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ABSTRACT. In this paper, we introduce the notions of IVI-octahedron
ideals and bi-ideals, and obtain some of their properties. Also, we define
an IVI-octahedron duo semigroup and give a characterization of a duo
semigroup by it, and study some of its properties. Furthermore, we discuss
some characterizations of a regular semigroup and a left [resp. right] regular
semigroup by IVI-octahedron ideals and bi-ideals.
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1. INTRODUCTION

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization
of crisp sets in order to solve the real world problems involving ambiguities and
uncertainties. Rosenfeld [2] applied initially it to basic theory of groupoids and
groups. After then, Das [3] defined a level subgroup and obtained a chracterization of
a fuzzy group by its level subgroup. Liu [4] studied some properties of fuzzy invariant
subgroups and fuzzy ideals. Mukherjee and Sen [5] investigated various properties of
fuzzy ideals of a ring. In particular, Kuroki [6] dealt with properties of fuzzy ideals
and bi-ideals in a semigroup. Also he discussed the characterizations of some special
semigroups by fuzzy ideals and bi-ideals in [7]. Recently, Wattanatripop et al. [3]
defined an almost bi-ideal in a semigroup and obtained some of its properties. Refer
to [9, 10, 11, 12, 13] for further researches with respect to fuzzy ideals and fuzzy
bi-ideals in semigroups.

In 1989, Biswas [14] applied the notion of intuitionistic fuzzy sets proposed by
Atanassov [15] as a generalization of a fuzzy set to a group theory. After that time,
Hur et al. [16] defined an intuitionistic fuzzy subgroupoid and an intuitionistic fuzzy
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ideal, and obtained their basic properties. Also, Hur et al. [17] studied various prop-
erties of intuitionistic fuzzy subgroups and intuitionistic fuzzy subrings. Banerjee
and Basnet [18] dealt with some properties of a group and an ideal based on in-
tuitionistic fuzzy sets. In particular, Kim and Jun [19] introduced the concept of
intuitionistic fuzzy ideals in a semigroup and investigated some of its properties.
Kim and Lee [20] defined an intuitionistic fuzzy bi-ideal in a semigroup and had
its various properties. Hur et al. [21] dealt with characterizations of some special
semigroups by intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals. Refer to
[22, 23, 24] for researches with respect to intuitionistic fuzzy ideals and intuitionistic
fuzzy bi-ideals.

In 1989, Atanassov and Gargov [25] proposed the concept of interval-valued in-
tuitionistic fuzzy sets as a generalization of an intuitionistic fuzzy set. Yaqoob [20]
applied it to ideals based on interval-valued intuitionistic fuzzy set in a regular LA-
semigroup and obtained some of its properties. Abdullah et al. [27] defined an
interval-valued («, 8)-intuitionistic fuzzy bi-ideal in a semigroup and investigated
some of its properties. On the other hand, Krishnaswamy et al. [28] studied ba-
sic properties of interval-valued intuitionistic fuzzy bi-ideals in a ternary semiring.
Also, Balasubramanian and Raja [29] dealt with properties of interval-valued intu-
itionistic @Q-fuzzy k-ideals in a ternary semiring. Moreover, K. Arulmozhil et al.
[30] introduced the concept of weak bi-ideals in a ' near-ring and dealt with some
of its properties.

Recently, Kim et al. [31] introduced the notion of IVI-octahedron sets and applied
it to groupoid theory. The purpose of our study is not only to find the properties
ideals and bi-ideals based on IVI-octahedron sets in semigroups, but also to obtain
some characterizations of a regular semigroup by them. To accomplish this, our pa-
per structured as follows: In Section 2, we list some definitions needed next sections.
In Section 3, we define an IVI-octahedron ideal, and give characterizations of an IVI-
octahedron ideal by the IVI-octahedron products and the level sets respectively (See
Theorems 3.20 and 3.23 respectively). In Section 4, we define an IVI-octahedron
bi-ideal, and obtain the characterizations of an IVI-octahedron bi-ideal by the IVI-
octahedron products and the level sets respectively (See Theorems 4.9 and 4.15
respectively). In Section 5, we introduce the notion of IVI-octahedron duo semi-
grops and give a characterization of a duo semigroup by IVI-octahedron duo semi-
grops (See Theorem 5.6). Also, we deal with some relations between IVI-octahedron
ideals and IVI-octahedron bi-ideals. In Section 6, We discuss with the characteriza-
tions of a regular semigroup by IVI-octahedron ideals and IVI-octahedron bi-ideals,
and a characterization of a left [resp. right and completely] regular semigroup by
IVI-octahedron left ideals [resp. IVI-octahedron right ideals and IVI-octahedron
bi-ideals].

2. PRELIMINARIES
In this section, we list some basic definitions needed in the next sections.
Let I =[0,1] and let X be a nonempty set. Then a mapping A : X — I is called

a fuzzy set in X (See [1]). 0 and 1 denote the fuzzy empty set and the fuzzy whole
312
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set in X defined by: for each x € X,
0(z) =0and 1(z) = 1.

Each member of a set I ® I = {(a€,a%) : (a€,a%) € I x I and a€ + a? < 1}
is called an intuitionistic fuzzy number (See [32]). We denote intuitionistic fuzzy

[

numbers (a€,a%), (b€,b%), (c<,c%), etc. as a, b, ¢, etc. In particular, 0 = (0,1)
and 1 = (1,0). It is well-known (Theorem 2.1 in [32]) that (I & I, <) is a complete
distributive lattice with the greatest element 1 and the least element 0 satisfying
DeMorgan’s laws. For a nonempty set X, a mapping A = (A€, A%) : X —» [ @[ is
called an intuitionistic fuzzy set (briefly, IFS) in X (See [15]). 0 and 1 denote the
intuitionistic fuzzy empty set and the intuitionistic fuzzy whole set in X defined by:
for each x € X,

0(z) =0 and 1(z) = 1.
Let us denote the set of all IFSs in X as IFS(X). Moreover, see [L5] for the defini-

tions of the inclusion, equality, intersection, union of two IFSs and the complement
of an IFS, and operators [ ]A, ©A for each A € IFS(X).

Let [[]={a=a","]CI:0<a" <a' <1} be the set of all closed subintervals
of I. Then each member of [I] are called interval-valued fuzzy numbers (See [33]). For
a nonempty set X, a mapping A = [A=,AT] : X — [I] is called an interval-valued
fuzzy set (briefly, an IVFS) in X (See [31]). 0 and 1 denote the interval-valued fuzzy
empty set and the interval-valued fuzzy whole set in X defined by: for each x € X,

0(z) = [0,0] and 1(z) = [1,1].

We denote the set of all IVFSs in X as IVFS(X). Furthermore, see [34] for the
definitions of the inclusion, equality, intersection, union of two IVFSs and the com-
plement of an IVFS.

Let [I] @ [I] = {a = (a€,a%) € [I] x [I] : a&* + a%+ < 1}. Then each member
of [I] ® [I] is called an interval-valued intuitionistic fuzzy number (briefly, IVIFN)
(See [31]). In particular, 0 = ([0,0],[1,1]) and 1 = ([1,1],[0,0]). Also, see [31] for
the definitions of the order, the equality, the inf and the sup of two IVIFNs. For
a nonempty set X, a mapping A = (AS, A%) : X — [I| @ [I] is called an interval-
valued intuitionistic fuzzy set (briefly, IVIS) in X (See [25]). O [resp. 1] denotes the

interval-valued intuitionistic fuzzy empty set [resp. the interval-valued intuitionistic
fuzzy whole set] in X defined by: for each z € X,

0(x) = ((0.0]. [1,1]) [resp. T(x) = ([1.].[0,0])].
We denote the set of all IVISs as IVIFS(X).

