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1. Introduction

In 2020, as a tool to solve the problems involving ambiguities and uncertain-
ties in the real world, Kim et al. [1] proposed the notion of IVI-octahedron sets
combined with interval-valued intuitionistic fuzzy sets (Atanassov and Gargov [2]),
intuitionistic fuzzy sets (Atanassov [3]) and fuzzy sets (Zadeh [4]) and they studied
its basic algebraic properties, and applied it to groupoids.

First of all, we would like to examine research trends on group theory based
on fuzzy sets, intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets
through literature. In 1971, Rosenfeld [5] defined a fuzzy groupoid and a fuzzy sub-
group based on fuzzy sets, and studied their various properties. Das [6] introduced
the concept of level subgroups of a fuzzy subgroup and discussed some of its proper-
ties. After then, many researchers [7, 8, 9, 10, 11, 12, 13, 14, 15] investigated group
structures via fuzzy sets. In 1997, Biswas [16] defined an intuitionistic fuzzy subgroup
and obtained some of its properties. After that time, Hur et al. [17] introduced the
notion of intuitionisric fuzzy groupoids and dealt with its various properties. Baner-
jee and Basnet [18] studied some properties of intuitionistic fuzzy subrings and ideals.
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Moreover, Ahn et al. [19] defined a level subgroup of an intuitionistic fuzzy subgroup
and discussed with the relationships between level subgroups and intuitionistic fuzzy
subgroups (See [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] for further researches
of group structures based on intuitionistix fuzzy sets). In 2009, Hedayati [32] dealt
with substructures in semigroups based on interval-valued intuitionistic fuzzy sets.
Aygünoğlu et al. [33] defined an interval-valued intuitionistic fuzzy subgroup and
an interval-valued intuitionistic fuzzy normal subgroup in terms of a double t-norm,
and dealt with their various properties. Yaqoob [34] discussed with interval-valued
intuitionistic fuzzy ideals in a regular LA-semigroup. Furthermore, Vetrivel and Mu-
rugadas [35] introduced the concept of bi-ideals in Γ near-rings via interval-valued
intuitionistic fuzzy sets and investigated some of its properties.

Our research’s aim is to study group structures based on IVI-octahedron sets. In
order to accomplish it, this paper is organized as follows: In Section 2, we list basic
definitions related to intuitionistic fuzzy sets, interval-valued fuzzy sets, interval-
valued intuitionistic fuzzy sets octahedron sets and IVI-octahedron sets. In Section
3, we define an IVI-octahedron subgroup of a group by using interval-valued intu-
itionistic fuzzy subgroups, intuitionistic fuzzy subgroups and fuzzy subgroups, and
obtained some of its properties. In particular, we give the necessary and sufficient
condition that an IVI-octahedron set of a cyclic group Gp of a prime order p is an
IVI-octahedron subgroup (See Theorem 3.24). Moreover, we introduce the notion
of IVI-octahedron normal subgroups and discuss with some of its properties. In
Section 4, we define an level subgroup of an IVI-octahedron subgroup and give the
necessary and sufficient condition that two level subgroups are equal (See Theorem
4.10). Further more, we give the the necessary and sufficient condition that two
IVI-octahedron subgroups of a finite group are equal (See Theorem 4.19). Also, we
give the necessary and sufficient condition that an IVI-octahedron set in a finite
cyclic group is an IVI-octahedron subgroup (See Theorem 4.23).

2. Preliminaries

In this section, we list some basic definitions needed in the next sections.

For a set X, let IX denotes the set of all fuzzy sets in X and members of IX will
write A, B, C, etc., where I = [0, 1]. In particular, 0 and 1 denote the fuzzy empty
set and the fuzzy whole set in X respectively (See [4]).

Each member of the set I ⊕ I = {(a∈, a6∈) : (a∈, a6∈) ∈ I × I and a∈ + a6∈ ≤ 1}
is called an intuitionistic fuzzy number and is denoted by ā = (a∈, a6∈) (See [36]).
In particular, 0̄ = (0, 1) [resp. 1̄ = (1, 0)]. For a nonempty set X, a mapping
Ā = (A∈, A6∈) : X → I ⊕ I is called an intuitionistic fuzzy set (briefly, IFS) in X. 0̄
and 1̄ denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole set
in X defined by respectively: for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

We denote the set of all IFSs in X as IFS(X).
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For a nonempty set X, a mapping Ã = [A−, A+] : X → [I] is called an interval-
valued fuzzy set (briefly, IVFS) in X, where [I] denotes the set of all closed subin-

tervals of I (See [37, 38, 39]). 0̃ and 1̃ denote the interval-valued fuzzy empty set
and the interval-valued fuzzy whole set in X defined as follows respectively: for each
x ∈ X,

0̃(x) = 0 = [0, 0] and 1̃(x) = 1 = [1, 1].

We denote the set of all IVFSs in X as IV FS(X).

For a nonempty set X, a mapping
˜̃
A = (Ã∈, Ã 6∈) : X → [I] ⊕ [I] is called

the interval-valued intuitionistic fuzzy set (briefly, IVIS) in X, where [I] ⊕ [I] =

{(ã∈, ã6∈) : (ã∈, ã6∈) ∈ [I] × [I] and a∈,+ + a6∈,+ ≤ 1} (See [2]).
˜̃
0 [resp.

˜̃
1] is called

an interval-valued intuitionistic fuzzy empty set [resp. interval-valued intuitionistic
fuzzy whole set] in X defined by for each x ∈ X,˜̃

0(x) = (0,1) = ([0, 0], [1, 1]) [resp.
˜̃
1(x) = (1,0) = ([1, 1], [0, 0])].

We denote the set of all IVISs in X as IV IS(X).

Definition 2.1 ([2]). Let
˜̃
A = (Ã∈, Ã 6∈),

˜̃
B = (B̃∈, B̃ 6∈) ∈ IV IS(X) and let

(
˜̃
Aj)j∈J = ((Ã∈j , Ã

6∈
j ))j∈J ⊂ IV IS(X). Then

(i)
˜̃
A ⊂ ˜̃B ⇐⇒ (∀x ∈ X)(A∈,−(x) ≤ B∈,−(x), A∈,+(x) ≤ B∈,+(x)

and A 6∈,−(x) ≥ B 6∈,−(x), A 6∈,+(x) ≥ B 6∈,+(x)),

(ii)
˜̃
A =

˜̃
B ⇐⇒ Ã ⊂ B̃ and B̃ ⊂ Ã,

(iii)
˜̃
A
c

(x) = (Ã 6∈(x), Ã∈(x)) for each x ∈ X,

(iv) (
˜̃
A ∪ ˜̃B)(x) = ([A∈,−(x) ∨B∈,−(x), A∈,+(x) ∨B∈,+(x)],

[A 6∈,−(x) ∧B 6∈,−(x), A6∈,+(x) ∧B 6∈,+(x)]) for each x ∈ X,

(v) (
˜̃
A ∩ ˜̃B)(x) = ([A∈,−(x) ∧B∈,−(x), A∈,+(x) ∧B∈,+(x)],

[A 6∈,−(x) ∨B 6∈,−(x), A6∈,+(x) ∨B 6∈,+(x)]) for each x ∈ X,

(vi) (
⋃
j∈J

˜̃
Aj)(x) = ([

∨
j∈J A

∈,−
j (x),

∨
j∈J A

∈,+
j (x)],

[
∧
j∈J A

6∈,−
j (x),

∧
j∈J A

6∈,+
j (x)]) for each x ∈ X,

(vii) (
⋂
j∈J

˜̃
Aj)(x) = ([

∧
j∈J A

∈,−
j (x),

∧
j∈J A

∈,+
j (x)],

[
∨
j∈J A

6∈,−
j (x),

∨
j∈J A

6∈,+
j (x)]) for each x ∈ X,

(viii) [ ]
˜̃
A(x) = (Ã∈(x), [(A 6∈,−(x), 1−A∈,+(x)]) for each x ∈ X,

(ix) � ˜̃A(x) = ([A∈,−(x), 1−A 6∈,+(x)], Ã 6∈(x)) for each x ∈ X.

Definition 2.2 ([40]). Let X be a nonempty set. Then a mapping A =
〈
Ã, Ā, A

〉
:

X → [I] × (I ⊕ I) × I is called an octahedron set in X. 0̇ [resp. 1̇] is called the
octahedron empty set [resp. octahedron whole set] in X defined by: for each x ∈ X,

0̇(x) = 〈0, 0̄, 0〉 [resp. 1̇(x) = 〈1, 1̄, 1〉].

We denote the set of all octahedron sets as O(X).
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Members of ([I]⊕ [I])× (I ⊕ I)× I are called interval-valued intuitionistic fuzzy
octahedron numbers (briefly, IVI-octahedron numbers) (See [1]) and we write them
as ˜̄̃a =

〈˜̃a, ā, a〉 , ˜̄̃b =

〈˜̃
b, b̄, b

〉
, etc,

where ˜̃a = (ã∈, ã6∈) = ([a∈,−, a∈,+], [a6∈,−, a6∈,+]), ā = (a∈, a6∈). In particular,˜̄̃
0 =

〈˜̃
0, 0̄, 0

〉
and

˜̄̃
1 =

〈˜̃
1, 1̄, 1

〉
.

For any ˜̄̃a, ˜̄̃b ∈ ([I]⊕ [I])× (I ⊕ I)× I,

˜̄̃a ≤ ˜̄̃b⇐⇒ ˜̃a ≤ ˜̃b, ā ≤ b̄, a ≤ b, ˜̄̃a =
˜̄̃
b⇐⇒ ˜̄̃a ≤ ˜̄̃b, ˜̄̃b ≤ ˜̄̃a.

For any (˜̄̃aj)j∈J ⊂ ([I]⊕ [I])× (I ⊕ I)× I,∧
j∈J

˜̄̃aj =

〈∧
j∈J

˜̃aj ,∧
j∈J

āj ,
∧
j∈J

aj

〉
,

∨
j∈J

˜̄̃aj =

〈∨
j∈J

˜̃aj ,∨
j∈J

āj ,
∨
j∈J

aj

〉
.

Definition 2.3 ([1]). Let X be a nonempty set. Then a mapping A =<
˜̃
A,A, λ >:

X → ([I]⊕ [I])×(I⊕I)×I is called an interval-valued intuitionistic fuzzy octahedron

set (briefly, IVI-octahedron set) in X. 0̈ =
〈˜̃

0, 0̄, 0
〉

[resp. 1̈ =
〈˜̃

1, 1̄, 1
〉

] is called

the IVI-octahedron empty set [resp. the IVI-octahedron whole set] in X defined by:
for each x ∈ X,

0̈(x) =
〈˜̃

0, 0̄, 0
〉 [

resp. 1̈(x) =
〈˜̃

1, 1̄, 1
〉]
.

We denote the set of all IVI-octahedron sets as IV IOS(X).

It is obvious that for each A ∈ 2X ,

χA = 〈([χA, χA], [χAc , χAc ]), (χA, χAc), χA〉 ∈ IV IOS(X),

where 2X [resp. χA] denotes the power set of X [resp. the characteristic function of
A].

Remark 2.4. (1) Let A ∈ IX . Then clearly, 〈[A,A], A〉 ∈ C(X).

(2) Let A =
〈
Ã, A

〉
∈ C(X). Then we can easily see that〈

Ã, (A−, 1−A+), A
〉
∈ O(X).

(3) Let A =
〈
Ã, Ā, A

〉
∈ O(X). Then we can easily check that〈

([A−, A+], [1−A+, 1−A+], Ā, A
〉
∈ IV IO(X).

Thus from (2) and (3), we can consider an IVI-octahedron set in a set X as the
generalization of both a cubic set and an octahedron set in X.

From orders of IVI-octahedron numbers, we can define the following.
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Definition 2.5 ([1]). Let X be a nonempty set and let A, B ∈ IV IOS(X).

