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Abstract. The idea of  Lukasiewicz t-norm is used to construct the con-
cept of  Lukasiewicz fuzzy sets based on a given fuzzy set. The  Lukasiewicz
fuzzy sets are applied to BCK-algebras and BCI-algebras. Moreover, the
notion of  Lukasiewicz fuzzy subalgebra is introduced and its various prop-
erties are investigated. Three types of subsets so called ∈-set, q-set and
O-set are constructed, and the conditions under which they can be subal-
gebras are explored.

2020 AMS Classification: 03G25, 06F35, 08A72

Keywords:  Lukasiewicz fuzzy set, (Strong)  Lukasiewicz fuzzy subalgebra, ∈-set,
q-set, O-set.

Corresponding Author: Y. B. Jun (skywine@gmail.com)

1. Introduction

A fuzzy concept, which is introduced by Zadeh [1], is understood as a concept
which is “to an extent applicable” in a situation. That means the concept has
gradations of significance or unsharp (variable) boundaries of application. Prior to
the emergence of the fuzzy set, the very idea of inferring as an unclear concept faced
considerable resistance from the elite in the academic world. They did not want to
endorse the use of imprecise concepts in research or argumentation. Yet although
people might not be aware of it, the use of fuzzy concepts has risen gigantically
in all walks of life from the 1970s onward. That is mainly due to advances in
electronic engineering, fuzzy mathematics and digital computer programming. The
new technology allows very complex inferences about “variations on a theme” to
be anticipated and fixed in a program.  Lukasiewicz logic, which is the logic of
the  Lukasiewicz t-norm, is a non-classical and many-valued logic. It was originally
defined in the early 20th century by  Lukasiewicz as a three-valued logic. BCK/BCI-
algebras originally defined by Iséki and Tanaka in [2] to generalize the set difference in
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set theory. In 1999, Jun et al. [3] studied fuzzy subalgebras and fuzzy ideals in BCK-
algebras. Also, Jun [4] studied fuzzy subalgebras with thresholds in BCK/BCI-
algebras.

In this paper, using the idea of  Lukasiewicz t-norm, we construct the concept of
 Lukasiewicz fuzzy sets based on a given fuzzy set and apply it to BCK-algebras
and BCI-algebras. We define the concepts of (strong)  Lukasiewicz fuzzy subal-
gebras, and investigate several properties. We provide conditions for  Lukasiewicz
fuzzy set to be a  Lukasiewicz fuzzy subalgebra. We explore the conditions under
which  Lukasiewicz fuzzy subalgebra becomes strong. We disuss characterizations of
 Lukasiewicz fuzzy subalgebras. We construct a three kind of subsets so called ∈-set,
q-set and O-set, and we find the conditions under which they can be subalgebras.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by Iséki
(See [5] and [2]) and was extensively investigated by several researchers.

We recall the definitions and basic results required in this paper. See the books
[6, 7] for further information regarding BCK-algebras and BCI-algebras.

If a set X has a special element 0 and a binary operation ∗ satisfying the condi-
tions:

(I1) (∀a, b, c ∈ X) (((a ∗ b) ∗ (a ∗ c)) ∗ (c ∗ b) = 0),
(I2) (∀a, b ∈ X) ((a ∗ (a ∗ b)) ∗ b = 0),
(I3) (∀a ∈ X) (a ∗ a = 0),
(I4) (∀a, b ∈ X) (a ∗ b = 0, b ∗ a = 0 ⇒ a = b),

then we say that X is a BCI-algebra. If a BCI-algebra X satisfies the following
identity:

(K) (∀a ∈ X) (0 ∗ a = 0),

then X is called a BCK-algebra.
A BCI-algebra X is said to be p-semisimple (See [6]), if 0 ∗ (0 ∗ a) = a for all

a ∈ X.
The order relation “≤” in a BCK/BCI-algebra X is defined as follows:

(∀a, b ∈ X)(a ≤ b ⇔ a ∗ b = 0).(2.1)