Members of ([I] @ [I]) x (I & I) x I are called interval-valued intuitionistic fuzzy
octahedron numbers (briefly, IVI-octahedron numbers) and we write them as

i=(fa.a). b= <§, b,b>, ete. (See [31]).
313
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Moreover, see [31] for the definitions of the order, the equality, the inf and the sup
of IVI-octahedron numbers.

Definition 2.1 ([31]). Let X be a nonempty set. Then a mapping A = <X7 A, A> :
X = (Il [I)) x (I I)x I is called an IVI-octahedron set (briefly, IVIOS) in X.

and let A€ IVIFS(X), Ac IFS(X), Ae IX. 0 and i denote the IVI-octahedron
empty set and IVI-octahedron whole set in X defined by: for each x € X,

0(x) = {([0,0],[1,1],(0,1),0) and 1(z) = (([1,1],(0,0], (1,0),1).
We denote the set of all IVIOSs as IVIOS(X).

It is clear that for each A € 2%, y, = <)’Z,){A,XA> € IVIOS(X) and then 2% C

IVIOS(X), where X, = ([Xa,Xal: [Xacr Xac]) € IVIFS(X), X, = (Xa>Xac) €
IFS(X), 2% denotes the set of all subsets of X and x, denotes the characteristic
function of A.

Definition 2.2 ([31]). Let X be a nonempty set, let A, B € IVIOS(X) and let
(A;)jes be a family of IVIOSs in X. Then the inclusion, the equality between A
and B, the union and the intersection of (A;),cs, the complement of A, operators
[] and ¢ of A are defined as follows respectively:

(i) (The equality) A=B< A=B, A=B, A=B.
(i) (The inclusion) AC B AC B, AC B, A< B.

(iii) (The union) (J,c, A; = <Uj€J A Ujer 45 Uy Aj>.
(iv) (The intersection) ﬂjeJAj = <ﬂj€Jﬁj7ﬂj€J f_lj, ﬂjGJ Aj>.

(v) (The complement) A¢ = <Z ,AC,AC>.

i) [14= (DA [14.4),

where [ |4 = (AEL[A€7—,1_A6+]) [resp. []A = (AS,1— A€)] (See [25] [resp. [15]]).
(vii) oA = <<>/T, <>A,A>,
where oA = (JAS—,1 — AZ+], A%) [resp. oA = (1 — A%, A%)] (See [25] [resp. [17]]).

3. IVI-OCTAHEDRON SUBSEMIGROUPS AND IDEALS

In this section, we introduce the concepts of IVI-octahedron subsemigroups [resp.
left ideals, right ideals and ideals] of a semigroup S and deal with its characterizations
respectively.

Let S be a semigroup and let @ # A € 2. Then

(i) A is called a subsemigroup of S, if A% C A,
(ii) A is called a left ideal [resp. right ideal] of S, if SA C A [resp. AS C 4],
(iii) A is called a two-sided ideal (briefly, ideal) of S, if it is both a left and a
right ideal of S.
314
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We will denote the set of all left ideals [resp. right ideals and ideals] of S as LI(.S)
[resp. RI(S) and I(.9)].

Throughout this section and next section, unless otherwise noted, let us S denote
a semigroup. From Proposition 6.13 in [31], we have the following definition.
Definition 3.1. Let 0 # A = </~1,A,A> € IVIOS(S). Then A is called an IVI-
octahedron subsemigroup (briefly, IVIOSG) of S, if it satisfies the following condition:
for any z, y € X, A(zy) > A(z) A A(y), ie.,

(1) AS ™ (wy) = AS7(2) A AS(y), AST (zy) = ASH(2) N ASH(y),
A% (zy) < AP (2) VA% (y), AFF (ay) < A% () v AR (y),

(it) AS(zy) > AS(z) A AS(y), A% (ay) < A%(2) vV A%(y),

(i) A(ey) > A(z) A A(y).

We will denote the set of all IVIOSGs of S as IVIOSG(S).

Remark 3.2. (1) Let A = <E,A,A> € IVIOS(S) and let IVIFSG(S) [resp.

IFSG(S), FSG(S)] denote the set of all interval-valued intuitionistic fuzzy [resp.
intuitionistix fuzzy and fuzzy] subsemigroups of S (See [26] [resp. [16] and [2]] for the
definition of an interval-valued intuiionistic fuzzy [resp. an intuitionistic fuzzy and
a fuzzy| semigroup). Then from Definition 3.1, we can easily see that the following
holds:

A € IVIOSG(S) if and only if A € IVIFSG(S), A € IFSG(S) and A € FSG(S).

Furthermore, if A € IVIOSG(S), then [ ]A, ¢A € IVIOSG(S).
(2) If A € FSG(S), then (([4, A], [A°, A)), (A, A°), A) € IVIOSG(S).
(3) If A € IFSG(S), then clearly, we have

(([A, AL, [A%, A7), A, 4), (A5, AS],[A%, A7), A4, A%°) € IVIOSG(S).
(4) If ZZ € IVIFSG(S), then we get
<Z, (Aev—,A%—),AEv—>, <Z, <A€v+,A€v+),A€v+> € IVIOSG(S).

Example 3.3. Let S = {1, 2,3} be the semigroup with the following Cayley table:

1
2
3
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where @, a and a are arbitrary IVI-octahedron numbers.

Then we can easily check that A € IVIFSG(S), A € IFSG(S), A € FSG(S).
Thus by Remark 3.2, A € IVIOSG(S).

Theorem 3.4 (See Remark 6.21 [31]). Let @ # A € 25. Then x, € IVIOSG(S)
if and only if A is a subsemigroup of S.

Proof. Straightforward. O

Definition 3.5 ([31]). Let 0 # A € IVIOS(S). Then A is called an:
(i) IVI-octahedron left ideal (briefly, IVIOLI) of S, if for any z, y € S,

Azy) = Aly), ie.,
AS(zy) > AS(y), A% (zy) < A%(y), AS(ay) > AS(y), A% (zy) < A%(y), A(zy) > A(y),
(ii) IVI-octahedron right ideal (briefly, IVIORI) of S, if for any =, y € S,
Alzy) = A(z),

AS(zy) > A%(2), A% (ay) < A%(2), A% (ay) > AS(x), A% (ay) < A% (), Alzy) > Az),
(iii) IVI-octahedron ideal (briefly, i-IVIOI) of S, if it is both an IVIOLI and an
IVIORI of S.
In this case, we will denote the set of all IVIOIs [resp. IVIOLIs and IVIORIs] of
S as IVIOI(S) [resp. IVIOLI(S) and IVIORI(S)].

For a semigroup S, let us denote the set of all fuzzy ideals [resp. left ideals and
right ideals] (See [2]), the set of all intuitionistic fuzzy ideals [resp. intuitionistic
fuzzy left and right ideals] (See [16]) and the set of all interval-valued intuitionistic
fuzzy ideals [resp. interval-valued intuitionistic fuzzy left and right ideals] (See [26])
of S as FI(S) [resp. FLI(S) and FRL(S)], IFI(S) [resp. IFLI(S) and IFRI(S)]
and IVIFI(S) [resp. IVIFLI(S) and IVIFRI(S)].

Remark 3.6. From Definition 3.5, we have the followings:
(1) A€ IVIOLI(S) <= A € IVIFLI(S), A€ IFLI(S), A€ FLI(S),
(2) A€ IVIORI(S) <= A € IVIFRI(S), A€ IFRI(S), A€ FRI(S),
(3) A€ IVIOI(S) < A € IVIFI(S), Ac IFI(S), Aec FI(S).

Example 3.7. Let A be the IVI-octahedron subsemigroup of S given in Example
3.3. Then we can easily see that A € IVIOLI(S). However, if A(1) # A(2),
A(1) # A(3) or A(2) # A(3), then clearly, A & IVIORI(S). Thus A ¢ IVIOI(S).
Moreover, if A(1) = A(2) = A(3), then A € IVIOI(S).

