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1. Introduction

Alexandrov [1] introduced an Alexandrov topology in which the intersection and
union of any family of open sets is open. Given a preordered set (X,≤), we can
define Alexandrov topologies τ≤, τ≤−1 on X by choosing the open sets to be the
upper sets:

τ≤ = {U ⊆ X | ∀x, y ∈ X, (x ∈ U) ∧ (x ≤ y)→ y ∈ U},
and by choosing the open sets to be the lower sets:

τ≤−1 = {L ⊆ X | ∀x, y ∈ X, (y ∈ L) ∧ (x ≤ y)→ x ∈ L}.
Bělohlávek [2, 3, 4] investigated the properties of fuzzy Galois connections and fuzzy
closure operators on a residuated lattice which support information systems, decision
rules and parts of foundation of theoretic computer science. Many researchers [5, 6,
7, 8, 9] developed fuzzy rough sets, L-lower and L-upper approximation operators
in complete residuated lattices.

Pei et al. [10] investigated the Alexandrov L-topology and lattice structures on
L-fuzzy rough sets determined by lower and upper sets in complete residuated lattice
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(L,∨,∧,�,→,⊥,>). Given a fuzzy preordered set (X, eX), Alexandrov topologies
τeX and τe−1

X
on X are defined by choosing the open sets to be the upper sets:

τeX = {A ∈ LX | ∀x, y ∈ X,A(x)� eX(x, y) ≤ A(y)},

and by choosing the open sets to be the lower sets:

τe−1
X

= {A ∈ LX | ∀x, y ∈ X,A(y)� eX(x, y) ≤ A(x)}.

Fang [11], Fang and Yue [12] studied the relationship between L-fuzzy closure
systems and L-fuzzy topological spaces from a category viewpoint on a complete
residuated lattice L.

As a dual sense of complete residuated lattice, Zheng and Wang [13] introduced a
complete co-residuated lattice as a generalization of t-conorm. Junsheng and Qing
[14] investigated (�,&)-generalized fuzzy rough set on (L,�,&) where (L,&) is a
complete residuated lattice and (L,�) is complete coresiduated lattice. Kim and Ko
[15] introduced the concepts of fuzzy join and meet complete lattices using distance
spaces instead of fuzzy partially ordered spaces in complete co-residuated lattices.
Moreover, Oh and Kim [16, 17, 18, 19] investigated the properties of Alexandrov
fuzzy topologies, distance functions, join preserving maps, join approximation maps,
fuzzy complete lattices, various fuzzy connections and fuzzy concepts using distance
functions instead of fuzzy partially orders in complete co-residuated lattices.

For a usual mapping f : X → Y , the image of f→ : P (X) → P (Y ) and the
preimage of f← : P (Y )→ P (X) are defined as

f→(A) = {f(x) ∈ Y | x ∈ A}, f←(B) = {x ∈ X | f(x) ∈ B}.

Höhle and Rodabaugh [20] show that (f→, f←) is an adjunction where Zadeh’s
powersets operators f→ : LX → LY , f← : LY → LX are defined as

f→(A)(y) =
∨

f(x)=y

A(x), f→(B)(x) = B(f(x)).

Our aim in this paper, as extensions of Zadeh’s powersets operators from fuzzy sets
to fuzzy sets, is to study various operators in Definitions 2.8 and 3.1 from Alexandrov
topologies to Alexandrov topologies using distance function based on co-residuated
lattices.

Given a distance space (X, dX) on the complete co-residuated lattice

(L,∨,∧,⊕,	,⊥,>),

we can define Alexandrov topologies τdX , τd−1
X

on X by

τdX = {A ∈ LX | ∀x, y ∈ X,A(x)⊕ dX(x, y) ≥ A(y)}

and

τd−1
X

= {A ∈ LX | ∀x, y ∈ X,A(y)⊕ dX(x, y) ≥ A(x)}.
The notions of various operations facilitate to study topological structures, logic

and lattices. As we all know, fuzzy partially ordered sets (resp. equivalence rela-
tions) plays an important role in fuzzy rough sets and fuzzy topological structures.
Using distance functions instead of fuzzy partially ordered sets (resp. equivalence re-
lations), we define fuzzy interior (fuzzy closure) operators in complete co-residuated
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lattices as senses of fuzzy Galois connections and adjunctions. Moreover, we inves-
tigate their properties and define a fuzzy rough set. From Oh and Kim [16], we will
obtain a formal fuzzy concepts and an attribute-oriented fuzzy concepts.