Every BCK/BCI-algebra X satisfies the following conditions (See [6, 7]):

(∀a ∈ X) (a ∗ 0 = a) ,(2.2)

(∀a, b, c ∈ X) (a ≤ b ⇒ a ∗ c ≤ b ∗ c, c ∗ b ≤ c ∗ a) ,(2.3)

(∀a, b, c ∈ X) ((a ∗ b) ∗ c = (a ∗ c) ∗ b) .(2.4)

Every BCI-algebra X satisfies (See [6]):

(∀a, b ∈ X) (a ∗ (a ∗ (a ∗ b)) = a ∗ b) ,(2.5)

(∀a, b ∈ X) (0 ∗ (a ∗ b) = (0 ∗ a) ∗ (0 ∗ b)) .(2.6)

A subset A of a BCK/BCI-algebra X is called a subalgebra of X (See [6, 7]), if
it satisfies:

(∀a, b ∈ A)(a ∗ b ∈ A),(2.7)
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A fuzzy set f in a set X of the form

f(b) :=

{
t ∈ (0, 1] if b = a,
0 if b 6= a,

is said to be a fuzzy point with support a and value t and is denoted by [a/t].
For a fuzzy set f in a set X, we say that a fuzzy point [a/t] is

(i) contained in f, denoted by [a/t] ∈ f ([8]), if f(a) ≥ t,
(ii) quasi-coincident with f, denoted by [a/t] q f ([8]), if f(a) + t > 1.

A fuzzy set f in a BCK/BCI-algebra X is called a fuzzy subalgebra of X, if it
satisfies:

(∀a, b ∈ X)(f(a ∗ b) ≥ min{f(a), f(b)}).(2.8)

3.  Lukasiewicz fuzzy subalgebras

Definition 3.1. Let f be a fuzzy set in a set X and let ε ∈ [0, 1]. A function

 Lεf : X → [0, 1], x 7→ max{0, f(x) + ε− 1}

is called an ε- Lukasiewicz fuzzy set of f in X.

Let  Lεf be an ε- Lukasiewicz fuzzy set of a fuzzy set f in X. If ε = 1, then

 Lεf (x) = max{0, f(x)+1−1} = max{0, f(x)} = f(x) for all x ∈ X. This shows that
if ε = 1, then the ε- Lukasiewicz fuzzy set of a fuzzy set f in X is the classisical fuzzy
set f itself in X. If ε = 0, then  Lεf (x) = max{0, f(x)+0−1} = max{0, f(x)−1} = 0
for all x ∈ X, that is, if ε = 0, then the ε- Lukasiewicz fuzzy set is the zero fuzzy
set. Therefore, in handling the ε- Lukasiewicz fuzzy set, the value of ε can always be
considered to be in (0, 1).

Let f be a fuzzy set in a set X and ε ∈ (0, 1). If f(x) + ε ≤ 1 for all x ∈ X,
then the ε- Lukasiewicz fuzzy set  Lεf of f in X is the 0-constant function, that is,

 Lεf (x) = 0 for all x ∈ X. Therefore, in order for the ε- Lukasiewicz fuzzy set to

have a meaningful form, a fuzzy set f in X and ε ∈ (0, 1) must be set to satisfy the
following condition:

(∃x ∈ X)(f(x) + ε > 1).(3.1)

Proposition 3.2. If f is a fuzzy set in a set X and ε ∈ (0, 1), then its ε- Lukasiewicz
fuzzy set  Lεf satisfies:

(∀x, y ∈ X)(f(x) ≥ f(y) ⇒  Lεf (x) ≥  Lεf (y)),(3.2)

(∀x ∈ X)([x/ε] q f ⇒  Lεf (x) = f(x) + ε− 1),(3.3)

(∀x ∈ X)(∀δ ∈ (0, 1))(ε ≥ δ ⇒  Lεf (x) ≥  Lδf (x)).(3.4)