Remark 3.8. (1) From Definitions 3.1 and 3.4, it follows that for each A €
IVIOI(S) [resp. IVIOLI(S) and IVIORI(S)], A € IVIOSG(S) but the con-
verse does not hold in general (See Example 3.7).

(2) If A € IVIOLI(S) [resp. IVIORI(S) and IVIOI(S)], then [ JA, oA €
IVIOLI(S) [resp. IVIORI(S) and IVIOI(S)].

Theorem 3.9 (See Remark 6.26 [31]). Let @ # A € 25. Then x, € IVIOLIS)
[resp. IVIORI(S) and IVIOI(S)] if and only if A € LI(S) [resp. RI(S) and I(S)].
316
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Proof. Straightforward. O

Now we will list the product of two fuzzy [intuitionistic fuzzy, interval-valued
intuitionistic fuzzy and IVI-octahedron] sets in a semigroup S.

Definition 3.10 (See [1]). Let A, B € I°. Then the product of A and B, denoted
by Aop B, is a fuzzy set in S defined as follows: for each x € S,

e B v

Definition 3.11 (See [16]). Let A, B € IFS(S). Then the product of A and B,
denoted by A orp B, is an IFS in S defined as follows: for each z € S,
(Aogr B)(x)
) { (Voo [AS () A BE()] A, o [AZ(y) v BE(2)] it 2 = @
(0,1) otherwise.

Definition 3.12 (See [31]). Let A, B € IVIS(S). Then the product of A and A,
denoted by A orvI B , is an IVIS in X defined as follows: for each x € S,
(Aopyr A)(x)

Vo [AS() A BE()), Ao, [A%() v BE(2)] if yz = 2

0 B otherwise,
where A€ (y) = [AS (), AS* (y)] and A%(y) = [A%~(y), AD*(y)].

Definition 3.13 (See [31]). Let A= (A, A A), B = E,B,B> e IVIOS(S).

Then the product of A and B, denoted by Ao B, is an IVI-octahedron set in S defined
as follows: for each x € S,

—zlA Bz)|ifyz =z
(AOB)(x):{%/yz—z[ (y) AB(2)] if y

otherwise.
In fact, AoB = <AVO[VI AV,AOIF B,AOF B> .

The following is an immediate consequence of Proposition 6.13 in [31].
Theorem 3.14 (See Proposition 6.13 [31]). Let A € IVIOS(S). Then
A€ IVIOSG(S) if and ounly if Ao AC A

Lemma 3.15. Let A € IVIFS(S). Then
AeIVIFLI(S) if and only if 1oy AC A

Proof. Suppose Ae IVIOLI(S) and let a € S such that a = zy for some z, y € S.
Then we have

onvr A%(a) = Vo [T5@) A AS)]
< Vaeuyl[L. 1] A AS(2y)] [Since A € IVIFLI(S)]

= Varay[[1, 1] A A% (a)]
317
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= A(a).
Similarly, we have (1 oy A)%(a) > A%(a). Thus 1oy A C A.
Conversely, suppose the necessary condition holds, let A€ IVIFS (S) and let
a € S such that a = zy for some x, y € S. Then we get
A€ (zy) = AS(a)
> (I orvr g)e(a) [Since IO[V] AV C ~]
Vazpe[1€(0) A AS(c)]

> 1€(x) A AS(y) [Since a = zy]
= [lv 1} N A€ (y)
= AS(y). _
Similarly, we get gg(xy) < EQ(y) Thus A € IVIFLI(S). O

From 3.15, 2.6 in [24] and 2.4 in [9], we get the following.
Theorem 3.16. Let A € IVIOS(S). Then
A€ IVIOLI(S) if and only if 1o AC A.
The following is the dual of Lemma 3.15.
Lemma 3.17. Let E € IVIFS(S). Then
A€ IVIFRI(S) it and only if Aoy 1C A.
From Lemmas 3.17, 2.7 in [24] and 2.5 in [9], we have the dual of Theorem 3.16.
Theorem 3.18. Let A € IVIOS(S). Then
A€ IVIORI(S) if and only if Aol C A.

The following is an immediate consequence of Lemmas 3.15 and 3.17.
Lemma 3.19. Let i € IVIFS(S). Then
A€ IVIFRI(S) if and only if Tosy; A and Aogy 1 C A.
From Theorems 3.16 and 3.18, we get the following.
Theorem 3.20. Let A € IVIOS(S). Then
A€ IVIOI(S) if and only if IoAC Aand Aol C A.

Definition 3.21 ([31]). Let X be a nonempty set, let e (Mel)x{Ial)xI
and let A =< A, A, A > IVIOS(X). Then two subsets [A]z and [A]Z of X are

a a

defined as follows:

AL ={o e X: A@) > a A(z) 2 a, A) > a}.

In this case, [A]z is called an a-level set of A.
318
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From Remark 4.3 in [35], it is clear that

where [g]g, [A]z and [A], denote the G-level set of A, the a-level set of A4 and the
a-level set of A (See [35], [16] and [3]).

Result 3.22 (Proposition 4.4 [35]). Let X be a nonempty set, let g, b be two IVI-
octahedron numbers and let A € IVIOS(X). Ifg < g, then [g]i C [ﬁ]g

Theorem 3.23. Let A € IVIOS(S). Then A € IVIOSG(S) [resp. IVIOI(S),
IVIOLI(S) and IVIORI(S)] if and only if [Alz € SG(S) [resp. I(S), LI(S) and

RI(S)] for each IVI-octahedron number a such that & #0,a#0 and a # 0, where
SG(S) denotes the set of all subsemigroups of S.

Proof. The proof of the necessary condition is straightforward from 6.27 in [31].
Conversely, suppose the necessary condition holds. We prove the first part and
the third part, and the remainder’s proofs are omitted.

Suppose [AJz € SG(S). Since [Alz = [A]zN[A]aN[Ala, [A]z, [Ala, [Ala € SG(S).

a

It is obvious that if [A]z;, then A € IFSG(S) (See [23]). Then it is sufficient to

show that if [A], € SG(S), then A € FSG(S) and if if [A]z € SG(S), then A e
IVIFSG(S).

(i) Suppose [4], € SG(S) and for any =, y € S, let A(x) = a, A(y) = b, where
a, b€ I. Then clearly, A(x) =a >aAb, A(y) =b>aAb, where aAb € I. Thus
x, Yy € [Alanp. Since [A]aap € SG(S), 2y € [Alans. So A(zy) > aAb= A(x) A A(y).
Hence A € FSG(S).

(i) Suppose [‘Z]E € SG(S) and for any =, y € S, let A(z) =a, A(y) = b, where
@ and b are interval-valued intuitionistic fuzzy numbers. Then we have
AS(z) =a€ > @S AbE, A%(z) =af <a® VbF

and N _ o N N
AS(y) = b€ > G ADS, A%(y) = b7 <a? VP,

Thus z, y € [A]E/\i Since [AV]E/\E € SG(S), zy € [A]EAE' So we get

A (zy) > G ABE = AS(2) A AS(y), A%(xy) <af VIE = A%(2) v A%(y).

Hence A € IVIFSG(S). Therefore by Remark 3.2 (1), A € IVIOSG(S).
Suppose [Alz € LI(S). It is well-known that if [Ala, [A]. € LI(S), then A €
IFLI(S), A € FLI(S) (See [23] and [I1] respectively). Then it is sufficient to

prove that A € IVIFLI(S). now suppose [Z]g € LI(S) for each interval-valued

intuitionistic fuzzy number @ and for each y € S, let A = a. Then clearly, y € [Alz.
Let = € S. Since [Alz € LI(S), vy € [A]z. Then we have

AS(zy) > ac = AS(y), A%(ay) <a¥ = A%(y).
319
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Thus E € IVIFLI(S). So by by Remark 3.2 (1), A€ IVIOLI(S). O

4. IVI-OCTAHEDRON BI-IDEALS

In this section, we define an IVI-octahedron bi-ideal and deal with some of its
properties.