2. Preliminaries

Definition 2.1 ([2, 3, 4, 15, 16, 17, 18, 19]). An algebra (L,∧,∨,⊕,⊥,>) is called
a complete co-residuated lattice, if it satisfies the following conditions:

(C1) L = (L,∨,∧,⊥,>) is a complete lattice, where ⊥ is the bottom element and
> is the top element,

(C2) a = a⊕⊥, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L,
(C3) (

∧
i∈Γ ai)⊕ b =

∧
i∈Γ(ai ⊕ b).

Let (L,∧,∨,⊕,⊥,>) be a complete co-residuated lattice. For each x, y ∈ L, we
define

x	 y =
∧
{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z iff x ≥ (z 	 y).

For α ∈ L,A ∈ LX , we denote (α	A), (α⊕A), αX ∈ LX as

(α	A)(x) = α	A(x), (α⊕A)(x) = α⊕A(x), αX(x) = α.

Put n(x) = > 	 x. The condition n(n(x)) = x for each x ∈ L is called a double
negative law.

Lemma 2.2 ([15, 16, 17, 18, 19]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated
lattice. For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, x⊕ y ≤ x⊕ z, y 	 x ≤ z 	 x and x	 z ≤ x	 y.
(2) (

∨
i∈Γ xi)	 y =

∨
i∈Γ(xi 	 y) and x	 (

∧
i∈Γ yi) =

∨
i∈Γ(x	 yi).

(3) (
∧
i∈Γ xi)	 y ≤

∧
i∈Γ(xi 	 y).

(4) x	 (
∨
i∈Γ yi) ≤

∧
i∈Γ(x	 yi).

(5) x	 x = ⊥, x	⊥ = x and ⊥	 x = ⊥. Moreover, x	 y = ⊥ iff x ≤ y.
(6) y ⊕ (x	 y) ≥ x, y ≥ x	 (x	 y) and (x	 y)⊕ (y 	 z) ≥ x	 z.
(7) x	 (y ⊕ z) = (x	 y)	 z = (x	 z)	 y.
(8) x	 y ≥ (x⊕ z)	 (y⊕ z), x	 y ≥ (x	 z)	 (y	 z), y	 x ≥ (z 	 x)	 (z 	 y)

and (x⊕ y)	 (z ⊕ w) ≤ (x	 z)⊕ (y 	 w).
(9) x⊕ y = ⊥ iff x = ⊥ and y = ⊥.
(10) (x⊕ y)	 z ≤ x⊕ (y 	 z) and (x	 y)⊕ z ≥ x	 (y 	 z).
(11) (

∨
i∈Γ xi)	 (

∨
i∈Γ yi) ≤

∨
i∈Γ(xi 	 yi).

(12) (
∧
i∈Γ xi)	 (

∧
i∈Γ yi) ≤

∨
i∈Γ(xi 	 yi).

(13) If L satisfies a double negative law and n(x) = > 	 x, then n(x ⊕ y) =
n(x)	 y = n(y)	 x and x	 y = n(y)	 n(x).

Definition 2.3 ([15, 16, 17, 18, 19]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-
residuated lattice. Let X be a set. A function dX : X ×X → L is called a distance
function, if it satisfies the following conditions:

(M1) dX(x, x) = ⊥ for all x ∈ X,
(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z) for all x, y, z ∈ X,
(M3) If dX(x, y) = dX(y, x) = ⊥, then x = y.
The pair (X, dX) is called a distance space.
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Remark 2.4 ([15, 16, 17, 18, 19]). (1) We define a distance function dX : X×X →
[0,∞]. Then (X, dX) is called a pseudo-quasi-metric space.

(2) Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated lattice. Define a function
dL : L×L→ L as dL(x, y) = x	 y. By Lemma 2.3 (5) and (6), (L, dL) is a distance
space. For τ ⊂ LX , we define a function dτ : τ × τ → L as

dτ (A,B) =
∨
x∈X

(A(x)	B(x)).

Then (τ, dτ ) is a distance space.

In this paper, we assume (L,∧,∨,⊕,	,⊥,>) is a complete co-residuated lattice.

Definition 2.5 ([1, 15, 16, 17, 18, 19]). (1) A subset τ ⊂ LX is called an Alexandrov
topology on X if it satisfies the following conditions:

(A1) If Ai ∈ τ for all i ∈ I, then
∨
i∈I Ai,

∧
i∈I Ai ∈ τ .

(A2) If A ∈ τ and α ∈ L, then αX , A	 α,A⊕ α ∈ τ .
The pair (X, τ) is called an Alexandrov topological space on X.

