for G̃ : R→ E2(R).

Proof. We prove only for type-1 g̃ because we can prove for type-2 G̃ in the same
way. Let h > 0 be a crisp number. The α-cut set of the right difference quotient of
(g̃ ◦ f) is[

(g̃ ◦ f)(x+ h)− (g̃ ◦ f)(x)

h

]
α

=

[
(g̃ ◦ f)−,α(x+ h)− (g̃ ◦ f)−,α(x)

h
,

(g̃ ◦ f)+,α(x+ h)− (g̃ ◦ f)+,α(x)

h

]
=

[
g̃−,α(f(x+ h))− g̃−,α(f(x))

h
,
g̃+,α(f(x+ h))− g̃+,α(f(x))

h

]
=

[
g̃−,α(f(x+ h))− g̃−,α(f(x))

f(x+ h)− f(x)

f(x+ h)− f(x)

h
,

g̃+,α(f(x+ h))− g̃+,α(f(x))

f(x+ h)− f(x)

f(x+ h)− f(x)

h

]
.

Similarly, the α-cut set of the left difference quotient of (g̃ ◦ f) is[
(g̃ ◦ f)(x)− (g̃ ◦ f)(x− h)

h

]
α

=

[
g̃−,α(f(x))− g̃−,α(f(x− h))

f(x)− f(x− h)

f(x)− f(x− h)

h
,

g̃+,α(f(x))− g̃+,α(f(x− h))

f(x)− f(x− h)

f(x)− f(x− h)

h

]
.

Then the rightmost-hand sides of the above two equations converge as h ↓ 0. In fact,
f(x±h)→ f(x) as h ↓ 0, since f is continuous on I by virtue of the differentiability
of f on I. Hence (3.11) can be obtained. (3.12) can be similarly obtained. This
completes the proof. �
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4. Application to T2FIVPs

We consider T2FDEs and actually solve a concrete T2FIVP in this section. Both
“†” and “‡” are collectively denoted as “D”.

We consider T2FIVPs on I = [0, r] for some r > 0 or I = [0,+∞):{
D Ỹ (x) + aỸ (x) = 0,

Ỹ (0) = Ũ ∈ T 2(R),
(4.1)

where a is a crisp constant. Let us define the meaning of a T2FIVP having the
solution. T 1(R) stands for the space of triangular type-1 fuzzy numbers on R (see
Appendix A.1).

Definition 4.1. Let Ỹ : I → T 2(R) be T2-differentiable. We denote the β-plane of

Ỹ = Ỹ (x) by

[Ỹ (x)]β =
〈
Yβ(x), Yβ(x)

〉
.

Then Ỹ is the (i, j)-type-2 fuzzy solution of (4.1), (i, j) ∈ {1, 2}2, if and only if, for
each β ∈ [0, 1],

(i) DiYβ ,DiY β exist on I, and

(ii) Yβ and Yβ : I → T 1(R) satisfy{
[DiYβ(x)]α + [aYβ(x)]α = 0, x ∈ I,
Yβ(0) = Uβ ∈ T 1(R)

and {
[DiYβ(x)]α + [aYβ(x)]α = 0, x ∈ I,
Yβ(0) = Uβ ∈ T 1(R)

for any α ∈ [0, 1] respectively.

Remark 4.2. (1) The type-2 fuzzy solution generally becomes the type-1 fuzzy
solution if β = 1; it becomes the crisp solution if α = β = 1.

(2) By virtue of Proposition 2.8, the fuzzy solution Ỹ can be represented by using
its (α, β)-cut sets.

We treat T2FDEs with positive crisp coefficients.

Problem 4.3. Let Ỹ : [0, 1]→ T 2(R). Then, solve T2FIVP:{
D Ỹ (x) + 3Ỹ (x) = 0,(4.2)

Ỹ (0) = 1̃ ∈ T 2(R).(4.3)

Solution. The (α, β)-cut-set equation of (4.2) is〈
[DYβ(x)]α + 3[Yβ(x)]α, [DYβ(x)]α + 3[Yβ(x)]α

〉
= 0, α ∈ [0, 1].
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This can be reduced to the following two T1FIVPs:
[Yβ
†(x)]α + 3[Yβ(x)]α

= [Y ′α,β,−(x) + 3Y α,β,−(x), Y ′α,β,+(x) + 3Y α,β,+(x)] = 0,(4.4)

Yβ(0) = 1β ∈ E1(R),(4.5)

and 
[Yβ
†
(x)]α + 3[Yβ(x)]α

= [Y
′
α,β,−(x) + 3Y α,β,−(x), Y

′
α,β,+(x) + 3Y α,β,+(x)] = 0,(4.6)

Yβ(0) = 1β ∈ E1(R).(4.7)

(4.4) can be solved in the form of

Y α,β,±(x) = C±e
−3x,(4.8)

and (4.6) can also be solved in the form of

Y α,β,±(x) = C±e
−3x,(4.9)

where these four equations represent two equations, one for the upper sign and the
other for the lower sign.