A subsemigroup A of a semigroup S is called a bi-ideal of S, if ASA C A. We
will denote the set of all bi-ideals of S as BI(5).

Definition 4.1 (See [13]). Let A € FSG(S). Then A is called a fuzzy bi-ideal
(briefly, FBI) of S, if A(zyz) > A(z) A A(z) for any z, y, z € S.

We will denote the set of all FBIs of S as F'BI(S).

Definition 4.2 ([23]). Let A € IFSG(S). Then A is called an intuitionistic fuzzy
bi-ideal (briefly, IFBI) of .S, if it satisfies the following condition: for any z, y, z € S,

A(zyz) > A(z) AN A(2), ie., AS(zyz) > AS(z) A AS(2), A% (zyz) < A% (z) v A%(2).
We will denote the set of all IFBIs of S as IFBI(S5).

Definition 4.3. Let A € IVIFSG(S). Then A is called an interval-valued intu-
itionistic fuzzy bi-ideal (briefly, IVIFBI) of S, if it satisfies the following condition:
for any x, y, z € S,

A(zyz) > A(z) A A(2), Le., AS(zyz) > AS(z) A AS(2), A%(zyz) < A%(z) vV A%(2).
We will denote the set of all IVIFBIs of S as IVIFBI(S).

Definition 4.4. Let A € IVIOSG(S). Then A is called an I'VI-octahedron bi-ideal
(briefly, IVIOBI) of S, if it satisfies the following condition: for any z, y, z € S,

A(zyz) > A(z) N A(z), ie.,

A(zyz) > A(z) A A(2), Azyz) > A(z) A A(2), Alzyz) > A(z) A A(z).
We will denote the set of all IVIFBIs of S as IVIFBI(S).
Remark 4.5. (1) From Definitions 4.1, 4.2, 4.3 and 4.4, it is obvious that for any

A€ IVIOSG(S), A € IVIOBI(S) if and only if A € IVIFBI(S), A € IFBI(S)
and A € FBI(S).

(2) If A € FBI(S), then (([A, A], [A%, A°]), (A, A°), A) € IVIOBI(S).

(3) If A € IFBI(S), then we can easily see that

(([A%, A%],[A%, A7), A, 4%), (1A%, 4], [A%, A%)), A, A%°) € IVIOBI(S).
(4) If A € IVIFBI(S), then we can easily check that

<fli“, (Ae*,Agﬁ),A€*>, <A, (A€7+,A€7+),A€7+> € IVIOBI(S).

(5) If A € IVIOBI(S), then [ A, oA € IVIOBI(S).
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-1 2 3 4
11 1 1 1
211 1 1 1
311 1 2 1
411 1 2 2
Table 4.1

Example 4.6. Let S = {1, 2, 3,4} be the semigroup with the following Cayley table:

Consider the mapping A : S — ([I] & [I]) x (I & I) x I defined as follows:

Al)=a, A2)=b, AB) =3¢ A(4)=d,

where @, b, ¢, d are IVI-octahedron numbers such that 5 > E > % and 3 > ZZ;
Then clearly, A € IVIOSG(S). Moreover, we can easily check that A € IVIOBI(S)
and thus [ JA, oA €€ IVIOBI(S).

The following shows that the notion of an IVIOBI in a semigroup S is an one of
a bi-ideal.

Theorem 4.7. Let @ # A € 25. Then A € BI(S) if and only if x , € IVIOBI(S).

Proof. Tt is well-known that A € BI(S) if and only if x, € FBI(S) from Theorem
11in [9] (Also, see Lemma 2.4 in [12]) and A € BI(S) if and only if x, € IFBI(S)
from Proposition 2.5 in [23]. It is sufficient to prove that A € BI(S) if and only if
X, € IVIFBI(S).

Suppose A € BI(S). Then by Theorem 3.4, x, € IVIFSG(S). Thus it is
sufficient to show that for any z, y, z € S,

(4.1) Xa S (zyz) = s Xl (@y2) = I Xl (@) A I X4 (2),

(4.2) P (@y2) = e s Xae)(@92) < Do Xae (@) V [Xaes Xae)(2)-
Let z, y, z € S. Then we have, x, z€ Aorx € Aor z & A.
Case (i) Suppose x, z € A. Then clearly, x,(z) = x,(2) = 1 and x,.(z) =
X 4e (2) = 0. Since A € BI(S), zyz € ASA C A. Thus we have
Xa(2yz) =1 =X, () Ax4(2) Xae (2Y2) = 0= X e () A X e (2)-
Case (ii) Suppose © ¢ A or z ¢ A. Then we get x,(z) =0, x,.(x) =1 or
X, (2) =0, x,.(2) = 1. Thus we have
Xa(2yz) 2 0= x4 (2) A XA (2); Xae (@y2) 2 1= X400 (2) A X e (2)-
So in either cases, the inequalities (4.1) and (4.2) hold.

The proof of the converse is similar to one of Proposition 2.5 in [23]. This com-
pletes the proof. O

Lemma 4.8. Let A € IVIFS(S). Then

AVE IVIFBI(S) if and Only ifZOIVIAVCAVaDd AVOIVIIOIV]AVC AV
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Proof. Suppose Ae IVIFBI(S). Since Ae IVIFSG(S), by Theorem 3.14, go]y]
ﬁCELetqﬁS.~ _
Suppose (;I orvr Loy A)a) = 0= ([0,0],[1,1]). Then clearly, we have

A orvrloryg Ac A
Suppose (A orvr Loy Z)(a) # 0. Then there are z, y, p, ¢ € S such that

a =zy and x = pq.

Thus we get N B B _
(AorvrTorvs A)S(a) = [(Aopvr 1) oryvy AJS(a)

= Ve [(Aorvr 1)S(z) A A (y)]
= Vazay [(Vampg[AS(0) A TE(@)]) A AS(y)]
= Vg [(Vampg[A€ () A 1, 1]]) A AS ()]
= Vo [A5(0) N AS(y)]
<Vazay A% (pqy) [Since A € IVIFSG(S)]
= A%(a),

(Aorvi Lorys A)¥(a) = [(Aopys 1) OIVLAV]e(a)
= Naeayl(Aorvr ¥ (z) v A (y)]
= Nazay[(Aampgl A% (0) V T#(0)]) v A%(y)]
= Nazay [(Aaepg[A%(0) V [0,0]]) Vv A% (y)]
= Nacuy[A%(p) v A% (y)] N
> Nazay A% (pqy) [Since A € IVIFSG(S)]
N N = A%(a).
So AVO]VITOIVIAVCAV. _ _
Conversely, suppose the necessary conditions hold. Since Ao v AcC g, by
Theorem 3.14, A € IVIFSG(S). Let z, y, z € S and let a = zyz. Then
Ae(eyz) = A(a)
> (%OIVI I~01V] g)f (a) [By the hypothesis]
= ((EOIVLI) orvi A)E(a)
= Voopel(Aorvi 1)E(b) A AS(0)]
> (Aogys Ile (xy) /\NﬁE (z) [Since a = zyz]
= (Voo A50) A Tla)] A A5 (2)
AS(z) A1(y) N AS(2)
AS(z) N[, 1) A AS(2)
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N = A%(x) A AS(2). N N N
Thus A€ (zyz) > AS(z) A A(2). Similarly, we have A%(zyz) < A%(z) Vv A%(z2). So
EGIVIFBI(S). O
Theorem 4.9. Let A€ IVIOS(S). Then
A€ IVIOBI(S) if and only if Ac AC Aand AoloAC A
Proof. From Lemma 2.7 in [7], it is obvious that from lemma 2.7 the following holds:
(4.3) A e FBI(S)if and only if Aop AC Aand 1op A C A.