Proof. Straightforward. �

Proposition 3.3. If f and g are fuzzy sets in a set X, then

(∀ε ∈ (0, 1))
(

 Lεf∩g =  Lεf ∩  Lεg
)
.(3.5)
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Proof. For every x ∈ X, we have

 Lεf∩g(x) = max{0, (f ∩ g)(x) + ε− 1}
= max{0,min{f(x), g(x)}+ ε− 1}
= max{0,min{f(x) + ε− 1, g(x) + ε− 1}}
= min{max{0, f(x) + ε− 1},max{0, g(x) + ε− 1}}
= min{ Lεf (x),  Lεg(x)} = ( Lεf ∩  Lεg)(x)

which proves (3.5). �

In what follows, let X be a BCK-algebra or a BCI-algebra, and ε is an element
of (0, 1) unless otherwise specified.

Definition 3.4. Let f be a fuzzy set in X. Then its ε- Lukasiewicz fuzzy set  Lεf in
X is called an ε- Lukasiewicz fuzzy subalgebra of X if it satisfies:

[x/ta] ∈  Lεf , [y/tb] ∈  Lεf ⇒ [(x ∗ y)/min{ta, tb}] ∈  Lεf(3.6)

for all x, y ∈ X and ta, tb ∈ (0, 1].

Example 3.5. Consider a BCK-algebra X = {0, a1, a2, a3, a4} (See [7]) with a
binary operation “∗” given by Table 1.

Table 1. Cayley table for the binary operation “∗”

∗ 0 a1 a2 a3 a4
0 0 0 0 0 0
a1 a1 0 a1 0 0
a2 a2 a2 0 0 0
a3 a3 a3 a3 0 0
a4 a4 a3 a4 a1 0

Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→


0.76 if x = 0,
0.69 if x = a1,
0.63 if x = a2,
0.57 if x = a3,
0.42 if x = a4.

Given ε := 0.55, the ε- Lukasiewicz fuzzy set  Lεf of f in X is given as follows:

 Lεf : X → [0, 1], x 7→


0.31 if x = 0,
0.24 if x = a1,
0.18 if x = a2,
0.12 if x = a3,
0 if x = a4.

It is routine to verify that  Lεf is an ε- Lukasiewicz fuzzy subalgebra of X.

Theorem 3.6. If f is a fuzzy subalgebra of X, then its ε- Lukasiewicz fuzzy set  Lεf
in X is an ε- Lukasiewicz fuzzy subalgebra of X.
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Proof. Assume that f is a fuzzy subalgebra of X. Let x, y ∈ X and ta, tb ∈ (0, 1] be
such that [x/ta] ∈  Lεf and [y/tb] ∈  Lεf . Then  Lεf (x) ≥ ta and  Lεf (y) ≥ tb. Thus

 Lεf (x ∗ y) = max{0, f(x ∗ y) + ε− 1}
≥ max{0,min{f(x), f(y)}+ ε− 1}
= max{0,min{f(x) + ε− 1, f(y) + ε− 1}}
= min{max{0, f(x) + ε− 1},max{0, f(y) + ε− 1}}
= min{ Lεf (x),  Lεf (y)} ≥ min{ta, tb}.

So [(x ∗ y)/min{ta, tb}] ∈  Lεf . Hence  Lεf is an ε- Lukasiewicz fuzzy subalgebra of
X. �

The following example shows that the converse of Theorem 3.6 may not be true.

Example 3.7. Consider a BCI-algebra X = {0, a1, a2, a3, a4} (See [6]) with a
binary operation “∗” given by Table 2.

Table 2. Cayley table for the binary operation “∗”

∗ 0 a1 a2 a3 a4
0 0 0 a2 a3 a4
a1 a1 0 a2 a3 a4
a2 a2 a2 0 a4 a3
a3 a3 a3 a4 0 a2
a4 a4 a4 a3 a2 0

Define a fuzzy set f in X as follows:

f : X → [0, 1], x 7→


0.72 if x = 0,
0.68 if x = a1,
0.61 if x = a2,
0.57 if x = a3,
0.39 if x = a4.