(i) We say that A is equal to B, denoted by A = B, if
˜̃
A =

˜̃
B, Ā = B̄, A = B,

(ii) We say that A is a subset of B, denoted by A ⊂ B, if
˜̃
A ⊂ ˜̃B, Ā ⊂ B̄, A ⊂ B.

Definition 2.6 ([1]). Let X be a nonempty set and let (Aj)j∈J be a family of
IVI-octahedron sets in X. Then the union

⋃
j∈J Aj and the intersection

⋂
j∈J Aj

of (Aj)j∈J , are IVI-octahedron sets in X defined as follows respectively:⋃
j∈J
Aj =

〈⋃
j∈J

˜̃
Aj ,

⋃
j∈J

Āj ,
⋃
j∈J

Aj

〉
,

⋂
j∈J
Aj =

〈⋂
j∈J

˜̃
Aj ,

⋂
j∈J

Āj ,
⋂
j∈J

Aj

〉
.

Definition 2.7 ([1]). LetX be a nonempty set and letA =<
˜̃
A, Ā, A >∈ IV IOS(X).

Then the complement Ac, operators [ ] and � of A are defined as follows respectively:

(i) Ac =

〈˜̃
A
c

, Āc, Ac
〉

,

(ii) [ ]A =

〈
[ ]
˜̃
A, [ ]Ā, A

〉
,

(iii) �A =

〈
� ˜̃A, �Ā, A〉.

3. IVI-octahedron subgroups

In this section, we introduce the concepts of an IVI-octahedron subgroup and an
IVI-octahedron normal subgroup, and study some of their properties. Unless stated
otherwise in this section and next sections, G denotes a group with the identity e.

Definition 3.1 ([5]). Let A ∈ IX . Then A is called a fuzzy subgroup (briefly, FG)
of G, if it satisfies the following conditions: for any x, y ∈ G,

(i) A(xy) ≥ A(x) ∧A(y),
(ii) A(x−1) ≥ A(x).
The set of all fuzzy subgroups of G is denoted by FG(G).

Definition 3.2 ([16, 20]). Let Ā ∈ IFS(G). Then Ā is called an intuitionistic fuzzy
subgroup (briefly, IFG) of G, if it satisfies the following conditions: for any x, y ∈ G,

(i) Ā(xy) ≥ Ā(x)∧ Ā(y), i.e., A∈(xy) ≥ A∈(x)∧A∈(y), A 6∈(xy) ≤ A 6∈(x)∨A 6∈(y),
(ii) Ā(x−1) ≥ Ā(x), i.e., A∈(x−1) ≥ A∈(x), A 6∈(x−1) ≤ A 6∈(x).
The set of IFGs of G is denoted by IFG(G).

Definition 3.3 ([41, 42]). Let Ã ∈ IV S(G). Then Ã is called an interval-valued
fuzzy subgroup (briefly, IVFG) of G, if it satisfies the following conditions: for any
x, y ∈ G,

(i) Ã(xy) ≥ Ã(x)∧Ã(y), i.e., A−(xy) ≥ A−(x)∧A−(y), A+(xy) ≥ A+(x)∧A+(y),

(ii) Ã(x−1) ≥ Ã(x), i.e., A−(x−1) ≥ A−(x), A+(x−1) ≥ A+(x).
The set of IVFGs of G is denoted by IV G(G).
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Definition 3.4 ([33]). Let
˜̃
A ∈ IV IS(G). Then

˜̃
A is called an interval-valued intu-

itionistic fuzzy subgroup (briefly, IVIFG) of G, if it satisfies the following conditions:
for any x, y ∈ G,

(i)
˜̃
A(xy) ≥ ˜̃A(x)∧ ˜̃A(y), i.e., Ã∈(xy) ≥ Ã∈(x)∧ Ã∈(y), Ã 6∈(xy) ≤ Ã 6∈(x)∨ Ã 6∈(y),

(ii)
˜̃
A(x−1) ≥ ˜̃A(x), i.e., Ã∈(x−1) ≥ Ã∈(x), Ã 6∈(x−1) ≤ Ã 6∈(x).

The set of IVIFGs of G is denoted by IV IG(G).

Definition 3.5 ([43]). Let A =
〈
Ã, Ā, A

〉
∈ O(G). Then A is called an octahedron

subgroup (briefly, OG) of G, if it satisfies the following conditions: for any x, y ∈ G,

(i) A(xy) ≥ A(x) ∧ A(y), i.e., Ã(xy) ≥ Ã(x) ∧ Ã(y), Ā(xy) ≥ Ā(x) ∧ Ā(y),
A(xy) ≥ A(x) ∧A(y),

(ii) A(x−1) ≥ A(x), i.e., Ã(x−1) ≥ Ã(x), Ā(x−1) ≥ Ā(x), A(x−1) ≥ A(x).
The set of OGs of G is denoted by OG(G).

Definition 3.6. Let A =

〈˜̃
A, Ā, A

〉
∈ IV IOS(G). Then A is called an IVI-

octahedron subgroup (briefly, IVIOG) of G, if it satisfies the following conditions: for
any x, y ∈ G,

(i) A(xy) ≥ A(x) ∧ A(y), i.e.,
˜̃
A(xy) ≥ ˜̃

A(x) ∧ ˜̃A(y), Ā(xy) ≥ Ā(x) ∧ Ā(y),
A(xy) ≥ A(x) ∧A(y),

(ii) A(x−1) ≥ A(x), i.e.,
˜̃
A(x−1) ≥ ˜̃A(x), Ā(x−1) ≥ Ā(x), A(x−1) ≥ A(x).

The set of IVIOGs of G is denoted by IV IOG(G).

The following is an immediate consequence of Definitions 3.1, 3.2, 3.4 and 3.6

Theorem 3.7. Let A ∈ IV IOS(G). Then A ∈ IV IOG(G) if and only if
˜̃
A ∈

IV IG(G), Ā ∈ IFG(G) and A ∈ FG(G).

Remark 3.8. (1) If A ∈ FG(G), then we can easily check that

(A,Ac) ∈ IFG(G), [A,A] ∈ IV G(G), ([A,A], [Ac, Ac]) ∈ IV IG(G),

〈[A,A], (A,Ac), A〉 ∈ OG(G), 〈([A,A], [Ac, Ac]), (A,Ac), A〉 ∈ IV IOG(G).

(2) If Ã ∈ IV G(G), then we can easily see that

A−, A+ ∈ FG(G), (A−, 1−A+) ∈ IFG(G), (Ã, [1−A+, 1−A+]) ∈ IV IG(G),〈
Ã, (A−, 1−A+), A−

〉
,
〈
Ã, (A−, 1−A+), A+

〉
∈ OG(G),〈

(Ã, [1−A+, 1−A+]), (A−, 1−A+), A−
〉
∈ IV IOG(G),〈

(Ã, [1−A+, 1−A+]), (A−, 1−A+), A+
〉
∈ IV IOG(G).

(3) If Ā ∈ IFG(G), then we can easily show that

A∈, 1−A 6∈ ∈ FG(G), [A∈, 1−A 6∈] ∈ IV G(G), ([A∈, 1−A 6∈], [A 6∈, 1−A∈) ∈ IV IG(G),〈
[A∈, 1−A 6∈], Ā, A∈

〉
,
〈
[A∈, 1−A 6∈], Ā, 1−A 6∈

〉
∈ OG(G),〈

([A∈, 1−A 6∈], [A 6∈, 1−A∈), Ā, A∈
〉
∈ IV IOG(G),〈

([A∈, 1−A 6∈], [A 6∈, 1−A∈), Ā, 1−A 6∈
〉
∈ IV IOG(G).
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(4) If A =
〈
Ã, Ā, A

〉
∈ OG(G), then we have

A−, A+, A∈, 1−A 6∈, A ∈ FG(G),

(A−, 1−A+), Ā, (A,Ac) ∈ IFG(G),

Ã, [A∈, 1−A 6∈], [λ, λ] ∈ IV G(G),

(Ã, 1− Ã), ([A∈, 1−A 6∈], [A 6∈, 1−A∈]), ([A,A], [Ac, Ac]) ∈ IV IG(G),〈
(Ã, [1−A+, 1−A+]), Ā, λ

〉
∈ IV IOG(G).

(5) If A =

〈˜̃
A, Ā, A

〉
∈ IV IOG(G), then we get

A∈,−, A∈,+, 1−A 6∈,−, 1−A 6∈,+, A∈, 1−A 6∈, A ∈ FG(G),

Ã∈, 1− Ã 6∈, [A∈, 1−A 6∈], [A,A] ∈ IV G(G),

(A∈,−, 1−A 6∈,−), (1−A 6∈,+, 1−A 6∈,−), Ā, (A,Ac) ∈ IFG(G),˜̃
A, ([A∈, 1−A 6∈], [A 6∈, 1−A∈]), ([A,A], [Ac, Ac]) ∈ IV IG(G),〈

Ã∈, Ā, A
〉
,
〈

1− Ã 6∈, Ā, A
〉
∈ OG(G).

(6) If A =

〈˜̃
A, Ā, A

〉
∈ IV IOG(G), then we can easily see that

[ ]A,
〈

[ ]
˜̃
A, Ā, A

〉
,

〈˜̃
A, [ ]Ā, A

〉
, �A,

〈
� ˜̃A, Ā, A〉 , 〈˜̃A, �Ā, A〉 ∈ IV IOG(G).

(7) If A =

〈˜̃
A, Ā, A

〉
∈ IV IOG(G), then we can easily check that

IO ˜̃
A
, IOA ∈ IV IOG(G),

where IO ˜̃
A

[resp. IOA] is the IVI-octahedron set in induced by
˜̃
A [resp. A] (See

Example 3.2 (3) [resp. (4)] in [1]).

Example 3.9. (1) Let V = {e, x, y, z} be the Klein’s four group, where x2 = y2 =

z2 = e and xy = yx = z. Consider the IVI-octahedron A =

〈˜̃
A, Ā, A

〉
in G defined

by: ˜̃
A(e) = ([0.3, 0.9], [0.1, 0.7]),

˜̃
A(x) = ([0.1, 0.7], [0.3, 0.9]),˜̃

A(y) = ([0.1, 0.9], [0.1, 0.9]),
˜̃
A(z) = ([0.3, 0.7], [0.3, 0.7]),

Ā(e) = (0.8, 0.1), Ā(x) = (0.6, 0.3), Ā(y) = (0.5, 0.4), Ā(z) = (0.7, 0.2),

A(e) = 0.9, A(x) = 0.7, A(y) = 0.6, A(z) = 0.8.

Then we can easily check that
˜̃
A ∈ IV IG(G), Ā ∈ IFG(G) and A ∈ FG(G). Thus

A ∈ IV IOG(G).

(2) Consider the additive group (Z,+). We define three mappings
˜̃
A : Z→ [I]⊕[I],

Ā : Z→ I ⊕ I and A : Z→ I respectively as follows: for each 0 6= n ∈ Z,

(3.1)
˜̃
A(0) = ([1, 1], [0, 0]), A(0) = (1, 0), λ(0) = 1,
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(3.2)
˜̃
A(n) =


([

1
2 ,

2
3

]
,
[

1
3 ,

1
2

])
if n is odd([

1
3 ,

4
5

]
,
[

1
5 ,

2
3

])
if n is even,

(3.3) Ā(n) =


(

1
2 ,

1
3

)
if n is odd(

2
3 ,

1
5

)
if n is even,

(3.4) A(n) =


1
2 if n is odd

3
5 if n is even.

Then we can easily see that
˜̃
A ∈ IV G(Z), Ā ∈ IFG(Z) and A ∈ FG(Z). Thus

A =

〈˜̃
A,A, λ

〉
∈ IV IOG(G).