Also, from Lemma 4.8, we have

(4.4) A€ IVIFBI(S)if and only if Aojy; AC Aand Aoy losy; AC A,
Then it is sufficient to show that the following hold:
(4.5) A€ IFBI(S)if and only if Aojp AC Aand Aojp1op A C A.

(4.5) can be proved similarly to Lemma 4.8. Thus from (4.3), (4.4), Lemma 4.8 and
Remark 4.5 (1), the result holds. O

Lemma 4.10. S is a group if and only if every IVIFBI of S is a constant mapping.

Proof. Suppose S is a group with the identity e. Let A€ IVIFBI(S) andleta € S.
Then we have _
A€ (a) = AS(eae) > AS(e) A AS(e) [Since A € IVIFBI(S)]

( 4 =
€(e) = AS(ee) = A€(~(aa’1)(a*1a)) = AS(a(a"ta")a)
(a) A A€ (a) [Since A € IVIFBI(S)]
(
)

Similarly, we get A%(a) = A%(e). Thus A(a) = A(e). So A is a constant mapping.
Conversely, suppose the necessary condition holds. Assume that S is not a group.

Then it is well-known (84 pages in [30]) that S contains a proper bi-ideal A of S.

Thus there is z € S such that z ¢ A. Let y € A such that y # x. Since A € BI(S),

by Theorem 4.7, x, € IVIFBI(S). Then by the hypothesis, X, is a constant
mapping. Thus we have

Xa (@) = X4 (), fes ¥4 (@) = XL () and X, % (@) = X5 ()
Since x ¢ A and y € A, we get
Xa (@) =0=[0,00 < [1,1] =T=x,"(v)
and B ~
@) =T=[11] > [0,0] =0 =x,*(y).
So )’(Aj(x) =0#1= ﬁ(y) This is a contradiction. Hence S is a group. O
From Remark 4.5 (1), Lemma 3.10, Proposition 2.6 in [23] and Theorem 2 in [9],

we get the following.
Theorem 4.11. S is a group if and only if every IVIOBI of S is a constant mapping.

Lemma 4.12. Every IVIFLI [resp. IVIFRI and IVIFI] of S is an IVIFBI of S.
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and let x, y, z € S. Then we get
xy)z)

[Since A € IVIFLI(S))

N AE(2),

Proof. Letg € IVIFLI(S

A (zyz) = A((
> /Ee(z
> AS(z

< — T —

A% (wyz) = A%(((xy)2)
< A%(z) [Since A € IVIFLI(S)]
< A%(z) vV A%(2).

Thus A € IVIFBI(S). Similarly, we can prove the remainders. O
From Lemma 4.12, Proposition 2.7 in [23] and Lemma 2.3 in [6], we have the

following.

Proposition 4.13. Every IVIOLI [resp. IVIORI and IVIOI] of S is an IVIOBI of

S.

Lemma 4.14. A € IVIS(S). Then A € IVIFBI(S) if and only if [;[]5 € BIS(S)

for each interval-valued intuitionistic fuzzy number a.

Proof. Suppose A € IVIFBI (S) and let a be any interval-valued intuitionistic

fuzzy number. Then by the hypothesis and Theorem 3.23, [A]z € IVIFSG(S). Let
a € [j]gS[:Z]g Then there are x, z € [:ﬂg and y € S such that ¢ = xyz. Since
E € IVIFBI(S), we have

AS(a) > AS(x) A AS(2) > @€ and A%(a) < A%(2) vV A%(2) < a%.

Thus a € [A]z. So [A]z C [A]z. Hence [A]= € BI(S).
Conversely, suppose the necessary condition holds. It is clear that A€ IVIFSG (S).
For any z, z € S, let g(w) = G and ﬁ(z) = b. Then by the process of the proof

of the sufficient condition in Theorem 3.23, we get x, 2z € [K]:/\f Let y € S. Since
a

[A]'a'@ € BI(S), zyz € [A]'a'/\i' Then we have
AS(zyz) > @€ AGE = AS(z) A AS(y),
A% (zyz) < a? vaf = A%(z) v A%(y).
Thus i € IVIFBI(S). This completes the proof. O

From Lemma 4.14, Proposition 2.8 in [23] and Lemma 3.4 in [37], we obtain the
following consequence.

Theorem 4.15. A € IVIOS(S). Then A € IVIOBI(S) if and only if [Alz €
BIS(S) for each IVI-octahedron number a.
Lemma 4.16. A € IVIS(S) and let B € IVIFBI(S). Then Aopy B, Bojyi A e

IVIFBI(S).
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Proof. (j orvI E) orvI (zz orvI é) = 4 orvI [Ei orvI @OIVI;g)

- EOIVI &E orvr IOIVI E) SiHCe;{ C ']v-}

]

A [
cA orvi B. [B~y Lemma 4.8]
(

Then by Theorem 3.14 and Remark 3.2 (1), Aoy B € IVIFSG(S). On the other
hand, N B N N ~ N N B N B
(Aorvi B)orviLorvr (Aopy; B) = gOIVI [E orvr g OIVIg) orvi Bl
C AZOIVI (E o1vi Tomyg E)
[§ince i:f”” Ac TOIVI T = T]
N N C EOIVI B. [By Lemma 4.8]
Thus by Lemma 4.8, Aopyy B € IVIBI(S). Tt can be proved a similar way that

Bopy; A e IVIBI(S). O
From Lemma 4.16, Proposition 2.4 in [21] and Lemma 2.8 in [7], we get the
following.

Proposition 4.17. A€ IVIOS(S) and let B € IVIOBI(S) . Then Ao A, Bo A€
IVIOBI(S).

5. DUO SEMIGROUPS

In this section, we define an IVI-octahedron duo and obtain some of its properties.

A semigroup S is said to be left [resp. right] duo (briefly, LD [resp. RD)), if every
left [resp. right] ideal of S is an idealof S. A semigroup S is said to be duo (briefly,
D], if it is both left and right duo (See [36]). A semigroup S is said to be fuzzy left
[resp. right] duo (briefly, FLD [resp. FRD)), if every fuzzy left [resp. right] ideal of
S is a fuzzy ideal of S and S is said to be fuzzy duo (briefly, FD), if it is both fuzzy
left and fuzzy right duo (See [0]). A semigroup S is said to be intuitionistic fuzzy left
[resp. right] duo (briefly, IFLD [resp. IFTD]), if every intuitionistic fuzzy left [resp.
right] ideal of S is an intuitionistic fuzzy ideal of S and S is said to be intuitionistic
fuzzy duo (briefly, IFD), if it is both intuitionistic fuzzy left and intuitionistic fuzzy
right duo (See [23]). A semigroup S is said to be regular, if for each a € S, there is
x € S such that a = aza.

Now we have the similar definitions.

Definition 5.1. A semigroup S is said to be:

(i) interval-valued intuitionistic fuzzy left duo (briefly, IVIFLD), if every IVIFLI
of S is an IVIFI of S,

(ii) interval-valued intuitionistic fuzzy right duo (briefly, IVIFRD), if every IVIFRI
of S is an IVIFI of S,

(iil) interval-valued intuitionistic fuzzy duo (briefly, IVIFD), if it is both IVIFLD
and IVIFRD.

Definition 5.2. A semigroup S is said to be:
(i) IVI-octahedron left duo (briefly, IVIOLD), if every IVIOLI of S is an IVIOI of
S,
325



Han et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 3, 311-337

(ii) IVI-octahedron right duo (briefly, IVIORD), if every IVIORI of S is an IVIOI
of S,
(iil) IVI-octahedron duo (briefly, IVIOD), if it is both IVIOLD and IVIORD.

Lemma 5.3. Let S be a regular semigroup. Then S is LD if and only if S is
IVIFLD.