Given ε := 0.42, the ε- Lukasiewicz fuzzy set  Lεf of f in X is given as follows:

 Lεf : X → [0, 1], x 7→


0.14 if x = 0,
0.10 if x = a1,
0.03 if x = a2,
0 if x = a3,
0 if x = a4.

It is routine to verify that  Lεf is an ε- Lukasiewicz fuzzy subalgebra of X. But f is
not a fuzzy subalgebra of X because of

f(a2 ∗ a3) = f(a4) = 0.39 � 0.57 = min{f(a2), f(a3)}.

We consider a characterization of ε- Lukasiewicz fuzzy subalgebra.
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Theorem 3.8. Let f be a fuzzy set in X. Then its ε- Lukasiewicz fuzzy set  Lεf in
X is an ε- Lukasiewicz fuzzy subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)( Lεf (x ∗ y) ≥ min{ Lεf (x),  Lεf (y)}).(3.7)

Proof. Assume that  Lεf is an ε- Lukasiewicz fuzzy subalgebra of X. Let x, y ∈ X. It

is clear that [x/ Lεf (x)] ∈  Lεf and [y/ Lεf (y)] ∈  Lεf . Then

[(x ∗ y)/min{ Lεf (x),  Lεf (y)}] ∈  Lεf

by (3.6), which implies that  Lεf (x ∗ y) ≥ min{ Lεf (x),  Lεf (y)}.
Conversely, suppose that  Lεf satisfies the condition (3.7). Let x, y ∈ X and

ta, tb ∈ (0, 1] be such that [x/ta] ∈  Lεf and [y/tb] ∈  Lεf . Then  Lεf (x) ≥ ta and

 Lεf (y) ≥ tb, which implies from (3.7) that

 Lεf (x ∗ y) ≥ min{ Lεf (x),  Lεf (y)} ≥ min{ta, tb}.
Thus [(x ∗ y)min{tb,tb}] ∈  Lεf . So  Lεf is an ε- Lukasiewicz fuzzy subalgebra of X. �

Proposition 3.9. If f is a fuzzy subalgebra of X, then its ε- Lukasiewicz fuzzy set
 Lεf satisfies:

(∀x ∈ X)( Lεf (0) ≥  Lεf (x)).(3.8)

Proof. If f is a fuzzy subalgebra ofX, then f(0) = f(x∗x) ≥ min{f(x), f(x)} = f(x)
for all x ∈ X. It follows from (3.2) that  Lεf (0) ≥  Lεf (x) for all x ∈ X. �

Proposition 3.10. If f is a fuzzy subalgebra of X, then its ε- Lukasiewicz fuzzy set
 Lεf satisfies:

(∀x, y ∈ X)
(

 Lεf (x) =  Lεf (0) ⇔  Lεf (x ∗ y) ≥  Lεf (y)
)
.(3.9)

Proof. Assume that  Lεf (x) =  Lεf (0) for all x ∈ X. Then

 Lεf (x ∗ y) ≥ min{ Lεf (x),  Lεf (y)} = min{ Lεf (0),  Lεf (y)} =  Lεf (y)

for all x, y ∈ X by the combination of Theorem 3.6 and Proposition 3.9.
Conversely, suppose that  Lεf (x ∗ y) ≥  Lεf (y) for all x, y ∈ X. Using (2.2) induces

 Lεf (x) =  Lεf (x ∗ 0) ≥  Lεf (0). The combination of this and Proposition 3.9 leads to

 Lεf (x) =  Lεf (0) for all x ∈ X. �

Proposition 3.11. If f is a fuzzy subalgebra of a BCI-algebra X, then its ε-
 Lukasiewicz fuzzy set  Lεf satisfies:

(∀x ∈ X)( Lεf (0 ∗ x) ≥  Lεf (x)).(3.10)

Proof. If f is a fuzzy subalgebra of a BCI-algebra X, then

f(0 ∗ x) ≥ min{f(0), f(x)} = f(x)

for all x ∈ X. It follows from (3.2) that  Lεf (0 ∗ x) ≥  Lεf (x) for all x ∈ X. �

Proposition 3.12. If f is a fuzzy subalgebra of a BCI-algebra X, then its ε-
 Lukasiewicz fuzzy set  Lεf satisfies:

[x/ta] ∈  Lεf , [y/tb] ∈  Lεf ⇒ [(x ∗ (0 ∗ y))/min{ta, tb}] ∈  Lεf(3.11)

for all x, y ∈ X and ta, tb ∈ (0, 1].
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Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that [x/ta] ∈  Lεf and [y/tb] ∈  Lεf .

Then  Lεf (x) ≥ ta and  Lεf (y) ≥ tb. Thus

 Lεf (x ∗ (0 ∗ y)) = max{0, f(x ∗ (0 ∗ y)) + ε− 1}
≥ max{0,min{f(x), f(0 ∗ y)}+ ε− 1}
≥ max{0,min{f(x),min{f(0), f(y)}}+ ε− 1}
= max{0,min{f(x), f(y)}+ ε− 1}
= max{0,min{f(x) + ε− 1, f(y) + ε− 1}}
= min{max{0, f(x) + ε− 1},max{0, f(y) + ε− 1}}
= min{ Lεf (x),  Lεf (y)}
≥ min{ta, tb}.

So [(x ∗ (0 ∗ y))/min{ta, tb}] ∈  Lεf . �

We provide conditions for a  Lukasiewicz fuzzy set to be a  Lukasiewicz fuzzy
subalgebra.

Theorem 3.13. Let f be a fuzzy set in X. If ε- Lukasiewicz fuzzy set  Lεf of f in X
satisfies:

[y/tb] ∈  Lεf , [z/tc] ∈  Lεf ⇒ [(x ∗ y)/min{tb, tc}] ∈  Lεf(3.12)

for all tb, tc ∈ (0, 1] and x, y, z ∈ X with z ≤ x, then  Lεf is an ε- Lukasiewicz fuzzy
subalgebra of X.

Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that [x/ta] ∈  Lεf and [y/tb] ∈  Lεf .

Since x ≤ x for all x ∈ X, it follows from (3.12) that [(x ∗ y)/min{ta, tb}] ∈  Lεf .
Hence  Lεf is an ε- Lukasiewicz fuzzy subalgebra of X. �

Proposition 3.14. Let f be a fuzzy set in a BCI-algebra X. Then every ε-
 Lukasiewicz fuzzy subalgebra  Lεf of X satisfies:

[x/ta] ∈  Lεf , [y/tb] ∈  Lεf ⇒ [(x ∗ (0 ∗ y))/min{ta, tb}] ∈  Lεf(3.13)

for all x, y ∈ X and ta, tb ∈ (0, 1].

Proof. Let x, y ∈ X and ta, tb ∈ (0, 1] be such that [x/ta] ∈  Lεf and [y/tb] ∈  Lεf .

Then  Lεf (x) ≥ ta and  Lεf (y) ≥ tb. It follows from Theorem 3.8 and Proposition 3.9
that

 Lεf (x ∗ (0 ∗ y)) ≥ min{ Lεf (x),  Lεf (0 ∗ y)}
≥ min{ Lεf (x),min{ Lεf (0),  Lεf (y)}}
= { Lεf (x),  Lεf (y)} ≥ min{ta, tb},

i.e., [(x ∗ (0 ∗ y))/min{ta, tb}] ∈  Lεf . �

Given a fuzzy set f in a BCI-algebra X, its ε- Lukasiewicz fuzzy subalgebra  Lεf
does not satisfiy the following equality:

(∀x ∈ X)( Lεf (0 ∗ x) =  Lεf (x)).(3.14)
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In fact, the ε(= 0.42)- Lukasiewicz fuzzy subalgebra  Lεf in Example 3.7 does not

satisfiy (3.14) since  Lεf (0 ∗ a1) =  Lεf (0) = 0.14 6= 0.10 =  Lεf (a1).
Let f be a fuzzy set in a BCI-algebra X. If an ε- Lukasiewicz fuzzy subalgebra

 Lεf of X satisfies the condition (3.14), we say it is strong.
We provide a condition for a  Lukasiewicz fuzzy subalgebra to be strong.