Theorem 2.6 ([15, 16, 17, 18, 19]). Let (X, dX) be a distance space. We define

τdX = {A ∈ LX | A(x)⊕ dX(x, y) ≥ A(y)}
τd−1

X
= {A ∈ LX | A(x)⊕ dX(y, x) ≥ A(y)}.

(1) τdX and τd−1
X

are Alexandrov topologies.

(2) (τdX , dτdX ) and (τd−1
X
, dτ

d
−1
X

) are complete lattices.

(3)

τdX = {
∨
x∈X

A(x)⊕ dX(x,−) | A ∈ LX}

and
τd−1

X
= {

∨
x∈X

A(x)⊕ dX(−, x) | A ∈ LX}.

Definition 2.7 ([15, 16, 17, 18, 19]). Let (X, dX) and (Y, dY ) be distance spaces
and f : X → Y be a map. Define f∗ : LX → LY as

f∗(A)(y) =

{
>, if f−1({y}) = ∅,∧
A(x), if x ∈ f−1({y}).

Theorem 2.8 ([15, 16, 17, 18, 19]). Let (X, dX) and (Y, dY ) be distance spaces.
Define f⊕, fs⊕ : LX → LY and f←⊕ , f

s←
⊕ : LY → LX as

f⊕(A)(y) =
∧
x∈X(A(x)⊕ dY (f(x), y)),

fs⊕(A)(y) =
∧
x∈X(A(x)⊕ dY (y, f(x))),

f←⊕ (B)(x) =
∧
z∈X(B(f(z))⊕ dX(z, x)),

fs←⊕ (B)(x) =
∧
z∈X(B(f(z))⊕ dX(x, z)).

Then the following properties hold.
(1) dLX (B,A) ≥ dLY (f⊕(B), f⊕(A)) and dLX (B,A) ≥ dLY (fs⊕(B), fs⊕(A)).
(2) dLY (C,D) ≥ dLX (f←⊕ (C), f←⊕ (E)) and dLY (C,D) ≥ dLX (fs←⊕ (C), fs←⊕ (E)).
(3) f⊕(A) ∈ τdY and fs⊕(A) ∈ τd−1

Y
.

(4) f←⊕ (B) ∈ τdX and fs←⊕ (B) ∈ τd−1
X

.
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3. Various operations in complete co-residuated lattices

In this section, as generalizations of Zadeh powerset operators we define the fol-
lowing operations and investigate their properties.

Definition 3.1. Let (X, dX) and (Y, dY ) be distance spaces and f : X → Y be a
map. Define f�, fs� : LX → LY and f←� , f

s←
� : LY → LX as

f�(A)(y) =
∨
x∈X(A(x)	 dY (f(x), y)),

fs�(A)(y) =
∨
x∈X(A(x)	 dY (y, f(x))),

f←� (B)(x) =
∨
z∈X(B(f(z))	 dX(z, x)),

fs←� (B)(x) =
∨
z∈X(B(f(z))	 dX(x, z)).

Remark 3.2. Let (L,≤,∨,∧,⊕,	,⊥,>) be a complete co-residuated lattice. Let
X,Y be sets and f : X → Y a function. Define dX ∈ LX×X , dY ∈ LY×Y as

dX(x, z) =

{
⊥, if z = x,
>, if z 6= x,

dY (y, w) =

{
⊥, if y = w,
>, if y 6= w.

We easily show that dX and dY are distance functions. We obtain

f�(A)(y) =
∨
x∈X(A(x)	 dY (f(x), y))

=
∨
f(x)=y A(x) = f→(A)(y) = fs�(A)(y),

f←� (B)(x) =
∨
z∈X(B(f(z))	 dX(z, x))

= B(f(x)) = f←(B)(x) = fs←� (B)(x).

Then f�, fs�, f←� , f
s←
� are generalizations of Zadeh power operators f→ and f←.

Theorem 3.3. Let (X, dX) and (Y, dY ) be distance spaces. For each A,C ∈ LX

and B,D ∈ LY , the followings hold.
(1) dLX (A,C) ≥ dLY (f�(A), f�(C)) and dLX (A,C) ≥ dLY (fs�(A), fs�(C)).
(2) dLY (B,D) ≥ dLX (f←� (B), f←� (D)) and dLY (B,D) ≥ dLX (fs←� (B), fs←� (D)).
(3) f�(A) ∈ τd−1

Y
, fs�(A) ∈ τdY , f�(A) ≥ f→(A) and fs�(A) ≥ f→(A) for each

A ∈ LX .
(4) f←� (B) ∈ τd−1

X
, fs←� (B) ∈ τdX , f←� (B) ≥ f←(B) and fs←� (B) ≥ f←(B) for

each B ∈ LY .