Proposition 3.10. Let A ∈ IV IOG(G). Then for each x ∈ G,

(1) A(e) ≥ A(x), i.e.,
˜̃
A(e) ≥ ˜̃A(x), Ā(e) ≥ Ā(x) and A(e) ≥ A(x),

(2) A(x−1) = A(x).

Proof. From Theorem 3.7, it is obvious that
˜̃
A ∈ IV IG(G), Ā ∈ IFG(G) and

A ∈ F (G).
(1) By Propositions 2.8 in [20] and 5.4 in [5],

Ā(e) ≥ Ā(x), A(e) ≥ A(x)for each x ∈ G.

Then it is sufficient to show that
˜̃
A(e) ≥ ˜̃A(x), i.e.,

Ã∈(e) ≥ Ã∈(x) and Ã 6∈(e) ≤ Ã 6∈(x).

Let x ∈ G. Then we have
Ã∈(e) = Ã∈(xx−1)

≥ Ã∈(x) ∧ Ã∈(x−1) [By Definition 3.6 (i)]

= Ã∈(x), [By Definition 3.6 (ii)]

Ã 6∈(e) = Ã 6∈(xx−1)

≤ Ã 6∈(x) ∨ Ã 6∈(x−1)

= Ã 6∈(x).

Thus
˜̃
A(e) ≥ ˜̃A(x). So A(e) ≥ A(x).

(2) From Propositions 2.6 in [20] and 5.4 in [5],

Ā(x−1) = Ā(x), A(x−1) = A(x)for each x ∈ G.

Then it is sufficient to prove that
˜̃
A(x−1) =

˜̃
A(x), i.e.,

Ã∈(x−1) = Ã∈(x) and Ã 6∈(x−1) = Ã 6∈(x).

Let x ∈ G. Then we have
Ã∈(x) = Ã∈((x−1)−1)

≥ Ã∈(x−1) [By Definition 3.6 (ii)]

= Ã∈(x), [By Definition 3.6 (ii)]
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Ã 6∈(x) = Ã 6∈((x−1)−1)

≤ Ã 6∈(x−1)

= Ã 6∈(x).

Thus
˜̃
A((x−1)−1) =

˜̃
A(x). So A((x−1)−1) = A(x). �

Theorem 3.11. Let H ∈ 2G. Then H is a subgroup of G if and only if χH =
〈([χ

H
, χ

H
], [χ

Hc
, χ

Hc
]), (χ

H
, χ

Hc
), χ

H
〉 ∈ IV IOG(G).

Proof. From Propositions 2.2 in [20] and 5.1 in [5], it is clear that (χ
H
, χ

Hc
) ∈

IFG(G) and χ
H
∈ FG(G). Then it is sufficient to prove that ([χ

H
, χ

H
], [χ

Hc
, χ

Hc
]) ∈

IV IG(G). Let x, y ∈ G. Since (χ
H
, χ

Hc
) ∈ IFG(G), we can easily check that

[χ
H
, χ

H
](x, y) ≥ [χ

H
, χ

H
](x) ∧ [χ

H
, χ

H
](y),

[χ
Hc
, χ

Hc
](x, y) ≤ [χ

Hc
, χ

Hc
](x) ∨ [χ

Hc
, χ

Hc
](y),

[χ
H
, χ

H
](x−1) ≥ [χ

H
, χ

H
](x), [χ

Hc
, χ

Hc
](x−1) ≤ [χ

Hc
, χ

Hc
](x).

Thus ([χ
H
, χ

H
], [χ

Hc
, χ

Hc
]) ∈ IV IG(G). So by Theorem 3.7, χH ∈ IV IOG(G). �

Proposition 3.12. If (Aj)j∈J = (

〈˜̃
Aj , Āj , Aj

〉
)j∈J ⊂ IV IOG(G), then

⋂
j∈J Aj ∈

IV IOG(G), where J denotes an index set.

Proof. Let A =
⋂
j∈J Aj =

〈⋂
j∈J

˜̃
Aj ,

⋂
j∈J Āj ,

⋂
j∈J Aj

〉
. Then clearly, Ā =⋂

j∈J Āj ∈ IFG(G) by Proposition 2.3 in [20] and A =
⋂
j∈J Aj ∈ FG(G) by

Proposition 5.2 in [20]. Thus it is sufficient to show that
˜̃
A =

⋂
j∈J

˜̃
Aj ∈ IV IG(G).

Let x, y ∈ G. Then we have

Ã∈(x, y) = (
⋂
j∈J Ã

∈
j )(x, y)

=
∧
j∈J Ã

∈
j (x, y)

≥
∧
j∈J [Ã∈j (x) ∧ Ã∈j (y)] [By Definition 3.6 (i)]

= (
∧
j∈J Ã

∈
j (x)) ∧ (

∧
j∈J Ã

∈
j (y))

= (Ã∈)(x) ∧ (Ã∈)(y)

= Ã∈(x) ∧ Ã∈(y),

Ã∈(x−1) = (
⋂
j∈J Ã

∈
j )(x−1)

=
∧
j∈J Ã

∈
j (x−1)

≥
∧
j∈J Ã

∈
j (x) [By Definition 3.6 (ii)]

= (
⋂
j∈J Ã

∈
j )(x)

= A∈(x).

Similarly, we get A 6∈(x, y) ≤ A 6∈(x) ∨ A 6∈(y) and A 6∈(x−1) ≤ A 6∈(x). Thus
˜̃
A ∈

IV IG(G). So by Theorem 3.7, A =
⋂
j∈J Aj ∈ IV IOG(G). �

The following is an immediate consequence of Proposition 3.12.

Corollary 3.13. Let A ∈ IV IOG(G) and let

(A) =

〈
(
˜̃
A), (Ā), (A)

〉
=
⋂
{B =

〈˜̃
B, B̄,B

〉
∈ IV IOG(G) : A ⊂ B}.
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Then (A) ∈ IV IOG(G).
In this case, (A) is called the IVI-octahedron subgroup of G generated by A.

The following is an immediate result of Theorem 3.11 and Corollary 3.13.

Corollary 3.14. For each H ∈ 2G, let

χ
(H)

=
〈
([χ

(H)
, χ

(H)
], [χ

(Hc)
, χ

(Hc)
]), (χ

(H)
, χ

(Hc)
), χ

(H)

〉
.

Then (χH) = χ
(H)
.

We obtain the characterization of an IVI-octahedron subgroup of G.

Theorem 3.15. Let A ∈ IV IOS(G). Then A ∈ IV IOG(G) if and only if A(xy−1) ≥
A(x) ∧ A(y) for any x, y ∈ G.

Proof. The proof is straightforward. �

Corollary 3.16. If A ∈ IV IOG(G), then GA = {x ∈ G : A(x) = A(e)} is a
subgroup of G.

In this case, GA is called the subgroup of G induced by A.

Proof. Let G ˜̃
A

= {x ∈ G :
˜̃
A(x) =

˜̃
A(e)}, G

Ā
= {x ∈ G : Ā(x) = Ā(e)} and

G
A

= {x ∈ G : A(x) = A(e)}. Then clearly, GA = G ˜̃
A
∩ G

Ā
∩ G

A
. It is clear that

G
Ā

is a subgroup of G by Proposition 2.7 in [20] and G
A

is a subgroup of G by
Corollary of Proposition 5.4 in [5]. In order to show that G ˜̃

A
is a subgroup of G, let

x, y ∈ G ˜̃
A

. Then

Ã∈(xy−1) ≥ Ã∈(x) ∧ Ã∈(y) [By Theorem 3.15]

= Ã∈(e). [Since x, y ∈ G ˜̃
A

]

Thus by Proposition 3.10 (1), Ã∈(xy−1) = Ã∈(e). Similarly, Ã 6∈(xy−1) = Ã 6∈(e). So˜̃
A(xy−1) =

˜̃
A(e). Hence xy−1 ∈ G ˜̃

A
. Therefore GA is a subgroup of G. �

Proposition 3.17. Let A ∈ IV IOG(G). If A(xy−1) = A(e) for any x, y ∈ G,
then A(x) = A(y).

Proof. Suppose A(xy−1) = A(e) for any x, y ∈ G. Then clearly,
˜̃
A(xy−1) =

˜̃
A(e),

Ā(xy−1) = Ā(e) and A(xy−1) = A(e). Since Ā ∈ IFG(G) and A ∈ FG(G), it is
obvious that Ā(x) = Ā(y) by Proposition 2.8 in [20] and A(x) = A(y) by Proposition

5.4 in [5]. Thus it is sufficient to prove that
˜̃
A(x) =

˜̃
A(y). Let x, y ∈ G. Then we

have
Ã∈(x) = Ã∈((xy−1)y)

≥ Ã∈(xy−1) ∧ Ã∈(y) [Since
˜̃
A ∈ IV IG(G)]

= Ã∈(e) ∧ Ã∈(y) [By the hypothesis]

= Ã∈(y), [Since Ã∈(e) ≥ Ã∈(y) by Proposition 3.10 (1)]

Ã∈(y) = Ã∈((yx−1)x)

≥ Ã∈(yx−1) ∧ Ã∈(x)

= Ã∈(xy−1) ∧ Ã∈(x) [By Proposition 3.10 (2)]
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= Ã∈(e) ∧ Ã∈(x)

= Ã∈(x).

Thus Ã∈(x) = Ã∈(y). Similarly, we can see that Ã 6∈(x) = Ã 6∈(y). So
˜̃
A(x) =

˜̃
A(y).

Hence A(x) = A(y). �

Corollary 3.18. Let A ∈ IV IOG(G). If GA is a normal subgroup of G, then A is
constant on each coset of GA .

Proof. Suppose GA is a normal subgroup of G. Then we can easily see that G ˜̃
A

, G
Ā

and G
A

are normal subgroups of G respectively. Thus from Corollary 2.8-1 in [20]
and the first Corollary of Proposition 5.4 in [5], Ā is constant on each coset of G

Ā

and A is constant on each coset of G
A

. So it is sufficient show that G ˜̃
A

is constant

on each coset of G ˜̃
A

.

Let a ∈ G and let x ∈ aG ˜̃
A

. Then there is x
′ ∈ G ˜̃

A
such that x = ax

′
. Since G ˜̃

A
is

normal subgroup of G and x
′ ∈ G ˜̃

A
, xa−1 = ax

′
a−1 ∈ G ˜̃

A
. Thus G ˜̃

A
(xa−1) = G ˜̃

A
(e).

By Proposition 3.17, G ˜̃
A

(x) = G ˜̃
A

(a). So
˜̃
A is constant on aG ˜̃

A
for each a ∈ G.

Hence A is constant on each coset of GA . �

Let H be a subgroup of G. Then the number of right [resp. left] cosets of H in
G is called the index of H in G and denoted by [G : H]. If G is a finite group, then
there can be only a finite number of distinct right [resp. left] cosets of H, i.e., [G : H]
is finite. If G is an infinite group, then [G : H] may be either finite or infinite.

Definition 3.19. Let X be a nonempty set and let
˜̃
A ∈ IV IS(X). Then we say

that
˜̃
A has the sup-property, if for each T ∈ 2X , there is t0 ∈ T such that˜̃

A(t0) = (
⋃
t∈T

˜̃
A)(t) =

∨
t∈T

˜̃
A(t), i.e.,

Ã∈(t0) =
∨
t∈T

Ã∈(t), Ã 6∈(t0) =
∧
t∈T

Ã 6∈(t).

Definition 3.20 ([1]). LetX be a nonempty set and letA =

〈˜̃
A, Ā, A

〉
∈ IV IO(X).

Then we say that A has the sup-property, if for each T ∈ 2X , there is t0 ∈ T such

that A(t0) = (
⋃
t∈T A)(t) =

〈∨
t∈T

˜̃
A(t),

∨
t∈T Ā(t),

∨
t∈T A(t)

〉
.

It is obvious that A ∈ IV IO(X) has the sup-property if and only if
˜̃
A, Ā and A

have the sup-property.