Theorem 3.15. Let f be a fuzzy set in a BCI-algebra X. If X is p-semisimple,
then every ε- Lukasiewicz fuzzy subalgebra  Lεf of X is strong.

Proof. Assume that X is a p-semisimple BCI-algebra and let  Lεf be an ε- Lukasiewicz

fuzzy subalgebra of X. Then it satisfies the condition (3.13) (See Proposition 3.14).
In the same way as the proof of Theorem 3.8, it can be revealed that (3.13) is
equivalent to the following.

(∀x, y ∈ X)( Lεf (x ∗ (0 ∗ y)) ≥ min{ Lεf (x),  Lεf (y)}).(3.15)

Using (2.5), Theorem 3.8, Proposition 3.9 and the p-semisimplicity of X, we have

 Lεf (x) =  Lεf (0 ∗ (0 ∗ x)) ≥ min{ Lεf (0),  Lεf (0 ∗ x)}
=  Lεf (0 ∗ x) =  Lεf (0 ∗ (0 ∗ (0 ∗ x)))

≥ min{ Lεf (0),  Lεf (0 ∗ (0 ∗ x))} =  Lεf (0 ∗ (0 ∗ x))

≥  Lεf (x).

Thus  Lεf (x) =  Lεf (0 ∗ x) for all x ∈ X. So  Lεf is a strong ε- Lukasiewicz fuzzy
subalgebra of X. �

Corollary 3.16. Let X be a BCI-algebra which satisfies any one of the following
conditions:

X = {0 ∗ x | x ∈ X},(3.16)

(∀x, y ∈ X)(x ∗ (0 ∗ y) = y ∗ (0 ∗ x)),(3.17)

(∀x ∈ X)(0 ∗ x = 0 ⇒ x = 0),(3.18)

(∀x, y ∈ X)(0 ∗ (y ∗ x) = x ∗ y),(3.19)

(∀x, y, z ∈ X)(z ∗ x = z ∗ y ⇒ x = y),(3.20)

(∀x, y, z ∈ X)((x ∗ y) ∗ (x ∗ z) = z ∗ y).(3.21)

If f is a fuzzy subalgebra of X, then  Lεf is a strong ε- Lukasiewicz fuzzy subalgebra
of X.

Proof. It is strateforward by Theorems 3.6 and 3.15 because the p-semisimplicity of
BCI algebra is equivalent to each of conditions (3.16)–(3.21) (See [9]). �

Let f be a fuzzy set in X. For an ε- Lukasiewicz fuzzy set  Lεf of f in X and

t ∈ (0, 1], consider the sets

( Lεf , t)∈ := {x ∈ X | [x/t] ∈  Lεf},
( Lεf , t)q := {x ∈ X | [x/t] q  Lεf},

which are called the ∈-set and q-set, respectively, of  Lεf (with value t).
We explore the conditions under which the ∈-set and q-set of  Lukasiewicz fuzzy

set can be subalgebras.
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Theorem 3.17. Let  Lεf be an ε- Lukasiewicz fuzzy set of a fuzzy set f in X. Then

the ∈-set ( Lεf , t)∈ of  Lεf with value t ∈ (0.5, 1] is a subalgebra of X if and only if the
following assertion is valid.

(∀x, y ∈ X)
(
min{ Lεf (x),  Lεf (y)} ≤ max{ Lεf (x ∗ y), 0.5}

)
.(3.22)

Proof. Assume that the ∈-set ( Lεf , t)∈ of  Lεf with value t ∈ (0.5, 1] is a subalgebra

of X. If the condition (3.22) is not valid, then there exist a, b ∈ X such that

min{ Lεf (a),  Lεf (b)} > max{ Lεf (a ∗ b), 0.5}.