Proof. (1) For A,C ∈ LX ,∨
x∈X(A(x)	 dY (f(x), y))	

∨
x∈X(C(x)	 dY (f(x), y))

≤
∨
x∈X((A(x)	 dY (f(x), y))	 (C(x)	 dY (f(x), y)))

[By Lemma 2.2 (8) and (11)]
≤
∨
x∈X(A(x)	 C(x)).

Then dLX (A,C) ≥ dLY (f�(A), f�(C)). Similarly, dLX (A,C) ≥ dLY (fs�(A), fs�(C)).
(2) For B,C ∈ LY ,∨

x∈X(B(f(x))	 dX(x, z))	
∨
x∈X(D(f(x))	 dX(x, z))

≤
∨
x∈X((B(f(x))	 dX(x, z))	 (D(f(x))	 dX(x, z)))

[By Lemma 2.2 (8) and (11)]
≤
∨
x∈X(B(f(x))	D(f(x))) ≤ dLY (B,D).

Then dLY (B,D) ≥ dLX (f←� (B), f←� (D)). Similarly, dLY (B,D) ≥ dLX (fs←� (B), fs←� (D)).
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For A ∈ LX ,
f�(A)(y) ≥

∨
f(x)=y A(x) = f→(A),

fs�(A)(y) ≥
∨
f(x)=y A(x) = f→(A).

(3) For A ∈ LX ,
f�(A)(y)⊕ dY (w, y)⊕ dY (f(x), w)

= (
∨
x∈X(A(x)	 dY (f(x), y)))⊕ dY (f(x), y)

≥ A(x).
Then f�(A)(y)⊕dY (w, y) ≥ f�(A)(w) and f�(A) ∈ τd−1

Y
. Similarly, fs�(A) ∈ τdY .

(4) For B ∈ LY ,
(B(f(z))	 dX(z, x))⊕ dX(w, x)� dX(z, w)
≥ (B(f(z))	 dX(z, x))⊕ dX(z, x)
≥ B(f(z)).

Then f←� (B)(x)⊕ dX(w, x) ≥ f←� (B)(w) and f←� (B) ∈ τd−1
X

. �

Definition 3.4. A map C : LX → LX is called a fuzzy closure operator, if it satisfies
the following conditions:

(C1) A ≤ C(A), for all A ∈ LX ,
(C2) dLX (A,B) ≥ dLX (C(A), C(B)) for each A,B ∈ LX .

A map I : LX → LX is called a fuzzy interior operator, if it satisfies the following
conditions:

(I1) I(A) ≤ A, for all A ∈ LX ,
(I2) dLX (A,B) ≥ dLX (I(A), I(B)) for each A,B ∈ LX .
The pair (I(A), C(A)) is called a fuzzy rough set of A.

Remark 3.5. Let (X, dX) be a distance space and idX : X → Y be an identity map.
Then id⊕X , id

s⊕
X : LX → LX are fuzzy interior operators and id�X , id

s�
X : LX → LX

are fuzzy closure operators defined as

id⊕X(A)(y) =
∧
x∈X(A(x)⊕ dX(x, y)),

ids⊕X (A)(y) =
∧
x∈X(A(x)⊕ dX(y, x)),

id�X(A)(y) =
∨
x∈X(A(x)	 dX(x, y)),

ids�X (A)(y) =
∨
x∈X(A(x)	 dX(y, x)).

Moreover (id⊕X(A), id�X),(ids⊕X (A), id�X), (id⊕X(A), ids�X ) and (ids⊕X (A), ids�X ) are fuzzy
rough sets of A.

Theorem 3.6. Let (X, dX) and (Y, dY ) be distance spaces and f : (X, dX)→ (Y, dY )
be a map with dX(x, y) ≥ dY (f(x), f(y)) for all x, y ∈ X.

(1) Two operations f� : τd−1
X
→ τd−1

Y
and fs←⊕ : τd−1

Y
→ τd−1

X
satisfy the followings:

dτ
d
−1
Y

(f�(A), B) ≥ dτ
d
−1
X

(A, fs←⊕ (B)) and A ≤ fs←⊕ (f�(A)).

Moreover, if f is surjective and dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X, then

dτ
d
−1
Y

(f�(A), B) = dτ
d
−1
X

(A, fs←⊕ (B)).