Proof. Suppose S is LD. Let Ae IVIFLI(S) and let a, b € S. Since the left ideal
Sa is an ideal of S and S is regular, we get

ab € (aSa)b C (Sa)S C Sa.
Then there is « € S such that ab = za. Since A € IVIFLI(S), we get
A€ (ab) = A€ (za) > A€(a) and A% (ab) = A% (za) < A%(a).

Thus A € IVIFRI(S). So A € IVIFI(S). Hence S is IVIFLD.
Conversely, suppose S is IVIFLD and let A € LI(S). Then by Remark 3.6 (1)

and Theorem 3.9, x, € IVIFLI(S). Thus by the hypothesis, X, € IVIFI(S).
Since A # &, by Remark 3.6 (3) and Theorem 3.9, A € I(S). So S is LD. O

From Lemma 5.3, Proposition 3.1 in [23] and Theorem 3.1 in [6], we have the
following consequence.

Theorem 5.4. Let S be a regular semigroup. Then S is LD if and only if S is
IVIOLD.

The following is the dual of Lemma 5.3.

Lemma 5.5. Let S be a regular semigroup. Then S is RD if and only if S is
IVIFRD.

From Lemma 5.5, Proposition 3.1" in [23] and Theorem 3.2 in [6], we have the
following consequence.

Theorem 5.6. Let S be a reqular semigroup. Then S is RD if and only if S is
IVIORD.

The following is an immediate consequence of Theorems 5.4 and 5.6.

Corollary 5.7. Let S be a regular semigroup. Then S is D if and only if S is
1VIOD.

Lemma 5.8. Let S be a reqular semigroup. Then every bi-ideal of S is a right ideal
of S if and only if every IVIFBI of S is an IVIFRI of S.

Proof. Suppose every bi-ideal of S is a right ideal of S. Let Ae IVIFBI(S) and
let a, b € S. Then clearly, aSa € BI(S). Thus by the hypothesis, aSa € RI(S).
Since §' is regular, we have

ab € (aSa)S C aSa.

So there is 2 € S such that ab = aza. Since A € IVIFBI(S), we get

A€ (ab) = A€ (aza) > AS(a) A AS(a) = AS(a).
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Similarly, we have A%(ab) < A%(a). Hence A € IVIFRI(S).
Conversely, suppose the necessary condition holds and let A € BI(S). Then

by Remark 4.5 (1) and Theorem 4.6, x, € IVIFBI(S). Thus by the hypothesis,
X. € IVIFRI(S). Since A # &, by Remark 3.6 (2) and Theorem 3.9, A € RI(S).

So the sufficient condition holds. O
From Lemma 5.8, Proposition 3.3 in [23] and Theorem 3.4 in [6], we obtain the
following.

Theorem 5.9. Let S be a regular semigroup. Then every bi-ideal of S is a right
ideal of S if and only if every IVIOBI of S is an IVIORI of S.

The followings are the duals of Lemma 5.8 and Theorem 5.9 respectively.

Lemma 5.10. Let S be a regular semigroup. Then every bi-ideal of S is a left ideal
of S if and only if every IVIFBI of S is an IVIFLI of S.

Theorem 5.11. Let S be a regular semigroup. Then every bi-ideal of S is a right
ideal of S if and only if every IVIOBI of S is an IVIOLI of S.

The following is an immediate consequence of Theorems 5.9 and 5.11.

Theorem 5.12. Let S be a regular semigroup. Then every bi-ideal of S is an ideal
of S if and only if every IVIOBI of S is an IVIOI of S.

Corollary 5.13. Let S be a regular duo semigroup. Then A € IVIORI(S) for each
A€ IVIOBI(S).

Proof. Let A € IVIOBI(S). It is well-known that every bi-ideal of a regular left
duo semigroup is a right ideal of it (See [38], Theorem 30). Then from this and
Theorem 5.9, A € IVIORI(S). O

A semigroup is called a semilattice of groups ([30]), if it is the set-theoretical union
of a set of mutually disjoint subgroups G, (a € I'), i.e., S = |J,cp Ga such that for
any o, B €1, Go,Gg C G and GG, C G, for some v €T

Corollary 5.14. Let S be semigroup which is a semilattice of groups. Then A €
IVIOI(S) for each A € IVIOBI(S).

Proof. Let A € IVIOBI(S). It is well-known that every bi-ideal of such semigroup
S is an ideal of S (See [39], Theorem 4). Then from this and Theorem 5.12, A €
IVIOI(S). O

Let us L[a] [resp. J[a]] denote the principal left ideal [resp. ideal] of a semigroup
S generated by a € S, i.e.,

Lla] = {a} U Sa,
Jla] = {a} USaUaS U SaS.
It is well-known ([36], Lemma 2.13) that if S is a regular semigroup, then L[a] =

Sa for each a € S.
A semigroup S is said to be right [resp. left] zero, if xy = y [resp. xzy = z] for any
xz, y € S. Then we get the following.
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Lemma 5.15. Let S be a regular semigroup and let Eg be the set of all idempotent
elements of S. Then Eg forms a left zero subsemigroup of S if and only if for each

A€ IVIFLI(S), A(e) = A(f) for any e, f € Eg.

Proof. Suppose Eg forms a left zero subsemigroup of S. Let A€ IVIFLI (S) and

let e, f € Eg. Then by the hypothesis, ef = e and fe = f. Since Ae IVIFLI(S),
we have

AS(e) = AS(ef) 2 AS(f) = A%(fe) = A%(e)
and N B N N N
A% (e) = A%(ef) < A%(f) = A%(fe) < A%(e).
Thus A(e) = A(f).
Conversely, suppose the necessary condition holds. Since S is regular, Eg # @.
Let e, f € Eg. Then by Remark 3.6 (1) and Theorem 3.9, it is clear that

—~—

Xy € IVIFLI(S).
Thus we have
—~—c —c — —¢
XL (e) =Xvip (f) = [1, 1] and Xrip) (e) =Xvip (f) = [070]‘

So e € L(f) = Sf. Hence there is « € S such that e = xf = xff = ef. Therefore
FEg is a left zero semigroup. O

Corollary 5.16. Let S be an idempotent semigroup. Then Eg is left zero if and
only if for each A € IVIFLI(S), A(e) = A(f) for any e, f € Es.

From Lemma 5.15, Proposition 3.5 in [23] and Theorem 3.9 in [6], we get the
following.

Theorem 5.17. Let S be a reqular semigroup. Then Eg forms a left zero subsemi-
group of S if and only if for each A € IVIOLI(S), A(e) = A(f) for anye, f € Eg.

The following is an immediate consequence of Corollaries 3.16, 3.5 in [23] and
3.10 in [6].
Corollary 5.18. Let S be an idempotent semigroup. Then Eg is left zero if and
only if for each A € IVIOLI(S), A(e) = A(f) for anye, f € Eg.

The following is the dual of Theorem 5.17.

Theorem 5.19. Let S be a reqular semigroup. Then Eg forms a right zero sub-
semigroup of S if and only if for each A € IVIORI(S), A(e) = A(f) for any
e, f € Eg.

The following is the dual of Corollary 5.18.

Corollary 5.20. Let S be an idempotent semigroup. Then Eg is right zero if and
only if for each A € IVIORI(S), A(e) = A(f) for anye, f € Es.
Lemma 5.21. Let S be a regular semigroup. Then S is a group if and only if for

each A € IVIFBI(S), A(e) = A(f) for any e, f € Es.
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Proof. Suppose S is a group and let Ace IVIFBI(S). Then by Lemma 4.10, Ais

a constant mapping. Thus ﬁ(e) = /T(f) for any e, f € Eg.