Corollary 3.21. Let A ∈ IV IOG(G) and let GA be a normal subgroup of G. If
GA has a finite index, then A has the sup-property.

Proof. Suppose GA has a finite index. Then clearly, G ˜̃
A

, G
Ā

and G
A

have finite

indices respectively. From Corollary 2.8-2 in [20] and the second Corollary of Propo-
sition 5.4 in [5], Ā and A have the sup-property respectively. Thus it is sufficient to

prove that
˜̃
A has the sup-property.
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Let T ∈ 2G and let G/G ˜̃
A

denote the set of all right cosets of G ˜̃
A

. Since G ˜̃
A

has

a finite index, let [G,G ˜̃
A

] = n, say G/G ˜̃
A

= {a1G ˜̃
A
, · · · , anG ˜̃

A
},

where ai ∈ G (i = 1, 2, , · · · , n) and aiG ˜̃
A
∩ ajG ˜̃

A
= ∅ for any i 6= j. Let t ∈ T .

Since G =
⋃
G/G ˜̃

A
=
⋃n
i=1 aiG ˜̃

A
and T ∈ 2G, t ∈

⋃n
i=1 aiG ˜̃

A
. Then there is i ∈

{1, · · · , n} such that t ∈ aiG ˜̃
A
. Since G ˜̃

A
is normal, by Corollary 3.18,

˜̃
A(t) =

˜̃
A(ai)

on aiG ˜̃
A

, say
˜̃
A(t) = ˜̃ai, i.e., Ã∈(t) = ãi

∈ and Ã 6∈(t) = ãi
6∈. Thus there is t0 ∈ T

such that Ã∈(t0) =
∨
t∈T Ã

∈(t) =
∨n
i=1 ãi

∈ and Ã 6∈(t0) =
∧
t∈T Ã

6∈(t) =
∧n
i=1 ãi

6∈.

So
˜̃
A has the sup-property. Hence A has the sup-property. �

Definition 3.22 ([1]). Let X, Y be two sets, let f : X → Y be a mapping and let

A =<
˜̃
A, Ā, A >∈ IV IOS(X), B =<

˜̃
B, B̄,B >∈ IV IOS(Y ).

(i) The preimage of B under f , denoted by f−1(B), is an IVI-octahedron set in
X defined as follows: for each x ∈ X,

f−1(B)(x) =

〈
f−1(

˜̃
B)(x), f−1(B̄)(x), f−1(B)(x)

〉
,

where f−1(
˜̃
B)(x) = (

˜̃
B ◦ f)(x) = ((B̃∈ ◦ f)(x), (B̃ 6∈ ◦ f)(x)),

f−1(B̄)(x) = ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)), f−1(B)(x) = (B ◦ f)(x).

In fact, f−1(
˜̃
B) [resp. f−1(B̄) and f−1(B)] is the preimage of an IVIS

˜̃
B [resp. an

IFS B̄ and a fuzzy set B] under f (See [44] [resp. [45] and [4]]).

(ii) The image of A under f , denoted by f(A), is an IVI-octahedron set in Y
defined as follows: for each y ∈ Y ,

f(A)(y) =

〈
f(
˜̃
A)(y), f(Ā)(y), f(A)(y)

〉
=
〈

(f(Ã∈)(y), f(Ã 6∈)(y)), f(Ā)(y), f(A)(y)
〉
,

where

f(Ã∈)(y) =

{
[
∨
x∈f−1(y)A

∈,−(x),
∨
x∈f−1(y)A

∈,+(x)] if f−1(y) 6= φ

[0, 0] otherwise,

f(Ã 6∈)(y) =

{
[
∧
x∈f−1(y)A

6∈,−(x),
∧
x∈f−1(y)A

6∈,+(x)] if f−1(y) 6= φ

[1, 1] otherwise,

f(Ā)(y) =

{
(
∨
x∈f−1(y)A

∈(x),
∧
x∈f−1(y)A

6∈(x)) if f−1(y) 6= φ

(0, 1) otherwise,

f(A)(y) =

{ ∨
x∈f−1(y)A(x) if f−1(y) 6= φ

0 otherwise.

In fact, f(
˜̃
A) [resp. f(Ā) and f(A)] is the image of an IVIS

˜̃
A [resp. an IFS Ā and

a fuzzy set A] under f (See [44] [resp. [45] and [4]]).

Proposition 3.23. Let f : G→ G
′

be a group homomorphism, let A ∈ IV IOG(G)

and let B ∈ IV IOG(G
′
). Then the followings hold:

(1) if A has the sup-property, then f(A) ∈ IV IOG(G
′
),

(2) f−1(B) ∈ IV IOG(G).
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Proof. (1) Suppose A has the sup-property. Then clearly,
˜̃
A, Ā and A have the

sup-property respectively. By Proposition 2.13 (1) in [20], f(Ā) ∈ IFG(G). From
Proposition 4.2 in [5], f(A)(xy) ≥ f(A)(x)∧f(A)(y) for any x, y ∈ f(λ). Moreover,
we can easily see that f(A)(y−1) ≥ f(A)(y) for each y ∈ f(A). Thus f(A) ∈ FG(G).

So it is sufficient to show that f(
˜̃
A) ∈ IV IG(G).

Let y, y
′ ∈ f(G). Then ∅ 6= f−1(y) ⊂ G and ∅ 6= f−1(y

′
) ⊂ G. Since

˜̃
A has the

sup-property, there are x0 ∈ f−1(y) and x
′

0 ∈ f−1(y
′
) such that

Ã∈(x0) =
∨

t∈f−1(y)

Ã∈(t), Ã 6∈(x0) =
∨

t∈f−1(y)

Ã 6∈(t)

and

Ã∈(x
′

0) =
∨

t′∈f−1(y′ )

Ã∈(t
′
), Ã 6∈(x

′

0) =
∨

t′∈f−1(y′ )

Ã 6∈(t
′
).

Thus we have
f(Ã∈)(yy

′
) =

∨
x∈f−1(yy′ ) Ã

∈(x) [By Definition 3.22 (ii)]

≥ Ã∈(x0x
′

0) [Since x0x
′

0 ∈ f−1(yy
′
)]

≥ Ã∈(x0) ∧ Ã∈(x
′

0) [Since
˜̃
A ∈ IV IG(G)]

= (
∨
t∈f−1(y) Ã

∈(t)) ∧ (
∨
t′∈f−1(y′ ) Ã

∈(t
′
))

= f(Ã∈)(y) ∧ f(Ã∈)(y
′
).

Similarly, we get f(Ã 6∈)(yy
′
) ≤ f(Ã 6∈)(y) ∨ f(Ã 6∈)(y

′
). On the other hand,

f(Ã∈)(y−1) =
∨
t∈f−1(y−1) Ã

∈(t)

≥ Ã∈(x−1
0 ) [Since x−1

0 ∈ f−1(y−1)]

≥ Ã∈(x0) [Since
˜̃
A ∈ IV IG(G)]

= f(Ã∈)(y).

Similarly, we have f(Ã 6∈)(y−1) ≤ f(Ã 6∈)(y). So f(
˜̃
A) ∈ IV IG(G). Hence f(A) ∈

IV IOG(G
′
).

(2) Since B ∈ IV IOG(G
′
), it is clear that

˜̃
B ∈ IV IG(G

′
), B ∈ IFG(G

′
) and

µ ∈ FG(G
′
). From Proposition 2.13 (2) in [20], f−1(B) ∈ IFG(G). By Proposition

4.1, f−1(µ)(xy) ≥ f−1(µ)(x) ∧ f−1(µ)(y) for any x, y ∈ G. It can easily see that
f−1(µ)(x−1) ≥ f−1(µ)(x) for each x ∈ G. Then f−1(µ) ∈ FG(G). Thus it is enough

to prove that f−1(
˜̃
B) ∈ IV IG(G).

Let x, y ∈ G. Then we have

f−1(B̃∈)(xy) = B̃∈(f(xy))

= B̃−in(f(x)f(y)) [Since f is a group homomorphism]

≥ B̃∈(f(x)) ∧ B̃∈(f(y))

= f−1(B̃∈)(x) ∧ f−1(B̃∈)(y).

Similarly, we get f−1(B̃∈)(xy) ≤ f−1(B̃∈)(x) ∨ f−1(B̃∈)(y). On the other hand,

f−1(B̃∈)(x−1) = B̃∈(f(x−1))

= B̃∈(f(x)−1) [Since f is a group homomorphism]

≥ B̃∈(f(x)) [Since
˜̃
B ∈ IV IG(G

′
)]
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= f−1(B̃∈)(x).

Similarly, we have f−1(B̃ 6∈)(x−1) ≤ f−1(B̃ 6∈)(x). Thus f−1(
˜̃
B) ∈ IV IG(G). So

f−1(B) ∈ IV IOG(G). �

Theorem 3.24. Let Gp be the cyclic group of a prime order p. Then A ∈ IV IOG(Gp)
if and only if for each 0 6= x ∈ Gp, A(x) = A(1) ≤ A(0), i.e.,

(3.5) Ã∈(x) = Ã∈(1) ≤ Ã∈(0), Ã 6∈(x) = Ã 6∈(1) ≥ Ã 6∈(0),

(3.6) A∈(x) = A∈(1) ≤ A∈(0), A 6∈(x) = A 6∈(1) ≤ A 6∈(0), A(x) = A(1) ≤ A(0).

Proof. It is obvious that A ∈ IV IOG(Gp) if and only if
˜̃
A ∈ IV IG(Gp), Ā ∈

IFG(Gp) and A ∈ FG(Gp). Moreover, from Propositions 2.14 in [20] and 5.10 in
[5], Ā ∈ IFG(Gp) and A ∈ FG(Gp) if and only if (3.6) holds. Then it is sufficient

to prove that
˜̃
A ∈ IV IG(Gp) if and only if (3.5) holds.

(⇒): Suppose
˜̃
A ∈ IV IG(Gp) and let 0 6= x ∈ Gp. Since

˜̃
A ∈ IV IG(Gp), we

have for each y ∈ Gp,

Ã∈(xy) ≥ Ã∈(x) ∧ Ã∈(y) and Ã 6∈(xy) ≤ Ã 6∈(x) ∨ Ã 6∈(y).

Since Gp is the cyclic group of a prime order p, Gp = {0, 1, 2, · · · , p− 1}. Since x is
the sum of 1’s and 1 is the sum of x’s, we get

Ã∈(x) ≥ Ã∈(1) ≥ Ã∈(x) and Ã 6∈(x) ≤ Ã 6∈(1) ≤ Ã 6∈(x).

Thus Ã∈(x) = Ã∈(1) and Ã 6∈(x) = Ã 6∈(1). Since 0 is the identity element of Gp,

Ã∈(x) ≤ Ã∈(0) and Ã 6∈(x) ≥ Ã 6∈(0). So (3.5) holds.
(⇐): Suppose the conditions (3.5) holds and let x, y ∈ Gp. Then we have the

following four cases:
(i) x 6= 0, y 6= 0 and x = y, (ii) x 6= 0, y = 0,
(iii) x = 0, y 6= 0, (iv) x 6= 0, y 6= 0 and x 6= y.

Case (i): Suppose x 6= 0, y 6= 0 and x = y. Then by the hypothesis, we get

Ã∈(x) = Ã∈(y) = Ã∈(1) ≤ Ã∈(0) and Ã 6∈(x) = Ã 6∈(y) = Ã 6∈(1) ≥ Ã 6∈(0).

Thus we have

Ã∈(x− y) = Ã∈(0) ≥ Ã∈(x) ∧ Ã∈(y) and Ã 6∈(x− y) = Ã 6∈(0) ≤ Ã 6∈(x) ∨ Ã 6∈(y).