From (2.9)-(2.11), the (α, β)-cut set of 1̃ ∈ T 2(R) is calculated as

(i) if 0 < α ≤ β/2:

1̃αβ =

〈[
α

2− β
,
α

β

]
,

[
2− α

β
, 2− α

2− β

]〉
,

(ii) if β/2 < α ≤ 1− β/2:

1̃αβ =

〈[
α

2− β
, 1− 1− α

2− β

]
,

[
1 +

1− α
2− β

, 2− α

2− β

]〉
,

(iii) if 1− β/2 < α ≤ 1:

1̃αβ =

〈[
1− 1− α

β
, 1− 1− α

2− β

]
,

[
1 +

1− α
2− β

, 1 +
1− α
β

]〉
.

Then we have

(i) if 0 < α ≤ β/2:

[Ỹ (x)]αβ =

〈[
α

2− β
e−3x,

α

β
e−3x

]
,

[(
2− α

β

)
e−3x,

(
2− α

2− β

)
e−3x

]〉
,

(ii) if β/2 < α ≤ 1− β/2:

[Ỹ (x)]αβ

=

〈[
α

2− β
e−3x,

(
1− 1− α

2− β

)
e−3x

]
,[(

1 +
1− α
2− β

)
e−3x,

(
2− α

2− β

)
e−3x

]〉
,
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(iii) if 1− β/2 < α ≤ 1:

[Ỹ (x)]αβ

=

〈[(
1− 1− α

β

)
e−3x,

(
1− 1− α

2− β

)
e−3x

]
,[(

1 +
1− α
2− β

)
e−3x,

(
1 +

1− α
β

)
e−3x

]〉
.

Thus the fuzzy solution of (4.2) with (4.3) is given as

Ỹ (x) =
⋃

β∈[0,1]

β
⋃

α∈[0,1]

α[Ỹ (x)]αβ .

Figure 10. (1/2, 1/3)-cut set of fuzzy solution:

[Ỹ (x)]
α=1/2
β=1/3 =

〈[
3

10
e−3x,

7

10
e−3x

]
,

[
13

10
e−3x,

17

10
e−3x

]〉

5. Conclusion

We have introduced a new type-2 fuzzy number, i.e., triangular shaped type-2
fuzzy number (Definition 2.17). The feature of this is that the footprint of type-

2 fuzzy number Ã consists of two isosceles parallelograms. Moreover, let Ã pass

through the origin for the sake of clarity. If the (1, 1)-cut set of Ã is a ∈ R, we

should note that 0-cut sets SÃ(a/2|0) and SÃ(3a/2|0) of the vertical slice of Ã is
[0, 1]. We can consider and set a variety of type-2 fuzzy numbers, but this paper
believes that triangular shaped type-2 fuzzy numbers are natural forms.

We have found (α, β)-cuts of a triangular shaped type-2 fuzzy number ((2.9)-
(2.11)), and so they can be used as formulas in applied problems. They will be
useful for applications of type-2 fuzzy theory.

Furthermore, we have given an application to type-2 fuzzy differential equation
theory (Section 4). Generally, the coefficients of differential equations and initial
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values are calculated based on given data, but we have solved the model in case
that method is based on human subjective judgement. This “human subjective
judgement” leads to ambiguity, so it is inevitably necessary to consider fuzzy dif-
ferential equation theory. We should then treat appropriate fuzzy numbers, but we
proposed to use triangular shaped type-2 fuzzy numbers for them in this paper. For
example, in the case of differential equations where coefficients and initial values are
determined empirically, there may be a difference in measurement accuracy between
expert and new observers. In this case, it is convenient that the membership func-
tions of both can be obtained in a simultaneous comparative manner. In such cases,
type-2 fuzzy numbers can be applied.

Type-2 fuzzy theory can be applied to various fields. The exploration of other
applications of triangular shaped type-2 fuzzy numbers is our future task.