If we take s := min{ Lεf (a),  Lεf (b)}, then s ∈ (0.5, 1] and [a/s], [b/s] ∈  Lεf , i.e.,

a, b ∈ ( Lεf , s)∈. Since ( Lεf , s)∈ is a subalgebra of X, we have a ∗ b ∈ ( Lεf , s)∈. But

[(a ∗ b)/s] /∈  Lεf implies a ∗ b /∈ ( Lεf , s)∈, a contradiction. Thus we have

min{ Lεf (x),  Lεf (y)} ≤ max{ Lεf (x ∗ y), 0.5} for all x, y ∈ X.

Conversely, suppose that  Lεf satisfies (3.22). Let t ∈ (0.5, 1] and x, y ∈ X be such

that x ∈ ( Lεf , t)∈ and y ∈ ( Lεf , t)∈. Then  Lεf (x) ≥ t and  Lεf (y) ≥ t, which imply from

(3.22) that

0.5 < t ≤ min{ Lεf (x),  Lεf (y)} ≤ max{ Lεf (x ∗ y), 0.5}.
Thus [(x ∗ y)/t] ∈  Lεf , i.e., x ∗ y ∈ ( Lεf , t)∈. So ( Lεf , t)∈ is a subalgebra of X for

t ∈ (0.5, 1]. �

Theorem 3.18. Let  Lεf be an ε- Lukasiewicz fuzzy set of a fuzzy set f in X. If f

is a fuzzy subalgebra of X, then the q-set ( Lεf , t)q of  Lεf with value t ∈ (0, 1] is a
subalgebra of X.

Proof. Let t ∈ (0, 1] and x, y ∈ ( Lεf , t)q. Then [x/t] q  Lεf and [y/t] q  Lεf , i.e.,  Lεf (x) +

t > 1 and  Lεf (y) + t > 1. It follows from Theorems 3.6 and 3.8 that

 Lεf (x ∗ y) + t ≥ min{ Lεf (x),  Lεf (y)}+ t = min{ Lεf (x) + t,  Lεf (y) + t} > 1.

Thus [(x ∗ y)/t] q  Lεf . So x ∗ y ∈ ( Lεf , t)q. Hence ( Lεf , t)q is a subalgebra of X. �

Theorem 3.19. Let f be a fuzzy set in X. For an ε- Lukasiewicz fuzzy set  Lεf of f

in X, if the q-set ( Lεf , t)q is a subalgebra of X, then  Lεf satisfies:

[x/ta] q  Lεf , [y/tb] q  Lεf ⇒ [(x ∗ y)/max{ta, tb}] ∈  Lεf(3.23)

for all x, y ∈ X and ta, tb ∈ (0, 0.5].

Proof. Let x, y ∈ X and ta, tb ∈ (0, 0.5] be such that [x/ta] q  Lεf and [y/tb] q  Lεf .

Then x ∈ ( Lεf , ta)q ⊆ ( Lεf ,max{ta, tb})q and y ∈ ( Lεf , tb)q ⊆ ( Lεf ,max{ta, tb})q.
Thus x ∗ y ∈ ( Lεf ,max{ta, tb})q. Since max{ta, tb} ≤ 0.5,

 Lεf (x ∗ y) > 1−max{ta, tb} ≥ max{ta, tb}.

So [(x ∗ y)/max{ta, tb}] ∈  Lεf . �

Let f be a fuzzy set in X. For an ε- Lukasiewicz fuzzy set  Lεf of f in X, consider
a set:

O( Lεf ) := {x ∈ X |  Lεf (x) > 0}(3.24)
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which is called an O-set of  Lεf . It is observed that

O( Lεf ) = {x ∈ X | f(x) + ε− 1 > 0}.

Theorem 3.20. Let  Lεf be an ε- Lukasiewicz fuzzy set of a fuzzy set f in X. If f is

a fuzzy subalgebra of X, then the O-set O( Lεf ) of  Lεf is a subalgebra of X.