Conversely, suppose the necessary condition holds and let e, f € Es. Let Blx]
denote the principal bi-ideal of S generated by z € S, i.e., Blz] = {z} U {2?} UzSz
(See p. 84 in [36]). Furthermore, if S is regular, then B[z] = xSxz. Since Blx] is

bi-ideal of S, by Theorem 4.7, X, € IVIFBI(S). Since f € B[f], we get

o (€)= o S() = [1,1) and o, P (€) = X (f) = 10,0,

Then e € B[f] = fSf. Thus by the process of the proof Theorem 3.14 in [6], e = f.
Since S is regular, Eg # @ and S contains exactly one idempotent. So from p. 33

(Ex. 4) in [30], it is obvious that S is a group. This completes the proof. O
From Lemma 5.21, Proposition 3.6 in [23] and Theorem 3.14 in [6], we have the
following.

Theorem 5.22. Let S be a regular semigroup. Then S is a group if and only if for
each A € IVIOBI(S), A(e) = A(f) for any e, f € Es.

6. REGULAR SEMIGROUPS

In this section, we deal with some characterizations of a regular semigroup by
IVI-octahedron ideals and bi-ideals. It is well-known ([38], Theorem 2.6) that a
semigroup S is regular if and only if B = BSB for each B € BI(S). Also we give a
characterization of a left [resp. right and completely] regular semigroup by IVIOLIs
[resp. IVIORIs and IVIOBIs]. First of all, we will give a characterization of a regular
semigroup by IVIFBIs.

Lemma 6.1. Let S be a semigroup. Then S is reqular if and only if A A orvr
1 orvI A for each Ac IVIFBI(S).

Proof. Suppose S is regular. Let g € IVIFBI(S) and let a € S. Since S is regular,
there is x € S Such that a = aza. Then we get
(Aopvs Loy A)E(a) = V= zy[(A orvi 1)€(x) A A%(y)]
> (Aoryg 1) (az) A AS(a) [Since a = aza]
= (Vawmpg[A(0) A 1€(q)]) A A%(a)
> (AS(a) A1€(x)) A A% (a)
= (A%(a) A [1,1]) A A%(a)
_ AE( ).
Slmllarly, we have (A orvr 1 orvr A) ( ) < Ag(a)N TIEIS ‘ZOA{VI IO[V] 2{ D~1Z[. gince
A€ IVIFBI(S), by Lemma 4.7, Aopy; Loy AC A. So AopyrLopy A= A.
Conversely, suppose the necessary condition holds. Let A € BI(S) and let a € S.
By Remark 4.5 (1) and Theorem 4.7, x, € IVIFBI(S). By the hypothesis, we have
Vaey= (s orvr DE(y) AXL )] = [(Xa orvi 1) orvi X415 (a)
=X, (a)
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= [1,1]. [By the hypothesis]

Similarly, we get A,_,.[(Xs orvy 1)#(y) V X, *(y)] = [0,0]. Then there are b, c € S

with a = be such that

(xa orvi 1)(b) = ([1,1],[0,0]) and x, (¢) = ([1, 1], [0,0)).

Since (X, orvr 1)(b) = ([1,1],[0,0]), we have
\/ %25 (0) ATE(9)] = (R orve DE(B) = [1, 1],
b=pq
A K (0) v T%(0)] = (5, orve D (3) = [0,0].
b=pq

Thus there are d, e € S with b = de such that

% (d) = ([1.1],[0,0]) and T(e) = ([1,1],[0,0)).

Sode Ajee S,ce Aand a =bc = (de)c € ASA,ie, AC ASA. Since A € BI(S),
ASA C A. Hence A = ASA. Therefore S is regular. O

From Lemma 6.1, Theorem 3.1 in [21] and Theorem 3.1 in [7], we have a charac-
terization of a regular semigroup by IVIOBIs.

Theorem 6.2. Let S be a semigroup. Then S is reqular if and only if A= Aolo A
for each A € IVIOBI(S).

Theorem 6.3. Let S be a regular semigroup and let A € IVIOS(S). Then A €
IVIOBI(S) if and only if there are B € IVIORI(S) and C € IVIOLI(S) such that
A=BoC.

Proof. Suppose A € IVIOBI(S). Then we have
A= Ao1oA [By Theorem 6.2]

=Aolo(AoloA) [By Theorem 6.2]
=[Ao(loAlo(10A)
C(Aol)o(loA)
=Ao(lol)o A
CAolooA
C A. [By Theorem 4.9]

Thus we have

(6.1) A=(Aol)o(1ocA).
On the other hand, we get
(Aol)ol=Ao(lol)C Aol.

So by Theorem 3.19, Ao 1 € IVIORI(S). Similarly, we can see that 1 o0 A €
IVIOLI(S). Hence the necessary condition holds.

Conversely, suppose that there are B € IVIORI(S) and C € IVIOLI(S) such
that A = BoC. Then by Proposition 4.13, B, C € IVIOBI(S). Thus by Proposition
417, BoC € IVIOBI(S). So A € IVIOBI(S). O
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Result 6.4 (Theorem 5, [10]; Theorem 41, [38]). Let S be a semigroup. Then S is
reqular if and only if BN J = BJB for each B € BI(S) and each J € I(S).

Lemma 6.5. Let S be a semigroup. Then S is reqular if and only if
(6.2) BNJ = BoyyyJoyy B for each B € IVIFBI(S) and each J € IVIFI(S).

Proof. Suppose S is regular and let B € IVIFBI(S) and J € IVIFI(S). Since
B e IVIFBI(S), by Lemma 4.8, we get

EO]V] jO[V] E C E OIVIIOIVI B C E

Since J € IVIFI(S), by Theorem 3.19, we have

EOIVI jOIVIE C I01\/1 jOIVIi C IOIVI jC J.
Then we have
(63) EOIVIJOIVIECEHJV.
In order to show that the converse inclusion holds, let a € S. Since S is regular, there
is z € S such that @ = aza(= azaza). Since J € IVIFI(S), J(zaz) > J(az) >
J(a). Then we get

(Borvr Jorvi B)(a) a:yz[ée( ) A (}OIVI B)E(2)]

I
t <]

B<(a) A (Jorvr B)E ~(zaza) [Since a = azazal

)
BE(a) AV pazacpgl 7€ () A BE(0)])
(a) A Je(xaas)/\Be( )
)
)

I 1v
U:JtUtU

Il I\/ Y

B (a) A (
BE(a) A (J€(a) A BE(a))
Bf(a A ABE(a))

- (BN J)<(a).

Similarly, we have (B orvr J orvr B) (a) < (BN J)%(a). Thus we get

/—\

(6.4) B orvr J orvr B > BNJ.

So by (()3) and (6-4)7§OIVI jOIVIEZEQJ. _

_ Conversely, suppose the condition (6.2) holds and let B € IVIFBI (S). Since
1€ IVIFI(S), we have

E = gﬂi: EOIVIIOIVI E
Then by Lemma 6.1, S is regular. This completes the proof. O

From Lemma 6.5, Theorem 3.3 in [21] and Theorem 3.4 in [7], we obtain a char-
acterization of a regular semigroup by an IVIOBI and an IVIOI as a generalization
of Result 6.4.

Theorem 6.6. Let S be a semigroup. Then S is regular if and only if

(6.5) BNJ =BoJoB for each Be IVIOBI(S) and each J € IVIOI(S).
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The following characterization of a regular semigroup is due to Theorem 1 of Iséki
[41].
Result 6.7. Let S be a semigroup. Then S is regular if and only if
(6.6) RL =RNL for each R € RI(S) and each L € LI(S).

Lemma 6.8. Let S be a semigroup. Then S is reqular if and only if
(6.7) RopyrL=RNL for each R € IVIFRI(S) and each L € IVIFLI(S).

Proof. Suppose S is regular and let R € IVIFRI(S), L € IVIFLI(S). Then by
Lemmas 3.17 and 3.15, we get

EOIVIE C Eolvlic E and EO]VIE C TO[VIEC E
Thus we have
(6.8) RALC Ropvs L.
Now let a € S. Since S is regular, there is z € S such that a = aza. Then we have
(Rorvi )¥(a) = Ve [REw) A ()
> R€(ax) A L€(a) [Since a = aza
> R€(a) A LE(a) [Since R € IVIFRI(S))
= (RN L)¢(a).