Acknowledgement

The authors thank the reviewers of AFMI for their much advice and various
guidance. The last author is supported in part by Grant-in-Aid Scientific Research
(C), No.18 K03431, Ministry of Education, Science and Culture, Japan.

Appendix A. Necessary items on type-1 fuzzy theory

In this appendix, the notations, definitions and theorems on type-1 fuzzy numbers
are written.

A.1. Type-1 fuzzy numbers.

Definition A.1 ([15, 17, 18, 23]). A fuzzy set u : R → [0, 1] is the type-1 fuzzy
number if and only if

(i) u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e., u(tx + (1 − t)y) ≥ min{u(x), u(y)} for any x, y ∈ R

and t ∈ [0, 1];
(iii) u is upper semi-continuous;
(iv) the support supp(u) := cl({x ∈ R : u(x) > 0}) of u is compact, where cl(S)

stands for the closure of the crisp set S.

It is well known that the argument of fuzzy sets can be reduced to that of the
level cut sets, in the study of fuzzy theory so far. The α-cut set [A]α of a type-1
fuzzy set A on X is defined by

[A]α := {x ∈ X : A(x) ≥ α}, α ∈ (0, 1];

[A]0 := supp(u), α = 0,

and these level cut sets make up the original type-1 fuzzy set A:

A =
⋃

α∈[0,1]

α[A]α

where α[A]α : X → {0, α} is a type-1 fuzzy set. Thus, it is sufficient to consider and
argue α-cut sets for most problems. In particular, the type-1 fuzzy number is the
fuzzy set whose arbitrary α-cut set is a bounded and closed interval, so we put the
following notation.
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We denote the α-cut set of a type-1 fuzzy number u : R→ [0, 1] by

[u]α = [u−,α, u+,α](A.1)

for any α ∈ [0, 1]. (A.1) is called the parametric form of u.

Remark A.2. We write 0 for crisp zero in this paper and its α-cut set is represented
as the closed interval [0, 0]. In the same way, we regard a crisp real number r as the
closed interval [r, r] and bring crisp numbers into the group of fuzzy numbers.

Remark A.3 ([22]). Each end of [u]α = [u−,α, u+,α] should satisfy the followings:
(1) u−,α is bounded, monotone increasing, left-continuous with respect to α ∈

(0, 1] and right-continuous on α = 0,
(2) u+,α is bounded, monotone decreasing, left-continuous with respect to α ∈

(0, 1] and right-continuous on α = 0,
(3) u−,α ≤ u+,α for any α ∈ [0, 1].

In short, [u]α that does not satisfy any of the above property cannot be called the
fuzzy number.

We hereafter omit the description “α ∈ [0, 1]” when we argue α-cut sets or para-
metric forms.

Definition A.4 ([15, 23, 24]). Let u, v be type-1 fuzzy numbers on R. We denote
the α-cut sets of u, v by

[u]α = [u−,α, u+,α], [v]α = [v−,α, v+,α](A.2)

respectively. Then, u = v if and only if [u]α = [v]α, i.e.,

u−,α = v−,α and u+,α = v+,α

for any α ∈ [0, 1].

Definition A.5 ([15, 17, 18, 24]). Let u, v be type-1 fuzzy numbers on R and
k ∈ R. We denote the α-cut sets of them by (A.2). Thesum u + v of u and v is
defined by

[u+ v]α := [u]α + [v]α,

i.e.,

[u−,α, u+,α] + [v−,α, v+,α] = [u−,α + v−,α, u+,α + v+,α].

Moreover, the scalar multiple ku of u is defined by

[ku]α := k[u]α =

{
[ku−,α, ku+,α], k ≥ 0;

[ku+,α, ku−,α], k < 0.

Definition A.6 ([15, 17, 18, 24]). Let u, v be type-1 fuzzy numbers on R. We
denote the α-cut sets of them by (A.2). The product uv of u and v is defined by

[uv]α = [u]α[v]α =

[
min

i,j∈{−,+}
ui,αvj,α, max

i,j∈{−,+}
ui,αvj,α

]
for any α ∈ [0, 1].
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Definition A.7 ([15, 17, 18]). Let u, v be type-1 fuzzy numbers on R. We denote
the α-cut sets of them by (A.2). The fuzzy Hausdorff distance dH of u and v is
defined by

dH(u, v) := sup
α∈[0,1]

max{|u−,α − v−,α|, |u+,α − v+,α|}.