Case (ii): Suppose x 6= 0, y = 0. Since x− y 6= 0, by the hypothesis,

Ã∈(x− y) = Ã∈(x) = Ã∈(1) ≤ Ã∈(0) = Ã∈(y)

and
Ã 6∈(x− y) = Ã 6∈(x) = Ã 6∈(1) ≥ Ã 6∈(0) = Ã 6∈(y).

Thus Ã∈(x− y) ≥ Ã∈(x) ∧ Ã∈(y) and Ã 6∈(x− y) ≤ Ã 6∈(x) ∨ Ã 6∈(y).
Case (iii): The proof is similar to Case (ii).
Case (iv): Suppose x 6= 0, y 6= 0 and x 6= y. Since x− y 6= 0, by the hypothesis,

Ã∈(x− y) = Ã∈(x) = Ã∈(y) = Ã∈(1) ≤ Ã∈(0)

and
Ã 6∈(x− y) = Ã 6∈(x) = Ã 6∈(y) = Ã 6∈(1) ≥ Ã 6∈(0).
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Then Ã∈(x− y) ≥ Ã∈ ∧ Ã∈(y) and Ã 6∈(x− y) ≤ Ã 6∈ ∨ Ã 6∈(y). Thus in all cases, we
get the following inequalities:

Ã∈(x− y) ≥ Ã∈ ∧ Ã∈(y) and Ã 6∈(x− y) ≤ Ã 6∈ ∨ Ã 6∈(y).

So
˜̃
A ∈ IV IG(Gp). Hence by Theorem 3.15, A ∈ IV IOG(Gp). �

Definition 3.25. Let A ∈ IV IOG(G). Then A is called an IVI-octahedron normal
subgroup (in briefly, IVIONG) of G, if A(xy) = A(yx) for any x, y ∈ G.

It is obvious that if G is an abelian, then every IVIOG of G is an IVIONG of G.

We will denote the set of all IVIONGs [resp. IVINGs, IFNGs and FNGs] of G
by IV IONG(G) [resp. IV ING(G), IFNG(G) and FNG(G)] (See [33], [20] and [7]
for definitions of an IVING, an IFNG and a FNG).

The following is an immediate consequence of Theorem 3.7 and Definition 3.25.

Theorem 3.26. Let A =

〈˜̃
A, Ā, A

〉
∈ IV IOS(G). Then A ∈ IV IONG(G) if and

only if
˜̃
A ∈ IV ING(G), Ā ∈ IFNG(G) and A ∈ FNG(G).

Example 3.27. Consider the general linear group of degree n, GL(n,R) and let In
be the unit matrix. Define A : GL(n,R) → ([I] ⊕ [I]) × (I ⊕ I) × I as follows: for
each In 6= M ∈ GL(n,R),

(3.7) A(In) = 〈([1, 1], (0, 0]), (1, 0), 1〉 ,

(3.8)
˜̃
A(M) =


([

2
3 ,

4
5

]
,
[

1
3 ,

1
2

])
if M is not a triangular matrix([

1
2 ,

2
3

]
,
[

1
5 ,

1
3

])
if M is a triangular matrix,

(3.9) Ā(M) =


(

2
3 ,

1
5

)
if M is not a triangular matrix(

1
2 ,

1
3

)
if M is a triangular marix,

(3.10) A(M) =


1
2 if M is not a triangular matrix

3
5 if M is a triangular matrix.

Then we can easily check that
˜̃
A ∈ IV ING(GL(n,R)), Ā ∈ IFNG(GL(n,R)) and

A ∈ FNG(GL(n,R)). Thus by Theorem 3.26, A ∈ IV IONG(G).

Definition 3.28 ([7]). Let (X, ·) be a groupoid and let A, B ∈ IX . Then the
product of A and B, denoted by A ◦F B, is a fuzzy set in X defined as follows: for
each x ∈ X,

(A ◦F B)(x) =

{ ∨
yz=x, y, z∈X [A(y) ∧B(z)] if yz = x

0 otherwise.

It is obvious that if A ∈ FG(G), then A ◦F A ⊂ A.
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Definition 3.29 ([17]). Let (X, ·) be a groupoid and let Ā, B̄ ∈ IFS(X). Then
the product of Ā and B̄, denoted by A ◦IF B, is an IF set in X defined as follows:
for each x ∈ X,

(Ā ◦IF B̄)(x)

=

{
(
∨
yz=x, y, z∈X [A∈(y) ∧B∈(z)],

∧
yz=x, y, z∈X [A 6∈(y) ∧B 6∈(z)] if yz = x

(0, 1) otherwise.

We can easily see that if Ā ∈ IFG(G), then Ā ◦IF Ā ⊂ Ā.

Definition 3.30 ([1]). Let (X, ·) be a groupoid and let
˜̃
A,

˜̃
B ∈ IV IS(X). Then

the product of
˜̃
A and

˜̃
B, denoted by

˜̃
A ◦IV I

˜̃
B, is an IVI set in X defined as follows:

for each x ∈ X,

(
˜̃
A ◦IV I

˜̃
B)(x)

=

{
[
∨
yz=x, y, z∈X [Ã∈(y) ∧ B̃∈(z)],

∧
yz=x, y, z∈X [Ã 6∈(y) ∧ B̃ 6∈(z)] if yz = x

([0, 0], [1, 1]) otherwise.

It can be easily seen that if A ∈ IFG(G), then
˜̃
A ◦IV I

˜̃
A ⊂ ˜̃A.

Definition 3.31 ([1]). Let (X, ·) be a groupoid and let A, B ∈ IV IO(X). Then
the product of A and B, denoted by A ◦ B, is an IVI-octahedron set in X defined as
follows: for each x ∈ X,

(A ◦ B)(x) =

{ ∨
yz=x, y, z∈X [A(y) ∧ B(z)] if yz = x

〈([0, 0][1, 1]), (0, 1), 0〉 otherwise.

From Definitions 3.28, 3.29, 3.30 and 3.31, it is clear that

A ◦ B =

〈˜̃
A ◦IV I

˜̃
B, Ā ◦IF B̄, A ◦F B

〉
.

Then it is clear that if A ∈ IV IOG(G), then A ◦ A ⊂ A.

Lemma 3.32. Let
˜̃
A ∈ IV ING(G).

(1)
˜̃
A ◦IV I

˜̃
B =

˜̃
B ◦IV I

˜̃
A for each

˜̃
B ∈ IV IS(G),

(2) if
˜̃
B ∈ IV IG(G), then

˜̃
B ◦IV I

˜̃
A ∈ IV IG(G).

Proof. (1) The proof is easy from Definition 3.30.

(2) (
˜̃
B ◦IV I

˜̃
A) ◦IV I (

˜̃
B ◦IV I

˜̃
A) =

˜̃
B ◦IV I (

˜̃
A ◦IV I

˜̃
B) ◦IV I

˜̃
A

=
˜̃
B ◦IV I (

˜̃
B ◦IV I

˜̃
A) ◦IV I

˜̃
A [By (1)]

= (
˜̃
B ◦IV I

˜̃
B) ◦ (

˜̃
A ◦IV I

˜̃
A)

⊂ ˜̃B ◦IV I ˜̃A. [Since
˜̃
A,
˜̃
B ∈ IV IG(G)]

Then (
˜̃
B ◦IV I

˜̃
A)(xy) ≥ (

˜̃
B ◦IV I

˜̃
A)(x) ∧ (

˜̃
B ◦IV I

˜̃
A)(y) for any x, y ∈ G.

Now let x ∈ G. Then we have

(
˜̃
B ◦IV I

˜̃
A)∈(x−1) =

∨
yz=x−1 [B̃∈(y) ∧ Ã∈(z)]

=
∨
z−1y−1=x[B̃∈((y−1)−1) ∧ Ã∈((z−1)−1)]

≥
∨
z−1y−1=x[B̃∈(y−1) ∧ Ã∈(z−1)]
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=
∨
z−1y−1=x[Ã∈(z−1) ∧ B̃∈(y−1)

= (
˜̃
A ◦IV I

˜̃
B)∈(x)

= (
˜̃
B ◦IV I

˜̃
A)∈(x).

Similarly, we get (
˜̃
B◦IV I

˜̃
A) 6∈(x−1) ≤ (

˜̃
B◦IV I

˜̃
A) 6∈(x). Thus

˜̃
B◦IV I

˜̃
A ∈ IV IG(G). �

Proposition 3.33. A ∈ IV IOG(G).
(1) A ◦ B = B ◦ A for each B ∈ IV IOS(G),
(2) if B ∈ IV IOG(G), then B ◦ A ∈ IV IOG(G).

Proof. (1) From Lemma 3.32 (1), Propositions 3.2 in [20] and 2.1 (i) in [7], we have˜̃
B ◦IV I

˜̃
A =

˜̃
A ◦ ˜̃B, B̄ ◦IF Ā = Ā ◦IF B̄ and B ◦F A = A ◦F B.

Then by Definition 3.31, A ◦ B = B ◦ A.
(2) From Lemma 3.32 (2), Propositions 3.3 in [20] and Proposition 2.1 (ii) in [7],

it is obvious that
˜̃
B ◦IV I

˜̃
A ∈ IV IG(G), B̄ ◦IF Ā ∈ IFG(G) and B ◦F A ∈ FG(G).

Then by Definitions 3.6 and 3.31, B ◦ A ∈ IV IOG(G). �

Lemma 3.34. If
˜̃
A ∈ IV ING(G), then G ˜̃

A
is a normal subgroup of G.

Proof. From Corollary 3.16, it is obvious that G ˜̃
A

is a subgroup ofG and G ˜̃
A
6= ∅.

Let x ∈ G ˜̃
A

and let y ∈ G. Then we get

Ã∈(yxy−1) = Ã∈((yx)y−1) = Ã∈(y−1((yx)) = Ã∈(x) = Ã∈(e).

Similarly, Ã 6∈(yxy−1) = Ã 6∈(e). Thus yxy−1 ∈ G ˜̃
A

. So G ˜̃
A

is a normal subgroup of

G. �

From Lemma 3.24, Propositions 3.5 in [20] and 2.2 in [7], we have the following.

Proposition 3.35. If A ∈ IV IONG(G), then GA is a normal subgroup of G.

Remark 3.36. If H is a normal subgroup of G, it is clear that χH ∈ IV IONG(G)
and G

χH
= H (See Theorem 3.11).

Definition 3.37. Let A ∈ IV IONG(G). Then the quotient group G/GA is called
an IVI- octahedron quotient subgroup (in briefly, IVIOQG) of G with respect to A.

Definition 3.38. Let
˜̃
A ∈ IV ING(G). Then the quotient group G/G ˜̃

A
is called an

interval-valued intuitionistic fuzzy quotient subgroup (in briefly, IVIFQG) of G with

respect to
˜̃
A.

Lemma 3.39. Let
˜̃
A ∈ IV ING(G) and let

˜̃
B ∈ IV IS(G). Then π−1(π(

˜̃
B)) =

G ˜̃
A
◦IV I

˜̃
B, where π : G→ G/G ˜̃

A
is the natural projection.

Proof. Let x ∈ G. Then we get

π−1(π(B̃∈))(x) = π(B̃∈)(π(x))

=
∨
π(y)=π(x) B̃

∈(y)

=
∨
xy−1∈G ˜̃

A

B̃∈(y)
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=
∨
zy=x[G ˜̃

A
(z) ∧ B̃∈(y)]

= (G ˜̃
A
◦IV I

˜̃
B)∈(x).

Thus π−1(π(B̃∈))(x) = (G ˜̃
A
◦IV I

˜̃
B)∈(x). Similarly, we have

π−1(π(B̃ 6∈))(x) = (G ˜̃
A
◦IV I

˜̃
B)6∈(x).

So π−1(π(
˜̃
B)) = G ˜̃

A
◦IV I

˜̃
B. �

From Lemma 3.39, Propositions 3.7 in [20] and 2.3 in [7], we have the following

Proposition 3.40. Let A ∈ IV IONG(G) and let B ∈ IV IOS(G). Then ϕ−1(ϕ(B)) =
GA ◦ B, where ϕ : G→ G/GA is the natural projection.