(2) Two operations fs� : τdX → τdY and f←⊕ : τdY → τdX satisfy the followings:

dτdY (fs�(A), B) ≥ dτdX (A, f←⊕ (B)) and A ≤ f←⊕ (fs�(A)).
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Moreover, if f is surjective and dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X, then

dτdY (fs�(A), B) = dτdX (A, f←⊕ (B)).

(3) Two operations fs⊕ : τd−1
X
→ τd−1

Y
and f←� : τd−1

Y
→ τd−1

X
satisfy the followings:

dτ
d
−1
Y

(B, fs⊕(A)) ≥ dτ
d
−1
X

(f←� (B), A) and f←� (fs⊕(A)) ≤ A.

Moreover, if f is surjective and dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X, then

dτ
d
−1
Y

(B, fs⊕(A)) = dτ
d
−1
X

(f←� (B), A).

(4) Two operations f⊕ : τdX → τdY and fs←� : τdY → τdX satisfy the followings:

dτdY (B, f⊕(A)) ≥ dτdX (fs←� (B), A) and fs←� (f⊕(A)) ≤ A.
Moreover, if f is surjective and dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X, then

dτdY (B, f⊕(A)) = dτdX (fs←� (B), A).

(5) An operation f←� ◦fs⊕ : τd−1
X
→ τd−1

X
is a fuzzy interior operator. An operation

fs←⊕ ◦f� : τd−1
X
→ τd−1

X
is a fuzzy closure operator. The pair (f←� (fs⊕(A)), fs←⊕ (f�(A)))

is a fuzzy rough set for A ∈ τd−1
X

.

(6) An operation fs←� ◦ f⊕ : τdX → τdX is a fuzzy interior operator. An operation
f←⊕ ◦fs� : τdX → τdX is a fuzzy closure operator. The pair (fs←� (f⊕(A)), f←⊕ (fs�(A)))
is a fuzzy rough set for A ∈ τdX .

Proof. (1) For A ∈ τd−1
X
, B ∈ τd−1

Y
,

dτ
d
−1
Y

(f�(A), B) =
∨
y∈Y (f�(A)(y)	B(y))

=
∨
y∈Y (

∨
x∈X(A(x)	 dY (f(x), y))	B(y))

=
∨
x∈X(A(x)	

∧
y∈Y (dY (f(x), y)⊕B(y)))

≥
∨
x∈X(A(x)	

∧
z∈X(dY (f(x), f(z))⊕B(f(z))))

≥
∨
x∈X(A(x)	

∧
z∈X(dX(x, z)⊕B(f(z))))

=
∨
x∈X(A(x)	 fs←⊕ (B)(x)) = dτ

d
−1
X

(A, fs←⊕ (B)).

Moreover, A ≤ fs←⊕ (f�(A)) from the following inequality:

dτ
d
−1
X

(A, fs←⊕ (f�(A))) ≤ dτ
d
−1
Y

(f�(A), f�(A)) = ⊥.

If f is surjective and dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X, then we have
dτ

d
−1
Y

(f�(A), B) =
∨
y∈Y (f�(A)(y)	B(y))

=
∨
x∈X(A(x)	

∧
y∈Y (dY (f(x), y)⊕B(y)))

=
∨
x∈X(A(x)	

∧
z∈X(dY (f(x), f(z))⊕B(f(z))))

=
∨
x∈X(A(x)	

∧
z∈X(dX(x, z)⊕B(f(z))))

=
∨
x∈X(A(x)	 fs←⊕ (B)(x)) = dτ

d
−1
X

(A, fs←⊕ (B)).

(3) For A ∈ τdX , B ∈ τd−1
Y

,

dτ
d
−1
Y

(B, fs⊕(A)) =
∨
y∈Y (B(y)	 fs⊕(A)(y))

=
∨
y∈Y (B(y)	

∧
x∈X(A(x)⊕ dY (y, f(x))))

≥
∨
z∈X(B(f(z))	

∧
x∈X(A(x)⊕ dY (f(z), f(x))))

≥
∨
z∈X(B(f(z))	

∧
x∈X(A(x)⊕ dX(z, x)))

=
∨
x∈X(

∧
z∈X(B(f(z))	 dX(z, x))	A(x))
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=
∨
x∈X(f←� (B)(x)	A(x)) = dτ

d
−1
X

(f←� (B), A).