Proof. Let x, y ∈ O( Lεf ). Then f(x) + ε− 1 > 0 and f(y) + ε− 1 > 0. If f is a fuzzy

subalgebra of X, then  Lεf is an ε- Lukasiewicz fuzzy subalgebra of X (See Theoem

3.6). It follows from Theoem 3.8 that

 Lεf (x ∗ y) ≥ min{ Lεf (x),  Lεf (y)} = min{f(x) + ε− 1, f(y) + ε− 1} > 0

Thus x ∗ y ∈ O( Lεf ). So O( Lεf ) is a subalgebra of X. �

Theorem 3.21. Let f be a fuzzy set in X. If an ε- Lukasiewicz fuzzy set  Lεf of f in
X satisfies:

[x/ta] ∈  Lεf , [y/tb] ∈  Lεf ⇒ [(x ∗ y)/max{ta, tb}] q  Lεf(3.25)

for all x, y ∈ X and ta, tb ∈ (0, 1], then the O-set O( Lεf ) of  Lεf is a subalgebra of X.

Proof. Assume that  Lεf satisfies the condition (3.25) for all x, y ∈ X and ta, tb ∈
(0, 1]. Let x, y ∈ O( Lεf ). Then f(x) + ε − 1 > 0 and f(y) + ε − 1 > 0. Since

[x/ Lεf (x)] ∈  Lεf and [y/ Lεf (y)] ∈  Lεf . it follows from (3.25) that

[(x ∗ y)/max{ Lεf (x),  Lεf (y)}] q  Lεf .(3.26)

If x ∗ y /∈ O( Lεf ), then  Lεf (x ∗ y) = 0. Thus we get

 Lεf (x ∗ y) + max{ Lεf (x),  Lεf (y)} = max{ Lεf (x),  Lεf (y)}
= max{max{0, f(x) + ε− 1},max{0, f(y) + ε− 1}}
= max{f(x) + ε− 1, f(y) + ε− 1}
= max{f(x), f(y)}+ ε− 1

≤ 1 + ε− 1 = ε ≤ 1,

which shows that (3.26) is not valid. This is a contradiction. So x ∗ y ∈ O( Lεf ).

Hence O( Lεf ) is a subalgebra of X. �

Theorem 3.22. Let f be a fuzzy set in X. If an ε- Lukasiewicz fuzzy set  Lεf of f

in X satisfies the condition (3.23) for all x, y ∈ X and ta, tb ∈ (0, 1], then the O-set
O( Lεf ) of  Lεf is a subalgebra of X.

Proof. Let x, y ∈ O( Lεf ). Then f(x) + ε− 1 > 0 and f(y) + ε− 1 > 0. Hence

 Lεf (x) + 1 = max{0, f(x) + ε− 1}+ 1 = f(x) + ε− 1 + 1 = f(x) + ε > 1

and

 Lεf (y) + 1 = max{0, f(y) + ε− 1}+ 1 = f(y) + ε− 1 + 1 = f(y) + ε > 1,

i.e., [x/1] q  Lεf and [y/1] q  Lεf . It follows from (3.23) that

[(x ∗ y)/1] = [(x ∗ y)/max{1, 1}] ∈  Lεf .(3.27)

If x ∗ y /∈ O( Lεf ), then  Lεf (x ∗ y) = 0 < 1 and so (3.27) is not valid. This is a

contradiction Thus x ∗ y ∈ O( Lεf ). So O( Lεf ) is a subalgebra of X. �
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[2] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23

(1978) 1–26.

[3] Y. B. Jun, S. M. Hong, S. J. Kim and S. Z. Song, Fuzzy ideals and fuzzy subalgebras of
BCK-algebras, J. Fuzzy Math. 7 (1999) 411–418.

[4] Y. B. Jun, Fuzzy subalgebras with thresholds in BCK/BCI-algebras, Commun. Korean Math.

Soc. 22 (2) (2007) 173–181.
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