4. Level subgroups

In this section, we define the level subgroup of an IVI-octahedron subgroup and
find some of its properties.

Definition 4.1 ([1]). Let X be a nonempty set, let ˜̄̃a be an IVI-octahedron number

and let A =<
˜̃
A, Ā, A >∈ IV IO(X). Then the ˜̄̃a-level set of A, denoted by [A]˜̄̃a, is

a subset of X, is defined by:

[A]˜̄̃a = {x ∈ X :
˜̃
A(x) ≥ ˜̃a, Ā(x) ≥ ā, A(x) ≥ a}.

Definition 4.2. Let X be a nonempty set, let
˜̃
A ∈ IV IS(X) and let ˜̃a be an

interval-valued intuitionistic fuzzy number. Then the ˜̃a-level set of
˜̃
A, denoted by

[
˜̃
A]˜̃a, is a subset of X defined as follows:

[
˜̃
A]˜̃a = {x ∈ X :

˜̃
A(x) ≥ ˜̃a} = {x ∈ X : Ã∈(x) ≥ ã∈, Ã 6∈(x) ≤ ã6∈}.

Remark 4.3. Let X be a nonempty set, let ˜̄̃a be an IVI-octahedron number and
let A ∈ IV IO(X). Then we have

[A]˜̄̃a = [
˜̃
A]˜̃a ∩ [Ā]ā ∩ [A]a,

where [Ā]ā and [A]a denote the ā-level set of Ā and the a-level set of A respectively
(See [17] and [6]).

The following is an immediate consequence of Definition 4.1

Proposition 4.4. Let X be a nonempty set, let ˜̄̃a,
˜̄̃
b be two IVI-octahedron numbers

and let A ∈ IV IO(X). If ˜̄̃a ≤ ˜̄̃b, then [A]̃̃
b̄
⊂ [A]˜̄̃a.

Lemma 4.5. Let
˜̃
A ∈ IV IG(G) and let ˜̃a be an interval-valued intuitionistic fuzzy

number with
˜̃
A(e) ≥ ˜̃a. Then [

˜̃
A]˜̃a is a subgroup of G.
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Proof. It is clear that e ∈ [
˜̃
A]˜̃a, i.e., [

˜̃
A]˜̃a 6= ∅. Let x, y ∈ [

˜̃
A]˜̃a. Then we get

Ã∈(x) ≥ ã∈, Ã∈(y) ≥ ã∈ and Ã 6∈(x) ≤ ã6∈, Ã 6∈(y) ≥ ã6∈.

Since
˜̃
A ∈ IV IG(G), we have

Ã∈(xy) ≥ Ã∈(x) ∧ Ã∈(y) ≥ ã∈ and Ã 6∈(xy) ≤ Ã 6∈(x) ∨ Ã 6∈(y) ≤ ã6∈.

Thus Ã∈(xy) ≥ ã∈ and Ã 6∈(xy) ≤ ã6∈, i.e., xy ∈ [
˜̃
A]˜̃a. Moreover, we get

Ã∈(x−1) ≥ Ã∈(x) ≥ ã∈ and Ã 6∈(x−1) ≤ Ã 6∈(x) ≤ ã6∈.

So Ã∈(x−1) ≥ ã∈ and Ã 6∈(x−1) ≤ ã6∈, i.e., x−1 ∈ [
˜̃
A]˜̃a. Hence [

˜̃
A]˜̃a is a subgroup of

G. �

Proposition 4.6. Let A ∈ IV IOG(G) and let ˜̄̃a be an IVI-octahedron number with

A(e) ≥ ˜̄̃a. Then [A]˜̄̃a is a subgroup of G.

In this case, [A]˜̄̃a is called an ˜̄̃a-level subgroup of A.

Proof. From Lemma 4.5, Proposition 2.18 in [20] and Theorem 2.1 in [6], [
˜̃
A]˜̃a, [Ā]ā

and [A]a are subgroups of
˜̃
A, Ā and A respectively. Then by Remark 4.3, [A]˜̄̃a is a

subgroup of G. �

The following is the converse of Lemma 4.5.

Lemma 4.7. Let
˜̃
A ∈ IV IS(G). If [

˜̃
A]˜̃a is a subgroup of G for each interval-valued

intuitionistic fuzzy number ˜̃a with
˜̃
A(e) ≥ ˜̃a, then

˜̃
A ∈ IV IG(G).

Proof. For any x, y ∈ G, let
˜̃
A(x) =

˜̃
b and let

˜̃
A(y) = ˜̃c, where

˜̃
A(e) ≥ ˜̃b and˜̃

A(e) ≥ ˜̃c. Then clearly, x ∈ [
˜̃
A]̃̃
b

and y ∈ [
˜̃
A]̃
c̃
. Suppose

˜̃
b < ˜̃c, i.e., b̃∈ < c̃∈ and

b̃ 6∈ > c̃6∈. Then [
˜̃
A]̃
c̃
⊂ [
˜̃
A]̃̃
b
. Thus y ∈ [

˜̃
A]̃̃
b
. Since [

˜̃
A]̃̃
b

is a subgroup of G, xy ∈ [
˜̃
A]̃̃
b
,

i.e., Ã∈(xy) ≥ b̃∈ and Ã 6∈(xy) ≤ b̃ 6∈. So we get

Ã∈(xy) ≥ Ã∈(x) ∧ Ã∈(y) and Ã 6∈(xy) ≤ Ã 6∈(x) ∨ Ã 6∈(y).

Now for each x ∈ G, let
˜̃
A(x) = ˜̃a, where

˜̃
A(e) ≥ ˜̃a. Then clearly, x ∈ [

˜̃
A]˜̃a.

Since [
˜̃
A]˜̃a is a subgroup of G, x−1 ∈ [

˜̃
A]˜̃a. Thus

˜̃
A(x−1) ≥ ˜̃a, i.e., Ã∈(x−1) ≥

ã∈ and Ã 6∈(x−1) ≤ ã6∈. So Ã∈(x−1) ≥ Ã∈(x) and Ã 6∈(x−1) ≤ Ã 6∈(x). Hence
˜̃
A ∈

IV IG(G). �

The following is the converse of Proposition 4.6.

Proposition 4.8. Let A ∈ IV IOS(G). If [A]˜̄̃a is a subgroup of G for each IVI-

octahedron number ˜̄̃a with A(e) ≥ ˜̄̃a, then A ∈ IV IOG(G).

Proof. From Lemma 4.7, Proposition 2.19 in [20] and Theorem 2.2 in [6],
˜̃
A ∈

IV IG(G), Ā ∈ IFG(G) and A ∈ FG(G). Then by Theorem 3.7, A ∈ IV IOG(G).
�
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Let G be a finite group. Then the number of subgroups of G is finite. But the
number of level subgroups of an IVIOG A appears to be infinite.

Example 4.9. Consider the Klein four-group V = {e, x, y, z} given in Example
3.9 (1). Then clearly, the number of subgroups of V is finite. Now we define
A : V → ([I]⊕ [I])× (I ⊕ I)× I as follows:

A(e) = ˜̄̃a0, A(x) = ˜̄̃a1, A(y) = ˜̄̃a2, A(z) = ˜̄̃a3,

where ˜̄̃a0 ≥ ˜̄̃ai (i = 1, 2, 3) and ˜̄̃a3 ≥ ˜̄̃a1 ∧ ˜̄̃a2.
Then we can easily check that A ∈ IV IOG(V ). Consider the family

P = {[A]˜̄̃a : ˜̄̃ai is an IV I-octahedron number with ˜̄̃ai ≤ A(e)}.
Then by Proposition 4.6, P is a family of level subgroups of A, i.e., subgroups of V .
Moreover, P is infinite. However, we can see that all members of P are not distinct.

Theorem 4.10. Let A ∈ IV IOG(G) and let [A]˜̄̃a and [A]̃̃
b̄

(with ˜̄̃a < ˜̄̃b) be two

level subgroups of G. Then [A]˜̄̃a = [A]̃̃
b̄

if and only if there is no x ∈ G such that˜̄̃a < A(x) <
˜̄̃
b.

Proof. Suppose [A]˜̄̃a = [A]̃̃
b̄
. Assume that there is x ∈ G such that ˜̄̃a < A(x) <

˜̄̃
b.

Then
˜̃
A(x) > ˜̃a, Ā(x) > ā,A(x) > a and

˜̃
A(x) <

˜̃
b, Ā(x) < b̄,A(x) < b. Thus

x ∈ [A]˜̄̃a but x 6∈ [A]̃̃
b̄
. So by Proposition 4.4, [A]̃̃

b̄
& [A]˜̄̃a. This contradicts the

hypothesis.

Conversely, suppose the necessary condition holds. Since ˜̄̃a < ˜̄̃b, [A]̃̃
b̄
⊂ [A]˜̄̃a by

Proposition 4.4. Let x ∈ [A]˜̄̃a. Then A(x) ≥ ˜̄̃a. By the hypothesis, A(x) ≥ ˜̄̃a. Thus

x ∈ [A]̃̃
b̄
. So [A]˜̄̃a ⊂ [A]̃̃

b̄
. Hence [A]˜̄̃a = [A]̃̃

b̄
. �

Corollary 4.11. Let G be a finite group of order n and let A ∈ IV IOG(G). Let

ImA = { ˜̄̃ai : A(x) = ˜̄̃ai for some x ∈ G}. Then {[A] ˜̄̃ai} is the set of the only level

subgroups of A.

Proof. From Proposition 4.6, it is obvious that [A] ˜̄̃ai is a subgroup of A. Let ˜̄̃a be

an IVI-octahedron number such that ˜̄̃a 6∈ ImA.
Case (i): Suppose ˜̄̃ai < ˜̄̃a < ˜̄̃aj , where ˜̄̃ai, ˜̄̃aj ∈ ImA. Then by Theorem 4.10,

[A] ˜̄̃ai = [A]˜̄̃a = [A]˜̄̃aj .
Case (ii): Suppose ˜̄̃a < ˜̄̃ar, where ˜̄̃ar is the least element in ImA. Then by

Theorem 4.10, [A]˜̄̃ar = G = [A]˜̄̃a.
Case (iii): Suppose ˜̄̃a0 <

˜̄̃a, where ˜̄̃ar is the greatest element in ImA. Then by
Theorem 4.10, [A]˜̄̃a = {e} = [A]˜̄̃a0

.

Thus in all cases, for any IVI-octahedron number ˜̄̃a, the ˜̄̃a-level subgroup [A]˜̄̃a of A

is one of {[A] ˜̄̃ai}, where ˜̄̃ai ∈ ImA. So the result holds. �
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Proposition 4.12. Let H be a subgroup of G. Then H can be realized as a level
subgroup of some A ∈ V IOG(G).

Proof. We define a mapping A : G → ([I] ⊕ [I]) × (I ⊕ I) × I as follows: for each
x ∈ G,

(4.1) A(x) =


˜̄̃a if x ∈ H

〈([0, 0], [1, 1]), (0, 1), 0〉 if x 6∈ H,

where ˜̄̃a is an IVI-octahedron number. Then we can easily show thatA ∈ IV IOG(G).
Let x, y ∈ G.

Case (i): Suppose x, y ∈ H. Then clearly, xy ∈ H. Thus A(xy) = A(x) = A(y).
So A(xy) ≥ A(x)∧A(y). On the other hand, Since H is a subgroup of G and x ∈ H,

x−1 ∈ H. Then A(x−1) = ˜̄̃a. Thus A(x−1) ≥ A(x).

Case (ii): Suppose x ∈ H but y 6∈ H. Then clearly, xy 6∈ H. Thus A(x) = ˜̄̃a,
A(y) = A(xy) = 〈([0, 0], [1, 1], (0, 1), 0〉. So A(xy) ≥ A(x) ∧ A(y). Also we get
A(x−1) ≥ A(x).