Similarly, we get (R orvr L) (a) < (RN L) (a). Thus we have

(69) EHZDEO[VIE.
So by (6.8) and (6.9), the condition (6.7) holds.
Conversely, suppose the condition (6.7) holds and let R € RI(S), L € LI(S).

Then by Remark 3.6 and Theorem 3.9, x,, € IVIFRI(S) and x, € IVIFLI(S).
Thus by the hypothesis, we have

(6.10) Xr OIVI Xz = Xz N Xz-
In order to prove that RN L C RL, let,g/e R ﬂfé. Then we get
Vaey e S (0) A XS (2)] = (X Xr orvi X;)(a)

- (N

=Xz (@) AX, (a)

= [L1A[L1]

= [17 1]

Similarly, we have A,_,.[X.%(y) V X, %(2)] = [0,0]. This implies that there are
b, ¢ € S with a = bc such that

S{;(b) = ([17 1]v [070}) and E(C) = ([1a 1]7 [070])
Thus b € Rand ¢ € L, ie., a = bc € RL. So RN L C RL. It is obvious that
RL C RNL. Hence RNL = RL, i.e., the condition (6.6) holds. Therefore by Result

6.7, S is regular. This completes the proof. O
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From Lemma 6.8, Theorem 3.4 in [21] and Theorem 3.6 in [7], We obtain an-
other characterization of a regular semigroup by an IVIORI and an IVIOLI as a
generalization of Result 6.7.

Theorem 6.9. Let S be a semigroup. Then S is regular if and only if
(6.11) RoL=RnNLfor each R € IVIORI(S) and each £ € IVIOLI(S).

Lemma 6.10. Every IVIFI of a regular semigroup S is idempotent, i.e., A= ZOIVI
A for each A € IVIFI(S).

Proof. Let S be a regular semigroup and let Ae IVIFI(S). Then by Remark 3.6
(3) and Theorem 3.19, we have

EO[VIECZO]VIICE
and N N L o
AVOIVIIOIVIECZOIVIICE-

Thus by Lemma 4.8, Ae IVIFBI(S). Since S is regular, by Lemma 6.1, we get

A= AZOIVI 1 orviI Ac ZOIVI A,

So A = AVOIVI A. Hence A is idempotent. O
From Lemma 6.10, Proposition 3.5 in [21] and Theorem 3.7 in [7], we get the
following.

Proposition 6.11. Every IVIOI of a regular semigroup S is idempotent, i.e., A =
Ao A for each A € IVIOI(S).

Now we deal with a characterization of a left [resp. right and completely] regular
semigroup by IVIOLIs [resp. IVIORIs and IVIOBIs].

A semigroup S is said to be left [resp. right] regular, if for each a € S, there is
x € S such that a = za? [resp. a = a’z].

A semigroup S is said to be completely regular, if for each a € S, there is z € S
such that a = axa and az = za.

For characterization of a left [resp. right] regular semigroup, see Theorem 4.2 in
[36]. Also it is well-known ([36], Theorem 4.3) that S is completely regular if and
only if it is left and right regular.

Lemma 6.12. Let S be a semigroup. Then S is left regular if and only if for each
L € IVIFLI(S), L(a) = L(a?) for each a € S.

Proof. Suppose S is left regular. Let Le IVIFLI(S) and let a € S. Then by the

hypothesis, there is z € S such that a = za?. Since Le IVIFLI(S), we have
L(a) = L€ (za®) > L (a?) > L(a).

Similarly, we get Ze(a) < Ee(aQ) < Zg(a). Thus E(a) = E(aQ).
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Conversely, suppose the necessary condition holds and let @ € S. Then by Remark
3.6 (1) and Theorem 3.9, € IVIFLI(S). Since a® € L[a?],

L[a?]
€ —c — &
o (@) = (@) = (1,1 and X, H(0) = %, () = [0,0]
Thus a € L[a®] = {a?} U Sa?, i.e., there is z € S such that a = za®. So S is left
regular. O

From Lemma 6.12, Proposition 5.1 in [23] and Theorem 5.1 in [6], we give a char-
acterization of a left regular semigroup by IVIOLIs as a generalization of Theorem
4.2 in [36].

Theorem 6.13. Let S be a semigroup. Then S is left reqular if and only if for each
L e IVIOLI(S), L(a) = L(a?) for each a € S.

The following is the dual of Lemma 6.12.

Lemma 6.14. Let S be a semigroup. Then S is right reqular if and only if for each
R e IVIFRI(S), R(a) = R(a?) for each a € S.

From Lemma 6.14, Proposition 5.1 in [23] and Theorem 5.2 in [6], we give a char-
acterization of a right regular semigroup by IVIOLIs as a generalization of Theorem
4.2 in [36].

Theorem 6.15. Let S be a semigroup. Then S is right reqular if and only if for
each R € IVIORI(S), R(a) = R(a?) for each a € S.

Result 6.16 (p. 105, [42]). Let S be a semigroup. Then the followings are equiva-
lent:

(1) S is completely regular.

(2) S is a union of groups.

(3) a € a®Sa? for each a € S.

Lemma 6.17. Let S be a semigroup. Then the followings are equivalent:
(1) S is completely regular.

(2) For each B € IVIFBI(S), B(a) = B(a?) for each a € S.
(3) For each L € IVIFLI(S) and each R € IVIFRI(S),

T(a) = L(a?) and R(a) = R(a?) for each a € S.

Proof. Tt is obvious that (1) <= (3) by Lemmas 6.12 and 6.14. It is sufficient to
prove that (1) <= (2).

Suppose the condition (1) holds. Let B € IVIFBI(S) and let a € S. Then by

Result 6.16, there is x € S such that a = a2§a2. Since B € IVIFBI(S), we have
B€(a) = B (azxaz)Nz BE(aQN) A BE(a?)
a?) > BS(a) A BS(a)

Similarly, B%(a) < B%(a%) < B%(a). Thus B(a) = B(a?).
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Conversely, suppose the condition (2) holds. For each = € S, let Blx] denote the
principal bi-ideal of S generated by z, i.e.,

Blz] = {z} U {z?} UzSz.

Let a € S. Then by Remark 4.5 (1) and Theorem 4.7, X € IVIFBI(S). Since
a? € Bla?], we get

P e

€ ——¢ ——¢
XB[G2] (a) = XB[a’z] (a‘2) = [1u 1] and XB[GQ] (a’) = XB[{,z] (a2) = [070]
Thus a € Bla?] = {a?}U{a*}Ua?Sa?. So by Result 6.16, S is completely regular. [

From Lemma 6.17, Proposition 5.2 in [23] and Theorem 5.3 in [0], we give a
characterization of a right regular semigroup by IVIOLIs as a generalization of Result
6.16.

Theorem 6.18. Let S be a semigroup. Then the followings are equivalent:
(1) S is completely regular.
(2) For each B € IVIOBI(S), B(a) = B(a?) for each a € S.
(3) For each L € IVIOLI(S) and each R € IVIORI(S),

L(a) = L(a*) and R(a) = R(a?) for each a € S.
7. CONCLUSIONS

We introduced the notions of IVI-octahedron ideals and bi-ideals in a semigroup,
and IVI-octahwedron duo semigroups and studied some of their properties. More-
over, we discussed some characterizations of a regular semigroup and a left [resp.
right] regular semigroup by IVIOIs and IVIOBIs.

In the future, we expect that one applies IVI-octahedron sets to BCI/BCK-
algebras, topologies, category theory and decision-making problems, etc. Further-
more, we will try to study group structures and (semi)ring structures based on
IVI-octahedron sets.

Acknowledgements. The authors wish to thank the anonymous reviewers for
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