Other case, (2) and (4) can be proved in a similar way to (1) and (3) respectively.
(5) For A,C ∈ τd−1

X
,

dτ
d
−1
X

(A,C) ≥ dτ
d
−1
Y

(fs⊕(A), fs⊕(C)) ≥ dτ
d
−1
X

(f←� (fs⊕(A)), f←� (fs⊕(C))),

dτ
d
−1
X

(A,C) ≥ dτ
d
−1
Y

(fs�(A), fs�(C)) ≥ dτ
d
−1
X

(f←⊕ (fs�(A)), f←⊕ (fs�(C))).

(6) The proof can be proved in a similar way to (5). �

Remark 3.7. From Oh and Kim [16], we will obtain a formal fuzzy concept and
an attribute-oriented fuzzy concept as follows.

(1) Let F : LX → LY , G : LY → LX be maps where X is a set of objects and Y
is a set of attributes. If dLY (F (A), B) = dLX (G(B), A), then a formal fuzzy concept
is a pair (A,B) ∈ LX × LY such that F (A) = B,G(B) = A as a Bělohlávek’s sense
[2, 3, 4, 5].

If dLY (B,F (A)) = dLX (G(B), A), then an attribute-oriented fuzzy concept is a
pair (A,B) ∈ LX × LY such that F (A) = B,G(B) = A as Ciobanu and Vǎideanu’s
sense [21].

(2) Let (X, dX) and (Y, dY ) be distance spaces and f : (X, dX) → (Y, dY ) be a
surjective map with dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X. By Theorem 3.6 (1)
and (2),

dτdY (fs�(A), B) = dτdX (A, f←⊕ (B)) and dτ
d
−1
Y

(f�(A), B) = dτ
d
−1
X

(A, fs←⊕ (B)).

We can obtain two formal fuzzy concepts as

{(A,B) ∈ τdX × τdY | fs�(A) = B, f←⊕ (B) = A}
and

{(A,B) ∈ τd−1
X
× τd−1

Y
| f�(A) = B, fs←⊕ (B) = A}

respectively. Moreover, by 3.6 (1) and (2),

dτdY (B, f⊕(A)) = dτdX (fs←� (B), A) and dτ
d
−1
Y

(B, fs⊕(A)) = dτ
d
−1
X

(f←� (B), A).

We can obtain two attribute-oriented fuzzy concepts as

{(A,B) ∈ τdX × τdY | f⊕(A) = B, fs←� (B) = A}
and

{(A,B) ∈ τd−1
X
× τd−1

Y
| fs⊕(A) = B, f←� (B) = A}

respectively.

Example 3.8. Let (L = [0, 1],≤,∨,∧,⊕,	, 0, 1) be a complete co-residuated lattice
defined as n(x) = 1− x,

x⊕ y = (x+ y) ∧ 1, x	 y = (x− y) ∨ 0.

(1) Let X,Y be sets and f : X → Y a function. Define dX ∈ LX×X , dY ∈ LY×Y
as Remark 3.2. Since f is a function, dX(x, z) ≥ dY (f(x), f(z)). Then we have

τdX = {A ∈ LX | A(x)⊕ dX(x, y) ≥ A(y)} = LX = τd−1
X
.

Moreover, τdY = LY = τd−1
Y
. For f∗ in Definition 2.7, we obtain
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f⊕(A)(y) =
∧
x∈X

(A(x)⊕ dY (f(x), y)) = fs⊕(A)(y) =
∧

f(x)=y

A(x) = f∗(A)(y),

f←⊕ (B)(x) =
∧
z∈X

(B(f(z))⊕ dX(z, x)) = fs←⊕ (B)(x) = B(f(x)) = f←(B)(x),

f�(A)(y) =
∨
x∈X

(A(x)	 dY (f(x), y)) = fs�(A)(y) =
∨

f(x)=y

A(x) = f→(A)(y),

f←� (B)(x) =
∨
z∈X

(B(f(z))	 dX(z, x)) = fs←� (B)(x) = B(f(x)) = f←(B)(x).

Let A ∈ τdX = LX and let B ∈ τdY = LY Then we get
dLY (B, f∗(A)) =

∨
y∈Y (B(y)	 f∗(A)(y))

=
∨
y∈Y (B(y)	

∧
f(x)=y A(x))

=
∨
x∈X(B(f(x))	A(x))

= dLX (f←(B), A).
Thus we have

dLY (B, f⊕(A)) = dLY (B, fs⊕(A)) = dLY (B, f∗(A))
= dLX (f←(B), A) = dLX (f←⊕ (B), A)
= dLX (fs←⊕ (B), A) = dLX (f←� (B), A)
= dLX (fs←� (B), A).