Case (iii): Suppose x 6∈ H but y ∈ H. Then the proof is similar to Case (ii).
Case (iv): Suppose x, y 6∈ H. Then either xy ∈ H or xy 6∈ H. In any case, we have

A(xy) ≥ A(x) ∧ A(y) and A(x−1) ≥ A(x). Thus in all cases, A ∈ IV IOG(G). �

We obtain the following generalization of Proposition 4.12.

Proposition 4.13. Let the following be any chain of subgroups of G:

(4.2) G0 ⊂ G1 ⊂ · · · ⊂ Gr = G.

Then there is A ∈ IV IOG(G) whose level subgroups are precisely the members of
(4.2).

Proof. Consider the following sequence of IVI-octahedron numbers:

(4.3) ˜̄̃a0 >
˜̄̃a1 > · · · > ˜̄̃ar.

We define a mapping A : G→ ([I]⊕ [I])× (I ⊕ I)× I as follows: for each x ∈ G,

(4.4) A(G0) = ˜̄̃a0 and A(Ĝi) = ˜̄̃ai,
where Ĝi = Gi \Gi−1 for i = 1, 2, · · · , r. From the definition of A, it is clear that
A ∈ IV IOS(G). Let x, y ∈ G.

Case (i): Suppose x, y ∈ Ĝi. Then clearly, A(x) = ˜̄̃ai = A(y). Since Gi is a
subgroup of G, xy ∈ Gi. Thus either xy ∈ Gi or xy ∈ Gi−1. So in any case,

A(xy) ≥ ˜̄̃ai = A(x) ∧ A(y).

Since Gi is a subgroup of G and x ∈ Gi, x−1 ∈ Gi. Hence we have

A(x−1) ≥ ˜̄̃ai = A(x).

Case (ii): Suppose x ∈ Ĝi, y ∈ Ĝj and i > j. Then A(x) = ˜̄̃ai and A(y) = ˜̄̃aj .
Since Gj ⊂ Gi and Gi is a subgroup of G, xy ∈ Gi. Thus we get

A(xy) = ˜̄̃ai = A(x) ∧ A(y).
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Since Gi is a subgroup of G and x ∈ Gi, x−1 ∈ Gi. So we have

A(x−1) ≥ ˜̄̃ai = A(x).

Hence in either cases, A ∈ IV IOG(G).

From (4.4), ImA = { ˜̄̃a0,
˜̄̃a1, · · · , ˜̄̃ar}. Then by (4.3), the level subgroups of A are

given as the following chain of subgroups of G:

[A]˜̄̃a0
⊂ [A]˜̄̃a1

⊂ · · · ⊂ [A]˜̄̃ar = G.

Now we claim that [A] ˜̄̃ai = Gi, 0 < i ≤ r. It is obvious that Gi ⊂ [A] ˜̄̃ai . Let

x ∈ [A] ˜̄̃ai . Then A(x) ≥ ˜̄̃ai and A(x) < ˜̄̃aj for j > i. Thus A(x) ∈ { ˜̄̃a1, · · · , ˜̄̃ai},
i.e., x ∈ Gk for some k ≤ i. By (4.2), Gk ⊂ Gi. Thus x ∈ Gi. So [A] ˜̄̃ai ⊂ Gi. Hence

[A] ˜̄̃ai =⊂ Gi, 0 ≤ i ≤ r. This completes the proof. �

As a consequence of Proposition 4.13, we can see that the level subgroups of an
IVIOG A form a chain. Since A(x) ≤ A(e) for each x ∈ G, [A]˜̄̃a0

is the smallest

level subgroup of A, where A(e) = ˜̄̃a0. Thus we get the following chain:

(4.5) (e) = [A]˜̄̃a0
⊂ [A]˜̄̃a0

⊂ [A]˜̄̃a1
⊂ · · · ⊂ [A]˜̄̃ar = G,

where ˜̄̃a0 >
˜̄̃a1 > · · · > ˜̄̃ar. We will denote the chain (4.5) of level subgroups of A

by C(A). In general, as all subgroups of G do not form a chain, it follows that all
subgroups of G are not level subgroups of a given IVIOG. So it is an interesting
problem to find an IVIOG A of G which accommodates as many subgroups of G as
possible in C(A).

Proposition 4.14. Let G be a finite group such that G = Gp1
× Gp2

× · · · × Gpr ,
where the Gpi are prime cyclic groups of order pi. Then there is A ∈ IV IOG(G)
such that C(A) is a maximal chain of length r + 1.

Proof. We show by the induction on r. Suppose r = 1. Then clearly, G = Gp1
. By

Theorem 3.24, there is A ∈ IV IOG(G) such that A(x) ≤ A(e) for each e 6= x ∈ G,

where A(x) = ˜̄̃a1, A(e) = ˜̄̃a0 and ˜̄̃a1 ≤ ˜̄̃a0. Thus [A]˜̄̃a0
= (e) and [A]˜̄̃a1

= G. So

[A]˜̄̃a0
⊂ [A]˜̄̃a1

is a maximal chain of length 2. Hence the theorem is true for r = 1.

Now let r > 1 and suppose the theorem is true for all integers ≤ r − 1. Let
H = Gp1

×Gp2
× · · · ×Gpr−1

. Then G = H ×Gpr . Let us define a mapping

A =

〈˜̃
A, Ā, A

〉
: G→ ([I]⊕ [I])× (I ⊕ I)× I as follows: for eachx ∈ G,

A(e) = ˜̄̃a0, A(Ĝp1) = ˜̄̃a1, A( ˆGp1 ×Gp2) = ˜̄̃a2, · · · , A( ˆH ×Gpr ) = ˜̄̃ar,
where ˜̄̃a0 ≥ ˜̄̃a1 ≥ ˜̄̃a2 ≥ · · · ≥ ˜̄̃ar and Ĝp1

= Gp1
\ (e), ˆGp1

×Gp2
= Gp1

×Gp2
\Gp1

,
and so on. Then clearly, A ∈ IV IO(G). we will prove that A ∈ IV IOG(G). Let
x, y ∈ G.

Case (i): Suppose x, y ∈ H. Then clearly, xy ∈ H. Thus by the induction, we
can easily see that the followings hold:

A(xy) ≥ A(x) ∧ A(y), A(x−1) ≥ A(x).
264



Kim et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 3, 243–271

Case (ii): Suppose x ∈ H, y ∈ G \ H. Then xy 6∈ H. Thus A(xy) = ˜̄̃ar,
A(x) ≥ ˜̄̃ar−1 and A(y) = ˜̄̃ar. So we have

A(xy) ≥ A(x) ∧ A(y), A(x−1) ≥ A(x).

Case (iii): Suppose x ∈ G \ H, y ∈ H. Then we get the same results by the
similar proof of Case (ii).

Case (iv): Suppose x, y ∈ G \ H. Then we can easily show that the followings
hold:

A(xy) ≥ A(x) ∧ A(y), A(x−1) ≥ A(x).

Thus in all cases, A ∈ IV IOG(G). Furthermore, we have

[A]˜̄̃a0
= (e), [A]˜̄̃a1

= Gp1 , [A]˜̄̃a2
= Gp1 ×Gp2 , · · · , [A]˜̄̃ar = H ×Gpr .

So C(A) = [A]˜̄̃a0
⊂ [A]˜̄̃a1

⊂ · · · ⊂ [A]˜̄̃ar is maximal and is of length r + 1. �

Remark 4.15. In the same way, we can obtain anA ∈ IV IOG(G) with the maximal
C(A) in the following cases:

(i) G is a cyclic p-group,
(ii) G is the direct product of cyclic p-groups,
(iii) G is a finite abelian group.

As we adopt the same technique of Proposition 4.14 in proving these cases, we will
omit the proofs.

From the following example, we can see that two IVIOGs of G may have an
identical family of level subgroups but the IVIOGs may not be equal.

Example 4.16. Consider the Klein four-group V = {e, x, y, z} given in Example

3.9 (1). Let ˜̄̃ai be an IVI-octahedron number such that ˜̄̃a0 >
˜̄̃a1 >

˜̄̃a2 for i = 0, 1, 2.
We define a mapping A : V → ([I]⊕ [I])× (I ⊕ I)× I as follows: for each t ∈ V,

A(e) = ˜̄̃a0, A(x) = ˜̄̃a1, A(y) = A(z) = ˜̄̃a2.

Then it is obvious that A ∈ IV IOG(V ) and ImA = { ˜̄̃a0,
˜̄̃a1,
˜̄̃a2}. Moreover, the level

subgroups of A are

[A]˜̄̃a0
= {e}, [A]˜̄̃a1

= {e, x}, [A]˜̄̃a2
= V.

Now let
˜̄̃
bi (i = 0, 1, 2) be an IVI-octahedron number such that˜̄̃

b0 ≥
˜̄̃
b1 ≥

˜̄̃
b2 and { ˜̄̃a0,

˜̄̃a1,
˜̄̃a2} ∩ {

˜̄̃
b0,
˜̄̃
b1,
˜̄̃
b2} = ∅.

We define a mapping B : V → ([I]⊕ [I])× (I ⊕ I)× I as follows: for each t ∈ V,

A(e) =
˜̄̃
b0, A(x) =

˜̄̃
b1, A(y) =

˜̄̃
b2, A(c) =

˜̄̃
b2.

Then we can easily see that B ∈ IV UOG(V ) and the level subgroups of B are

[A] ˜̄̃
b0

= {e}, [A] ˜̄̃
b1

= {e, x}, [A] ˜̄̃
b2

= V.

Thus A and B have the same family of level subgroups but A 6= B.

The following is an immediate consequence of Definition 4.2.
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Lemma 4.17. Let G be a finite group and let A ∈ IV IOG(G). If ˜̄̃a, ˜̄̃b ∈ ImA such

that [A]˜̄̃a = [A]̃̃
b̄
, then ˜̄̃a =

˜̄̃
b.

Proposition 4.18. Let G be a finite group and let A, B ∈ IV IOG(G) with the

identical family of level subgroups. Let ˜̄̃ai and
˜̄̃
bj be IVI-octahedron numbers (i =

1, 2, · · · , r; j = 1, 2, · · · , k) such that ˜̄̃a0 > A > · · · > ˜̄̃ar and
˜̄̃
b0 >

˜̄̃
b1 > · · · >

˜̄̃
bk.

If ImA = { ˜̄̃a0,
˜̄̃a1, · · · , ˜̄̃ar} and ImB = {

˜̄̃
b0,
˜̄̃
11, · · · ,

˜̄̃
br}, then we have

(1) r = k,
(2) [A] ˜̄̃ai = [B] ˜̄̃

bi
for 0 ≤ i ≤ r,

(3) if x ∈ G such that A(x) = ˜̄̃ai, then B(x) =
˜̄̃
bi for 0 ≤ i ≤ r.

Proof. (1) By Corollary 4.11, the only level subgroups of A and B are two families
{[A] ˜̄̃ai} and {[B]˜̄̃ak}. Then by the hypothesis, r = k.

(2) By (1) and Corollary 4.11, there are two chains of level subgroups:

[A]˜̄̃a0
⊂ [A]˜̄̃a1

⊂ · · · ⊂ [A]˜̄̃ar = G

and
[B] ˜̄̃

b0
⊂ [B] ˜̄̃

b1
⊂ · · · ⊂ [B] ˜̄̃

br
= G.

Suppose ˜̄̃ai, ˜̄̃aj ∈ ImA such that ˜̄̃ai > ˜̄̃aj . Then we get

(4.6) [A] ˜̄̃ai ⊂ [A]˜̄̃aj .
Suppose

˜̄̃
bi,

˜̄̃
bj ∈ ImB such that

˜̄̃
bi >

˜̄̃
bj . Then we have

(4.7) [B] ˜̄̃
bi
⊂ [B] ˜̄̃

bj
.