We write E1(R) for the type-1 fuzzy number space equipped with the dH-topology.
In particular, we denote by T 1(R) the space of triangular type-1 fuzzy numbers.

A.2. Type-1 fuzzy-number-valued functions. Let I be an interval which is a
proper subset of R or let I = R. We can consider the type-1 fuzzy function F :
E1(I)→ E1(R) by using Zadeh’s extension principle for a crisp function f : I → R.
We set E1(I) = I in this paper, i.e., we consider crisp-variable type-1 fuzzy-number-
valued functions exclusively. The α-cut set of F : I → E1(R) is represented by

[F (x)]α := [F−,α(x), F+,α(x)]

for all x ∈ I and any α ∈ [0, 1].
We define the difference of type-1 fuzzy numbers as the following sense, so as to

consider the difference quotient of F .

Definition A.8 ([15, 17, 18, 24]). Let u, v ∈ E1(R). If there exists some w ∈ E1(R)
such that u = v +w, we write w = u− v and call it the T1-H-difference of u and v.

Remark A.9. For any u ∈ E1(R), −u stands for 0− u, i.e.,

[−u]α = [−u−,α,−u+,α],

whereas

[(−1)u]α = [−u+,α,−u−,α].

We should remark that, in general,

u+ (−1)v 6= u− v

for any u, v ∈ E1(R).

We adopt, in this paper, dagger † and double dagger ‡ to denote fuzzy derivatives
in the sense of Hukuhara. We use prime ′ as the crisp derivative notation.

Definition A.10 ([10, 15, 17]). Let F : I → E1(R) and h > 0 be a crisp number.
F is T1-differentiable in the first form at some x0 ∈ I if and only if there exist
F (x0 + h)− F (x0) and F (x0)− F (x0 − h) satisfying that the fuzzy limit

F †(x0) := lim
h↓0

F (x0 + h)− F (x0)

h
= lim

h↓0

F (x0)− F (x0 − h)

h

exists. Moreover, F is T1-differentiable in the second form at some x0 ∈ I if and
only if there exist F (x0)−F (x0 +h) and F (x0−h)−F (x0) satisfying that the fuzzy
limit

F ‡(x0) := lim
h↓0

F (x0)− F (x0 + h)

−h
= lim

h↓0

F (x0 − h)− F (x0)

−h
exists. Here the above differences (resp. limits) are due to the meaning of T1-
Hukuhara (resp. dH). If F is T1-differentiable in both senses at any x ∈ I, F † and
F ‡ is called the (1)-T1-derivative and (2)-T1-derivative of F , respectively.

51



Someyama et al. /Ann. Fuzzy Math. Inform. 24 (2022), No. 1, 31–54

Remark A.11. In addition to the above two forms, it is possible to consider the
following two forms, i.e.,

(1) the third form:

lim
h↓0

F (x0 + h)− F (x0)

h
= lim

h↓0

F (x0 − h)− F (x0)

−h
,(A.3)

(2) the fourth form:

lim
h↓0

F (x0)− F (x0 + h)

−h
= lim

h↓0

F (x0)− F (x0 − h)

h
.(A.4)

However, it is known ([12], Theorem 7) that (A.3) becomes the crisp number if there
exist F (x0 +h)−F (x0) and F (x0−h)−F (x0). (A.4) is also so if F (x0)−F (x0 +h)
and F (x0)− F (x0 − h). We shall thus ignore the third and fourth forms.

Remark A.12. We mention the validity of our dagger symbols †, ‡ meaning as
fuzzy derivatives. First of all, we can avoid confusion between the crisp derivative
and the fuzzy derivative by using † and ‡. Secondly, if we want to the number of the
differential order to 2 or less, we can use †, ‡ in the same sense as prime ′ to clarify
what kind of fuzzy derivative it is. Moreover, the acronym for a letter is often used
to represent a mathematical concept or quantity, such as ∆ (Delta) for differences
or D for derivatives. From this point of view, “dagger” has an appropriate acronym
D to represent derivatives.

By using this definition repeatedly, we find that the nth-order T1-derivative of F
has 2n forms. For example, when applied to fuzzy differential equations, we need to
choose the most appropriate solution from these 2n solutions.

Theorem A.13 ([14]). Let F : I → E1(R) be T1-differentiable on I. Then the
parametric forms of its T1-derivatives are given by

(1) the first parametric form:

[F †(x)]α = [F ′−,α(x), F ′+,α(x)],

(2) the second parametric form:

[F ‡(x)]α = [F ′+,α(x), F ′−,α(x)].
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