Since
dLY (f→(A), B) =

∨
y∈Y (f→(A)(y)	B(y))

=
∨
y∈Y (

∨
f(x)=y A(x)	B(y))

=
∨
x∈X(A(x)	B(f(x))) = dLX (A, f←(B)),

we get
dLY (f�(A), B) = dLY (fs�(A), B) = dLY (f→(A), B)

= dLX (A, f←(B)) = dLX (A, f←� (B))
= dLX (A, fs←� (B)) = dLX (A, f←⊕ (B))
= dLX (A, fs←⊕ (B)).

Let X = {a, b, c}, Y = {x, y, z} and let f : X → Y be the function defined as
follows:

f(a) = f(b) = x, f(c) = y.

Then dX(a, b) ≥ dY (f(a), f(b)) for all a, b ∈ X. Thus the properties of Theorems
3.3 and 3.6 hold. For A = (0.6, 0.3, 0.5),

f∗(A) = (A(a) ∧A(b), A(c), 1) = (0.3, 0.5, 1),
f→(A) = (A(a) ∨A(b), A(c), 0) = (0.6, 0.5, 0),
f←� (fs⊕(A)) = fs←� (f⊕(A)) = f←(f∗(A)) = (0.3, 0.3, 0.5),
fs←⊕ (f�(A)) = f←⊕ (fs�(A)) = f←(f→(A)) = (0.6, 0.6, 0.5).

So the pair (f←� (fs⊕(A)), fs←⊕ (f�(A))) = ((0.3, 0.3, 0.5), (0.6, 0.6, 0.5)) is a fuzzy
rough set of A. The pair (fs←� (f⊕(A)), f←⊕ (fs�(A))) = ((0.3, 0.3, 0.5), (0.6, 0.6, 0.5))
is a fuzzy rough set of A. For B = (0.4, 0.7, 0.1),

dLY (f→(A), B) = dLX (A, f←(B)) = 0.2,
dLY (B, f∗(A)) = dLX (f←(B), A) = 0.2.
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(2) Let X = {a, b, c}, Y = {x, y, z} with a < b < c and x < y < z be totally order
sets. Let f : X → Y be the function defined as follows:

f(a) = f(b) = x, f(c) = y.

Define dX ∈ LX×X , dY ∈ LY×Y as

dX(x, z) =

{
0, if x ≤ z
1, if x > y,

dY (y, w) =

{
0, if y ≤ w
1, if y > w.

Then we easily show that dX and dY are distance functions. Since f(a) ≤ f(b) for
each a ≤ b, dX(x, z) ≥ dY (f(x), f(z)). Thus we have

τdX = {A ∈ LX | A(x)⊕ dX(x, y) ≥ A(y)} = {A ∈ LX | A(x) ≥ A(y), ∀x ≤ y}

and

τd−1
X

= {A ∈ LX | A(x)⊕ d−1
X (x, y) ≥ A(y)} = {A ∈ LX | A(x) ≤ A(y), ∀x ≤ y}.

For A = (0.6, 0.5, 0.3) ∈ τdX and B = (0.8, 0.6, 0.1) ∈ τdY , we get

f⊕(A)(−) =
∧
x∈X(A(x)⊕ dY (f(x),−)) =

∧
f(x)≤−A(x) = (0.5, 0.3, 0.3) ∈ τdY ,

f←⊕ (B)(−) =
∧
z∈X(B(f(z))⊕ dX(z,−)) =

∧
z≤−B(f(z)) = (0.8, 0.8, 0.6) ∈ τdX ,

fs�(A)(−) =
∨
x∈X(A(x)	 dY (y, f(x))) =

∨
−≤f(x)A(x) = (0.6, 0.6, 0.5) ∈ τdY ,

f→(A) = (0.6, 0.5, 0),
fs←� (B)(−) =

∨
z∈X(B(f(z))	 dX(−, z)) =

∨
−≤z B(f(z)) = (0.8, 0.8, 0.6) ∈ τdX ,

f←(B) = (0.8, 0.8, 0.6).

For two operations fs� : τdX → τdY , f←⊕ : τdY → τdX ,

0.4 = dτdY (fs�(A), B) ≥ dτdX (A, f←⊕ (B)) = 0,

(0.6, 0.5, 0.3) = A ≤ f←⊕ (fs�(A)) = (0.6, 0.6, 0.6).

For two operations f⊕ : τdX → τdY , fs←� : τdY → τdX ,

0.3 = dτdY (B, f⊕(A)) ≥ dτdX (fs←� (B), A) = 0.3,

(0.5, 0.5, 0.3) = fs←� (f⊕(A)) ≤ (0.6, 0.5, 0.3).