Since {[A] ˜̄̃ai} = {[B] ˜̄̃
bi
}, it is obvious that [A]˜̄̃a0

= [B] ˜̄̃
b0
. By the hypothesis, [A]˜̄̃a1

=

[B] ˜̄̃
bj

for some j > 0. Assume that [A]˜̄̃a1
= [B] ˜̄̃

bj
for some j > 1. Again we get

[B] ˜̄̃
b1

= [A] ˜̄̃ai for some ˜̄̃ai > ˜̄̃a1. Then clearly, ˜̄̃ai = ˜̄̃a1. Thus by (4.6), we have

(4.8) [A] ˜̄̃ai = [B] ˜̄̃
b1
⊂ [B] ˜̄̃

bj
.

Also by (4.7), we get

(4.9) [B] ˜̄̃
bj

= [A]˜̄̃a1
⊂ [A] ˜̄̃ai .

However, (4.8) and (4.9) contradict one another as the inclusions are both proper.
So [A]˜̄̃a1

= [B] ˜̄̃
b1
. The remainder’s proofs follow by the induction on i by using

arguments exactly on the same as above. Hence the result holds.

(3) Let x ∈ G such that A(x) = ˜̄̃ai and B(x) =
˜̄̃
bj . Then by (2), [A] ˜̄̃ai = [B] ˜̄̃

bi
.

Since x ∈ [A] ˜̄̃ai , x ∈ [B] ˜̄̃
bi
. Thus B(x) =

˜̄̃
bj ≥

˜̄̃
bi. By (4.7), [B] ˜̄̃

bj
⊂ [B] ˜̄̃

bi
. By

(2), [B] ˜̄̃
bj

= [A]˜̄̃aj . Since x ∈ [B] ˜̄̃
bj

, x ∈ [A]˜̄̃aj . So A(x) = ˜̄̃ai ≥ ˜̄̃aj . By (4.6),
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[A] ˜̄̃ai ⊂ [A]˜̄̃aj . By (2), [A] ˜̄̃ai = [B] ˜̄̃
bi

and [A]˜̄̃aj = [B] ˜̄̃
bj
. Consequently, [B] ˜̄̃

bi
⊂ [B] ˜̄̃

bj
.

Hence [B] ˜̄̃
bi

= [B] ˜̄̃
bj
. Therefore by Lemma 4.17,

˜̄̃
bi =

˜̄̃
bj . �

Theorem 4.19. Let G be a finite group and let A, B ∈ IV IOG(G) with the identical
family of level subgroups. Then A = B if and only if ImA = ImB.

Proof. The proof of the necessary condition is easy. Conversely, suppose ImA =

ImB. Let ImA = { ˜̄̃a0, · · · , ˜̄̃ar} and let ImB = {
˜̄̃
b0, · · · , ˜̄̃rr} such that˜̄̃a0 > · · · > ˜̄̃ar and

˜̄̃
b0 > · · · >

˜̄̃
br.

Since
˜̄̃
b0 ∈ ImB, by the hypothesis, there is k0 ∈ {0, 1, · · · , r} such that

˜̄̃
b0 = ˜̄̃ak0 .

Suppose ˜̄̃ak0
6= ˜̄̃a0. Then ˜̄̃ak0

< ˜̄̃a1. Since
˜̄̃
b1 ∈ ImB, by the hypothesis, there is

k1 ∈ {0, 1, · · · , r} such that
˜̄̃
b1 = ˜̄̃ak1

. Since
˜̄̃
b0 >

˜̄̃
b1,

˜̄̃ak0
> ˜̄̃ak1

. By proceeding in
this way, we get ˜̄̃ak0

> ˜̄̃ak1
> · · · > ˜̄̃akr ,

where
˜̄̃
b0 = ˜̄̃ak0 and ˜̄̃ak0

> ˜̄̃a0. Thus they contradict the fact that ImA = ImB. So˜̄̃a0 =
˜̄̃
b0. Arguing this manner, we have

(4.10) ˜̄̃ai =
˜̄̃
bi, 0 ≤ i ≤ r.

Now let x0, x1, · · · , xr be distinct elements of G such that

A(xi) = ˜̄̃ai, 0 ≤ i ≤ r.

Then by Proposition 4.18, B(xi) =
˜̄̃
bi, 0 ≤ i ≤ r. Thus by (4.10), A(xi) = B(xi) for

each xi ∈ G. So A = B. This completes the proof. �

Proposition 4.20. Let G be a cyclic p-group of order pn, where p is a prime. Let
A ∈ IV IOG(G), let x, y ∈ G and let O(x) denote the order of x. If O(x) > O(y),
then A(y) ≥ A(x). Furthermore, if O(x) = O(y), then A(x) = A(y).

Proof. We prove by the induction on n. Suppose n = 1. Then clearly, O(G) = p.
Thus the theorem is true by Proposition 3.10. Let n > 1 and suppose the theorem
is true for all integers ≤ n− 1. Let H be a subgroup of order pn−1 and let x, y ∈ G.

Case (i): Suppose x, y ∈ H. Then by the induction, the result holds.
Case (ii): Suppose x 6∈ H and y ∈ H. Then clearly, O(x) = pn and O(y) = pr,

where r ≤ n − 1. Thus x is a generator of G and there is an integer m such that
y = xm. So we have

A(y) = A(x) ∧ A(x) ∧ · · · ∧ A(x) (m times) ≥ A(x).

Case (iii): Suppose x ∈ H and y 6∈ H. The the proof is similar to Case (ii).
Case (iv): Suppose x 6∈ H and y 6∈ H. Then clearly, O(x) = O(y) = pn. Thus

x and y are generators of G. So there are integers m and s such that y = xm and
x = ys. Hence we get

A(x) ≥ A(y) ∧ A(y) ∧ · · · ∧ A(y) (s times) ≥ A(y)
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and

A(y) ≥ A(x) ∧ A(x) ∧ · · · ∧ A(x) (m times) ≥ A(x).

Therefore A(x) = A(y). �

The following is an example which Proposition 4.20 does not hold in general.

Example 4.21. Consider the Klein’s four group V given in Example 3.9 and A ∈
IV IOG(V ) given in Example 4.16. Then clearly, O(x) = O(y) but A(x) 6= A(y).

The following is an example which for an IVIOG A of a cyclic group G, O(x) 6=
O(y) but A(x) = A(y).

Example 4.22. Let G = (x) be a cyclic group of order 6. We define the mapping
A : G→ ([I]⊕ [I])× (I ⊕ I)× I as follows:

A(e) = ˜̄̃a0, A(x) = A(x3) = A(x5) = ˜̄̃a1, A(x2) = ˜̄̃a2,

where ˜̄̃a0 > ˜̄̃a1 > ˜̄̃a2. Then clearly, A ∈ IV IOG(G) and O(x3) 6= O(x). But
A(x) = A(x3).

Now we give the characterization of all IVIOGs of a finite cyclic group.

Theorem 4.23. Let G be a finite cyclic group and let A ∈ IV IOS(G). Then
A ∈ IV IOG(G) if and only if there is a maximal chain of subgroups

(e) = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G

such that for any ˜̄̃a0,
˜̄̃a1, · · · , ˜̄̃ar ∈ ImA with ˜̄̃a0 >

˜̄̃a1 > · · · > ˜̄̃ar,
A(e) = ˜̄̃a0, A(Ĝ1) = ˜̄̃a1, · · · , A(Ĝr) = ˜̄̃ar,

where Ĝi = Gi \Gi−1 for i = 1, 2, · · · , r.

Proof. Suppose A ∈ IV IOG(G). Then by Corollary 4.11, [A]˜̄̃a0
, [A]˜̄̃a1

, · · · , [A]˜̄̃ar
are the only level subgroups of A, where { ˜̄̃a0,

˜̄̃a1, · · · , ˜̄̃ar} = ImA and ˜̄̃a0 > ˜̄̃a1 >

· · · > ˜̄̃ar. Furthermore, the level subgroups form a chain

C(A) = [A]˜̄̃a0
⊂ [A]˜̄̃a2

⊂ · · · ⊂ [A]˜̄̃ar .
Thus clearly, [A]˜̄̃a0

= (e) and [A]˜̄̃ar = G. Assume that C(A) is not maximal. Then

we redefine C(A) introducing subgroups of G. Let us call the redefined chain as

G0 ⊂ G1 ⊂ · · · ⊂ Gs,
where G0 = [A]˜̄̃a0

= (e) and Gs = [A]˜̄̃ar = G. Then for each Gi between [A]˜̄̃a0
(= G0)

and [A]˜̄̃a1
(= Gj for some j), A(Ĝi) = ˜̄̃a1. Similarly, we get for each Gk between [A] ˜̄̃ai

and [A] ˜̄̃ai+1
, A(Ĝk) = ˜̄̃ai+1 and A(Ĝs) = ˜̄̃ar. Thus we have

A(G0) = ˜̄̃a0, A(Ĝ1) · · · = A(Ĝi) = ˜̄̃a1, A( ˆGi+1) · · · = A(Ĝk) = ˜̄̃ai+1, A(Ĝs) = ˜̄̃ar,
where Ĝ1 = G1 \G0, Ĝ2 = G2 \G1, · · · , Ĝs = Gs \Gs−1 and ˜̄̃a0 >

˜̄̃a1 > · · · > ˜̄̃ar.
So the result holds.
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Conversely, suppose the necessary condition holds and we define the mapping

A : G→ ([I]⊕ [I])× (I ⊕ I)× I as follows:

A(e) = ˜̄̃a0, A(Ĝ1) = ˜̄̃a1, · · · , A(Ĝr) = ˜̄̃ar.
Then clearly, A ∈ IV IOG(G). Let x, y ∈ G.

Case (i): Suppose x, y ∈ Gi but x, y 6∈ Gi−1. Then A(x) = A(y) = ˜̄̃ai and

xy ∈ Gi or xy ∈ Gi−1. Thus A(xy) ≥ ˜̄̃ai = A(x) ∧ A(y). Since x−1 ∈ Gi, we have

A(x−1) ≥ ˜̄̃ai = A(x).
Case (ii): Suppose x ∈ Gi, x 6∈ Gi−1 and y ∈ Gj , x 6∈ Gj−1, where i > j.

Then A(x) = ˜̄̃ai and A(y) = ˜̄̃aj . Thus A(xy) ≥ ˜̄̃ai = A(x) ∧ A(y). Moreover,

A(x−1) ≥ ˜̄̃ai = A(x). So in either cases, A ∈ IV IOG(G). �

The following is an immediate consequence of Theorem 4.23.

Corollary 4.24. Let G be a cyclic p-group of order pr and let A ∈ IV IOS(G).

Then A ∈ IV IOG(G) if and only if for each x ∈ G with O(x) = pi, A(x) = ˜̄̃ai,
where i = 0, 1, · · · , r and ˜̄̃a0 >

˜̄̃a1 > · · · > ˜̄̃ar.
Remark 4.25. Corollary 4.24 can be seen by Proposition 4.20.

5. Conclusions

We introduced the notions of IVI-octahedron subgroups and IVI-octahedron nor-
mal subgroups of a group and obtained some of their properties, and gave some
examples. In particular, we gave a sufficient condition that the image of an IVI-
octahedron subgroup under a group homomorphism is an IVI-octahedron subgroup.
Also, we obtained the characterization that an IVI-octahedron set in a cyclic group
of a prime order is an IVI-octahedron subgroup. Furthermore, we defined the level
subgroup of an IVI-octahedron subgroup and studied some relationships between
them.

In the future, we expect that one applies IVI-octahedron sets to ring structures,
BCI/BCK-algebraic structures, topologies, topological group structures, category
theories and decision-making problems, etc. Also, we will propose a new concept
combined with a neutrosophic set and an IVI-octahedron set, and research for its
properties.
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