For C = (0.2, 0.5, 0.6) ∈ τd−1
X

and D = (0.4, 0.6, 0.8) ∈ τd−1
Y

, we get

fs⊕(C)(−) =
∧
x∈X(C(x)⊕ dY (−, f(x))) =

∧
−≤f(x) C(x) = (0.2, 0.2, 0.6) ∈ τd−1

Y
,

fs←⊕ (D)(−) =
∧
z∈X(D(f(z))⊕ dX(z,−)) =

∧
−≤zD(f(z)) = (0.4, 0.4, 0.6) ∈ τd−1

X
,

f�(C)(−) =
∨
x∈X(C(x)	 dY (f(x), y)) =

∨
f(x)≤− C(x) = (0.5, 0.6, 0.6) ∈ τd−1

Y
,

f→(C) = (0.5, 0.6, 0),
f←� (D)(−) =

∨
z∈X(D(f(z))	 dX(z, x)) =

∨
z≤−D(f(z)) = (0.4, 0.4, 0.6) ∈ τd−1

X
,

f←(D) = (0.4, 0.4, 0.6).

For two operations f� : τd−1
X
→ τd−1

Y
, fs←⊕ : τd−1

Y
→ τd−1

X
,

0.1 = dτ
d
−1
Y

(f�(C), D) ≥ dτ
d
−1
X

(C, fs←⊕ (D)) = 0.1,

(0.2, 0.5, 0.6) = C ≤ fs←⊕ (f�(C)) = (0.5, 0.5, 0.6).
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For two operations fs⊕ : τd−1
X
→ τd−1

Y
, f←� : τd−1

Y
→ τd−1

X
,

0.4 = dτ
d
−1
Y

(D, fs⊕(C)) ≥ dτ
d
−1
X

(f←� (D), C) = 0.2,

(0.2, 0.2, 0.2) = f←� (fs⊕(C)) ≤ (0.2, 0.5, 0.6).

(3) Let X = {a, b, c}, Y = {x, y, z} and let f : X → Y be the function defined as
follows:

f(a) = f(b) = x, f(c) = y.

Define dX ∈ LX×X and dY ∈ LY×Y as

dX =

 0 0.5 0.8
0.7 0 0.6
0.4 0.6 0

 dY =

 0 0.4 0.9
0.3 0 0.5
0.7 0.4 0


Then we easily show that dX and dY are distance functions with dX(a, b) ≥ dY (f(a), f(b))
for all a, b ∈ X. Moreover, for A ∈ [0, 1]X as A(a) = 0.3, A(b) = 0.2, A(c) = 0.5,

A =
∧
x∈X(A(x)⊕ dX(x,−)) =

∧
x∈X(A(x)⊕ dX(−, x)).

Thus by Theorem 2.6 (3), A ∈ τdX , A ∈ τd−1
X
. Moreover, f←� ◦ fs⊕ : τd−1

X
→ τd−1

X
and

fs←⊕ ◦ f� : τd−1
X
→ τd−1

X
are fuzzy interior and fuzzy closure operators respectively.

Since fs⊕(A) = (0.2, 0.5, 0.9),

f←� (fs⊕(A)) = (0.1, 0.2, 0.5) and f�(A) = (0.3, 0.5, 0), fs←⊕ (f�(A)) = (0.3, 0.3, 0.5).

So the pair (f←� (fs⊕(A)), fs←⊕ (f�(A))) = ((0.1, 0.2, 0.5), (0.3, 0.3, 0.5)) is a fuzzy
rough set for A.

Also, fs←� ◦ f⊕ : τdX → τdX and f←⊕ ◦ fs� : τdX → τdX are fuzzy interior and
fuzzy closure operators respectively. Since f⊕(A) = (0.2, 0.5, 0.9),

fs←� (f⊕(A)) = (0.2, 0.2, 0.5) and fs�(A) = (0.3, 0.5, 0.1), f←⊕ (fs�(A)) = (0.3, 0.3, 0.5).

Hence the pair (fs←� (f⊕(A)), f←⊕ (fs�(A))) = ((0.2, 0.2, 0.5), (0.3, 0.3, 0.5)) is a fuzzy
rough set for A.

4. Conclusion

Using distance functions, we have investigated generalizations of Zadeh powerset
operators in co-residuated lattices. The notions of various operations facilitate to
study topological structures ,logic and lattices.

In particular, we study fuzzy closure (interior) operators and fuzzy rough sets
based on co-residuated lattices as senses of fuzzy Galois connections and adjunctions.

In the future, we suggest information systems and decision rules in co-residuated
lattices.
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